WO2017175515A1 - TiAl系金属間化合物焼結体の製造方法 - Google Patents

TiAl系金属間化合物焼結体の製造方法 Download PDF

Info

Publication number
WO2017175515A1
WO2017175515A1 PCT/JP2017/007651 JP2017007651W WO2017175515A1 WO 2017175515 A1 WO2017175515 A1 WO 2017175515A1 JP 2017007651 W JP2017007651 W JP 2017007651W WO 2017175515 A1 WO2017175515 A1 WO 2017175515A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
tial
intermetallic compound
powder
sintered body
Prior art date
Application number
PCT/JP2017/007651
Other languages
English (en)
French (fr)
Inventor
研二 鈴木
新藤 健太郎
俊太郎 寺内
壽 北垣
和樹 花見
忠之 花田
Original Assignee
三菱重工航空エンジン株式会社
大阪冶金興業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工航空エンジン株式会社, 大阪冶金興業株式会社 filed Critical 三菱重工航空エンジン株式会社
Priority to ES17778894T priority Critical patent/ES2813049T3/es
Priority to EP17778894.0A priority patent/EP3424621B1/en
Priority to CA3019654A priority patent/CA3019654C/en
Priority to US16/090,833 priority patent/US10981229B2/en
Publication of WO2017175515A1 publication Critical patent/WO2017175515A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a method for producing a TiAl-based intermetallic compound sintered body.
  • TiAl-based intermetallic compounds are intermetallic compounds (alloys) in which Ti (titanium) and Al (aluminum) are bonded, and are lightweight and have high strength at high temperatures, so they are used for high temperatures in engines and aerospace equipment. Applied to structural materials. TiAl-based intermetallic compounds are difficult to form by forging, casting, or the like due to their low spreadability, and may be formed by sintering.
  • Patent Document 1 discloses that a TiAl-based intermetallic compound sintered body is manufactured by mixing Ti powder and Al powder and performing pressure sintering.
  • an object of the present invention is to provide a method for producing a TiAl-based intermetallic compound sintered body that suppresses a decrease in sintered density while improving shape accuracy.
  • a manufacturing method of a TiAl-based intermetallic compound sintered body includes a mixing step of mixing a Ti powder, an Al powder, and a binder to obtain a mixture.
  • This TiAl-based intermetallic compound sintered body is pre-sintered before sintering in the metal injection molding method.
  • pre-sintering the compact is housed in a pre-sintering mold. Therefore, according to this manufacturing method, it becomes possible to suppress the volume expansion of the Ti powder in the Al solid solution process by the pre-sintering mold, and while improving the shape accuracy of the TiAl intermetallic compound sintered body, A decrease in density can be suppressed.
  • the temporary sintering step includes dissolving Al in the Al powder with respect to Ti in the Ti powder, and the sintering step includes Ti and Aggregating particles of TiAl-based intermetallic compound formed by bonding with Al solid-dissolved in Ti, the pre-sintering temperature is higher than the temperature at which the solid-solution starts, It is preferable that the temperature is lower than the temperature at which the compound particles start to aggregate.
  • This method for producing a TiAl-based intermetallic compound sintered body can ensure that the Ti powder is housed in the pre-sintering mold in the step in which the volume expansion of the Ti powder occurs. Therefore, the production method of the present embodiment can suppress the volume expansion of the Ti powder and improve the shape accuracy of the TiAl-based intermetallic compound sintered body, and can suppress the decrease in the sintered density.
  • the temporary sintering temperature is preferably 400 ° C. or higher and lower than 1400 ° C.
  • the pre-sintering mold suppresses the volume expansion of Ti powder and improves the shape accuracy of the TiAl-based intermetallic compound sintered body, while suppressing the decrease in sintering density. can do.
  • Sintering can be performed appropriately by setting the temporary sintering temperature to 1400 ° C. or lower.
  • the temporary sintering temperature is preferably 900 ° C. or higher.
  • the sintering temperature is preferably 1400 ° C. or higher and 1500 ° C. or lower.
  • the manufacturing method of this TiAl-based intermetallic compound sintered body is to improve the shape accuracy of the TiAl-based intermetallic compound sintered body by performing preliminary sintering and then sintering at this sintering temperature, A decrease in the sintered density can be suppressed.
  • the injection molding step injects the mixture into a molding die having a molding space inside to mold the molded body, and stores the storage space. It is preferable that the shape and size of are substantially the same as the molding space.
  • the volume and expansion of the Ti powder are appropriately suppressed because the storage space and the mold have substantially the same shape and size.
  • the present invention it is possible to suppress a decrease in sintering density while improving the shape accuracy of the TiAl-based intermetallic compound sintered body.
  • FIG. 1 is a block diagram showing a configuration of a sintered body manufacturing system according to the present embodiment.
  • FIG. 2 is a graph showing an example of presintering conditions in the present embodiment.
  • FIG. 3 is a graph showing an example of sintering conditions in the present embodiment.
  • FIG. 4 is a flowchart for explaining a manufacturing flow of the TiAl-based intermetallic compound sintered body by the sintered body manufacturing system according to the first embodiment.
  • FIG. 5 is an explanatory view showing a sintering process according to a comparative example.
  • FIG. 6 is an explanatory view showing a temporary sintering step and a sintering step according to the present embodiment.
  • FIG. 1 is a block diagram showing a configuration of a sintered body manufacturing system according to the present embodiment.
  • the sintered body manufacturing system 1 according to the present embodiment is a system for executing a method for manufacturing a sintered body of a TiAl-based intermetallic compound.
  • the TiAl-based intermetallic compound sintered body is a sintered body mainly composed of a TiAl-based intermetallic compound (TiAl-based alloy).
  • the TiAl-based intermetallic compound in the present embodiment is a compound in which Ti (titanium) and Al (aluminum) are bonded (TiAl, Ti 3 Al, Al 3 Ti, etc.).
  • the TiAl-based intermetallic compound may be a solution in which an additive metal M described later is dissolved in a TiAl phase that is a phase in which Ti and Al are bonded.
  • the sintered body manufacturing system 1 includes a metal powder injection molding apparatus 10, a temporary sintering apparatus 20, and a sintering apparatus 30.
  • the sintered body manufacturing system 1 uses a metal powder injection molding apparatus 10 to inject raw material powder together with a binder into a molding die 12 to form a molded body, and the temporary sintering apparatus 20 accommodates the molded body in a temporary sintering mold 22. Is temporarily sintered to produce a temporary sintered body, and the sintered body 30 is sintered by the sintering device 30 to produce a sintered body of TiAl-based intermetallic compound (TiAl-based intermetallic compound sintered body). To do.
  • the metal powder injection molding apparatus 10 is an apparatus that performs metal powder injection molding (MIM).
  • the metal powder injection molding apparatus 10 molds a molded body C from the mixture B in which the raw material powder A and the binder are mixed.
  • the raw material powder A contains Ti powder, Al powder, and additive metal powder.
  • Ti powder is a powder of Ti (titanium).
  • the Al powder is Al (aluminum) powder.
  • the additive metal powder is a powder of additive metal M.
  • the additive metal M is a metal other than Ti and Al, and includes, for example, at least one of Nb (niobium), Cr (chromium), and Mn (manganese).
  • the additive metal powder may be one type of powder that is an alloy of each metal, or may include a plurality of types of metal powder for each metal. Good.
  • the raw material powder A that is, the Ti powder, the Al powder, and the additive metal powder has a particle size of 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 20 ⁇ m.
  • the raw material powder A contains 20 to 80 wt% Ti powder, 20 to 80 wt% Al powder, and 0 to 30 wt% added metal powder.
  • Mixture B is a mixture of raw material powder A and a binder.
  • the binder connects the raw material powders A and is a resin having fluidity.
  • the mixture B is provided with fluidity and moldability by adding a binder.
  • the metal powder injection molding apparatus 10 injects the mixture B into the mold 12.
  • the mold 12 is a mold having a molding space that is a space of a predetermined shape inside.
  • the mixture B injected into the mold 12 forms a molded body C having the same shape and size as the shape of the molding space. Since the moldability C is imparted by the binder addition, the molded body C is maintained in the same shape as the shape of the molding space even when it is taken out from the molding die 12.
  • the pre-sintering apparatus 20 is an apparatus (furnace) that pre-sinters the compact C at a predetermined pre-sintering temperature to generate a pre-sintered body D.
  • the formed body C is taken out from the forming mold 12 and stored in the temporary sintering mold 22.
  • the formed body C accommodated in the temporary sintering mold 22 is accommodated in the temporary sintering apparatus 20 and pre-sintered to become a pre-sintered body D.
  • Pre-sintering is a process of heating the compact C at a pre-sintering temperature lower than the sintering temperature described later.
  • the pre-sintering die 22 is a die having a storage space that is a space of a predetermined shape inside.
  • the pre-sintering mold 22 is made of ceramics such as Y 2 O 3 , ZrO 2 , Al 2 O 3 .
