WO2017175471A1 - 焼結体及び焼結体の製造方法、並びに燃焼器パネル及び燃焼器パネルの製造方法 - Google Patents
焼結体及び焼結体の製造方法、並びに燃焼器パネル及び燃焼器パネルの製造方法 Download PDFInfo
- Publication number
- WO2017175471A1 WO2017175471A1 PCT/JP2017/004366 JP2017004366W WO2017175471A1 WO 2017175471 A1 WO2017175471 A1 WO 2017175471A1 JP 2017004366 W JP2017004366 W JP 2017004366W WO 2017175471 A1 WO2017175471 A1 WO 2017175471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molded body
- molding
- degreasing
- injection
- sintering
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/005—Article surface comprising protrusions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/227—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by organic binder assisted extrusion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00018—Manufacturing combustion chamber liners or subparts
Definitions
- the present invention relates to a sintered body using a metal powder as a raw material, a method for manufacturing the sintered body, a combustor panel, and a method for manufacturing the combustor panel.
- Metal injection molding is a method in which a molding material obtained by mixing metal fine powder and an organic binder (for example, a mixture of a plurality of resins; hereinafter referred to as “binder”) is used. It is a method for producing a metal powder molded product by melting and injection molding, followed by degreasing and sintering.
- an organic binder for example, a mixture of a plurality of resins; hereinafter referred to as “binder”. It is a method for producing a metal powder molded product by melting and injection molding, followed by degreasing and sintering.
- the metal fine powder used for MIM is formed, for example, in a fine powder manufacturing process by a spray method.
- a nickel-based alloy containing titanium having a high high-temperature strength is formed by a spraying method, a “pouring of molten metal” that closes the nozzle in the fine powder production process occurs, and it may be difficult to produce fine powder for MIM.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2005-350710 discloses an invention in which the titanium concentration in a nickel-base alloy is 0.1% by mass or less, and the titanium concentration is 1 in order to prevent this “pouring of molten metal”. In the case of a concentration exceeding mass%, an invention is disclosed in which adjustment is made to reduce the concentration of niobium.
- Patent Document 2 Japanese Patent Laid-Open No. 2000-340303 discloses an invention of a method for manufacturing a metal housing and the like for the purpose of preventing soft deformation of a molded green body in MIM.
- the molded green body in a degreasing and sintering process of a molded green body, the molded green body is placed on a processing tray with the flat surface of the molded green body as a ground surface. Prevents softening deformation due to its own weight.
- Patent Document 3 Japanese Patent Laid-Open No. 2001-152205 discloses a binder that can prevent deformation of a molded green body without using a special jig in a degreasing process of the molded green body. Yes.
- the binder described in Patent Document 3 is a mixture of a plurality of binder components.
- the shape of the molded green body can be prevented from collapsing due to the binder component softened during heating in the degreasing process. And after a binder decomposes
- the binder is not completely removed from the molded green body, but the degreasing process is performed so that about 5% by volume of the total amount of the initial binder remains in the molded body. Therefore, in the degreasing step, the shape of the molded green body can be maintained as it is without being deformed, and a sintered body having an excellent shape can be easily obtained by subsequent sintering.
- Patent Document 4 Japanese Patent Laid-Open No. 2009-103280 discloses a hydrodynamic bearing device in which a pressing force at the time of press working is set to be small, and occurrence of problems such as warpage due to residual stress is effectively suppressed.
- An MIM molded article is disclosed.
- the MIM molded article described in Patent Document 4 is manufactured as follows.
- an intermediate molded body is manufactured by removing a binder from an injection molded body injection molded with a molding material obtained by kneading a binder with metal powder.
- the intermediate molded body is pressed to form a thrust dynamic pressure generating portion.
- the intermediate molded body after the press working is sintered to produce an MIM molded product.
- the intermediate molded body of the MIM molded product (thrust dynamic pressure generating portion) described in Patent Document 4 has a large number of internal pores after binder removal (after degreasing), and a sintered body obtained after sintering It is softer than Therefore, a high-precision thrust dynamic pressure generating portion can be easily formed by performing press working before sintering after removing the binder.
- the pressing force at the time of press working can be set small, it is possible to effectively suppress the occurrence of defects such as warpage due to residual stress.
- Patent Document 5 Japanese Patent Publication No. 2006-505688 discloses an injection molding material for metal injection molding that is economical and applicable to a wide range.
- the injection molding material described in Patent Document 5 includes: a) at least 50% by mass of iron-containing powder with respect to the total amount of metal, and at least 90% by mass with respect to the mass of the iron-containing powder, at least 40 ⁇ m. 40 to 70% by volume of metal powder comprising particles having an effective diameter of b) 30) to 60% by volume of thermoplastic binder, and c) 0 to 5% by volume of dispersant and / or other assistants. Contains the agent.
- a sintered body having a shape that is difficult to be molded only by primary molding by metal powder injection molding is manufactured.
- the sintered body is an injection molded body formed by injecting a molding material in which metal powder and a binder are mixed into an injection mold, or intermediate molding after degreasing the injection molded body.
- the body is placed on a transfer mold and subjected to gravity molding with deformation due to gravity, and the injection molded article after gravity molding is degreased and sintered, or the intermediate molded article after gravity molding is sintered. It is manufactured by going.
- a flat plate-like base portion and a plurality of convex portions standing from the flat plate-like base portion can be formed on the above-described injection-molded body of the sintered body.
- a flat base is bent to generate a bent base surface.
- the plurality of convex portions can be erected in the normal direction with respect to the bent base surface.
- the gravity molding of the above sintered body can include forming a convex portion or a concave portion in a part of the injection molded body or the intermediate molded body.
- the above sintered body has a surface in the metal powder, compared to the intermediate molded body produced by degreasing the injection molded body formed by injecting a molding material in which the metal powder and the binder are mixed into an injection mold.
- the intermediate molded body after secondary molding is sintered and manufactured.
- the sintered body is an injection molded body that is primarily molded by injecting a molding material in which a metal powder and a binder are mixed into an injection mold, or a first portion in an intermediate molded body after the injection molded body is degreased. And the second part is twisted by using a twisting secondary molding jig, and the first part and the second part are relatively rotated by the twisting secondary molding jig to the injection molded product or intermediate molded product. Torsional secondary molding with torsional deformation is performed. Further, the sintered body is manufactured by degreasing and sintering the injection molded body after the twisted secondary molding, or sintering the intermediate molded body after the twisted secondary molding.
- a combustor panel of a turbine engine is formed by injecting a molding material in which a metal powder and a binder are mixed into an injection mold to perform primary molding, or after degreasing the injection molded body. Secondary molding with deformation is performed on the intermediate molded body, degreasing and sintering is performed on the injection molded body after the secondary molding, or sintering is performed on the intermediate molded body after the secondary molding.
- a combustor panel of a turbine engine includes a bent base surface and a plurality of heat-dissipating convex portions standing in a normal direction from the bent base surface.
- the method for manufacturing a sintered body includes a degreasing step, a sintering step, and a secondary forming step (FIG. 2).
- the degreasing step is a step of generating an intermediate molded body by degreasing a primary molded injection molded body by injecting a molding material in which metal powder and a binder are mixed into an injection mold.
- a sintering process is a process of manufacturing a sintered compact by sintering an intermediate compact.
- the secondary molding step is a step of deforming the injection molded body or the intermediate molded body before the sintered body is generated.
- the secondary molding step includes a step of pressing the injection molded body or the intermediate molded body against the transfer mold by the action of gravity.
- the above-described method for manufacturing a sintered body includes an injection molded body placing step of placing the injection molded body on a transfer mold (FIG. 7).
- Said degreasing process includes the process of producing
- the secondary molding step includes a step of generating an intermediate molded body after the secondary molding by heating to a molding temperature in a state where the intermediate molded body is placed on a transfer mold.
- Said sintering process includes the process of manufacturing a sintered compact by sintering with respect to the intermediate molded object after secondary shaping
- the method for manufacturing a sintered body further includes a step of preventing the injection molded body from being tilted or moved by holding a part of the injection molded body using a holding portion, and an intermediate molded body placing step ( FIG. 15 etc.).
- the degreasing step includes a step of forming an intermediate molded body that is degreased and contracted while holding a part of the injection molded body using the holding portion.
- the intermediate molded body placing step includes a process in which the contracted intermediate molded body is detached from the holding portion and placed on the transfer mold by tilting or moving.
- the secondary molding step includes a step of generating an intermediate molded body after the secondary molding by heating to a molding temperature in a state where the intermediate molded body is placed on a transfer mold. Said sintering process includes the process of sintering the intermediate molded object after secondary shaping
- the intermediate molded body placing step includes a process in which the contracted intermediate molded body is separated from the holding portion by gravity and placed on the transfer mold.
- the above-described method for producing a sintered body includes an intermediate molded body placing step of placing the intermediate molded body on a transfer mold (FIG. 12 and the like).
- the secondary molding step includes a step of generating an intermediate molded body after the secondary molding by heating to a molding temperature in a state where the intermediate molded body is placed on a transfer mold.
- Said sintering process includes the process of sintering the intermediate molded object after secondary shaping
- the above injection molded body has a flat base and a plurality of convex portions standing from the flat base.
- the secondary forming step includes generating a bent base surface by bending the flat base using a transfer mold.
- the plurality of convex portions of the sintered body are erected in the normal direction with respect to the bent base surface.
- the first part and the second part of the injection molded body or the intermediate molded body are gripped, the first part and the second part are relatively rotated, and the injection molded body or the intermediate molded body is Including a step of applying torsional deformation.
- the above metal powder is a nickel base alloy, a cobalt base alloy, or steel.
- the molding temperature in the secondary molding step is in the range of 1200K to 1650K.
- the forming temperature in the secondary forming step is a temperature range that causes surface melting in the metal powder.
- the secondary molding step includes a step of generating an injection molded body (10B or the like) after the secondary molding by deforming the injection molded body (FIG. 6).
- a method for manufacturing a combustor panel includes a degreasing process, a sintering process, and a secondary molding process, and injects a molding material in which metal powder and a binder are mixed into an injection mold. Then, the method is a manufacturing method of manufacturing a combustor panel which is a sintered body by performing degreasing and sintering of the injection-molded body which is primarily molded.
- the injection-molded body has a flat plate-like base portion and a plurality of heat-radiating projections standing from the flat plate-like base portion.
- the degreasing step is a step of generating an intermediate molded body by degreasing a primary molded injection molded body by injecting a molding material in which metal powder and a binder are mixed into an injection mold.
- a sintering process is a process of manufacturing a sintered compact by sintering an intermediate compact.
- the secondary molding step is a step of performing gravity molding in which an injection molded body or an intermediate molded body is placed on a transfer mold and a flat base surface is bent to form a bent base surface before the sintered body is generated. It is.
- FIG. 1 is a perspective view showing a partial cross section of a sintered body produced by performing injection molding (primary molding) and secondary molding.
- FIG. 2 is a flowchart for explaining a method of manufacturing a sintered body that performs secondary forming in the degreasing sintering step.
- FIG. 3 is a cross-sectional view of an injection molded body or intermediate molded body, and a transfer mold.
- FIG. 4 is a cross-sectional view showing a state where the injection molded body or the intermediate molded body is placed on the transfer surface of the transfer mold.
- FIG. 5 is a cross-sectional view showing the injection molded body or intermediate molded body after the secondary molding.
- FIG. 1 is a perspective view showing a partial cross section of a sintered body produced by performing injection molding (primary molding) and secondary molding.
- FIG. 2 is a flowchart for explaining a method of manufacturing a sintered body that performs secondary forming in the degreasing sintering step.
- FIG. 6 is a flowchart for explaining the details of the degreasing and sintering step shown in step S14 of FIG.
- FIG. 7 is a flowchart for explaining the details of the degreasing and sintering step shown in step S14 of FIG.
- FIG. 8 is a side view showing a state in which the injection molded body is placed on the transfer mold holding portion.
- FIG. 9 is a side view of a sintered body and a transfer mold in which a flat base portion is bent by secondary molding to form a bent base portion surface.
- FIG. 10 is a side view showing a state in which the injection molded body is placed on the holding part of the transfer mold.
- FIG. 11 is a side view of a sintered body and a transfer mold in which a flat base portion is bent by secondary molding to form a bent base portion surface.
- FIG. 12 is a flowchart for explaining the details of the degreasing and sintering step shown in step S14 of FIG.
- FIG. 13 is a side view showing a state in which the intermediate molded body is placed on the transfer mold.
- FIG. 14 is a side view of a sintered body and a transfer mold in which a flat base surface is formed by bending a flat base portion by secondary molding.
- FIG. 15 is a flowchart for explaining details of the degreasing and sintering step shown in step S14 of FIG. FIG.
- FIG. 16 is a side view showing a state where the injection molded body is held in an upright state using a holding portion in the degreasing step.
- FIG. 17 is a side view showing a state in which the held portion is detached from the holding portion and the holding state is released after the intermediate molded body is generated.
- FIG. 18 is a side view showing a state where the intermediate molded body is tilted with the tilting fulcrum as a fulcrum and the intermediate molded body is placed on the transfer mold.
- FIG. 19 is a side view of the sintered body after the secondary forming and finishing steps.
- FIG. 20 is a side view showing a state where the first part and the second part of the injection molded body or intermediate molded body before secondary molding are gripped by using the first gripping tool and the second gripping tool.
- FIG. 21 shows an injection molded body or intermediate molded body after twisting secondary molding is performed by applying rotational torque to the second gripping tool to relatively rotate the first gripping tool and the second gripping tool.
- FIG. 22 is a side view showing a state in which the intermediate molded body or the injection molded body is placed on the transfer mold.
- FIG. 23 is a side view of a sintered body and a transfer mold in which a flat base portion is bent by secondary forming to form a bent base portion surface.
- FIG. 24 is a partial cross-sectional view showing a state in which a combustor panel (sintered body) of a turbine engine primary-formed by a conventional MIM is combined.
- FIG. 25 is a cross-sectional view of the vicinity of a combustion chamber of a turbine engine using a sintered body with secondary forming as a combustor panel of the turbine engine.
- FIG. 1 is a perspective view showing a partial cross section of a sintered body produced by performing injection molding (primary molding) and secondary molding.
- FIG. 2 is a flowchart for explaining a method of manufacturing a sintered body that performs secondary forming in the degreasing sintering step.
- FIG. 3 is a cross-sectional view of the injection molded body 10A (intermediate molded body 10C) and the transfer mold 30.
- FIG. FIG. 4 is a cross-sectional view showing a state where the injection molded body 10A (intermediate molded body 10C) is placed on the transfer surface 32 of the transfer mold 30.
- FIG. 5 is a cross-sectional view showing the injection molded body 10B (intermediate molded body 10D) after the secondary molding.
- the sintered body 10E is obtained by sintering a nickel base alloy, a cobalt base alloy, a titanium alloy, a tungsten alloy, stainless steel, a tool steel, an aluminum alloy, a copper alloy, and other metal powders (particle size: 1 ⁇ m or more and 100 ⁇ m or less). Formed.
- the sintered body 10E includes a primary molding portion 10F molded by injection molding (primary molding) and a secondary molding portion 10S molded by secondary molding (gravity molding).
- the secondary molding portion 10 ⁇ / b> S has a plurality of convex portions 10 ⁇ / b> V and a plurality of concave portions 10 ⁇ / b> H.