  • the storage space for the temporary sintering die 22 has a shape and size substantially the same as the shape and size of the molding space for the molding die 12. In other words, the storage space of the temporary sintering die 22 has substantially the same shape and size as the molded body C.
  • substantially the same shape and size means that the shape and size are the same except for a difference in general dimensional tolerance.
  • the internal space of the temporary sintering die 22 may be larger than the internal space of the mold 12 by 0% or more and 2% or less.
  • the temporary sintering mold 22 is a mold different from the mold 12, but the temporary sintering mold 22 may be the same as the molding mold 12. That is, the mold 12 may be used as the temporary sintering mold 22 as it is.
  • the molded body C molded by the metal powder injection molding apparatus 10 is kept in the molding die 12, and the molding die 12 is stored in the temporary sintering apparatus 20 as a temporary sintering mold 22 and calcined. Do the tie.
  • FIG. 2 is a graph showing an example of pre-sintering conditions in the present embodiment.
  • the horizontal axis in FIG. 2 is time, and the vertical axis is the temperature inside the preliminary sintering apparatus 20.
  • the presintering apparatus 20 stores the compact C stored in the presintering mold 22 inside, and from time HA0 to time HA1, the internal temperature is from temperature TA0 to temperature TA1. Raise.
  • the temperature TA0 is a time HA0, that is, a temperature at the start of preliminary sintering.
  • the temperature TA0 is room temperature in the present embodiment, but may be a temperature lower than the temperature at which binder degreasing is started.
  • the temperature at which the degreasing of the binder is started is a temperature at which the binder starts thermal decomposition, and is 300 ° C., for example.
  • the temperature TA1 is a temperature at the time HA1 and is a pre-sintering temperature.
  • the temperature TA1 (temporary sintering temperature) is higher than the temperature at which TiAl-based intermetallic compound particles form a neck and start bonding (the temperature at which the neck forming step described later starts), and the TiAl-based intermetallic compound particles The temperature is lower than the temperature at which the particles start to aggregate (aggregation step described later).
  • the temperature TA1 temporary sintering temperature
  • the temperature of Al is higher than the temperature at which Al starts to dissolve in the Ti powder (solid solution process described later), and the particles of TiAl-based intermetallic compound It may be lower than the temperature at which they start aggregating (aggregation step described later).
  • the temperature TA1 is 900 ° C. or higher and lower than 1400 ° C., but may be 400 ° C. or higher and lower than 1400 ° C.
  • the time HA1 is a time that is a predetermined time after the time HA0, and is, for example, 0.5 hours to 3 hours after the time HA0.
  • the temporary sintering apparatus 20 maintains the internal temperature at the temperature TA1 until time HA2.
  • the time HA2 is a time after a predetermined time from the time HA1, and is, for example, 0.5 hours to 10 hours after the time HA1.
  • the temporary sintering apparatus 20 reduces the internal temperature from the temperature TA1 to the temperature TA0 from the time HA2 to the time HA3, and ends the temporary sintering treatment.
  • the temporary sintering apparatus 20 pre-sinters the molded object C accommodated in the temporary sintering type
  • the time HA3 is a time after a predetermined time from the time HA2, but is, for example, 0.5 hours to 3 hours after the time HA2.
  • the sintering apparatus 30 is an apparatus (furnace) that sinters the temporary sintered body D to generate a TiAl-based intermetallic compound sintered body E.
  • the temporary sintered body D is taken out from the temporary sintering mold 22 and stored in the sintering apparatus 30.
  • the sintering apparatus 30 sinters this temporary sintered body D at a predetermined sintering temperature that is set in advance to generate a TiAl-based intermetallic compound sintered body E.
  • FIG. 3 is a graph showing an example of sintering conditions in the present embodiment.
  • the horizontal axis in FIG. 3 is time, and the vertical axis is the temperature inside the sintering apparatus 30.
  • the sintering apparatus 30 accommodates the temporary sintered body D taken out from the temporary sintering mold 22 inside, and changes the internal temperature from the temperature TB0 to the temperature TB1 from the time HB0 to the time HB1. Raise to.
  • the temperature TB0 is a time HB0, that is, a temperature at the start of sintering.
  • the temperature TB0 is room temperature.
  • the temperature TB1 is a temperature at the time HB1 and is a sintering temperature.
  • the temperature TB1 (sintering temperature) is higher than the pre-sintering temperature, and the temperature at which the Ti powder and the Al powder can be sintered, that is, the neck between the powders of the TiAl-based intermetallic compound grows and aggregates ( This is a temperature at which a coagulation step described later) is possible.
  • the temperature TB1 (sintering temperature) is preferably 1400 ° C. or higher and 1500 ° C. or lower, and more preferably 1420 ° C. or higher and 1470 ° C. or lower.
  • the time HB1 is a time that is a predetermined time after the time HB0, and is, for example, 0.5 hours to 3 hours after the time HB0.
  • the sintering apparatus 30 maintains the internal temperature at temperature TB1 until time HB2.
  • the time HB2 is a time after a predetermined time from the time HB1, and is, for example, 0.5 hours to 5 hours after the time HB1.
  • the sintering apparatus 30 reduces the internal temperature from TB1 to TB0 from time HB2 to time HB3, and finishes the sintering process.
  • the sintering apparatus 30 sinters the temporary sintered body D taken out from the temporary sintering mold 22 at the temperature TB1 (sintering temperature) to generate a TiAl-based intermetallic compound sintered body E.
  • the time HB3 is a time after a predetermined time from the time HB2, but is, for example, 0.5 hours to 10 hours after the time HB2.
  • FIG. 4 is a flowchart for explaining a manufacturing flow of the TiAl-based intermetallic compound sintered body by the sintered body manufacturing system according to the first embodiment.
  • the sintered compact manufacturing system 1 first mixes the raw material powder A and the binder to generate the mixture B (step S10).
  • the generation process of the mixture B may be performed by a machine or an operator.
  • the sintered body manufacturing system 1 performs injection molding of the mixture B into the molding die 12 by the metal powder injection molding apparatus 10 to form the molded body C (step S12).
  • the sintered body manufacturing system 1 stores the molded body C in the temporary sintering mold 22 (step S14), and the molding stored in the temporary sintering mold 22 by the temporary sintering apparatus 20.
  • the body C is pre-sintered to generate a pre-sintered body D (step S16).
  • the sintered body manufacturing system 1 takes out the temporary sintered body D from the temporary sintered mold 22 (step S18), and removes it from the temporary sintered mold 22 by the sintering apparatus 30.
  • the temporary sintered body D is sintered to produce a TiAl-based intermetallic compound sintered body E (step S20). The process ends when the TiAl-based intermetallic compound sintered body E is generated.
  • the raw material powder A contains Ti powder and Al powder.
  • the molded body C made of such raw material powder A is sintered, Al is dissolved and diffused in the Ti powder (Ti phase) by the so-called Kirkendle effect, and TiAl-based intermetallic compound powder is generated. And TiAl type intermetallic compound powder forms a neck and couple
  • Al is dissolved and diffused in the Ti powder, the Ti powder becomes larger, so the distance between the centers of the Ti powders becomes longer, resulting in volume expansion. Therefore, when the raw material powder A is sintered, volume expansion occurs, so that it is difficult to maintain the shape, and it is difficult to improve the shape accuracy.
  • the TiAl-based intermetallic compound sintered body E is generated by shrinking after volume expansion, but since the volume once expands, the final sintered density after shrinking decreases. There is also the problem of doing.
  • the metal powder injection molding method it is necessary to perform sintering while maintaining the molded shape, but there is a problem that it is particularly difficult to maintain the molded shape due to this volume expansion.
  • the sintered body manufacturing system 1 according to the present embodiment suppresses volume expansion, improves shape accuracy, and sinters by storing in a temporary sintering mold 22 and performing preliminary sintering before sintering. This makes it possible to suppress a decrease in density.
  • the comparative example and this embodiment are compared.
  • FIG. 5 is an explanatory view showing a sintering process according to a comparative example.
  • Ti powder is Ti powder X
  • Al powder is Al powder Y
  • TiAl-based intermetallic compound powder is TiAl-based intermetallic compound powder Z.
  • description of the additive metal powder is omitted.
  • the Ti powder X and the Al powder Y form a molded body C in the molding completion step.
  • the molding completion step is after the molded body C is molded by metal injection molding and before sintering is started.
  • the center-to-center distance between the Ti powders X in the molding completion step is L1.
  • the compact C is heated and sintered without being put in a mold such as the temporary sintering mold 22.
  • a mold such as the temporary sintering mold 22.
  • the molded body C undergoes a degreasing process in which the binder is first degreased.