- the plurality of convex portions 10V and the plurality of concave portions 10H are not limited to the embodiment of FIG. 1 and can be formed into various shapes.
- step S10 “mixing step”, the worker mixes the binder, the metal powder, and, if necessary, an additive to generate a molding material.
- the molding material may be simply mixed with a mixing drum or the like, or may be granulated after being kneaded with metal powder or the like in a state where the binder is melted.
- the binder includes, for example, an organic compound such as paraffin wax, carnauba wax, and fatty acid ester, and a thermoplastic resin having a relatively low melting point such as polyethylene (PE), polypropylene (PP), and ethylene vinyl acetate copolymer (EVA). These can be used as a mixture of one or more of them.
- an organic compound such as paraffin wax, carnauba wax, and fatty acid ester
- a thermoplastic resin having a relatively low melting point such as polyethylene (PE), polypropylene (PP), and ethylene vinyl acetate copolymer (EVA).
- PE polyethylene
- PP polypropylene
- EVA ethylene vinyl acetate copolymer
- step S12 injection molding process
- the operator supplies the molding material generated in step S10 to the injection molding machine, and the molding material (molding material in which the binder is melted) melted by heating is injected into the injection mold. And then performing injection molding (primary molding). After cooling for a predetermined time, the mold is opened and an injection molded body (also called a green body) is taken out from the mold.
- FIG. 3 shows a molding example of the injection molded body 10A.
- Step S14 “Degreasing and sintering Process”
- the operator removes the binder dispersed in the injection molded body 10A by heating the injection molded body 10A generated in Step S12. To do.
- an intermediate molded body 10C (or an intermediate molded body 10D after the secondary molding) composed of porous metal powder is formed.
- the degreasing method depending on the physical properties of the binder, heat degreasing by heating, degreasing by light irradiation, solvent degreasing by immersion in a solvent such as water or organic solvent, and other methods are available. Can be used.
- the operator places the intermediate molded body 10C (or the intermediate molded body 10D after the secondary molding) in a heating furnace in a vacuum or in an inert gas environment and heats the metal powder to bond the metal powders together.
- the sintering temperature can be in the range of 1200 K to 1650 K (more preferably, 1473 K to 1573 K).
- fusing point in the thermodynamic temperature of metal powder can be used.
- secondary molding can be performed on the injection molded body 10A or the intermediate molded body 10C.
- gravity molding in which an injection molded body 10A or an intermediate molded body 10C is placed on a transfer mold and deformed by gravity, or twist secondary molding using a twist secondary molding jig is performed. It can be carried out.
- secondary molding secondary molding for the injection molded body 10A before the degreasing process (see FIG. 6 described later), secondary molding for the intermediate molded body 10C before the sintering process (FIG. 7, FIG. 12, and FIG. 15).
- Gravity molding is a molding method involving deformation due to gravity in a state where an injection molded body or an intermediate molded body is placed on a transfer mold.
- the injection molded body 10A (or intermediate molded body 10C) is placed on the transfer surface 32 of the transfer mold 30 as shown in FIG. Thereafter, by performing secondary molding, the injection molded body 10B (or intermediate molded body 10D) after the secondary molding including the secondary molding portion 10S to which the shape of the transfer surface 32 is transferred as shown in FIG. 5 is obtained. Generated. Sintering is then performed to produce a sintered body 10E (see FIG. 1).
- step S16 finishing process
- the operator removes unnecessary portions such as a gate portion and a chuck portion in the sintered body 10E, finish processing for accuracy management and surface roughness management, flatness and perpendicularity. Correct as necessary.
- step S18 the operator performs predetermined measurement on the inspection items required for the sintered body 10E, and performs a pass determination (good / bad determination) as a product.
- a pass determination good / bad determination
- FIG. 6 is a flowchart for explaining the details of the degreasing and sintering step shown in step S14 of FIG.
- step S ⁇ b> 20 “secondary molding process” the operator places the injection molded body 10 ⁇ / b> A on the transfer surface 32 of the transfer mold 30 as shown in FIG. 4. Then, for example, the injection molded body 10A and the transfer mold 30 are placed in a heating furnace and the temperature is increased (for example, a temperature of 250 K or more and 500 K or less) to soften the binder, and the shape of the transfer surface 32 is injection molded. It transfers to 10A secondary shaping
- the material of the transfer mold 30 a material that can withstand high temperatures such as ceramics or a material used for a mold can be used.
- step S22 “degreasing step”, the operator performs degreasing by heating degreasing, light degreasing, solvent degreasing, etc., and removing the binder while maintaining the shape of the injection molded body 10B after the secondary molding.
- a molded body 10D is generated.
- the intermediate molded body 10D is contracted by 20% to 30% with respect to the injection molded body 10B after the secondary molding.
- molding demonstrated in step S20 can also be performed simultaneously in a degreasing process.
- the degreasing can be performed with the injection molded body 10B after the secondary molding shown in FIG.
- step S24 the operator places the intermediate molded body 10D in the heating furnace and heats it to generate the sintered body 10E (see FIG. 1). In addition, by performing the sintering, the sintered body 10E shrinks by 2% or more and 20% or less with respect to the intermediate molded body 10D before sintering. Then, in the next step S29 “End of degreasing sintering process”, the degreasing sintering process shown in step S14 of FIG. 2 is completed.
- FIG. 7 is a flowchart for explaining the details of the degreasing and sintering step shown in step S14 of FIG.
- FIG. 8 is a side view showing a state where the injection molded body 110 ⁇ / b> A is placed on the holding portion 34 of the transfer mold 130.
- FIG. 9 is a side view of the sintered body 110E and the transfer mold 130 in which the flat base portion 10P is bent by secondary molding to form the bent base portion surface 10R.
- Step S30 “put injection molded body on transfer mold” (injection molded body mounting step)
- the operator places injection molded body 110A on the upper side of transfer surface 132 of transfer mold 130 as shown in FIG. It is mounted on the formed holding part 34.
- the inner method WJ of the holding portion 34 is narrower than the body width WA of the injection molded body 110A, and wider than the body width of the contracted intermediate molded body after degreasing (or during the secondary molding). . Therefore, the state where the injection molded body 110A is placed on the holding part 34 can be maintained.
- the injection molded body 110A shown in FIG. 8 has a flat base portion 10P and a plurality of convex portions 10V standing from the flat base portion 10P.
- a planar shape of the injection molded body 110A for example, a width and a length of about 10 mm or more and about 500 mm or less, respectively, and a thickness of the flat base portion 10P of about 1 mm or more and 50 mm or less can be used.
- the shape of the convex portion 10V may be a columnar convex portion of a cylinder or a prism, or a plate-shaped convex portion whose outer method is about 1 mm to 50 mm and whose height is about 2 mm to 30 mm.
- step S32 “degreasing step” the operator performs degreasing by heat degreasing, light degreasing, solvent degreasing, and the like.
- the intermediate molded body shrinks by 10 to 20% with respect to the injection molded body 110A.
- the body width WE of the sintered body 110E shown in FIG. 9 the body width of the intermediate molded body becomes narrower than the inner method WJ of the holding portion 34. Therefore, the intermediate molded body is the transfer surface of the transfer mold 130. Move (fall) to 132 and contact.
- step S34 secondary molding process
- step S36 sintering process
- the operator heats the intermediate molded body in a heating furnace in a vacuum or in an inert gas environment to perform secondary molding and sintering.
- the molding temperature during the secondary molding can be in the range of 1200 K to 1650 K (more preferably, 1473 K to 1573 K).
- the molding temperature should be within the range of the melting point of the metal powder from ⁇ 300K to the melting point ⁇ 200K. Can do.
- the sintering temperature (including the molding temperature of the secondary molding), a temperature of 74% or more and 96% or less of the melting point at the thermodynamic temperature of the metal powder can be used.
- the molding temperature is a temperature at which the interface of the metal powder is intermediate between the solid phase and the liquid phase and causes surface melting, and may vary depending on the particle size of the metal powder. Under this molding temperature, the intermediate molded body becomes soft like a heated soot.
- the metal powder undergoes surface melting, and from the state where the metal powder particles of the intermediate molded body are in contact with each other, a crystal grain boundary in which a joint (neck) is formed is formed. Further, the joint portion grows and transitions to a state where it is easy to deform (secondary molding) and becomes dense.
- the intermediate molded body since the intermediate molded body is in contact with the transfer surface 132, the intermediate molded body moves (falls) to the transfer surface 132 due to its own weight and gravity as shown in FIG.
- the flat base portion 10P is bent and deformed to the bent base surface 10R (secondary forming by gravity forming).
- a sintered body 110E is generated, and the secondary forming step and the sintering step are completed.
- the sintered body 110E shrinks by 2% or more and 20% or less with respect to the intermediate molded body before sintering.
- a material of the transfer mold 130 a material that can withstand high temperatures such as ceramics or a material used for a mold can be used.
- the planar shape of the injection molded body 110A is 50 mm in width, 300 mm in length, 5 mm in thickness, the diameter of the plurality of convex portions 10V is 2 mm, and the height of the convex portion 10V.
- a nickel-base alloy having a composition equivalent to Inconel 713 (registered trademark) is used as the metal powder, and a temperature of 1473 K or more and 1573 K or less is used as the molding temperature, the firing radius of the bent base surface 10R is 500 mm.
- the bonded body 110E could be molded.
- the convex portion 10V of the sintered body 110E was able to maintain a state where the convex portion 10V was erected radially in the normal direction with respect to the bent base surface 10R.
- This structure is suitable, for example, for the structure of a combustor panel of a turbine engine, and the convex portions 10 ⁇ / b> V erected in a radial manner can be used as heat dissipation pins.
- the secondary molding temperature is in the range of 1473K to 1573K for a rectangular parallelepiped injection molded body having a thickness of 10 mm (width 30 mm) and a length of 200 mm and using a nickel-based alloy as the metal powder.
- a sintered body in which a portion having a length of 200 mm was bent to a radius of curvature of 60 mm could be molded. Even in this case, no cracks or wrinkles were observed on the outer periphery and inner periphery of the bent portion.
- FIG. 10 is a side view showing a state where the injection molded body 210 ⁇ / b> A is placed on the holding portion 34 of the transfer mold 230.
- FIG. 11 is a side view of the sintered body 210E and the transfer mold 230 in which the flat base portion 10P is bent by secondary molding to form the bent base portion surface 10R.
- part which has the same function as the site
- Step of placing injection molded body 210A on transfer mold 230 the operator places the injection molded body 210A on the holding portion 34 formed on the upper side of the transfer surface 232 in the transfer mold 230 (see step S30 shown in FIG. 7). .
- a part of the lower surface of the flat base 10 ⁇ / b> P of the injection molded body 210 ⁇ / b> A is placed on the holding unit 34 and the transfer surface 232.
- the inner method WJ of the holding part 34 is narrower than the body width WA of the injection molded body 210A and wider than the body width of the contracted intermediate molded body after degreasing (or during the secondary molding).
- the injection molded body 210A shown in FIG. 10 has a flat plate-like base portion 10P and a plurality of convex portions 10V standing from the flat plate-like base portion 10P.
- the planar shape of the injection molded body 210A can be the same as that of the injection molded body 110A shown in FIG.
- the body width of the intermediate molded body is narrower than the inner method WJ of the holding portion 34, and moves (falls) to the transfer surface 232 due to its own weight and gravity. Then, the flat base portion 10P is bent and deformed to the bent base surface 10R so as to follow the transfer surface 232 (secondary forming by gravity forming). Then, after a predetermined sintering time has elapsed at a predetermined sintering temperature, when the temperature is lowered to room temperature, a sintered body 210E is generated, and the sintering process ends.
- FIG. 12 is a flowchart for explaining the details of the degreasing and sintering step shown in step S14 of FIG. FIG.
- FIG. 13 is a side view showing a state in which the intermediate molded body 310 ⁇ / b> C is placed on the transfer mold 330.
- FIG. 14 is a side view of the sintered body 310E and the transfer mold 330 in which the flat base portion 10P is bent by secondary molding to form the bent base portion surface 10R.
- part which has the same function as the site
- step S40 “degreasing step” the operator removes the binder while maintaining the shape of the injection molded body 310A by degreasing the injection molded body 310A by heat degreasing, light degreasing, solvent degreasing and the like. An intermediate molded body 310C is generated.
- step S42 “Process for placing intermediate molded body on transfer mold” (intermediate molded body placing process), the operator places intermediate molded body 310C on transfer surface 332 of transfer mold 330 as shown in FIG. Placed on. Note that the injection molded body 310 ⁇ / b> A may be placed on the transfer surface 332 of the transfer mold 330 in the previous stage of the degreasing process.
- step S44 “secondary molding process”
- the operator places the intermediate molded body 310C (or injection molded body 310A) in the heating furnace and heats it, maintains the molding temperature for a predetermined time, and performs secondary processing. Secondary molding is performed to produce an intermediate molded body after molding.
- the molding temperature the sintering temperature described in step S14 of FIG. 2 or the molding temperature described in step S34 of FIG. 7 can be used.
- step S46 the operator performs the sintering by placing the intermediate formed body after the secondary forming in the heating furnace and maintaining the sintering temperature. Thereafter, when the temperature is lowered to room temperature, a sintered body 310E is generated, and the sintering process is completed.
- the convex portions 10V of the sintered body 310E maintain a state where they are erected in a radial direction in the normal direction with respect to the bent base surface 10R.
- step S49 end of degreasing and sintering process
- the degreasing and sintering process shown in step S14 of FIG. 2 is completed.
- FIGS. 1, 3, 4, 5 Next, after performing degreasing in a state where the intermediate molded body 10C shown in FIG. 4 is placed on the transfer mold 30, the processing of the embodiment in which secondary molding is performed is shown in FIGS. 1, 3, 4, 5, This will be described with reference to FIG. The description of FIGS. 1, 3, 4, 5, and 12 is omitted to avoid duplication.
- Step S40 “Degreasing Process”.
- Step S ⁇ b> 42 “Process of placing the intermediate molded body on the transfer mold”. reference.).
- Step S46 sintered body 10E shown in FIG. 1 is generated, and the sintering process ends (see FIG. 12: Step S46 “sintering process”).
- FIG. 15 is a flowchart for explaining details of the degreasing and sintering step shown in step S14 of FIG.
- FIG. 16 is a side view showing a state where the injection molded body 410A is held in an upright state by using the holding portion 434 in the degreasing step.
- FIG. 17 is a side view showing a state where the held portion 410X is detached from the holding portion 434 and the holding state is released after the intermediate molded body 410C is generated.
- FIG. 18 is a side view showing a state in which intermediate molded body 410C is tilted in the RT direction with tilting fulcrum 410Y as a fulcrum and intermediate molded body 410C is placed on transfer mold 430.
- FIG. 19 is a side view of the sintered body 410E after the secondary forming and finishing steps.
- step S50 “degreasing step with holding by holding portion”
- the operator sets the tilting fulcrum 410Y formed on one end (lower end) of the injection molded body 410A (in the embodiment shown in FIG. (A cylindrical tip or a polygonal end can be used), and the positioning in the gravitational direction is performed by placing on the support jig 436 (injection molded body placing step).
- the held portion 410X molded on the other end (upper portion) of the injection molded body 410A is held by the holding portion 434.