  • the binder is degreased and only the Ti powder X and the Al powder Y remain.
  • the distance between the centers of the Ti powders X remains L1.
  • the temperature rises further from the degreasing process it becomes a solid solution process.
  • the solid solution step Al in the Al powder covers the periphery of the Ti powder X, and starts solid solution in the Ti powder X.
  • the Ti powder X since Al covers the periphery of the Ti powder X and dissolves in the Ti powder X, the Ti powder X becomes large, and the center distance between the Ti powders X is L2 which is larger than L1. Become. Therefore, in the solid solution process, overall volume expansion occurs and the volume becomes larger than that of the molded body C. When the temperature rises further from the solid solution process, it becomes a diffusion process.
  • Al dissolved in the Ti powder X (Ti phase) is diffused, and TiAl-based intermetallic compound powder Z is generated. The center-to-center distance between the TiAl-based intermetallic compound powders Z in the diffusion process remains L2.
  • the neck formation step TiAl-based intermetallic compound powders Z form a neck and start bonding.
  • neck formation is started, but before neck growth (aggregation), the center-to-center distance between the TiAl-based intermetallic compound powders Z remains L2.
  • an agglomeration step is performed.
  • TiAl-based intermetallic compound powder Z neck each other formed grows, aggregated TiAl-based intermetallic compound powder Z together, TiAl-based intermetallic compound sintered body E x is generated.
  • the distance between the TiAl-based intermetallic compound powders Z is reduced, and the distance between the centers of the TiAl-based intermetallic compound powders Z is L3 which is smaller than L2.
  • FIG. 6 is an explanatory view showing a temporary sintering step and a sintering step according to the present embodiment.
  • at least the degreasing step and the solid solution step are performed in the preliminary sintering step, and at least the condensation step is performed in the sintering step.
  • the compact C is accommodated in the temporary sintering mold 22 to perform preliminary sintering.
  • the molding completion step in the present embodiment is after the molded body C is accommodated in the temporary sintering die 22 and before the preliminary sintering is started.
  • the center-to-center distance between the Ti powders X in the molding completion process and the degreasing process is L1.
  • the degreasing step occurs when heated to, for example, 300 ° C. or higher.
  • a solid solution process occurs, for example, when heated to 400 ° C. or higher.
  • Al in the Al powder covers the periphery of the Ti powder X, and starts solid solution in the Ti powder X.
  • the Ti powder X tends to expand, but the expansion is suppressed by the pre-sintering mold 22 having substantially the same shape as that of the formed body C, and substantially the same shape as that of the formed body C is maintained.
  • the center-to-center distance L4 of the Ti powder X is smaller than the distance L2 in the comparative example. That is, in this embodiment, volume expansion in the solid solution process is suppressed.
  • the process up to the neck forming process is included in the preliminary sintering process, but the process of storing in the temporary sintering process, that is, the temporary sintering mold 22, is at least a solid solution process in which volume expansion occurs. If it is. In other words, in the pre-sintering process, it is sufficient that the solid solution (volume expansion) of Al is completed, and the TiAl-based intermetallic compound powder Z may not be generated.
  • the preliminary sintering treatment may include a part of the aggregation process, that is, the process in which the aggregation process has started to some extent although the aggregation process has not been completed.
  • the temporary sintering process is terminated in the diffusion step, and the process proceeds to the sintering process. That is, after the diffusion step is completed, the temporary sintered body D is taken out from the temporary sintering die 22 and sintered at the sintering temperature. When the temperature is raised to the sintering temperature, an agglomeration process is performed. The aggregation process occurs when heated to, for example, 1400 ° C. or higher. In the aggregation process, the necks of the TiAl-based intermetallic compound powders Z grow, the TiAl-based intermetallic compound powders Z aggregate, and a TiAl-based intermetallic compound sintered body E is generated.
  • the distance between the TiAl-based intermetallic compound powders Z is reduced, and the distance between the centers of the TiAl-based intermetallic compound powders Z is L5, which is smaller than L4.
  • the distance L5 is smaller than the distance L3 in the TiAl-based intermetallic compound sintered E x of the comparative example.
  • the shape change from the formed body C is smaller than that in the comparative example, so that the shape accuracy is improved.
  • the TiAl-based intermetallic compound sintered body E according to the present embodiment suppresses the volume expansion of the Ti powder X, the decrease in the sintering density is suppressed as shown by the distance L5 being smaller than the distance L3. Is done.
  • the manufacturing method of the TiAl-based intermetallic compound sintered body E executed by the sintered body manufacturing system 1 of the present embodiment includes the mixing step, the injection molding step, the temporary sintering step, and the sintering. Steps.
  • the mixing step Ti powder, Al powder, and a binder are mixed to obtain a mixture B.
  • the injection molding step the mixture B is molded into a molded body C having a predetermined shape by a metal injection molding machine.
  • the compact C is accommodated in a temporary sintering mold 22 having a storage space therein, and sintered at a predetermined temporary sintering temperature determined in advance. Generate.
  • the temporary sintered body D is taken out from the temporary sintering mold 22 and sintered at a sintering temperature higher than the temporary sintering temperature to form a TiAl-based intermetallic compound sintered body E.
  • the TiAl-based intermetallic compound sintered body E is manufactured by mixing Ti powder and Al powder and performing metal injection molding to manufacture the TiAl-based intermetallic compound sintered body E. Pre-sintering is performed prior to ligation. In the preliminary sintering, the molded body C is accommodated in the temporary sintering die 22. Therefore, according to this manufacturing method, the volume expansion of the Ti powder X in the Al solid solution step can be suppressed by the temporary sintering die 22, and the shape accuracy of the TiAl-based intermetallic compound sintered body E is improved. , A decrease in the sintered density can be suppressed.
  • the temporary sintering step causes Al in the Al powder to be solid-solved (solid solution process) with respect to Ti in the Ti powder.
  • the sintering step agglomerates (aggregates) particles of TiAl-based intermetallic compound formed by combining Ti and Al dissolved in Ti.
  • the pre-sintering temperature is higher than the temperature at which Al starts to dissolve (the temperature at which the Al solid solution process begins), and the temperature at which the TiAl-based intermetallic particles start to aggregate (the temperature at which the aggregation process begins). Lower).
  • the Ti powder X can be reliably stored in the pre-sintering mold 22 in the Al solid solution process, that is, the process in which the volume expansion of the Ti powder X occurs. Therefore, the manufacturing method of the present embodiment can suppress the volume expansion of the Ti powder X and improve the shape accuracy of the TiAl-based intermetallic compound sintered body E, and can suppress the decrease in the sintering density.
  • the pre-sintering temperature is 400 ° C. or higher and lower than 1400 ° C. Since the solid solution process of Al begins at about 400 ° C., by setting the temporary sintering temperature to 400 ° C. or higher, the volume expansion of the Ti powder X is suppressed by the temporary sintering mold 22, and TiAl-based intermetallic compound sintering is performed. While improving the shape accuracy of the body E, it is possible to suppress a decrease in the sintered density. Moreover, since the aggregation process may start after the temperature exceeds 1400 ° C., sintering can be appropriately performed by setting the temporary sintering temperature to 1400 ° C. or lower.
  • the preliminary sintering temperature is preferably 900 ° C. or higher and lower than 1400 ° C.
  • TiAl-based intermetallic compound powder Z has a neck formation process starting at 900 ° C. or higher, and at the end of temporary sintering, at least a part of TiAl-based intermetallic compound powder Z is bonded by the formation of the neck.
  • the shape retainability when taken out from 22 is improved. Therefore, it becomes possible to perform sintering more appropriately by setting the temporary sintering temperature to 900 ° C. or higher and lower than 1400 ° C.
  • the sintering temperature is preferably 1400 ° C. or higher and 1500 ° C. or lower.
  • the molded body C is molded by injecting the mixture B into the molding die 12 having a molding space inside.
  • the shape and size of the storage space for the temporary sintering mold 22 are substantially the same as the molding space for the mold 12. Since the temporary sintering die 22 has substantially the same shape and size as the forming die 12, the volume expansion of the Ti powder X is appropriately suppressed. Therefore, the manufacturing method according to the present embodiment can suppress the decrease in the sintered density while improving the shape accuracy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

TiAl系金属間化合物焼結体の形状精度を向上させつつ、焼結密度の低下を抑制する。TiAl系金属間化合物焼結体の製造方法は、Ti粉末とAl粉末とバインダとを混合して混合体を得る混合ステップと、混合体を金属射出成型機によって所定形状の成形体に成形する射出成型ステップと、内部に収納用空間を有する仮焼結型内に成形体を収納して、予め定められた所定の仮焼結温度で焼結を行って仮焼結体を生成する仮焼結ステップと、仮焼結体を仮焼結型から取り出して、仮焼結温度よりも高い焼結温度で焼結を行って、TiAl系金属間化合物焼結体を形成する焼結ステップと、を有する。

Description

TiAl系金属間化合物焼結体の製造方法
 本発明は、TiAl系金属間化合物焼結体の製造方法に関する。
 TiAl系金属間化合物は、Ti(チタン)とAl(アルミニウム)とが結合している金属間化合物(合金)であり、軽量、かつ高温での強度が高いため、エンジンや航空宇宙機器の高温用構造材へ適用されている。TiAl系金属間化合物は、展延性が低いなどの理由により、鍛造や鋳造などによって成形することは困難であり、焼結によって成形されることがある。特許文献1には、Ti粉末とAl粉末とを混合して、加圧焼結することによってTiAl系金属間化合物の焼結体を製造する旨が開示されている。
特開昭62-70531号公報
 しかし、例えば加圧焼結によってTiAl系金属間化合物の焼結体を製造した場合、加圧焼結する際の装置及び金型等に制約があるため、製造する最終製品に近い形状(ニアネット形状)に仕上げるなどの、形状精度を高くすることができない。また、金型等の形状を工夫して形状精度を高くした場合は、焼結密度が低下するという問題が生じる。
 従って、本発明は、形状精度を向上させつつ、焼結密度の低下を抑制するTiAl系金属間化合物焼結体の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係るTiAl系金属間化合物焼結体の製造方法は、Ti粉末とAl粉末とバインダとを混合して混合体を得る混合ステップと、前記混合体を金属射出成型機によって所定形状の成形体に成形する射出成型ステップと、内部に収納用空間を有する仮焼結型内に前記成形体を収納して、予め定められた所定の仮焼結温度で焼結を行って仮焼結体を生成する仮焼結ステップと、前記仮焼結体を前記仮焼結型から取り出して、前記仮焼結温度よりも高い焼結温度で焼結を行って、TiAl系金属間化合物焼結体を形成する焼結ステップと、を有する。
 このTiAl系金属間化合物焼結体の製造方法は、金属射出成型法において、焼結の前に仮焼結を実行する。仮焼結においては、成形体が仮焼結型内に収納されている。従って、この製造方法によると、Alの固溶工程におけるTi粉末の体積膨張を仮焼結型によって抑制することが可能となり、TiAl系金属間化合物焼結体の形状精度を向上させつつ、焼結密度の低下を抑制することができる。
 前記TiAl系金属間化合物焼結体の製造方法において、前記仮焼結ステップは、前記Al粉末中のAlを、前記Ti粉末中のTiに対して固溶させ、前記焼結ステップは、TiとそのTiに固溶したAlとが結合して形成されたTiAl系金属間化合物の粒子同士を凝集させ、前記仮焼結温度は、前記固溶を開始する温度よりも高く、前記TiAl系金属間化合物の粒子同士が凝集を開始する温度よりも低いことが好ましい。このTiAl系金属間化合物焼結体の製造方法は、Ti粉末の体積膨張がおきる工程で、Ti粉末を確実に仮焼結型内に収納したままにすることができる。そのため、本実施形態の製造方法は、Ti粉末の体積膨張を抑制し、TiAl系金属間化合物焼結体の形状精度を向上させつつ、焼結密度の低下を抑制することができる。
 前記TiAl系金属間化合物焼結体の製造方法において、前記仮焼結温度は、400℃以上1400℃未満であることが好ましい。仮焼結温度を400℃以上とすることで、仮焼結型によりTi粉末の体積膨張を抑制し、TiAl系金属間化合物焼結体の形状精度を向上させつつ、焼結密度の低下を抑制することができる。仮焼結温度を1400℃以下とすることで、焼結を適切に行うことができる。
 前記TiAl系金属間化合物焼結体の製造方法において、前記仮焼結温度は、900℃以上であることが好ましい。仮焼結温度を900℃以上とすることで、仮焼結終了時の形状保持性が向上する。従って、このTiAl系金属間化合物焼結体の製造方法は、より適切に焼結を行うことが可能となる。
 前記TiAl系金属間化合物焼結体の製造方法において、焼結温度は、1400℃以上1500℃以下であることが好ましい。このTiAl系金属間化合物焼結体の製造方法は、仮焼結を行った後、この焼結温度で焼結を行うことで、TiAl系金属間化合物焼結体の形状精度を向上させつつ、焼結密度の低下を抑制することができる。
 前記TiAl系金属間化合物焼結体の製造方法において、前記射出成型ステップは、内部に成形用空間を有する成形型内に、前記混合体を噴射して前記成形体を成形し、前記収納用空間の形状及び大きさは、前記成形用空間と略同一であることが好ましい。このTiAl系金属間化合物焼結体の製造方法は、収納用空間と成形型との形状及び大きさが略同一であるため、Ti粉末の体積膨張を適切に抑制する。
 本発明によれば、TiAl系金属間化合物焼結体の形状精度を向上させつつ、焼結密度の低下を抑制することができる。
図1は、本実施形態に係る焼結体製造システムの構成を示すブロック図である。 図2は、本実施形態における仮焼結の条件の例を示すグラフである。 図3は、本実施形態における焼結の条件の例を示すグラフである。 図4は、第1実施形態に係る焼結体製造システムによるTiAl系金属間化合物焼結体の製造フローを説明するフローチャートである。 図5は、比較例に係る焼結工程を示す説明図である。 図6は、本実施形態に係る仮焼結工程及び焼結工程を示す説明図である。
 以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、本実施形態に係る焼結体製造システムの構成を示すブロック図である。本実施形態に係る焼結体製造システム1は、TiAl系金属間化合物の焼結体の製造方法を実行するためのシステムである。TiAl系金属間化合物焼結体とは、TiAl系金属間化合物(TiAl系合金)を主成分とする焼結体である。本実施形態におけるTiAl系金属間化合物とは、Ti(チタン)とAl(アルミニウム)とが結合した化合物(TiAl、TiAl、AlTi等)である。ただし、TiAl系金属間化合物は、TiとAlとが結合している相であるTiAl相に、後述する添加金属Mを固溶するものであってもよい。
 図1に示すように、焼結体製造システム1は、金属粉末射出成型装置10と、仮焼結装置20と、焼結装置30とを有する。焼結体製造システム1は、金属粉末射出成型装置10によって原料粉末をバインダと共に成形型12に射出して成形体を成形し、仮焼結装置20によって仮焼結型22に収納された成形体を仮焼結して仮焼結体を生成し、焼結装置30によって仮焼結体を焼結して、TiAl系金属間化合物の焼結体(TiAl系金属間化合物焼結体)を製造する。