- the injection molded body 410A is positioned in the vertical direction (gravity direction) by the tilting fulcrum 410Y coming into contact with the support jig 436.
- the injection molded body 410A is positioned in the lateral direction (the direction perpendicular to the gravity) when the held portion 410X separated from the tilting fulcrum 410Y contacts the holding portion 434.
- the tilting operation of the injection molded body 410A around the tilting fulcrum 410Y is limited, and the injection molded body 410A is maintained in a vertically upright state.
- the operator performs degreasing by heating degreasing, light degreasing, solvent degreasing, etc. on the injection molded body 410A, and the intermediate molded body 410C is removed by removing the binder while maintaining the shape of the injection molded body 410A. Generate.
- step S52 “process for placing the intermediate molded body on the transfer mold from the holding portion” (intermediate molded body placing process) will be described.
- the total length is also the total length LA of the injection molded body 410A (see FIG. 16).
- the held portion 410X of the intermediate molded body 410C is moved downward from the range of the holding portion 434, and the intermediate molded body 410C can be tilted around the tilting fulcrum 410Y.
- the support jig 436 is inclined at an inclination angle ⁇ .
- the intermediate molded body 410C from which the restriction of the tilting operation is released tilts in the RT direction around the tilting fulcrum 410Y by gravity.
- the intermediate molded body 410 ⁇ / b> C is detached from the holding portion 434 due to gravity and placed on the transfer surface 432 of the transfer mold 430.
- step S54 "secondary molding process"
- the operator heats the intermediate molded body 410C in a heating furnace, maintains the molding temperature for a predetermined time, and generates an intermediate molded body after the secondary molding.
- the molding temperature the sintering temperature described in step S14 of FIG. 2 or the molding temperature described in step S34 of FIG. 7 can be used.
- the shape of the transfer surface 432 is transferred to the surface of the intermediate molded body 410C.
- step S56 the operator places the intermediate molded body after the secondary molding in the heating furnace, and performs sintering while maintaining the heating furnace at a predetermined sintering temperature. Thereafter, when the temperature is lowered to room temperature, a sintered body 410E is generated (see FIG. 19), and the sintering process is completed. The transfer shape formed on the transfer surface 432 of the transfer mold 430 is transferred to the secondary molding portion 10S of the sintered body 410E. Thereafter, in the finishing process, as shown in FIG. 19, a process of cutting away the held portion 410X and the tilting fulcrum 410Y that are unnecessary for the product is performed. Then, in the next step S59 “end of degreasing and sintering process”, the degreasing and sintering process shown in step S14 of FIG. 2 is completed.
- FIG. 20 shows a state in which the first part 510V and the second part 510W of the injection molded body 510A (or intermediate molded body 510C) before the secondary molding are gripped by using the first gripping tool 538V and the second gripping tool 538W.
- a rotational force (torque T) is applied to the second gripping tool 538W to relatively rotate the first gripping tool 538V and the second gripping tool 538W (the first part 510V and the second part 510W).
- torque T rotational force
- the torsion secondary forming jig 536 includes a jig base 537, a first gripping tool 538V, a second gripping tool 538W, and a second gripping tool locking convex portion 539P. And a torsion angle setting receiving portion 539R and, if necessary, a transfer die 530.
- the jig base 537 is a base that holds the first gripping tool 538V and rotatably holds the second gripping tool 538W.
- the jig base 537, together with the first gripping tool 538V and the second gripping tool 538W, is used for materials that can be used in a secondary molding environment at a molding temperature or a sintering temperature (materials that can withstand high temperatures, such as ceramics, and molds). Can be used.).
- the first gripping tool 538V is a jig for gripping the first portion 510V of a material for performing twisted secondary molding (such as an injection molded body 510A before secondary molding or an intermediate molded body 510C after degreasing).
- the first gripping tool 538V has a structure that is fixed so as not to rotate around the Z axis with respect to the jig base 537 shown in FIGS. 20 and 21, and the injection molded body 510A (or intermediate) is arranged in the Z axis direction. It is possible to adjust the gripping position with respect to the molded body 510C).
- the second gripping tool 538W is a jig for gripping the second portion 510W of a material for performing twisted secondary molding (such as the injection molded body 510A or the degreased intermediate molded body 510C before the secondary molding).
- the second gripping tool 538W is supported so as to be able to rotate around the Z axis and move in the Z axis direction with respect to the jig base 537 shown in FIGS. Further, the second gripper 538W applies a torque T around the Z axis in the secondary molding environment, and applies a twisting force to the injection molded body 510A (or the intermediate molded body 510C after degreasing). be able to.
- a second gripping tool locking convex portion 539P for setting a twisting angle at the time of secondary twisting is protruded from a portion that rotates in conjunction with the second gripping tool 538W.
- a part of the jig base 537 has a torsion angle setting receiving portion 539R that limits the rotation angle of the second gripping tool 538W by contacting the rotated second gripping tool locking convex portion 539P. It is formed.
- a part of the jig base 537 is prevented from deforming the injection molded body 510A (or the intermediate molded body 510C after degreasing) due to gravity, or deformed relative to the injection molded body 510A (or the intermediate molded body 510C after degreasing).
- a transfer mold 530 for performing gravity molding with a can be arranged as necessary.
- first portion 510V and second portion 510W of injection molded body 510A (or intermediate molded body 510C) before secondary molding are used by using first gripping tool 538V and second gripping tool 538W.
- first gripping tool 538V and second gripping tool 538W Grab.
- shape of the injection molded body 510A (or the intermediate molded body 510C) a rectangular parallelepiped, a polygonal column, a turbine blade, or other shapes can be used. As shown in FIG.
- a rotational force (torque T) is applied to the second gripping tool 538W so that the first gripping tool 538V and the second gripping tool 538W (the first portion 510V and the second portion 510W) are relative to each other.
- torque T rotational force
- secondary molding (see FIG. 6) for the injection molded body 510A or secondary molding (see FIG. 7 and the like) for the intermediate molded body 510C is performed to add torsional deformation.
- the first portion 510V and the second portion 510W rotate relative to each other and reach a predetermined angle (an angle necessary for torsional deformation)
- the second gripper locking convex portion 539P is twisted.
- the second gripping tool 538W is prevented from further rotating by contacting the twist angle setting receiving portion 539R. In this way, torsional deformation at a predetermined angle can be performed.
- FIG. 22 is a side view showing a state where the intermediate molded body 610C (injection molded body 610A) is placed on the transfer mold 630.
- FIG. 23 is a side view of the intermediate molded body 610D (sintered body 610E) and the transfer die 630 in which the flat base portion 10P is bent by secondary molding to form the bent base portion surface 10R.
- part which has the same function as the site
- Step S40 “Degreasing Process”.
- Step S ⁇ b> 42 “Process of placing the intermediate molded body on the transfer mold”. reference.). Note that the injection molded body 610 ⁇ / b> A may be placed on the transfer surface 632 of the transfer mold 630 in the previous stage of the degreasing process.
- Step S46 sintered body 610E
- the convex portions 10V of the sintered body 610E maintain a state where they are erected in a radial direction in the normal direction with respect to the bent base surface 10R.
- FIG. 24 shows a partial cross-sectional view of a state in which a combustor panel (sintered body 10Z) of a turbine engine primary-formed by a conventional MIM is combined.
- the center of the plurality of combustor panels (sintered body 10Z) is the turbine shaft TS.