 金属粉末射出成型装置10は、金属粉末射出成型(MIM:Metal Injection Molding)を行う装置である。金属粉末射出成型装置10は、原料粉末Aとバインダとが混合された混合体Bから、成形体Cを成形する。原料粉末Aは、Ti粉末と、Al粉末と、添加金属粉末とを含有する。Ti粉末は、Ti(チタン)の粉末である。Al粉末は、Al(アルミニウム)の粉末である。添加金属粉末は、添加金属Mの粉末である。添加金属Mは、Ti及びAl以外の金属であり、例えば、Nb(ニオブ)、Cr(クロム)、及びMn(マンガン)のうち少なくともいずれか一種を含有する。添加金属として複数種類の金属を用いる場合、添加金属粉末は、各金属の合金の粉末である1種類の粉末であってもよいし、金属毎に複数種類の金属粉末を含むものであってもよい。
 原料粉末A、すなわちTi粉末とAl粉末と添加金属粉末とは、粒径が、1μm以上50μm以下、より好ましくは1μm以上20μm以下である。また、原料粉末Aは、20~80重量%のTi粉末と、20~80重量%のAl粉末と、0~30重量%の添加金属粉末とを含有する。
 混合体Bは、原料粉末Aとバインダとを混合したものである。バインダは、原料粉末A同士を繋ぎ合わせるものであり、流動性を有する樹脂である。混合体Bは、バインダ添加により、流動性及び成形性が付与される。
 金属粉末射出成型装置10は、成形型12内に混合体Bを射出する。成形型12は、内部に所定の形状の空間である成形用空間を有する型である。成形型12内に射出された混合体Bは、成形用空間の形状と同じ形状及び大きさを有する成形体Cを形成する。成形体Cは、バインダ添加により成形性が付与されているため、成形型12から取り出されても、成形用空間の形状と同じ形状に維持される。
 仮焼結装置20は、成形体Cを予め定められた所定の仮焼結温度で仮焼結して、仮焼結体Dを生成する装置(炉)である。成形体Cは、成形型12から取り出されて仮焼結型22内に収納される。仮焼結型22内に収納された成形体Cは、仮焼結装置20内に収納されて仮焼結され、仮焼結体Dとなる。仮焼結とは、後述する焼結温度よりも低温の仮焼結温度で成形体Cを加熱する処理である。
 仮焼結型22は、内部に所定の形状の空間である収納用空間を有する型である。仮焼結型22は、材料が、Y、ZrO、Al等のセラミックスである。仮焼結型22の収納用空間は、成形型12の成形用空間の形状及び大きさと略同一の形状及び大きさである。言い換えれば、仮焼結型22の収納用空間は、成形体Cと略同一の形状及び大きさとなっている。ここで、略同一の形状及び大きさとは、一般的な寸法公差程度の違いを除いて同一の形状及び大きさであることを意味する。ただし、仮焼結型22の内部空間は、成形型12の内部空間よりも、0%以上2%以下だけ、大きくてもよい。なお、本実施形態では、仮焼結型22は、成形型12とは別の型であったが、仮焼結型22は、成形型12と同じものであってもよい。すなわち、成形型12をそのまま仮焼結型22として使用してもよい。この場合、金属粉末射出成型装置10によって成形された成形体Cを、成形型12に入れたままとし、成形型12を仮焼結型22として、仮焼結装置20内に収納して仮焼結を行う。
 図2は、本実施形態における仮焼結の条件の例を示すグラフである。図2の横軸は時間であり、縦軸は仮焼結装置20内部の温度である。図2に示すように、仮焼結装置20は、仮焼結型22に収納された成形体Cを内部に収納して、時間HA0から時間HA1まで、内部の温度を温度TA0から温度TA1まで上昇させる。温度TA0は、時間HA0、すなわち仮焼結開始時の温度である。温度TA0は、本実施形態では室温であるが、バインダの脱脂が開始される温度未満の温度であってもよい。バインダの脱脂が開始される温度とは、バインダが熱分解を開始する温度であり、例えば300℃である。温度TA1は、時間HA1での温度であり、仮焼結温度である。温度TA1(仮焼結温度)は、TiAl系金属間化合物の粒子同士がネックを形成し結合を開始する温度(後述するネック形成工程が開始する温度)よりも高く、TiAl系金属間化合物の粒子同士が凝集を開始する(後述する凝集工程)温度よりも低い。ただし、温度TA1(仮焼結温度)は、この温度範囲外であっても、AlがTi粉末へ固溶を開始する(後述する固溶工程)温度よりも高く、TiAl系金属間化合物の粒子同士が凝集を開始する(後述する凝集工程)温度よりも低くてもよい。具体的には、温度TA1は、900℃以上1400℃未満であるが、400℃以上1400℃未満であってもよい。なお、時間HA1は、時間HA0から所定の時間だけ後の時間であるが、例えば時間HA0から0.5時間以上3時間以下後である。
 図2に示すように、時間HA1で温度TA1(仮焼結温度)に達したら、仮焼結装置20は、時間HA2まで、内部の温度を温度TA1のまま維持する。時間HA2は、時間HA1から所定の時間だけ後の時間であるが、例えば時間HA1から0.5時間以上10時間以下後である。仮焼結装置20は、時間HA2から時間HA3まで、内部の温度を温度TA1から温度TA0に低下させ、仮焼結処理を終了させる。このように、仮焼結装置20は、仮焼結型22に収納された成形体Cを、温度TA1(仮焼結温度)で仮焼結して、仮焼結体Dを生成する。なお、時間HA3は、時間HA2から所定の時間だけ後の時間であるが、例えば時間HA2から0.5時間以上3時間以下後である。
 焼結装置30は、仮焼結体Dを焼結して、TiAl系金属間化合物焼結体Eを生成する装置(炉)である。仮焼結体Dは、仮焼結型22から取り出されて、焼結装置30内に収納される。焼結装置30は、この仮焼結体Dを予め定められた所定の焼結温度で焼結してTiAl系金属間化合物焼結体Eを生成する。
 図3は、本実施形態における焼結の条件の例を示すグラフである。図3の横軸は時間であり、縦軸は焼結装置30内部の温度である。図3に示すように、焼結装置30は、仮焼結型22から取り出された仮焼結体Dを内部に収納して、時間HB0から時間HB1まで、内部の温度を温度TB0から温度TB1まで上昇させる。温度TB0は、時間HB0、すなわち焼結開始時の温度である。温度TB0は、室温である。温度TB1は、時間HB1での温度であり、焼結温度である。温度TB1(焼結温度)は、仮焼結温度より高い温度であり、Ti粉末とAl粉末とが焼結可能な温度、すなわち、TiAl系金属間化合物の粉末同士のネックが成長して凝集(後述する凝集工程)が可能な温度である。温度TB1(焼結温度)は、1400℃以上1500℃以下であることが好ましく、1420℃以上1470℃以下であることがより好ましい。なお、時間HB1は、時間HB0から所定の時間だけ後の時間であるが、例えば時間HB0から0.5時間以上3時間以下後である。