- the density of the heat radiating convex portions 10V decreases at the connection portions PB between the combustor panels (sintered bodies 10Z), and the combustor panel (sintered) locally at the connection portions PB.
- the temperature of the body 10Z could increase.
- FIG. 25 shows an embodiment in which a sintered body 310E and a sintered body 610E are used as the combustor panel of the turbine engine 90.
- FIG. 25 is a cross-sectional view schematically showing a state in which the combustion chamber CR portion of the turbine engine 90 is cut along a plane orthogonal to the turbine axis TS.
- the turbine engine 90 includes a turbine shaft TS, a combustion chamber CR, an inner wall IW, an inner combustor panel (sintered body 610E), an inner cooling channel IC, and an outer combustor panel. (Sintered body 310E), an outer wall OW, and an outer cooling channel OC.
- the inner combustor panel (sintered body 610E) is attached to the inner wall IW via a plurality of studs (not shown).
- the outer combustor panel (sintered body 310E) is attached to the outer wall OW via a plurality of studs (not shown).
- the air obtained from the compressor is passed through the inner cooling channel IC and the outer cooling channel OC, and the inner combustor panel (sintered body 610E) using the air. And the outer combustor panel (sintered body 310E) is cooled.
- a large number of the inner combustor panel (sintered body 610E) is bent from the bent base surface 10R toward the inside of the inner cooling channel IC.
- the heat radiating projection 10V is erected in the normal direction of the bent base surface 10R.
- the injection molded body is placed on a temporary sintering jig such as a pedestal and the degreasing process and the temporary sintering process are performed while preventing the deformation of the mold.
- a temporary sintering jig such as a pedestal
- the degreasing process and the temporary sintering process are performed while preventing the deformation of the mold.
- heating is performed at a pre-sintering temperature in a vacuum or in an inert gas environment, and the shape of the intermediate formed body is maintained by sintering only slightly.
- the pre-sintering temperature at the time of pre-sintering can be in the range of 1200K to 1400K when a nickel-base alloy, cobalt-base alloy, or steel is used as the metal powder.
- nickel-base alloy, cobalt-base alloy, aluminum alloy, copper alloy, or steel is used as the metal powder
- the temperature within the range of the melting point of the metal powder is -500K or higher and the melting point -240K or lower is used as the temporary sintering temperature.
- a temperature of 60% to 65% of the melting point at the thermodynamic temperature of the metal powder can be used as the pre-sintering temperature.
- the pre-sintering temperature is a temperature at which the interface of the metal powder is intermediate between the solid phase and the liquid phase and slightly melts the surface, and may vary depending on the particle size of the metal powder.
- the dimensional change of the intermediate molded body after temporary sintering is slight compared with the dimension of the intermediate molded body before preliminary sintering.
- the sintered body and the manufacturing method of the sintered body, and the combustor panel and the manufacturing method of the combustor panel according to the present invention have been described with reference to the embodiment.
- the manufacturing method, the combustor panel, and the manufacturing method of the combustor panel are not limited to the above embodiment.
- Various modifications can be made to the above embodiment. It is possible to combine the matters described in the above embodiment with the matters described in the other embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
金属粉末とバインダとを混合した成形材料が溶融され、射出型内に射出形成(一次成形)して射出成形体10A、110A、210A、310A、410A、610A又は中間成形体10C、310C、410C、610Cが作成される。作成された射出成型体又は中間成型体は、転写型30、130、230、330、430、630に載置されて変形を伴う重力成形(二次成形)に従う。射出成形体10A、110A、210A、310A、410A、610Aに対して脱脂及び焼結を行ってから焼結体10E、110E、210E、310E、410E、610Eを製造する。
Description
本発明は、金属粉末を素材に用いた焼結体及び焼結体の製造方法、並びに燃焼器パネル及び燃焼器パネルの製造方法に関する。
金属粉末射出成形(Metal injection molding:以下、「MIM」とも呼ぶ。)法は、金属微粉末と有機バインダ(例えば複数の樹脂の混合物。以下「バインダ」と呼ぶ。)とを混ぜた成形材料を融解させて射出成形し、その後脱脂及び焼結を行って金属粉末成形品を製造する方法である。
MIMに用いる金属微粉末は、例えば噴霧法による微粉末製造工程において形成される。高温強度が高いチタンを含むニッケル基合金を噴霧法により形成すると、微粉末製造過程でノズルが閉塞する「注湯閉塞」を生じるために、MIM用の微粉末を製造することが困難な場合があった。特許文献1(特開2005-350710号公報)には、この「注湯閉塞」を防止するために、ニッケル基合金におけるチタン濃度を0.1質量%以下とする発明、及びチタンの濃度が1質量%を超える濃度の場合にはニオブの濃度を減少させる調整を行った発明が開示されている。
また、特許文献2(特開2000-340303号公報)には、MIMにおける成形グリーン体の軟化変形を阻止することを目的とする金属ハウジング等の製造方法の発明が開示されている。特許文献2に記載されている金属ハウジングの製造方法は、成形グリーン体の脱脂焼結工程において、成形グリーン体の平坦面を接地面にして処理用トレー上に載置しておき、成形グリーン体の自重による軟化変形の防止を行っている。
特許文献2に記載されている金属ハウジングの製造方法によれば、グリーン体の加熱処理中の変形を防ぎ、割れや破損の不具合発生を大幅低減することができるとしている。
また、特許文献3(特開2001-152205号公報)には、成形グリーン体の脱脂工程において、特殊な治具を用いることなく成形グリーン体の変形を防止することができるバインダ等が開示されている。特許文献3に記載されているバインダは、複数のバインダ成分を混合したものである。
特許文献3に記載されているバインダを用いると、脱脂工程の加熱中において軟化したバインダ成分により成形グリーン体の形状が崩れようとするのを阻止することができるとしている。そして、バインダが分解した後には金属粉末の粒子間に残渣が残り、この残渣の存在により、成形体の形状が保持されるとしている。バインダは完全に成形グリーン体から取り除かれるのではなく、初期のバインダ総量の約5体積%が成形体内に残るように脱脂工程を行う。それ故、脱脂工程においては、成形グリーン体の形状を変形させることなくそのまま維持することができ、その後の焼結により、形状に優れた焼結体を容易に得ることができるとしている。
また、特許文献4(特開2009-103280号公報)には、プレス加工時の圧迫力を小さく設定して、残留応力に起因した反り等の不具合発生も効果的に抑制した動圧軸受装置のMIM成形品が開示されている。特許文献4に記載されているMIM成形品は、次のように製作される。
第1に、金属粉末にバインダを混練してなる成形材料で射出成形した射出成形体からバインダを除去して中間成形体を製作する。第2に、該中間成形体にプレス加工を行ってスラスト動圧発生部を形成する。第3に、プレス加工後の中間成形体を焼結してMIM成形品を製作する。
特許文献4に記載されているMIM成形品(スラスト動圧発生部)の中間成形体は、バインダ除去後(脱脂後)に多数の内部気孔を有しており、焼結後に得られる焼結体に比べると軟質である。そのため、バインダ除去後の焼結前にプレス加工を施すことで、高精度のスラスト動圧発生部を容易に形成することができるとしている。また、プレス加工時の圧迫力を小さく設定することができるため、残留応力に起因した反り等の不具合発生も効果的に抑制可能になるとしている。
また、特許文献5(特表2006-505688号公報)には、経済的で広範囲に適用できる金属射出成形用の射出成形材料が開示されている。特許文献5に記載されている射出成形材料は、a)金属の合計量に対して、少なくとも50質量%の鉄含有粉末、及び該鉄含有粉末の質量に対して少なくとも90質量%の、少なくとも40μmの有効直径を有する粒子を含む、40~70体積%の金属粉末と、b)30~60体積%の熱可塑性の結合剤と、c)0~5体積%の分散剤及び/又は他の助剤とを含んでいる。
金属粉末射出成形による一次成形のみでは成形困難な形状を有する焼結体を製造する。
本発明の一つの観点おいて焼結体は、金属粉末とバインダとを混合した成形材料を射出型内に射出して形成された射出成形体、又は当該射出成形体を脱脂した後の中間成形体を、転写型に載置して重力による変形を伴う重力成形を行うと共に、重力成形後の射出成形体に対して脱脂及び焼結、又は重力成形後の中間成形体に対して焼結を行って製造したものである。
上記の焼結体の射出成形体には、平板状基部と、この平板状基部から立設する複数の凸部とを形成することができる。重力成形において、平板状基部を屈曲させて屈曲基部面が生成される。複数の凸部は屈曲基部面に対して法線方向に立設させることができる。
上記の焼結体の重力成形は、射出成形体又は中間成形体の一部に凸部又は凹部を成形することを含めることができる。
上記の焼結体は、金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体について脱脂を行って生成した中間成形体に対して、金属粉末において表面融解を生じる成形温度の範囲において変形を伴う二次成形を行うと共に、二次成形後の中間成形体対して焼結を行って製造する。
上記の焼結体は、金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体、又は当該射出成形体を脱脂した後の中間成形体における第一部位及び第二部位を捩じり二次成形治具を用いて把持し、捩じり二次成形治具により第一部位及び第二部位を相対的に回転させて射出成形体又は中間成形体に対する捩じり変形を伴う捩じり二次成形を行う。更に上記焼結体は、捩じり二次成形後の射出成形体に対して脱脂及び焼結、又は捩じり二次成形後の中間成形体に対して焼結を行って製造する。
本発明の一つの観点おいてタービンエンジンの燃焼器パネルは金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体、又は射出成形体を脱脂した後の中間成形体に対して、変形を伴う二次成形を行うと共に、二次成形後の射出成形体に対して脱脂及び焼結、又は二次成形後の中間成形体に対して焼結を行って製造する。タービンエンジンの燃焼器パネルは、屈曲基部面と、屈曲基部面から法線方向に立設する複数の放熱用の凸部とを備える。
本発明の一つの観点おいて、焼結体の製造方法は、脱脂工程と、焼結工程と、二次成形工程とを備える(図2)。脱脂工程は、金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体について脱脂を行って中間成形体を生成する工程である。焼結工程は、中間成形体の焼結を行って焼結体を製造する工程である。二次成形工程は、焼結体が生成される前に、射出成形体又は中間成形体を変形する工程である。
上記の二次成形工程は、重力の作用によって射出成形体又は記中間成形体を転写型に押し付ける工程を含む。
上記の焼結体の製造方法は、射出成形体を転写型に載置する射出成形体載置工程を備える(図7)。上記の脱脂工程は、射出成形体を転写型に載置した状態で脱脂を行って中間成形体を生成する工程を含む。上記の二次成形工程は、中間成形体を転写型に載置した状態で成形温度に加熱して二次成形後の中間成形体を生成する工程を含む。上記の焼結工程は、二次成形後の中間成形体に対して焼結を行って焼結体を製造する工程を含む。
上記の焼結体の製造方法は、更に保持部を用いて射出成形体の一部を保持することで射出成形体の傾倒又は移動を防止する工程と、中間成形体載置工程とを備える(図15等)。上記の脱脂工程は、保持部を用いて射出成形体の一部を保持しながら脱脂して収縮した中間成形体を形成する工程を含む。上記の中間成形体載置工程は、収縮した中間成形体が保持部から離脱して、傾倒又は移動により転写型に載置される工程を含む。上記の二次成形工程は、中間成形体を転写型に載置した状態で成形温度に加熱して二次成形後の中間成形体を生成する工程を含む。上記の焼結工程は、二次成形後の中間成形体の焼結を行って焼結体を製造する工程を含む。
上記の中間成形体載置工程は、収縮した中間成形体が重力により保持部から離脱して転写型に載置される工程を含む。
上記の焼結体の製造方法は、中間成形体を転写型に載置する中間成形体載置工程を備える(図12等)。上記の二次成形工程は、中間成形体を転写型に載置した状態で成形温度に加熱して二次成形後の中間成形体を生成する工程を含む。上記の焼結工程は、二次成形後の中間成形体の焼結を行って焼結体を製造する工程を含む。
上記の射出成形体は、平板状基部と、平板状基部から立設する複数の凸部とを有する。上記の二次成形工程は、転写型を用いて平板状基部を屈曲させて屈曲基部面を生成することを含む。上記の焼結体の複数の凸部は、屈曲基部面に対して法線方向に立設している。
上記の二次成形工程は、射出成形体又は中間成形体の第一部位及び第二部位を把持し、第一部位及び第二部位を相対的に回転させて、射出成形体又は中間成形体に対する捩じり変形を加える工程を含む。
上記の金属粉末は、ニッケル基合金、コバルト基合金、又は鋼である。上記の二次成形工程における成形温度は、1200K以上1650K以下の範囲である。
上記の二次成形工程における成形温度は、金属粉末において表面融解を生じる温度の範囲である。
上記の二次成形工程は、射出成形体が変形して二次成形後の射出成形体(10B等)を生成する工程を含む(図6)。
本発明の一つの観点おいて、燃焼器パネルの製造方法は、脱脂工程と、焼結工程と、二次成形工程とを備え、金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体の脱脂及び焼結を行って焼結体である燃焼器パネルを製造する製造方法である。射出成形体は、平板状基部と、平板状基部から立設する複数の放熱用の凸部とを有する。脱脂工程は、金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体について脱脂を行って中間成形体を生成する工程である。焼結工程は、中間成形体の焼結を行って焼結体を製造する工程である。二次成形工程は、焼結体が生成される前に、射出成形体又は中間成形体を転写型に載置して、平板状基部を屈曲させて屈曲基部面を成形する重力成形を行う工程である。
金属粉末射出成形による一次成形のみでは成形困難な形状を有する焼結体を製造することができる。
添付図面を参照して、MIMを用いた焼結体及び焼結体の製造方法、並びに燃焼器パネル及び燃焼器パネルの製造方法の実施形態を以下に説明する。
(焼結体が生成される前に二次成形を行う焼結体の製造方法の概要)
図1乃至図5を参照して、MIMにおける射出成形工程(一次成形)後の脱脂工程又は焼結工程において二次成形(重力成形)を行う焼結体の製造方法の概要について説明する。図1は、射出成形(一次成形)及び二次成形を行って製造した焼結体の一部断面を示す斜視図である。図2は、脱脂焼結工程において二次成形を行う焼結体の製造方法を説明するフローチャートである。図3は、射出成形体10A(中間成形体10C)及び転写型30の断面図である。図4は、射出成形体10A(中間成形体10C)を転写型30の転写面32に載置した状態を示す断面図である。図5は、二次成形後の射出成形体10B(中間成形体10D)を示す断面図である。
図1乃至図5を参照して、MIMにおける射出成形工程(一次成形)後の脱脂工程又は焼結工程において二次成形(重力成形)を行う焼結体の製造方法の概要について説明する。図1は、射出成形(一次成形)及び二次成形を行って製造した焼結体の一部断面を示す斜視図である。図2は、脱脂焼結工程において二次成形を行う焼結体の製造方法を説明するフローチャートである。図3は、射出成形体10A(中間成形体10C)及び転写型30の断面図である。図4は、射出成形体10A(中間成形体10C)を転写型30の転写面32に載置した状態を示す断面図である。図5は、二次成形後の射出成形体10B(中間成形体10D)を示す断面図である。
図1を参照して、MIMにおける脱脂工程又は焼結工程において二次成形を行って成形した焼結体10Eについて説明する。焼結体10Eは、ニッケル基合金、コバルト基合金、チタン合金、タングステン合金、ステンレス鋼、工具鋼、アルミニウム合金、銅合金、その他の金属粉末(粒径:1μm以上100μm以下)を焼結して形成したものである。
焼結体10Eは、射出成形(一次成形)により成形した一次成形部位10Fと、二次成形(重力成形)により成形した二次成形部位10Sとから構成されている。図1に示す実施形態では、二次成形部位10Sは、複数の凸部10V及び複数の凹部10Hを有している。なお、複数の凸部10V及び複数の凹部10Hは、図1の実施形態に限定するものではなく、様々な形状に成形することができる。
次に、図2を参照して脱脂焼結工程において二次成形を行う焼結体の製造方法について説明する。
(混合工程)
ステップS10「混合工程」において作業者は、バインダ、金属粉末、及び必要に応じて添加物を混合して、成形材料を生成する。この成形材料は、単純に混合ドラム等で混合した状態のものであってもよいし、バインダを融解させた状態で金属粉末等と混練した後に造粒したものであってもよい。
ステップS10「混合工程」において作業者は、バインダ、金属粉末、及び必要に応じて添加物を混合して、成形材料を生成する。この成形材料は、単純に混合ドラム等で混合した状態のものであってもよいし、バインダを融解させた状態で金属粉末等と混練した後に造粒したものであってもよい。
バインダは、例えば、パラフィンワックス、カルナバワックス、脂肪酸エステル等の有機化合物と、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン酢酸ビニル共重合体(EVA)等の比較的低融点の熱可塑性樹脂とを、それぞれ一又は複数種混合したものを用いることができる。
(射出成形工程:一次成形工程)
ステップS12「射出成形工程」において、作業者は、ステップS10にて生成した成形材料を射出成形機に供給して、加熱により融解させた成形材料(バインダが融解された成形材料)を射出型内に圧送して射出成形(一次成形)を行い、所定の間冷却を行った後に金型を開いて射出成形体(グリーン体とも呼ばれる)を金型から取り出す。図3に、射出成形体10Aの成形例を示す。
ステップS12「射出成形工程」において、作業者は、ステップS10にて生成した成形材料を射出成形機に供給して、加熱により融解させた成形材料(バインダが融解された成形材料)を射出型内に圧送して射出成形(一次成形)を行い、所定の間冷却を行った後に金型を開いて射出成形体(グリーン体とも呼ばれる)を金型から取り出す。図3に、射出成形体10Aの成形例を示す。
(脱脂焼結工程)
ステップS14「脱脂焼結工程」の脱脂工程において、作業者は、ステップS12にて生成した射出成形体10Aに対して加熱を行うなどして、射出成形体10A中に分散されているバインダを除去する。この脱脂工程を行うことにより、多孔質の金属粉末から構成される中間成形体10C(又は二次成形後の中間成形体10D)が形成される。脱脂方法としては、バインダの物性に応じて、加熱によって脱脂する加熱脱脂、光線の照射によって脱脂する光脱脂、あるいは水や有機溶媒等の溶媒中への浸漬によって脱脂する溶媒脱脂、その他の方法を用いることができる。
ステップS14「脱脂焼結工程」の脱脂工程において、作業者は、ステップS12にて生成した射出成形体10Aに対して加熱を行うなどして、射出成形体10A中に分散されているバインダを除去する。この脱脂工程を行うことにより、多孔質の金属粉末から構成される中間成形体10C(又は二次成形後の中間成形体10D)が形成される。脱脂方法としては、バインダの物性に応じて、加熱によって脱脂する加熱脱脂、光線の照射によって脱脂する光脱脂、あるいは水や有機溶媒等の溶媒中への浸漬によって脱脂する溶媒脱脂、その他の方法を用いることができる。
焼結工程において作業者は、中間成形体10C(又は二次成形後の中間成形体10D)を真空中又は不活性ガス環境下の加熱炉内に配置して加熱し、金属粉末同士のネック結合を成長させて焼結体を生成する。焼結温度は、金属粉末に、ニッケル基合金、コバルト基合金、又は鋼を用いる場合には、1200K以上1650K以下(より好ましくは、1473K以上1573K以下)の範囲を用いることができる。また、焼結温度として、金属粉末の熱力学温度における融点の74%以上96%以下の温度を用いることができる。
(脱脂焼結工程における二次成形)
脱脂焼結工程において、射出成形体10A又は中間成形体10Cに対して二次成形を行うことができる。二次成形の種類として、射出成形体10A又は中間成形体10Cを転写型に載置して重力により変形させる重力成形、又は捩じり二次成形治具を用いた捩じり二次成形を行うことができる。二次成形は、脱脂工程前における射出成形体10Aに対する二次成形(後段にて説明する図6を参照。)、焼結工程前における中間成形体10Cに対する二次成形(後段にて説明する図7、図12、図15を参照。)を行うことができる。なお、重力成形とは、射出成形体又は中間成形体を転写型に載置した状態において重力による変形を伴う成形方法である。
脱脂焼結工程において、射出成形体10A又は中間成形体10Cに対して二次成形を行うことができる。二次成形の種類として、射出成形体10A又は中間成形体10Cを転写型に載置して重力により変形させる重力成形、又は捩じり二次成形治具を用いた捩じり二次成形を行うことができる。二次成形は、脱脂工程前における射出成形体10Aに対する二次成形(後段にて説明する図6を参照。)、焼結工程前における中間成形体10Cに対する二次成形(後段にて説明する図7、図12、図15を参照。)を行うことができる。なお、重力成形とは、射出成形体又は中間成形体を転写型に載置した状態において重力による変形を伴う成形方法である。
二次成形工程(例えば重力成形。)では、図4に示すように、射出成形体10A(又は中間成形体10C)を転写型30の転写面32上に載置する。その後、二次成形を行うことによって、図5に示すように転写面32の形状が転写された二次成形部位10Sを備える二次成形後の、射出成形体10B(又は中間成形体10D)が生成される。その後焼結を行って、焼結体10E(図1参照)が生成される。
(仕上工程)
ステップS16「仕上工程」にて作業者は、焼結体10Eにおけるゲート部やチャック部分等の不要部分の除去加工や、精度管理や表面粗度管理のための仕上加工、平面度や直角度の矯正等を、必要に応じて行う。
ステップS16「仕上工程」にて作業者は、焼結体10Eにおけるゲート部やチャック部分等の不要部分の除去加工や、精度管理や表面粗度管理のための仕上加工、平面度や直角度の矯正等を、必要に応じて行う。
(検査工程)
ステップS18「検査工程」において作業者は、焼結体10Eに要求される検査項目について所定の測定を行って、製品としての合格判定(良否判断)を行う。全ての検査項目ついて合格判定がなされた場合には、焼結体10Eの完成品が出来上がり、焼結体の製造工程を終了する(ステップS19「焼結体完成」)。
ステップS18「検査工程」において作業者は、焼結体10Eに要求される検査項目について所定の測定を行って、製品としての合格判定(良否判断)を行う。全ての検査項目ついて合格判定がなされた場合には、焼結体10Eの完成品が出来上がり、焼結体の製造工程を終了する(ステップS19「焼結体完成」)。
射出成形(一次成形)のみによるMIMにおいて、図1に示すような複雑な凸部や凹部を含む形状を形成しようとすると、射出型内における複雑な形状の部位に対する成形材料の充填が難しく、湯回り不良(金属未充填)を生じる可能性が高かった。更に、複雑な形状を有する構造部は、脱脂焼結工程において寸法変化や変形を起こしやすく、収縮による割れや欠けを生じる可能性も高かった。射出成形(一次成形)において大まかな形状を成形して、その後の二次成形において複雑な形状を別途成形することによって、焼結体における湯回り不良や欠陥の発生を減少させることができる。また、重力成形を用いることによって、二次成形時において過度な人手間をかけることなく、複雑な形状を有する焼結体を量産することができる。
[射出成形体10Aに対する二次成形]
次に、射出成形体10Aに対して二次成形を行って、二次成形後の射出成形体10Bを生成する処理について、図1、図4、図5、図6を参照して説明する。図6は、図2のステップS14に示した脱脂焼結工程の詳細を説明するフローチャートである。
次に、射出成形体10Aに対して二次成形を行って、二次成形後の射出成形体10Bを生成する処理について、図1、図4、図5、図6を参照して説明する。図6は、図2のステップS14に示した脱脂焼結工程の詳細を説明するフローチャートである。
(二次成形工程)
ステップS20「二次成形工程」において作業者は、図4に示すように、射出成形体10Aを転写型30の転写面32上に載置する。そして、例えば射出成形体10A及び転写型30を加熱炉内に入れて温度を上昇(例えば250K以上500K以下の温度。)させるなどしてバインダーを軟化させて、転写面32の形状を射出成形体10Aの二次成形部位10Sに転写して、図5に示す二次成形後の射出成形体10Bを生成する。転写型30の素材として、セラミックス等の高温に耐える素材や、鋳型に用いられる素材を用いることができる。
ステップS20「二次成形工程」において作業者は、図4に示すように、射出成形体10Aを転写型30の転写面32上に載置する。そして、例えば射出成形体10A及び転写型30を加熱炉内に入れて温度を上昇(例えば250K以上500K以下の温度。)させるなどしてバインダーを軟化させて、転写面32の形状を射出成形体10Aの二次成形部位10Sに転写して、図5に示す二次成形後の射出成形体10Bを生成する。転写型30の素材として、セラミックス等の高温に耐える素材や、鋳型に用いられる素材を用いることができる。
(脱脂工程)
ステップS22「脱脂工程」にて作業者は、加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、二次成形後の射出成形体10Bの形状を維持させた状態でバインダーを除去して中間成形体10Dを生成する。なお、バインダーの脱脂を行うことによって、中間成形体10Dは、二次成形後の射出成形体10Bに対して20%以上30%以下収縮したものとなる。なお、ステップS20にて説明した二次成形を、脱脂工程において同時に行うこともできる。また、脱脂工程において、二次成形後の射出成形体10Bが収縮するので、図5に示す二次成形後の射出成形体10Bを転写型30から取り外した状態で脱脂を行うことができる。
ステップS22「脱脂工程」にて作業者は、加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、二次成形後の射出成形体10Bの形状を維持させた状態でバインダーを除去して中間成形体10Dを生成する。なお、バインダーの脱脂を行うことによって、中間成形体10Dは、二次成形後の射出成形体10Bに対して20%以上30%以下収縮したものとなる。なお、ステップS20にて説明した二次成形を、脱脂工程において同時に行うこともできる。また、脱脂工程において、二次成形後の射出成形体10Bが収縮するので、図5に示す二次成形後の射出成形体10Bを転写型30から取り外した状態で脱脂を行うことができる。
(焼結工程)
ステップS24「焼結工程」にて作業者は、中間成形体10Dを加熱炉内に配置して加熱して焼結体10E(図1参照)を生成する。なお、焼結を行うことによって焼結体10Eは、焼結前の中間成形体10Dに対して2%以上20%以下収縮したものとなる。そして、次のステップS29「脱脂焼結工程終了」にて、図2のステップS14に示した脱脂焼結工程を終了する。
ステップS24「焼結工程」にて作業者は、中間成形体10Dを加熱炉内に配置して加熱して焼結体10E(図1参照)を生成する。なお、焼結を行うことによって焼結体10Eは、焼結前の中間成形体10Dに対して2%以上20%以下収縮したものとなる。そして、次のステップS29「脱脂焼結工程終了」にて、図2のステップS14に示した脱脂焼結工程を終了する。
[射出成形体を転写型に載置した状態で脱脂を行ってから二次成形を行う実施形態の説明]
(中間成形体に対する二次成形)
次に、射出成形体110Aを凹型の転写面132を備える転写型130に載置した状態で脱脂を行って中間成形体を生成し、この中間成形体に対して二次成形を行う実施形態の処理について、図7乃至図9を参照して説明する。図7は、図2のステップS14に示した脱脂焼結工程の詳細を説明するフローチャートである。図8は、射出成形体110Aを転写型130の保持部34に載置した状態を示す側面図である。図9は、二次成形により平板状基部10Pを屈曲させて屈曲基部面10Rを形成した焼結体110E及び転写型130の側面図である。
(中間成形体に対する二次成形)
次に、射出成形体110Aを凹型の転写面132を備える転写型130に載置した状態で脱脂を行って中間成形体を生成し、この中間成形体に対して二次成形を行う実施形態の処理について、図7乃至図9を参照して説明する。図7は、図2のステップS14に示した脱脂焼結工程の詳細を説明するフローチャートである。図8は、射出成形体110Aを転写型130の保持部34に載置した状態を示す側面図である。図9は、二次成形により平板状基部10Pを屈曲させて屈曲基部面10Rを形成した焼結体110E及び転写型130の側面図である。
(射出成形体110Aを転写型130に載置する工程)
ステップS30「射出成形体を転写型に載置」(射出成形体載置工程)において作業者は、図8に示すように、射出成形体110Aを転写型130における転写面132の上方側部に形成されている保持部34上に載置する。なお、保持部34の内法WJは、射出成形体110Aの体幅WAよりも狭く、脱脂後(又は二次成形中)の収縮した中間成形体の体幅よりも広い幅に形成してある。従って、射出成形体110Aを保持部34の上に載置した状態を維持することができる。
ステップS30「射出成形体を転写型に載置」(射出成形体載置工程)において作業者は、図8に示すように、射出成形体110Aを転写型130における転写面132の上方側部に形成されている保持部34上に載置する。なお、保持部34の内法WJは、射出成形体110Aの体幅WAよりも狭く、脱脂後(又は二次成形中)の収縮した中間成形体の体幅よりも広い幅に形成してある。従って、射出成形体110Aを保持部34の上に載置した状態を維持することができる。
図8に示す射出成形体110Aは、平板状基部10Pと、平板状基部10Pから立設する複数の凸部10Vとを有している。射出成形体110Aの平面形状は、例えば幅及び長さの各々が10mm以上500mm以下程度であって、平板状基部10Pの厚さは1mm以上50mm以下程度のものを用いることができる。また、凸部10Vの形状は、外法が1mm以上50mm以下程度、高さが2mm以上30mm以下程度の、円柱や角柱の柱状凸部、又は板状凸部を用いることができる。
(脱脂工程)
ステップS32「脱脂工程」にて作業者は、加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行う。バインダーの脱脂を行うことによって、中間成形体は、射出成形体110Aに対して10~20%収縮する。すると、例えば、図9に示す焼結体110Eの体幅WEのように、中間成形体の体幅は保持部34の内法WJよりも狭くなるので、中間成形体は転写型130の転写面132に移動(落下)して接触する。
ステップS32「脱脂工程」にて作業者は、加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行う。バインダーの脱脂を行うことによって、中間成形体は、射出成形体110Aに対して10~20%収縮する。すると、例えば、図9に示す焼結体110Eの体幅WEのように、中間成形体の体幅は保持部34の内法WJよりも狭くなるので、中間成形体は転写型130の転写面132に移動(落下)して接触する。
(焼結工程)
ステップS34「二次成形工程」、ステップS36「焼結工程」にて作業者は、中間成形体を真空中又は不活性ガス環境下の加熱炉内にて加熱し、二次成形及び焼結を行って焼結体110Eを生成する。二次成形時の成形温度は、金属粉末としてニッケル基合金、コバルト基合金、又は鋼を用いる場合には、1200K以上1650K以下(より好ましくは、1473K以上1573K以下。)の範囲を用いることができる。また、金属粉末としてニッケル基合金、コバルト基合金、アルミニウム合金、銅合金、又は鋼を用いる場合には、成形温度として金属粉末の融点-300K以上、融点-200K以下の範囲内の温度を用いることができる。また、焼結温度(二次成形の成形温度を含む。)として、金属粉末の熱力学温度における融点の74%以上96%以下の温度を用いることができる。成形温度は、金属粉末の界面が固相と液相の中間になって表面融解を生じる温度であり、金属粉末の粒径によっても異なる場合がある。この成形温度下において中間成形体は、熱せられた飴のように柔らかい状態になる。
ステップS34「二次成形工程」、ステップS36「焼結工程」にて作業者は、中間成形体を真空中又は不活性ガス環境下の加熱炉内にて加熱し、二次成形及び焼結を行って焼結体110Eを生成する。二次成形時の成形温度は、金属粉末としてニッケル基合金、コバルト基合金、又は鋼を用いる場合には、1200K以上1650K以下(より好ましくは、1473K以上1573K以下。)の範囲を用いることができる。また、金属粉末としてニッケル基合金、コバルト基合金、アルミニウム合金、銅合金、又は鋼を用いる場合には、成形温度として金属粉末の融点-300K以上、融点-200K以下の範囲内の温度を用いることができる。また、焼結温度(二次成形の成形温度を含む。)として、金属粉末の熱力学温度における融点の74%以上96%以下の温度を用いることができる。成形温度は、金属粉末の界面が固相と液相の中間になって表面融解を生じる温度であり、金属粉末の粒径によっても異なる場合がある。この成形温度下において中間成形体は、熱せられた飴のように柔らかい状態になる。
成形温度下では、金属粉末が表面融解を生じて、中間成形体の金属粉末粒子同士が接触した状態から、結合部(ネック)が形成された結晶粒界が形成される。更に結合部が成長して変形(二次成形)し易い状態に遷移すると共に、緻密化する。このとき、中間成形体は転写面132に接触しているので、図9に示すように中間成形体は自重と重力とによって転写面132に移動(落下)すると共に、転写面132に倣うように、平板状基部10Pが屈曲基部面10Rへと屈曲変形してゆく(重力成形による二次成形)。そして、所定の焼結温度下で所定の焼結時間が経過した後に、常温まで温度を下げると焼結体110Eが生成され、二次成形工程及び焼結工程を終了する。なお、焼結を行うことによって焼結体110Eは、焼結前の中間成形体に対して2%以上20%以下収縮したものとなる。転写型130の素材として、セラミックス等の高温に耐える素材や、鋳型に用いられる素材を用いることができる。そして、次のステップS39「脱脂焼結工程終了」にて、図2のステップS14に示した脱脂焼結工程を終了する。