 図3に示すように、時間HB1で温度TB1(焼結温度)に達したら、焼結装置30は、時間HB2まで、内部の温度を温度TB1のまま維持する。時間HB2は、時間HB1から所定の時間だけ後の時間であるが、例えば時間HB1から0.5時間以上5時間以下後である。焼結装置30は、時間HB2から時間HB3まで、内部の温度をTB1からTB0に低下させ、焼結処理を終了させる。このように、焼結装置30は、仮焼結型22から取り出された仮焼結体Dを、温度TB1(焼結温度)で焼結して、TiAl系金属間化合物焼結体Eを生成する。時間HB3は、時間HB2から所定の時間だけ後の時間であるが、例えば時間HB2から0.5時間以上10時間以下後である。
 次に、焼結体製造システム1によるTiAl系金属間化合物焼結体Eの製造フローを説明する。図4は、第1実施形態に係る焼結体製造システムによるTiAl系金属間化合物焼結体の製造フローを説明するフローチャートである。図4に示すように、焼結体製造システム1は、最初に、原料粉末Aとバインダとを混合して、混合体Bを生成する(ステップS10)。この混合体Bの生成処理は、機械によって行われてもよいし、作業者によって行われてもよい。混合体Bを生成した後、焼結体製造システム1は、金属粉末射出成型装置10により、混合体Bを成形型12内に射出成型して、成形体Cを成形する(ステップS12)。成形体Cを成形した後、焼結体製造システム1は、成形体Cを仮焼結型22に収納し(ステップS14)、仮焼結装置20により、仮焼結型22に収納された成形体Cを仮焼結して、仮焼結体Dを生成する(ステップS16)。仮焼結体Dを生成した後、焼結体製造システム1は、仮焼結体Dを仮焼結型22から取り出し(ステップS18)、焼結装置30により、仮焼結型22から取り出された仮焼結体Dを焼結して、TiAl系金属間化合物焼結体Eを生成する(ステップS20)。TiAl系金属間化合物焼結体Eの生成により、本処理は終了する。
 原料粉末AにはTi粉末とAl粉末が含有されている。このような原料粉末Aからなる成形体Cを焼結すると、いわゆるカーケンドル効果によってTi粉末(Ti相)内にAlが固溶及び拡散して、TiAl系金属間化合物粉末が生成される。そして、TiAl系金属間化合物粉末同士がネックを形成して結合(溶着)して、TiAl系金属間化合物焼結体Eが生成される。Ti粉末にAlが固溶及び拡散すると、Ti粉末が大きくなるため、Ti粉末同士の中心間距離が長くなり、結果として、体積膨張を起こす。従って、原料粉末Aを焼結した場合、体積膨張が生じるため、形状を保持することが困難となり、形状精度の向上が困難となる。また、焼結が進むと、体積膨張した後に収縮してTiAl系金属間化合物焼結体Eが生成されるが、一度体積膨張してしまうため、収縮した後の最終的な焼結密度が低下するという問題もある。特に、金属粉末射出成型法を用いる場合、成形形状を維持しつつ焼結を行う必要があるが、この体積膨張により、成形形状の維持が特に困難になるという課題がある。本実施形態に係る焼結体製造システム1は、焼結の前に、仮焼結型22に収納して仮焼結を行うことで、体積膨張を抑制し、形状精度の向上、及び焼結密度の低下の抑制を可能としている。以下、比較例と本実施形態との比較を行う。
 図5は、比較例に係る焼結工程を示す説明図である。比較例においては、仮焼結を行わず、成形体Cを脱脂、焼結してTiAl系金属間化合物焼結体Eを生成するものである。以下の説明では、Ti粉末をTi粉末Xとし、Al粉末をAl粉末Yとし、TiAl系金属間化合物粉末をTiAl系金属間化合物粉末Zとする。また、以下の説明では、添加金属粉末についての説明は省略する。図5に示すように、成形完了工程では、Ti粉末XとAl粉末Yとが成形体Cを形成している。成形完了工程とは、金属射出成型により成形体Cが成形された後で、焼結が開始される前である。成形完了工程におけるTi粉末X同士の中心間距離は、L1となっている。
 比較例においては、成形体Cを仮焼結型22などの型に入れずに加熱して、焼結を行う。成形体Cは、加熱されると、最初にバインダが脱脂される脱脂工程を経る。脱脂工程において、バインダが脱脂され、Ti粉末X及びAl粉末Yのみが残る。脱脂工程においては、Ti粉末XとAl粉末Yとは、反応が起きていないため、Ti粉末X同士の中心間距離は、L1のままである。脱脂工程からさらに温度が上がっていくと、固溶工程となる。固溶工程においては、Al粉末中のAlがTi粉末Xの周囲を覆い、Ti粉末X内への固溶を開始する。この固溶工程においては、AlがTi粉末Xの周囲を覆い、Ti粉末X内に固溶するため、Ti粉末Xが大きくなり、Ti粉末X同士の中心間距離が、L1よりも大きいL2となる。従って、固溶工程においては、全体的な体積膨張が起こり、成形体Cよりも体積が大きくなる。固溶工程からさらに温度が上がっていくと、拡散工程になる。拡散工程においては、Ti粉末X(Ti相)内に固溶したAlが拡散し、TiAl系金属間化合物粉末Zが生成する。拡散工程におけるTiAl系金属間化合物粉末Z同士の中心間距離は、L2のままである。
 拡散工程の後は、ネック形成工程となる。ネック形成工程においては、TiAl系金属間化合物粉末Z同士がネックを形成し、結合を開始する。ネック形成工程は、ネック形成を開始しているが、ネック成長(凝集)前であるため、TiAl系金属間化合物粉末Z同士の中心間距離は、L2のままである。ネック形成工程の後は、凝集工程となる。凝集工程においては、TiAl系金属間化合物粉末Z同士が形成したネックが成長して、TiAl系金属間化合物粉末Z同士が凝集し、TiAl系金属間化合物焼結体Eが生成される。凝集工程においては、TiAl系金属間化合物粉末Z同士の距離が小さくなり、TiAl系金属間化合物粉末Z同士の中心間距離が、L2よりも小さいL3となる。
 次に本実施形態について説明する。図6は、本実施形態に係る仮焼結工程及び焼結工程を示す説明図である。本実施形態は、少なくとも脱脂工程及び固溶工程を仮焼結工程で実行し、少なくとも凝縮工程を焼結工程で実行する。本実施形態においては、最初に、成形体Cを仮焼結型22内に収納して、仮焼結を行う。本実施形態における成形完了工程は、成形体Cを仮焼結型22内に収納した後であり、仮焼結を開始する前である。仮焼結型22内に収納された成形体Cは、仮焼結温度まで加熱されると、最初にバインダが脱脂される脱脂工程を経て、Ti粉末X及びAl粉末Yのみが残る。成形完了工程及び脱脂工程におけるTi粉末X同士の中心間距離は、L1である。脱脂工程は、例えば300℃以上に加熱された場合に起きる。
 脱脂工程からさらに温度が上がっていくと、固溶工程となる。固溶工程は、例えば400℃以上に加熱された場合に起こる。固溶工程においては、Al粉末中のAlがTi粉末Xの周囲を覆い、Ti粉末X内への固溶を開始する。この固溶工程においては、Ti粉末Xが膨張しようとするが、成形体Cと略同一形状である仮焼結型22に膨張が抑制され、成形体Cと略同一な形状が保持される。本実施形態の固溶工程においては、Ti粉末Xの膨張が比較例よりも抑制されるため、Ti粉末Xの中心間距離L4は、比較例における距離L2よりも小さくなる。すなわち、本実施形態においては、固溶工程における体積膨張が抑制される。