(射出成形体110A及び焼結体110Eの形態例)
図8及び図9を参照して、射出成形体110Aの平面形状が、幅50mm、長さ300mm、厚さが5mm、複数の凸部10Vの直径が2mmであって、凸部10Vの高さが8mm、金属粉末としてインコネル713(登録商標)相当の組成を有するニッケル基合金を用い、成形温度として1473K以上1573K以下の温度を用いた場合に、屈曲基部面10Rの曲率半径を500mmとする焼結体110Eの成形を行うことができた。この場合であっても、焼結体110Eの凸部10Vは、屈曲基部面10Rに対して法線方向に放射状に立設した状態を維持することができた。この構造は、例えばタービンエンジンの燃焼器パネルの構造に好適であり、放射状に立設する凸部10Vは放熱用のピンとして用いることができる。
図8及び図9を参照して、射出成形体110Aの平面形状が、幅50mm、長さ300mm、厚さが5mm、複数の凸部10Vの直径が2mmであって、凸部10Vの高さが8mm、金属粉末としてインコネル713(登録商標)相当の組成を有するニッケル基合金を用い、成形温度として1473K以上1573K以下の温度を用いた場合に、屈曲基部面10Rの曲率半径を500mmとする焼結体110Eの成形を行うことができた。この場合であっても、焼結体110Eの凸部10Vは、屈曲基部面10Rに対して法線方向に放射状に立設した状態を維持することができた。この構造は、例えばタービンエンジンの燃焼器パネルの構造に好適であり、放射状に立設する凸部10Vは放熱用のピンとして用いることができる。
また、他の形態例として、厚さ10mm(幅30mm)で長さが200mm、金属粉末としてニッケル基合金を用いた直方体の射出成形体に対して、二次成形温度が1473K以上1573K以下の範囲で転写型を用いて二次成形及び焼結を行った場合に、長さ200mmの部位を曲率半径60mmに屈曲させた焼結体を成形することができた。この場合であっても、屈曲部の外周及び内周には、ひび割れや皺の発生は認められなかった。
(凸型の転写型230を用いる二次成形例)
次に、図10及び図11を参照して、射出成形体210Aを凸型の転写面232を備える転写型230に載置した状態で脱脂を行った後に、二次成形を行う実施形態について説明する。なお、脱脂焼結工程は、図7に示した脱脂焼結工程を用いることができる。図10は、射出成形体210Aを転写型230の保持部34に載置した状態を示す側面図である。図11は、二次成形により平板状基部10Pを屈曲させて屈曲基部面10Rを形成した焼結体210E及び転写型230の側面図である。なお、図8及び図9にて説明した部位と同一の機能を有する部位については、同一の符号を付してその説明は省略する。
次に、図10及び図11を参照して、射出成形体210Aを凸型の転写面232を備える転写型230に載置した状態で脱脂を行った後に、二次成形を行う実施形態について説明する。なお、脱脂焼結工程は、図7に示した脱脂焼結工程を用いることができる。図10は、射出成形体210Aを転写型230の保持部34に載置した状態を示す側面図である。図11は、二次成形により平板状基部10Pを屈曲させて屈曲基部面10Rを形成した焼結体210E及び転写型230の側面図である。なお、図8及び図9にて説明した部位と同一の機能を有する部位については、同一の符号を付してその説明は省略する。
(射出成形体210Aを転写型230に載置する工程)
作業者は、図10に示すように、射出成形体210Aを転写型230における転写面232の上方側部に形成されている保持部34上に載置する(図7に示すステップS30参照。)。図10に示す実施形態では、射出成形体210Aの平板状基部10Pの下面の一部が、保持部34及び転写面232に載置されている。保持部34の内法WJは、射出成形体210Aの体幅WAよりも狭く、脱脂後(又は二次成形中)の収縮した中間成形体の体幅よりも広い幅に形成してある。
作業者は、図10に示すように、射出成形体210Aを転写型230における転写面232の上方側部に形成されている保持部34上に載置する(図7に示すステップS30参照。)。図10に示す実施形態では、射出成形体210Aの平板状基部10Pの下面の一部が、保持部34及び転写面232に載置されている。保持部34の内法WJは、射出成形体210Aの体幅WAよりも狭く、脱脂後(又は二次成形中)の収縮した中間成形体の体幅よりも広い幅に形成してある。
図10に示す射出成形体210Aは、平板状基部10Pと、平板状基部10Pから立設する複数の凸部10Vとを有している。射出成形体210Aの平面形状は、図8に示した射出成形体110Aと同等のものを用いることができる。
(脱脂工程)
次に作業者は、加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行う。バインダーの脱脂を行うことによって、中間成形体は、射出成形体210Aに対して10~20%収縮する(図7に示すステップS32参照。)。
次に作業者は、加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行う。バインダーの脱脂を行うことによって、中間成形体は、射出成形体210Aに対して10~20%収縮する(図7に示すステップS32参照。)。
(焼結工程)
次に作業者は、中間成形体を真空中又は不活性ガス環境下の加熱炉内にて加熱し、二次成形及び焼結を行って焼結体210Eを生成する。成形温度及び焼結温度は、図7のステップS34にて説明した温度を用いることができる。焼結時には金属粉末の粒子間が緻密になり、中間成形体から更に収縮する。
次に作業者は、中間成形体を真空中又は不活性ガス環境下の加熱炉内にて加熱し、二次成形及び焼結を行って焼結体210Eを生成する。成形温度及び焼結温度は、図7のステップS34にて説明した温度を用いることができる。焼結時には金属粉末の粒子間が緻密になり、中間成形体から更に収縮する。
図11に示す焼結体210Eの体幅WEのように、中間成形体の体幅は保持部34の内法WJよりも狭くなり、自重と重力とによって転写面232に移動(落下)すると共に、転写面232に倣うように、平板状基部10Pが屈曲基部面10Rへと屈曲変形してゆく(重力成形による二次成形)。そして、所定の焼結温度下で所定の焼結時間が経過した後に、常温まで温度を下げると焼結体210Eが生成され、焼結工程を終了する。
[中間成形体310C、10Cを転写型に載置して二次成形を行う実施形態の説明]
(凸型の転写面332を用いる二次成形例)
次に、図12乃至図14を参照して、中間成形体310C(又は射出成形体310A)を凸型の転写面332を備える転写型330に載置した状態で脱脂を行った後に、二次成形を行う実施形態の処理について説明する。図12は、図2のステップS14に示した脱脂焼結工程の詳細を説明するフローチャートである。図13は、中間成形体310Cを転写型330に載置した状態を示す側面図である。図14は、二次成形により平板状基部10Pを屈曲させて屈曲基部面10Rを形成した焼結体310E及び転写型330の側面図である。なお、図8及び図9にて説明した部位と同一の機能を有する部位については、同一の符号を付してその説明は省略する。
(凸型の転写面332を用いる二次成形例)
次に、図12乃至図14を参照して、中間成形体310C(又は射出成形体310A)を凸型の転写面332を備える転写型330に載置した状態で脱脂を行った後に、二次成形を行う実施形態の処理について説明する。図12は、図2のステップS14に示した脱脂焼結工程の詳細を説明するフローチャートである。図13は、中間成形体310Cを転写型330に載置した状態を示す側面図である。図14は、二次成形により平板状基部10Pを屈曲させて屈曲基部面10Rを形成した焼結体310E及び転写型330の側面図である。なお、図8及び図9にて説明した部位と同一の機能を有する部位については、同一の符号を付してその説明は省略する。
(脱脂工程)
ステップS40「脱脂工程」において作業者は、射出成形体310Aに対して加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、射出成形体310Aの形状を維持させた状態でバインダーを除去して中間成形体310Cを生成する。
ステップS40「脱脂工程」において作業者は、射出成形体310Aに対して加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、射出成形体310Aの形状を維持させた状態でバインダーを除去して中間成形体310Cを生成する。
(中間成形体310Cを転写型330に載置する工程)
ステップS42「中間成形体を転写型に載置する工程」(中間成形体載置工程)にて作業者は、図13に示すように、中間成形体310Cを転写型330の転写面332の上に載置する。なお、脱脂工程の前段階において、射出成形体310Aを転写型330の転写面332に載置しておくこともできる。
ステップS42「中間成形体を転写型に載置する工程」(中間成形体載置工程)にて作業者は、図13に示すように、中間成形体310Cを転写型330の転写面332の上に載置する。なお、脱脂工程の前段階において、射出成形体310Aを転写型330の転写面332に載置しておくこともできる。
(二次成形工程)
ステップS44「二次成形工程」にて作業者は、中間成形体310C(又は射出成形体310A)を加熱炉に内配置して加熱し、所定の時間の間成形温度を維持して、二次成形後の中間成形体を生成する二次成形を行う。成形温度は、図2のステップS14にて説明した焼結温度、又は図7のステップS34にて説明した成形温度を用いることができる。
ステップS44「二次成形工程」にて作業者は、中間成形体310C(又は射出成形体310A)を加熱炉に内配置して加熱し、所定の時間の間成形温度を維持して、二次成形後の中間成形体を生成する二次成形を行う。成形温度は、図2のステップS14にて説明した焼結温度、又は図7のステップS34にて説明した成形温度を用いることができる。
(焼結工程)
ステップS46「焼結工程」にて作業者は、二次成形後の中間成形体を加熱炉内に配置して焼結温度に維持して、焼結を行う。その後、常温まで温度を下げると焼結体310Eが生成され、焼結工程を終了する。焼結体310Eの凸部10Vは、屈曲基部面10Rに対して法線方向に放射状に立設した状態を維持している。そして、次のステップS49「脱脂焼結工程終了」にて、図2のステップS14に示した脱脂焼結工程を終了する。
ステップS46「焼結工程」にて作業者は、二次成形後の中間成形体を加熱炉内に配置して焼結温度に維持して、焼結を行う。その後、常温まで温度を下げると焼結体310Eが生成され、焼結工程を終了する。焼結体310Eの凸部10Vは、屈曲基部面10Rに対して法線方向に放射状に立設した状態を維持している。そして、次のステップS49「脱脂焼結工程終了」にて、図2のステップS14に示した脱脂焼結工程を終了する。
(他の実施形態)
次に、図4に示した中間成形体10Cを転写型30に載置した状態で脱脂を行った後に、二次成形を行う実施形態の処理について図1、図3、図4、図5、図12を参照して説明する。なお、図1、図3、図4、図5、図12の説明については、重複を避けるために省略する。
次に、図4に示した中間成形体10Cを転写型30に載置した状態で脱脂を行った後に、二次成形を行う実施形態の処理について図1、図3、図4、図5、図12を参照して説明する。なお、図1、図3、図4、図5、図12の説明については、重複を避けるために省略する。
(脱脂工程)
先ず作業者は、射出成形体10Aに対して加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、射出成形体10Aの形状を維持させた状態でバインダーを除去して図3に示す中間成形体10Cを生成する(図12:ステップS40「脱脂工程」参照。)
先ず作業者は、射出成形体10Aに対して加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、射出成形体10Aの形状を維持させた状態でバインダーを除去して図3に示す中間成形体10Cを生成する(図12:ステップS40「脱脂工程」参照。)
(中間成形体10Cを転写型30に載置する工程)
次に作業者は、図4に示すように、中間成形体10Cを転写型30の転写面32の上に載置する(図12:ステップS42「中間成形体を転写型に載置する工程」参照。)。
次に作業者は、図4に示すように、中間成形体10Cを転写型30の転写面32の上に載置する(図12:ステップS42「中間成形体を転写型に載置する工程」参照。)。
(二次成形工程)
次に作業者は、図4に示す状態で中間成形体10C及び転写型30を加熱炉内に配置して加熱し、所定の時間の間、成形温度を維持して、図5に示す二次成形後の中間成形体10Dを生成する二次成形を行う(図12:ステップS44「二次成形工程」参照。)。
次に作業者は、図4に示す状態で中間成形体10C及び転写型30を加熱炉内に配置して加熱し、所定の時間の間、成形温度を維持して、図5に示す二次成形後の中間成形体10Dを生成する二次成形を行う(図12:ステップS44「二次成形工程」参照。)。
(焼結工程)
次に作業者は、二次成形後の中間成形体10Dを加熱炉内に配置して焼結温度に維持して、焼結を行う。その後、常温まで温度を下げると図1に示す焼結体10Eが生成され、焼結工程を終了する(図12:ステップS46「焼結工程」参照。)。
次に作業者は、二次成形後の中間成形体10Dを加熱炉内に配置して焼結温度に維持して、焼結を行う。その後、常温まで温度を下げると図1に示す焼結体10Eが生成され、焼結工程を終了する(図12:ステップS46「焼結工程」参照。)。
[脱脂工程において射出成形体410Aを保持しておく実施形態の説明]
(中間成形体410Cを転写型430に傾倒させて二次成形を行う実施形態)
次に、図15乃至図19を参照して、脱脂工程において保持部434を用いて射出成形体410Aを直立状態に保持しておき、中間成形体410Cを生成した後に中間成形体410Cを転写型430の転写面432に傾倒させて二次成形を行う実施形態の処理について説明する。図15は、図2のステップS14に示した脱脂焼結工程の詳細を説明するフローチャートである。図16は、脱脂工程において保持部434を用いて射出成形体410Aを直立状態に保持している状態を示す側面図である。図17は、中間成形体410Cの生成後に被保持部410Xが保持部434から離脱して保持状態が解除された状態を示す側面図である。図18は、中間成形体410Cが傾倒支点410Yを支点としてRT方向に傾倒して中間成形体410Cが転写型430に載置された状態を示す側面図である。図19は、二次成形及び仕上工程後の焼結体410Eの側面図である。
(中間成形体410Cを転写型430に傾倒させて二次成形を行う実施形態)
次に、図15乃至図19を参照して、脱脂工程において保持部434を用いて射出成形体410Aを直立状態に保持しておき、中間成形体410Cを生成した後に中間成形体410Cを転写型430の転写面432に傾倒させて二次成形を行う実施形態の処理について説明する。図15は、図2のステップS14に示した脱脂焼結工程の詳細を説明するフローチャートである。図16は、脱脂工程において保持部434を用いて射出成形体410Aを直立状態に保持している状態を示す側面図である。図17は、中間成形体410Cの生成後に被保持部410Xが保持部434から離脱して保持状態が解除された状態を示す側面図である。図18は、中間成形体410Cが傾倒支点410Yを支点としてRT方向に傾倒して中間成形体410Cが転写型430に載置された状態を示す側面図である。図19は、二次成形及び仕上工程後の焼結体410Eの側面図である。
(保持部434による保持を伴う脱脂工程)
ステップS50「保持部による保持を伴う脱脂工程」において作業者は、射出成形体410Aの一端(下端)に成形した傾倒支点410Y(図16に示す実施形態では半球形に形成してあるが、円錐状の尖った先端部を用いることもできるし、円柱端、多角形端を用いることもできる。)を支持治具436に載置して重力方向の位置決めを行う(射出成形体載置工程)。更に、射出成形体410Aの他端(上部)に成形した被保持部410Xを保持部434で保持する。
ステップS50「保持部による保持を伴う脱脂工程」において作業者は、射出成形体410Aの一端(下端)に成形した傾倒支点410Y(図16に示す実施形態では半球形に形成してあるが、円錐状の尖った先端部を用いることもできるし、円柱端、多角形端を用いることもできる。)を支持治具436に載置して重力方向の位置決めを行う(射出成形体載置工程)。更に、射出成形体410Aの他端(上部)に成形した被保持部410Xを保持部434で保持する。
射出成形体410Aは、傾倒支点410Yが支持治具436に当接することにより上下方向(重力方向)に位置決めされている。また、射出成形体410Aは、傾倒支点410Yから離れた被保持部410Xが保持部434と当接することにより、横方向(重力に対して直交する方向)に位置決めされる。これにより、傾倒支点410Y付近を中心とした射出成形体410Aの傾倒動作を制限して、射出成形体410Aは鉛直に直立した状態に維持される。
次に作業者は、射出成形体410Aに対して加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、射出成形体410Aの形状を維持させた状態でバインダーを除去して中間成形体410Cを生成する。
次に、ステップS52「中間成形体を保持部から転写型に載置する工程」(中間成形体載置工程)における中間成形体410Cの傾倒動作について説明する。図16及び図17に示すように、中間成形体410Cは、射出成形体410Aに対して20%以上30%以下の範囲で収縮するので、全長も射出成形体410Aの全長LA(図16参照)から、中間成形体410Cの全長LC(図17参照)まで短くなる。すると、中間成形体410Cの被保持部410Xが保持部434の範囲から下方に外れて、傾倒支点410Y付近を中心とした中間成形体410Cの傾倒動作が可能となる。
図17に示す実施形態では、支持治具436は傾斜角θの角度で傾斜している。これにより、傾倒動作の制限が解除された中間成形体410Cは、重力によって傾倒支点410Y付近を中心としてRT方向に傾倒する。すると、図18に示すように、中間成形体410Cは、重力により保持部434から離脱して転写型430の転写面432に載置される。
(二次成形工程)
ステップS54「二次成形工程」にて作業者は、中間成形体410Cを加熱炉内にて加熱し、所定の時間の間、成形温度を維持して、二次成形後の中間成形体を生成する。成形温度は、図2のステップS14にて説明した焼結温度、又は図7のステップS34にて説明した成形温度を用いることができる。この工程において、転写面432の形状が、中間成形体410Cの表面に転写される。
ステップS54「二次成形工程」にて作業者は、中間成形体410Cを加熱炉内にて加熱し、所定の時間の間、成形温度を維持して、二次成形後の中間成形体を生成する。成形温度は、図2のステップS14にて説明した焼結温度、又は図7のステップS34にて説明した成形温度を用いることができる。この工程において、転写面432の形状が、中間成形体410Cの表面に転写される。
(焼結工程)
ステップS56「焼結工程」にて作業者は、二次成形後の中間成形体を加熱炉内に配置し、加熱炉内を所定焼結温度に維持して焼結を行う。その後、常温まで温度を下げると焼結体410Eが生成され(図19参照。)、焼結工程を終了する。焼結体410Eの二次成形部位10Sには、転写型430の転写面432に形成されていた転写形状が転写されている。その後、仕上工程において、図19に示すように、製品には不要な被保持部410X及び傾倒支点410Yを切除する加工を行う。そして、次のステップS59「脱脂焼結工程終了」にて、図2のステップS14に示した脱脂焼結工程を終了する。
ステップS56「焼結工程」にて作業者は、二次成形後の中間成形体を加熱炉内に配置し、加熱炉内を所定焼結温度に維持して焼結を行う。その後、常温まで温度を下げると焼結体410Eが生成され(図19参照。)、焼結工程を終了する。焼結体410Eの二次成形部位10Sには、転写型430の転写面432に形成されていた転写形状が転写されている。その後、仕上工程において、図19に示すように、製品には不要な被保持部410X及び傾倒支点410Yを切除する加工を行う。そして、次のステップS59「脱脂焼結工程終了」にて、図2のステップS14に示した脱脂焼結工程を終了する。
[捩じり二次成形]
次に図20及び図21を参照して、捩じり二次成形を行う実施形態について説明する。図20は、二次成形前の射出成形体510A(又は中間成形体510C)の第一部位510V及び第二部位510Wを、第一把持具538V及び第二把持具538Wを用いて把持した状態を示す側面図である。図21は、第二把持具538Wに回転力(トルクT)を加えて、第一把持具538Vと第二把持具538W(第一部位510Vと第二部位510W)とを相対的に回転させて、捩じり二次成形を行った後の射出成形体510B(又は中間成形体510D)の状態を示す側面図である。
次に図20及び図21を参照して、捩じり二次成形を行う実施形態について説明する。図20は、二次成形前の射出成形体510A(又は中間成形体510C)の第一部位510V及び第二部位510Wを、第一把持具538V及び第二把持具538Wを用いて把持した状態を示す側面図である。図21は、第二把持具538Wに回転力(トルクT)を加えて、第一把持具538Vと第二把持具538W(第一部位510Vと第二部位510W)とを相対的に回転させて、捩じり二次成形を行った後の射出成形体510B(又は中間成形体510D)の状態を示す側面図である。
(捩じり二次成形治具536の構成)
図20及び図21を参照して、捩じり二次成形治具536は、治具ベース537と、第一把持具538Vと、第二把持具538Wと、第二把持具係止凸部539Pと、捩じり角設定受部539Rと、必要に応じて転写型530とを備えている。
図20及び図21を参照して、捩じり二次成形治具536は、治具ベース537と、第一把持具538Vと、第二把持具538Wと、第二把持具係止凸部539Pと、捩じり角設定受部539Rと、必要に応じて転写型530とを備えている。
治具ベース537は、第一把持具538Vを保持すると共に、第二把持具538Wを回動可能に保持する台座である。治具ベース537は、第一把持具538V及び第二把持具538Wと共に、成形温度や焼結温度の二次成形の環境下で使用可能な素材(セラミックス等の高温に耐える素材や、鋳型に用いられる素材を用いることができる。)で構成されている。
第一把持具538Vは、捩じり二次成形を行う素材(二次成形前の射出成形体510A又は脱脂後の中間成形体510C等)の第一部位510Vを把持する治具である。第一把持具538Vは、図20及び図21に示す治具ベース537に対してZ軸回りに回転しないように固定する構造を有しており、Z軸方向に、射出成形体510A(又は中間成形体510C)に対する把持位置を調節することが可能となっている。
第二把持具538Wは、捩じり二次成形を行う素材(二次成形前の、射出成形体510A又は脱脂後の中間成形体510C等)の第二部位510Wを把持する治具である。第二把持具538Wは、図20及び図21に示す治具ベース537に対してZ軸回りの回転、及びZ軸方向に対する移動が可能に支持されている。また、第二把持具538Wは、二次成形の環境下においてZ軸回りにトルクTを加えて、射出成形体510A(又は脱脂後の中間成形体510C)に対して捩じる力を印加することができる。
第二把持具538Wに連動して回転する部位には、捩じり二次成形を行う際の捩じり角度を設定するための第二把持具係止凸部539Pを突出させてある。また、治具ベース537の一部には、回転してきた第二把持具係止凸部539Pと当接することによって、第二把持具538Wの回転角度を制限する捩じり角設定受部539Rを形成してある。
治具ベース537の一部に、重力による射出成形体510A(又は脱脂後の中間成形体510C)の変形を防止したり、射出成形体510A(又は脱脂後の中間成形体510C)に対して変形を伴う重力成形を行う転写型530を、必要に応じて配置することもできる。
(把持工程)
先ず図20を参照して、二次成形前の射出成形体510A(又は中間成形体510C)の第一部位510V及び第二部位510Wを、第一把持具538V及び第二把持具538Wを用いて把持する。射出成形体510A(又は中間成形体510C)の形状は、直方体、多角柱体、タービン翼、その他の形状のものを用いることができる。図20に示すように、二次成形前の射出成形体510A(又は中間成形体510C)を捩じり二次成形治具536に取り付けた状態では、第二把持具係止凸部539Pと捩じり角設定受部539Rとの間は、所定の角度だけ(捩じり変形を加える角度。)離間させておく。
先ず図20を参照して、二次成形前の射出成形体510A(又は中間成形体510C)の第一部位510V及び第二部位510Wを、第一把持具538V及び第二把持具538Wを用いて把持する。射出成形体510A(又は中間成形体510C)の形状は、直方体、多角柱体、タービン翼、その他の形状のものを用いることができる。図20に示すように、二次成形前の射出成形体510A(又は中間成形体510C)を捩じり二次成形治具536に取り付けた状態では、第二把持具係止凸部539Pと捩じり角設定受部539Rとの間は、所定の角度だけ(捩じり変形を加える角度。)離間させておく。
(二次成形工程)
次に図21を参照して、第二把持具538Wに回転力(トルクT)を加えて第一把持具538Vと第二把持具538W(第一部位510Vと第二部位510W)とを相対的に回転させる力を印加し続ける。そして、射出成形体510Aに対する二次成形(図6参照)、又は中間成形体510Cに対する二次成形(図7等を参照。)を行って、捩じり変形を加える。第一部位510Vと第二部位510Wとが相対的に回転してゆき、所定の角度(捩じり変形に必要な角度。)に達したときに、第二把持具係止凸部539Pが捩じり角設定受部539Rに当接して、それ以上第二把持具538Wが回転することを防止する。このようにして、所定角度の捩じり変形を行うことができる。
次に図21を参照して、第二把持具538Wに回転力(トルクT)を加えて第一把持具538Vと第二把持具538W(第一部位510Vと第二部位510W)とを相対的に回転させる力を印加し続ける。そして、射出成形体510Aに対する二次成形(図6参照)、又は中間成形体510Cに対する二次成形(図7等を参照。)を行って、捩じり変形を加える。第一部位510Vと第二部位510Wとが相対的に回転してゆき、所定の角度(捩じり変形に必要な角度。)に達したときに、第二把持具係止凸部539Pが捩じり角設定受部539Rに当接して、それ以上第二把持具538Wが回転することを防止する。このようにして、所定角度の捩じり変形を行うことができる。
(他の実施形態)
次に、図12に示した脱脂焼結工程を用いた他の実施形態について、図22、図23を参照して説明する。図22は、中間成形体610C(射出成形体610A)を転写型630に載置した状態を示す側面図である。図23は、二次成形により平板状基部10Pを屈曲させて屈曲基部面10Rを形成した中間成形体610D(焼結体610E)及び転写型630の側面図である。なお、図8及び図9にて説明した部位と同一の機能を有する部位については、同一の符号を付してその説明は省略する。
次に、図12に示した脱脂焼結工程を用いた他の実施形態について、図22、図23を参照して説明する。図22は、中間成形体610C(射出成形体610A)を転写型630に載置した状態を示す側面図である。図23は、二次成形により平板状基部10Pを屈曲させて屈曲基部面10Rを形成した中間成形体610D(焼結体610E)及び転写型630の側面図である。なお、図8及び図9にて説明した部位と同一の機能を有する部位については、同一の符号を付してその説明は省略する。
(脱脂工程)
先ず作業者は、射出成形体610Aに対して加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、射出成形体610Aの形状を維持させた状態でバインダーを除去して中間成形体610Cを生成する(図12:ステップS40「脱脂工程」参照。)
先ず作業者は、射出成形体610Aに対して加熱脱脂、光脱脂、溶媒脱脂等による脱脂を行って、射出成形体610Aの形状を維持させた状態でバインダーを除去して中間成形体610Cを生成する(図12:ステップS40「脱脂工程」参照。)
(中間成形体610Cを転写型30に載置する工程)
次に作業者は、図22に示すように、中間成形体610Cを転写型630の転写面632の上に載置する(図12:ステップS42「中間成形体を転写型に載置する工程」参照。)。なお、脱脂工程の前段階において、射出成形体610Aを転写型630の転写面632に載置しておくこともできる。
次に作業者は、図22に示すように、中間成形体610Cを転写型630の転写面632の上に載置する(図12:ステップS42「中間成形体を転写型に載置する工程」参照。)。なお、脱脂工程の前段階において、射出成形体610Aを転写型630の転写面632に載置しておくこともできる。
(二次成形工程)
次に作業者は、図22に示す状態で中間成形体610C及び転写型630を加熱炉内に配置して加熱し、所定の時間の間、成形温度を維持して、図23に示す二次成形後の中間成形体610Dを生成する二次成形を行う(図12:ステップS44「二次成形工程」参照。)。
次に作業者は、図22に示す状態で中間成形体610C及び転写型630を加熱炉内に配置して加熱し、所定の時間の間、成形温度を維持して、図23に示す二次成形後の中間成形体610Dを生成する二次成形を行う(図12:ステップS44「二次成形工程」参照。)。
(焼結工程)
次に作業者は、二次成形後の中間成形体610Dを加熱炉内に配置して焼結温度に維持して焼結を行う。その後、常温まで温度を下げると図23に示す焼結体610Eが生成され、焼結工程を終了する(図12:ステップS46「焼結工程」参照。)。焼結体610Eの凸部10Vは、屈曲基部面10Rに対して法線方向に放射状に立設した状態を維持している。
次に作業者は、二次成形後の中間成形体610Dを加熱炉内に配置して焼結温度に維持して焼結を行う。その後、常温まで温度を下げると図23に示す焼結体610Eが生成され、焼結工程を終了する(図12:ステップS46「焼結工程」参照。)。焼結体610Eの凸部10Vは、屈曲基部面10Rに対して法線方向に放射状に立設した状態を維持している。
(従来の燃焼器パネルの説明)
図24に、従来のMIMにより一次成形したタービンエンジンの燃焼器パネル(焼結体10Z)を組み合わせた状態の部分断面図を示す。なお、複数の燃焼器パネル(焼結体10Z)の中心は、タービン軸TSである。
図24に、従来のMIMにより一次成形したタービンエンジンの燃焼器パネル(焼結体10Z)を組み合わせた状態の部分断面図を示す。なお、複数の燃焼器パネル(焼結体10Z)の中心は、タービン軸TSである。
従来、耐熱性を有する金属粉末を焼結した燃焼器パネル(焼結体10Z)を、二次形成を行わずにMIMにより成形する場合には、放熱用の凸部10V(放熱ピン)を射出型内から抜き易い形状に設計する必要があった。例えば、放熱用の凸部10V(放熱ピン)は、一つの燃焼器パネル(焼結体10Z)において全て平行(図24に示す例では、X軸又はY軸に対して平行)になるように成形する必要があった。
すると、図24に示すように、各燃焼器パネル(焼結体10Z)同士の接続部PBにおいて放熱用の凸部10Vの密度が減少し、接続部PBにおいて局所的に燃焼器パネル(焼結体10Z)の温度が上昇する可能性があった。
(焼結体310E及び焼結体610Eを燃焼器パネルに用いた実施形態)
図25に、タービンエンジン90の燃焼器パネルとして、焼結体310E及び焼結体610Eを用いた実施形態を示す。図25は、タービンエンジン90の燃焼室CR部分を、タービン軸TSに対して直交する面で切断した状態を模式的に表した断面図である。
図25に、タービンエンジン90の燃焼器パネルとして、焼結体310E及び焼結体610Eを用いた実施形態を示す。図25は、タービンエンジン90の燃焼室CR部分を、タービン軸TSに対して直交する面で切断した状態を模式的に表した断面図である。
図25に示す実施形態では、タービンエンジン90は、タービン軸TSと、燃焼室CRと、内壁IWと、内側燃焼器パネル(焼結体610E)と、内側冷却流路ICと、外側燃焼器パネル(焼結体310E)と、外壁OWと、外側冷却流路OCとを備えている。内側燃焼器パネル(焼結体610E)は、内壁IWに対して複数のスタッド(不図示)を介して取り付けられている。また、同様に、外側燃焼器パネル(焼結体310E)は、外壁OWに対して複数のスタッド(不図示)を介して取り付けられている。
タービンエンジン90の燃焼室CRは高温に曝され続けるので、コンプレッサーから得た空気を内側冷却流路IC及び外側冷却流路OCに流し、その空気を用いて内側燃焼器パネル(焼結体610E)及び外側燃焼器パネル(焼結体310E)を冷却している。ここで、内側燃焼器パネル(焼結体610E)の冷却を促進するために、内側燃焼器パネル(焼結体610E)の屈曲基部面10Rから内側冷却流路ICの内部に向けて、多数の放熱用の凸部10Vを屈曲基部面10Rの法線方向に立設させてある。
また、同様に、外側燃焼器パネル(焼結体310E)の冷却を促進するために、外側燃焼器パネル(焼結体310E)の屈曲基部面10Rから外側冷却流路OCの内部に向けて、多数の放熱用の凸部10Vを屈曲基部面10Rの法線方向に(放射状に)立設させてある。これにより、図25に示す内側燃焼器パネル(焼結体610E)及び外側燃焼器パネル(焼結体310E)同士の接続部PBにおいても放熱用の凸部10Vの密度を均一にすることができる。そして、内側燃焼器パネル(焼結体610E)及び外側燃焼器パネル(焼結体310E)同士の接続部PBにおける局所的な温度上昇を緩和することができる。
(仮焼結後に二次成形を行う実施形態について)
次に、図2のステップS14に示した脱脂焼結工程において、仮焼結後に二次成形を行う実施形態について説明する。
次に、図2のステップS14に示した脱脂焼結工程において、仮焼結後に二次成形を行う実施形態について説明する。
射出成形体を台座等の仮焼結治具上に配置して型崩れを予防しながら、脱脂工程及び仮焼結工程の処理を行う。仮焼結工程では、脱脂後に真空中又は不活性ガス環境下にて仮焼結温度で加熱を行い、極僅かだけ焼結をして中間成形体の形状を保持させる。
仮焼結時の仮焼結温度は、金属粉末としてニッケル基合金、コバルト基合金、又は鋼を用いる場合には、1200K以上1400K以下の範囲を用いることができる。また、金属粉末としてニッケル基合金、コバルト基合金、アルミニウム合金、銅合金、又は鋼を用いる場合には、仮焼結温度として金属粉末の融点-500K以上、融点-240K以下の範囲内の温度を用いることができる。また、仮焼結温度として、金属粉末の熱力学温度における融点の60%以上65%以下の温度を用いることができる。
仮焼結温度は、金属粉末の界面が固相と液相の中間になって僅かに表面融解を生じる温度であり、金属粉末の粒径によっても異なる場合がある。仮焼結後の中間成形体の寸法変化は、仮焼結前の中間成形体の寸法と比較して僅かである。仮焼結が終了したら、仮焼結後の中間成形体を転写型上に配置して二次成形と本焼結とを行って形状転写を行う。
以上、実施の形態を参照して本発明による焼結体及び焼結体の製造方法、並びに燃焼器パネル及び燃焼器パネルの製造方法を説明したが、本発明による焼結体及び焼結体の製造方法、並びに燃焼器パネル及び燃焼器パネルの製造方法は上記実施形態に限定されない。上記実施形態に様々の変更を行うことが可能である。上記実施形態に記載された事項と上記他の実施形態に記載された事項とを組み合わせることが可能である。
本特許出願は、日本国特許出願(JP 2016-076124)に基づいており、その出願に基づいて優先権を主張している。その出願の開示は、引用により本特許出願に取り込まれる。
Claims (18)
- 金属粉末とバインダとを混合した成形材料を射出型内に射出して形成された射出成形体、又は当該射出成形体を脱脂した後の中間成形体を、転写型に載置して重力による変形を伴う重力成形を行うと共に、前記重力成形後の前記射出成形体に対して脱脂及び焼結、又は前記重力成形後の前記中間成形体に対して焼結を行って製造した焼結体。
- 前記射出成形体は、平板状基部と、前記平板状基部から立設する複数の凸部とを有し、
前記重力成形は、前記平板状基部を屈曲させて屈曲基部面を生成することを含み、
前記複数の凸部は前記屈曲基部面に対して法線方向に立設している
請求項1に記載の焼結体。 - 前記重力成形は、前記射出成形体又は前記中間成形体の一部に凸部又は凹部を成形することを含む
請求項1に記載の焼結体。 - 金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体について脱脂を行って生成した中間成形体に対して、前記金属粉末において表面融解を生じる成形温度の範囲において変形を伴う二次成形を行うと共に、前記二次成形後の中間成形体に対して焼結を行って製造した焼結体。
- 金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体、又は当該射出成形体を脱脂した後の中間成形体における第一部位及び第二部位を捩じり二次成形治具を用いて把持し、前記捩じり二次成形治具により前記第一部位及び第二部位を相対的に回転させて前記射出成形体又は前記中間成形体に対する捩じり変形を伴う捩じり二次成形を行うと共に、前記捩じり二次成形後の前記射出成形体に対して脱脂及び焼結、又は前記捩じり二次成形後の前記中間成形体に対して焼結を行って製造した焼結体。
- 金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体、又は当該射出成形体を脱脂した後の中間成形体に対して、変形を伴う二次成形を行うと共に、前記二次成形後の前記射出成形体に対して脱脂及び焼結、又は前記二次成形後の前記中間成形体に対して焼結を行って製造した焼結体であるタービンエンジンの燃焼器パネルであって、
前記焼結体は、屈曲基部面と、前記屈曲基部面から法線方向に立設する複数の放熱用の凸部とを備える
タービンエンジンの燃焼器パネル。 - 金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体について脱脂を行って中間成形体を生成する脱脂工程と、
前記中間成形体の焼結を行って焼結体を製造する焼結工程と、
前記焼結体が生成される前に、前記射出成形体又は前記中間成形体を変形する二次成形工程と、
を備える焼結体の製造方法。 - 前記二次成形工程は、重力の作用によって前記射出成形体又は前記中間成形体を転写型に押し付ける工程を含む
請求項7に記載の焼結体の製造方法。 - 前記射出成形体を前記転写型に載置する射出成形体載置工程を備え、
前記脱脂工程は、前記射出成形体を前記転写型に載置した状態で脱脂を行って中間成形体を生成することを含み、
前記二次成形工程は、前記中間成形体を前記転写型に載置した状態で成形温度に加熱して二次成形後の中間成形体を生成することを含み、
前記焼結工程は、前記二次成形後の中間成形体に対して焼結を行って焼結体を製造することを含む
請求項8に記載の焼結体の製造方法。 - 保持部を用いて前記射出成形体の一部を保持することで前記射出成形体の傾倒又は移動を防止する工程と、
中間成形体載置工程と、
を備え
前記脱脂工程は、保持部を用いて前記射出成形体の一部を保持しながら脱脂して収縮した中間成形体を形成することを含み、
前記中間成形体載置工程は、前記収縮した中間成形体が前記保持部から離脱して、傾倒又は移動により転写型に載置されることを含み、
前記二次成形工程は、前記中間成形体を前記転写型に載置した状態で成形温度に加熱して二次成形後の中間成形体を生成することを含み、
前記焼結工程は、前記二次成形後の中間成形体の焼結を行って焼結体を製造することを含む