 固溶工程からさらに温度が上がっていくと、拡散工程となる。拡散工程においては、Ti粉末X(Ti相)内に固溶したAlが拡散(結合)し、TiAl系金属間化合物粉末Zが生成する。拡散工程におけるTiAl系金属間化合物粉末Z同士の中心間距離は、L4のままである。拡散工程からさらに温度が上がっていくと、ネック形成工程となる。ネック形成工程は、例えば900℃以上に加熱された場合に起こる。ネック形成工程においては、TiAl系金属間化合物粉末Z同士がネックを形成し、結合を開始する。ネック形成工程は、ネック形成を開始しているが、ネック成長(凝集)前であるため、TiAl系金属間化合物粉末Z同士の中心間距離は、L4のままである。なお、本実施形態においては、ネック形成工程までが仮焼結処理に含まれるが、仮焼結処理、すなわち仮焼結型22へ収納しておく工程は、少なくとも体積膨張が起こる固溶工程までであればよい。言い換えれば、仮焼結処理においては、Alの固溶(体積膨張)が終了していればよく、TiAl系金属間化合物粉末Zが生成していなくてもよい。また、仮焼結処理は、一部の凝集工程、すなわち凝集工程が完了していないが、ある程度凝集工程が始まった工程までを含んでもよい。
 本実施形態では、拡散工程において仮焼結処理を終了し、焼結処理に移る。すなわち、拡散工程が終了した後、仮焼結体Dを仮焼結型22から取り出し、焼結温度で焼結を実行する。焼結温度まで温度を上昇させていくと、凝集工程となる。凝集工程は、例えば1400℃以上に加熱された場合に起こる。凝集工程においては、TiAl系金属間化合物粉末Z同士のネックが成長して、TiAl系金属間化合物粉末Z同士が凝集し、TiAl系金属間化合物焼結体Eが生成される。凝集工程においては、TiAl系金属間化合物粉末Z同士の距離が小さくなり、TiAl系金属間化合物粉末Z同士の中心間距離が、L4よりも小さいL5となる。本実施形態においては、Ti粉末Xの体積膨張が抑えられているため、距離L5は、比較例のTiAl系金属間化合物焼結体Eにおける距離L3よりも小さくなる。本実施形態に係るTiAl系金属間化合物焼結体Eは、Ti粉末Xの体積膨張が抑えられるため、成形体Cからの形状変化が比較例よりも小さくなるため、形状精度が向上する。さらに、本実施形態に係るTiAl系金属間化合物焼結体Eは、Ti粉末Xの体積膨張が抑えられるため、距離L5が距離L3よりも小さいことが示すように、焼結密度の低下が抑制される。
 以上説明したように、本実施形態の焼結体製造システム1が実行するTiAl系金属間化合物焼結体Eの製造方法は、混合ステップと、射出成型ステップと、仮焼結ステップと、焼結ステップとを有する。混合ステップは、Ti粉末とAl粉末とバインダとを混合して混合体Bを得る。射出成型ステップは、混合体Bを金属射出成型機によって所定形状の成形体Cに成形する。仮焼結ステップは、内部に収納用空間を有する仮焼結型22内に成形体Cを収納して、予め定められた所定の仮焼結温度で焼結を行って仮焼結体Dを生成する。焼結ステップは、仮焼結体Dを仮焼結型22から取り出して、仮焼結温度よりも高い焼結温度で焼結を行って、TiAl系金属間化合物焼結体Eを形成する。
 本実施形態におけるTiAl系金属間化合物焼結体Eの製造方法は、Ti粉末とAl粉末とを混合して金属射出成型を行ってTiAl系金属間化合物焼結体Eを製造する上で、焼結の前に仮焼結を実行する。仮焼結においては、成形体Cが仮焼結型22内に収納されている。従って、この製造方法によると、Alの固溶工程におけるTi粉末Xの体積膨張を仮焼結型22によって抑制することが可能となり、TiAl系金属間化合物焼結体Eの形状精度を向上させつつ、焼結密度の低下を抑制することができる。
 本実施形態におけるTiAl系金属間化合物焼結体Eの製造方法において、仮焼結ステップは、Al粉末中のAlを、Ti粉末中のTiに対して固溶(固溶工程)させる。焼結ステップは、TiとそのTiに固溶したAlとが結合して形成されたTiAl系金属間化合物の粒子同士を凝集(凝集工程)させる。そして、仮焼結温度は、Alが固溶を開始する温度(Alの固溶工程が始まる温度)よりも高く、TiAl系金属間化合物の粒子同士が凝集を開始する温度(凝集工程が始まる温度)よりも低い。従って、本実施形態の製造方法は、Alの固溶工程、すなわちTi粉末Xの体積膨張がおきる工程で、Ti粉末Xを確実に仮焼結型22内に収納したままにすることができる。そのため、本実施形態の製造方法は、Ti粉末Xの体積膨張を抑制し、TiAl系金属間化合物焼結体Eの形状精度を向上させつつ、焼結密度の低下を抑制することができる。
 また、仮焼結温度は、400℃以上1400℃未満である。Alは、約400℃から固溶工程が始まるため、仮焼結温度を400℃以上とすることで、仮焼結型22によりTi粉末Xの体積膨張を抑制し、TiAl系金属間化合物焼結体Eの形状精度を向上させつつ、焼結密度の低下を抑制することができる。また、凝集工程は、1400℃を超えてから開始することがあるため、仮焼結温度を1400℃以下とすることで、焼結を適切に行うことができる。
 また、仮焼結温度は、900℃以上1400℃未満であることが好ましい。TiAl系金属間化合物粉末Zは、900℃以上からネック形成工程が始まるため、仮焼結終了時に、ネック形成によってTiAl系金属間化合物粉末Zの少なくとも一部が結合しており、仮焼結型22から取り出した際の形状保持性が向上する。従って、仮焼結温度を、900℃以上1400℃未満とすることで、より適切に焼結を行うことが可能となる。
 また、焼結温度は、1400℃以上1500℃以下であることが好ましい。仮焼結を行った後、この焼結温度で焼結を行うことで、TiAl系金属間化合物焼結体Eの形状精度を向上させつつ、焼結密度の低下を抑制することができる。
 また、射出成型ステップは、内部に成形用空間を有する成形型12内に、混合体Bを噴射して成形体Cを成形する。そして、仮焼結型22の収納用空間の形状及び大きさは、成形型12の成形用空間と略同一である。仮焼結型22は、成形型12と形状及び大きさが略同一であるため、Ti粉末Xの体積膨張を適切に抑制する。そのため、本実施形態に係る製造方法は、形状精度を向上させつつ、焼結密度の低下を抑制することができる。
 以上、本発明の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 1 焼結体製造システム
 10 金属粉末射出成型装置
 12 成形型
 20 仮焼結装置
 22 仮焼結型
 30 焼結装置
 A 原料粉末
 B 混合体
 C 成形体
 D 仮焼結体
 E TiAl系金属間化合物焼結体
 X Ti粉末
 Y Al粉末
 Z TiAl系金属間化合物粉末

Claims (6)

  1.  Ti粉末とAl粉末とバインダとを混合して混合体を得る混合ステップと、
     前記混合体を金属射出成型機によって所定形状の成形体に成形する射出成型ステップと、
     内部に収納用空間を有する仮焼結型内に前記成形体を収納して、予め定められた所定の仮焼結温度で焼結を行って仮焼結体を生成する仮焼結ステップと、
     前記仮焼結体を前記仮焼結型から取り出して、前記仮焼結温度よりも高い焼結温度で焼結を行って、TiAl系金属間化合物焼結体を形成する焼結ステップと、
     を有する、TiAl系金属間化合物焼結体の製造方法。
  2.  前記仮焼結ステップは、前記Al粉末中のAlを、前記Ti粉末中のTiに対して固溶させ、前記焼結ステップは、TiとそのTiに固溶したAlとが結合して形成されたTiAl系金属間化合物の粒子同士を凝集させ、
     前記仮焼結温度は、前記固溶を開始する温度よりも高く、前記TiAl系金属間化合物の粒子同士が凝集を開始する温度よりも低い、請求項1に記載のTiAl系金属間化合物焼結体の製造方法。
  3.  前記仮焼結温度は、400℃以上1400℃未満である、請求項2に記載のTiAl系金属間化合物焼結体の製造方法。
  4.  前記仮焼結温度は、900℃以上である、請求項3に記載のTiAl系金属間化合物焼結体の製造方法。
  5.  前記焼結温度は、1400℃以上1500℃以下である、請求項3又は請求項4に記載のTiAl系金属間化合物焼結体の製造方法。
  6.  前記射出成型ステップは、内部に成形用空間を有する成形型内に、前記混合体を噴射して前記成形体を成形し、前記収納用空間の形状及び大きさは、前記成形用空間と略同一である、請求項1から請求項5のいずれか1項に記載のTiAl系金属間化合物焼結体の製造方法。
PCT/JP2017/007651 2016-04-05 2017-02-28 TiAl系金属間化合物焼結体の製造方法 WO2017175515A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES17778894T ES2813049T3 (es) 2016-04-05 2017-02-28 Método para producir un cuerpo sinterizado de un compuesto intermetálico de tial
EP17778894.0A EP3424621B1 (en) 2016-04-05 2017-02-28 METHOD FOR PRODUCING SINTERED BODY OF TiAl INTERMETALLIC COMPOUND
CA3019654A CA3019654C (en) 2016-04-05 2017-02-28 Method for producing tial-based intermetallic sintered compact
US16/090,833 US10981229B2 (en) 2016-04-05 2017-02-28 Method for producing TiAl-based intermetallic sintered compact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016075931A JP6641223B2 (ja) 2016-04-05 2016-04-05 TiAl系金属間化合物焼結体の製造方法
JP2016-075931 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017175515A1 true WO2017175515A1 (ja) 2017-10-12

Family

ID=60001569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007651 WO2017175515A1 (ja) 2016-04-05 2017-02-28 TiAl系金属間化合物焼結体の製造方法

Country Status (6)

Country Link
US (1) US10981229B2 (ja)
EP (1) EP3424621B1 (ja)
JP (1) JP6641223B2 (ja)
CA (1) CA3019654C (ja)
ES (1) ES2813049T3 (ja)
WO (1) WO2017175515A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087519B2 (ja) * 2018-03-22 2022-06-21 日立金属株式会社 熱電素子、熱電変換モジュールおよび熱電素子の製造方法
JP7457980B2 (ja) 2020-02-27 2024-03-29 三菱重工航空エンジン株式会社 TiAl基合金の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068004A (ja) * 1996-08-27 1998-03-10 Agency Of Ind Science & Technol チタン合金の粉末成形法
JP2000355704A (ja) * 1999-06-15 2000-12-26 Osaka Yakin Kogyo Kk Ti−Al系合金の射出成形法における脱脂成形体の炭素量と酸素量の制御方法
JP2007051375A (ja) * 2005-08-19 2007-03-01 General Electric Co <Ge> 粉末の射出成形、圧密、および熱処理によるシートの製造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270531A (ja) 1985-09-24 1987-04-01 Sumitomo Light Metal Ind Ltd Ti−Al系金属間化合物部材の成形法
TW415859B (en) * 1998-05-07 2000-12-21 Injex Kk Sintered metal producing method
KR100509938B1 (ko) 2002-12-24 2005-08-24 학교법인 포항공과대학교 금속사출성형법을 이용한 티타늄 알루미나이드금속간화합물 물품의 제조 방법
WO2004089563A1 (ja) * 2003-04-03 2004-10-21 Taisei Kogyo Co., Ltd. 粉体焼結成形体の製造方法、粉体焼結成形体、粉体射出成形体の製造方法、粉体射出成形体及び粉体射出成形用金型

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068004A (ja) * 1996-08-27 1998-03-10 Agency Of Ind Science & Technol チタン合金の粉末成形法
JP2000355704A (ja) * 1999-06-15 2000-12-26 Osaka Yakin Kogyo Kk Ti−Al系合金の射出成形法における脱脂成形体の炭素量と酸素量の制御方法
JP2007051375A (ja) * 2005-08-19 2007-03-01 General Electric Co <Ge> 粉末の射出成形、圧密、および熱処理によるシートの製造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUHISA SHIBUE: "Fabrication of TiAl by Reactive Sintering", SUMITOMO LIGHT METAL TECHNICAL REPORTS, vol. 33, no. 2, April 1992 (1992-04-01), pages 98 - 104, XP009509094, ISSN: 0039-4963, Retrieved from the Internet <URL:http://www.uacj.co.jp/review/sumitomo_im/pdf> *
See also references of EP3424621A4 *

Also Published As

Publication number Publication date
JP6641223B2 (ja) 2020-02-05
CA3019654C (en) 2020-11-03
US20190105713A1 (en) 2019-04-11
EP3424621A4 (en) 2019-01-23
EP3424621A1 (en) 2019-01-09
US10981229B2 (en) 2021-04-20
ES2813049T3 (es) 2021-03-22
CA3019654A1 (en) 2017-10-12
JP2017186608A (ja) 2017-10-12
EP3424621B1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2017175515A1 (ja) TiAl系金属間化合物焼結体の製造方法
US20200261980A1 (en) Method for identifying and forming viable high entropy alloys via additive manufacturing
TWI604063B (zh) Ni alloy parts manufacturing methods
US20170321303A1 (en) A method of fabricating three-dimensional parts out of an alloy of aluminum and titanium
US11648706B2 (en) Selective sinter-based fabrication of fully dense complexing shaped parts
US20180112293A1 (en) A composition for fabricating parts out of titanium aluminide by sintering powder, and a fabrication method using such a composition
KR102565334B1 (ko) 도어 힌지 및 그 제조방법
JP5624593B2 (ja) 複合金属の一体成形方法
EP3263724A1 (en) Metallurgical process and article with nickel-chromium superalloy
CN105537528A (zh) 一种热芯覆膜砂、冷芯砂混合制芯方法
US20190076928A1 (en) TiAI-BASED INTERMETALLIC SINTERED COMPACT AND METHOD FOR PRODUCING TiAI-BASED INTERMETALLIC SINTERED COMPACT
JP7457980B2 (ja) TiAl基合金の製造方法
CN106475520B (zh) 制造用于车辆排气系统的精密铸造零件的方法
JPH04259304A (ja) 焼結体製造法
JP6222605B2 (ja) 中子材、中子、及び中子材の製造方法、中子の製造方法。
JPH0860203A (ja) 高融点金属粉末の成形焼結体の製造方法
JPH05263165A (ja) Ti−Al系合金焼結体の製造方法
JP2020084267A (ja) 複合焼結体の製造方法
JP2020148166A (ja) シリンダーライナー付きシリンダーブロックの製造方法
JPH04173902A (ja) 粉末射出成形焼結法
JP2015096274A (ja) 鋳造品の製造方法
KR20160077546A (ko) 비정질 금속 성형품의 제조 방법
JPH04339557A (ja) 複合溶湯鍛造法
JPS63179030A (ja) ウイスカ強化a1若しくはa1合金複合材料の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3019654

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2017778894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017778894

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778894

Country of ref document: EP

Kind code of ref document: A1