請求項9に記載の焼結体の製造方法。 - 前記中間成形体載置工程は、前記収縮した中間成形体が重力により前記保持部から離脱して前記転写型に載置されることを含む
請求項10に記載の焼結体の製造方法。 - 前記中間成形体を前記転写型に載置する中間成形体載置工程を備え、
前記二次成形工程は、前記中間成形体を前記転写型に載置した状態で成形温度に加熱して二次成形後の中間成形体を生成することを含み、
前記焼結工程は、前記二次成形後の中間成形体の焼結を行って焼結体を製造することを含む
請求項8に記載の焼結体の製造方法。 - 前記射出成形体は、平板状基部と、前記平板状基部から立設する複数の凸部とを有し、
前記二次成形工程は、前記転写型を用いて前記平板状基部を屈曲させて屈曲基部面を生成することを含み、
前記焼結体の前記複数の凸部は、前記屈曲基部面に対して法線方向に立設している
請求項8乃至12のいずれか一項に記載の焼結体の製造方法。 - 前記二次成形工程は、前記射出成形体又は前記中間成形体の第一部位及び第二部位を把持し、前記第一部位及び第二部位を相対的に回転させて、前記射出成形体又は前記中間成形体に対する捩じり変形を加える工程を含む
請求項7に記載の焼結体の製造方法。 - 前記金属粉末は、ニッケル基合金、コバルト基合金、又は鋼であり、
前記二次成形工程における成形温度は、1200K以上1650K以下の範囲である
請求項7乃至14のいずれか一項に記載の焼結体の製造方法。 - 前記二次成形工程における成形温度は、前記金属粉末において表面融解を生じる温度の範囲である
請求項7乃至14のいずれか一項に記載の焼結体の製造方法。 - 前記二次成形工程は、前記射出成形体を変形して二次成形後の射出成形体を生成することを含む
請求項7又は8に記載の焼結体の製造方法。 - 金属粉末とバインダとを混合した成形材料を射出型内に射出して一次成形された射出成形体の脱脂及び焼結を行って、焼結体である燃焼器パネルを製造する燃焼器パネルの製造方法であって、
前記射出成形体は、平板状基部と、前記平板状基部から立設する複数の放熱用の凸部とを有し、
前記射出成形体について脱脂を行って中間成形体を生成する脱脂工程と、
前記中間成形体の焼結を行って焼結体を製造する焼結工程と、
前記焼結体が生成される前に、前記射出成形体又は前記中間成形体を転写型に載置して、前記平板状基部を屈曲させて屈曲基部面を生成する重力成形を行う二次成形工程と
を含む燃焼器パネルの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3009781A CA3009781C (en) | 2016-04-05 | 2017-02-07 | Sintered body, method of manufacturing sintered body, combustor panel, and method of manufacturing combustor panel |
EP17778850.2A EP3381591B1 (en) | 2016-04-05 | 2017-02-07 | Sintered body production method and combustor panel production method |
US16/067,124 US11511339B2 (en) | 2016-04-05 | 2017-02-07 | Sintered body, method of manufacturing sintered body, combustor panel, and method of manufacturing combustor panel |
US17/968,917 US11666967B2 (en) | 2016-04-05 | 2022-10-19 | Sintered body, method of manufacturing sintered body, combustor panel, and method of manufacturing combustor panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016076124A JP6745631B2 (ja) | 2016-04-05 | 2016-04-05 | 焼結体の製造方法及び燃焼器パネルの製造方法 |
JP2016-076124 | 2016-04-05 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/067,124 A-371-Of-International US11511339B2 (en) | 2016-04-05 | 2017-02-07 | Sintered body, method of manufacturing sintered body, combustor panel, and method of manufacturing combustor panel |
US17/968,917 Division US11666967B2 (en) | 2016-04-05 | 2022-10-19 | Sintered body, method of manufacturing sintered body, combustor panel, and method of manufacturing combustor panel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017175471A1 true WO2017175471A1 (ja) | 2017-10-12 |
Family
ID=60000355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004366 WO2017175471A1 (ja) | 2016-04-05 | 2017-02-07 | 焼結体及び焼結体の製造方法、並びに燃焼器パネル及び燃焼器パネルの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11511339B2 (ja) |
EP (1) | EP3381591B1 (ja) |
JP (1) | JP6745631B2 (ja) |
CA (1) | CA3009781C (ja) |
WO (1) | WO2017175471A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2591442A (en) * | 2019-11-25 | 2021-08-04 | Edwards Ltd | Burner element fabrication |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020111136A1 (ja) * | 2018-11-29 | 2020-06-04 | 川崎重工業株式会社 | 焼結体の製造方法 |
US20200300469A1 (en) * | 2019-03-19 | 2020-09-24 | United Technologies Corporation | Aerodynamic component for a gas turbine engine |
KR102206103B1 (ko) * | 2019-06-26 | 2021-01-21 | 엘지전자 주식회사 | 결합형 베인-롤러 구조의 로터리 압축기 |
EP4086711A1 (fr) * | 2021-05-07 | 2022-11-09 | Comadur S.A. | Support pour un procédé de frittage d'un corps, notamment pour l'horlogerie |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000038605A (ja) * | 1998-07-23 | 2000-02-08 | Ryobi Ltd | 魚釣用リールの部品の製造方法 |
JP2000096103A (ja) * | 1998-09-18 | 2000-04-04 | Injex Corp | 金属粉末射出成形品のアンダーカットの形成方法およびアンダーカットを備える金属粉末射出成形品 |
JP2000340303A (ja) | 1999-05-27 | 2000-12-08 | Orient Micro Wave:Kk | 金属ハウジング、同軸コネクタおよびその製造方法 |
JP2001152205A (ja) | 1999-11-26 | 2001-06-05 | Denso Corp | 金属粉末射出成形法およびこれに用いるバインダ |
JP2005350710A (ja) | 2004-06-09 | 2005-12-22 | Daido Steel Co Ltd | 金属粉末射出成形用耐熱合金 |
JP2006505688A (ja) | 2002-10-29 | 2006-02-16 | ビーエーエスエフ アクチェンゲゼルシャフト | 金属射出成形材料及び金属射出成形方法 |
JP2009103280A (ja) | 2007-10-25 | 2009-05-14 | Ntn Corp | 動圧軸受装置およびその製造方法 |
JP2012126996A (ja) * | 2010-12-16 | 2012-07-05 | Helmholtz-Zentrum Geesthacht Zentrum Fur Material & Kustenforschung Gmbh | 構造化表面を有する成形金属体の製造方法 |
US20160016230A1 (en) * | 2014-07-17 | 2016-01-21 | Pratt & Whitney Canada Corp. | Method of shaping green part and manufacturing method using same |
JP2016076124A (ja) | 2014-10-07 | 2016-05-12 | ヤンマー株式会社 | 遠隔サーバ |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0329475B1 (en) * | 1988-02-18 | 1994-01-26 | Sanyo Chemical Industries Ltd. | Mouldable composition |
JPH0313504A (ja) * | 1989-06-09 | 1991-01-22 | Fujitsu Ltd | 射出成形体の脱脂用治具と脱脂方法 |
JPH0331403A (ja) * | 1989-06-27 | 1991-02-12 | Mazda Motor Corp | 焼結方法 |
EP0701875B1 (de) | 1994-09-15 | 2000-06-07 | Basf Aktiengesellschaft | Verfahren zur Herstellung metallischer Formteile durch Pulverspritzguss |
BRPI0803956B1 (pt) * | 2008-09-12 | 2018-11-21 | Whirlpool S.A. | composição metalúrgica de materiais particulados e processo de obtenção de produtos sinterizados autolubrificantes |
-
2016
- 2016-04-05 JP JP2016076124A patent/JP6745631B2/ja active Active
-
2017
- 2017-02-07 WO PCT/JP2017/004366 patent/WO2017175471A1/ja active Application Filing
- 2017-02-07 EP EP17778850.2A patent/EP3381591B1/en active Active
- 2017-02-07 CA CA3009781A patent/CA3009781C/en active Active
- 2017-02-07 US US16/067,124 patent/US11511339B2/en active Active
-
2022
- 2022-10-19 US US17/968,917 patent/US11666967B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000038605A (ja) * | 1998-07-23 | 2000-02-08 | Ryobi Ltd | 魚釣用リールの部品の製造方法 |
JP2000096103A (ja) * | 1998-09-18 | 2000-04-04 | Injex Corp | 金属粉末射出成形品のアンダーカットの形成方法およびアンダーカットを備える金属粉末射出成形品 |
JP2000340303A (ja) | 1999-05-27 | 2000-12-08 | Orient Micro Wave:Kk | 金属ハウジング、同軸コネクタおよびその製造方法 |
JP2001152205A (ja) | 1999-11-26 | 2001-06-05 | Denso Corp | 金属粉末射出成形法およびこれに用いるバインダ |
JP2006505688A (ja) | 2002-10-29 | 2006-02-16 | ビーエーエスエフ アクチェンゲゼルシャフト | 金属射出成形材料及び金属射出成形方法 |
JP2005350710A (ja) | 2004-06-09 | 2005-12-22 | Daido Steel Co Ltd | 金属粉末射出成形用耐熱合金 |
JP2009103280A (ja) | 2007-10-25 | 2009-05-14 | Ntn Corp | 動圧軸受装置およびその製造方法 |
JP2012126996A (ja) * | 2010-12-16 | 2012-07-05 | Helmholtz-Zentrum Geesthacht Zentrum Fur Material & Kustenforschung Gmbh | 構造化表面を有する成形金属体の製造方法 |
US20160016230A1 (en) * | 2014-07-17 | 2016-01-21 | Pratt & Whitney Canada Corp. | Method of shaping green part and manufacturing method using same |
JP2016076124A (ja) | 2014-10-07 | 2016-05-12 | ヤンマー株式会社 | 遠隔サーバ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3381591A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2591442A (en) * | 2019-11-25 | 2021-08-04 | Edwards Ltd | Burner element fabrication |
US11982445B2 (en) | 2019-11-25 | 2024-05-14 | Edwards Limited | Burner element fabrication using injection moulding and consequent sintering |
Also Published As
Publication number | Publication date |
---|---|
JP2017186613A (ja) | 2017-10-12 |
US11511339B2 (en) | 2022-11-29 |
JP6745631B2 (ja) | 2020-08-26 |
EP3381591A1 (en) | 2018-10-03 |
US20230043599A1 (en) | 2023-02-09 |
CA3009781C (en) | 2021-09-21 |
CA3009781A1 (en) | 2017-10-12 |
EP3381591A4 (en) | 2019-04-24 |
US20190009340A1 (en) | 2019-01-10 |
EP3381591B1 (en) | 2021-06-02 |
US11666967B2 (en) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017175471A1 (ja) | 焼結体及び焼結体の製造方法、並びに燃焼器パネル及び燃焼器パネルの製造方法 | |
JP6500047B2 (ja) | 積層造形法のための方法及び接続支持体 | |
WO2010050248A1 (ja) | タービンホイールの製造方法 | |
JP7259098B2 (ja) | 生産システムのための支持システム及びそのワークピースホルダ | |
CA3001754C (en) | Method for producing a workpiece through generative manufacturing, and corresponding workpiece | |
JP6435332B2 (ja) | 熱間等方圧加圧(hip)による製缶方法 | |
JP6004012B2 (ja) | 遠心鋳造装置 | |
CN114603313A (zh) | 一种薄壁件加工方法及其应用 | |
JP2020525650A (ja) | 析出硬化超合金粉末材料のための付加製造技術 | |
CN114131048A (zh) | 一种选区激光熔化成形环状零件的设计方法和装置 | |
US20180272562A1 (en) | Method of forming green part and manufacturing method using same | |
JP6833561B2 (ja) | タービンホイールの製造方法、タービンホイール、およびタービンホイールの焼結治具 | |
CN110678283A (zh) | 用于对双重微结构部件的制造进行改进的方法 | |
JP5822074B2 (ja) | 揺動鍛造装置 | |
CN105109040B (zh) | 三维结构成形方法 | |
TW200523399A (en) | Metal product producing method, metal product, metal component connecting method, and connection structure | |
JP2022512306A (ja) | 脱バインダと焼結中の部品の支持体 | |
CN109795109A (zh) | 一种增材制造方法 | |
JP6985118B2 (ja) | 金属部材の製造方法 | |
KR101965734B1 (ko) | 금속 부재의 제조 방법 | |
EP4010135A1 (fr) | Procede de fabrication d'une piece metallique | |
JP6238881B2 (ja) | 炭素繊維強化炭化珪素成形体の製造方法 | |
JPWO2020111136A1 (ja) | 焼結体の製造方法 | |
JP2017031011A (ja) | セラミック素球の製造方法 | |
JPH0867904A (ja) | 焼結製品の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 3009781 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017778850 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017778850 Country of ref document: EP Effective date: 20180628 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |