WO2017171044A1 - 射出成形機 - Google Patents

射出成形機 Download PDF

Info

Publication number
WO2017171044A1
WO2017171044A1 PCT/JP2017/013719 JP2017013719W WO2017171044A1 WO 2017171044 A1 WO2017171044 A1 WO 2017171044A1 JP 2017013719 W JP2017013719 W JP 2017013719W WO 2017171044 A1 WO2017171044 A1 WO 2017171044A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
heater
temperature
output
time
Prior art date
Application number
PCT/JP2017/013719
Other languages
English (en)
French (fr)
Inventor
昌博 阿部
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201780014533.7A priority Critical patent/CN108698295B/zh
Priority to JP2018509678A priority patent/JP6791948B2/ja
Publication of WO2017171044A1 publication Critical patent/WO2017171044A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Definitions

  • the present invention relates to an injection molding machine.
  • the injection molding machine described in Patent Document 1 detects the temperature of the nozzle, performs PID control so that the detected temperature matches the set temperature, and controls ON / OFF of the nozzle heater.
  • the energization time of the nozzle heater is increased only while the number of shots and the elapsed time after the start of the continuous molding operation are outside the allowable range. As a result, at the initial stage of the continuous molding operation, that is, at the stage where the nozzle is just touched to the mold, the temperature at the tip of the nozzle is extremely lowered and nozzle clogging does not occur.
  • the output of the heater that heats the nozzle is obtained by, for example, PI calculation or PID calculation so that the deviation between the detected temperature of the nozzle and the set temperature of the nozzle becomes zero.
  • the deviation between the detected temperature of the nozzle and the set temperature of the nozzle is substantially zero, if the position of the nozzle with respect to the mold apparatus changes, the amount of heat transfer between the nozzle and the mold apparatus changes, so the nozzle The detected temperature greatly deviates from the set temperature. Thereafter, it took a long time for the detected temperature of the nozzle to return to the set temperature, and it took a long time for the molten state of the molding material to become unstable.
  • the present invention has been made in view of the above problems, and has as its main object to provide an injection molding machine that can suppress a change in nozzle temperature due to the displacement of the nozzle relative to the mold apparatus.
  • a nozzle that touches the mold apparatus and injects a molding material into the mold apparatus A heater for heating the nozzle; A temperature detector for detecting the temperature of the nozzle; Based on the detected temperature of the nozzle and the set temperature of the nozzle, the output of the heater is obtained, and the control device controls the heater with the obtained output.
  • An injection molding machine for controlling is provided.
  • an injection molding machine capable of suppressing a change in nozzle temperature due to a displacement of the nozzle with respect to a mold apparatus.
  • FIG. It is a figure which shows the component of the control system by one Embodiment with a functional block. It is a figure which shows the time change of ON / OFF of the output of the heater by one Embodiment, and the time change of the detection temperature of a nozzle. It is a figure which shows the time change of ON / OFF of the output of the heater by one Embodiment, and the time change of the detection temperature of a nozzle.
  • FIG. 1 is a view showing a state in which a nozzle of an injection molding machine according to an embodiment is in contact with a mold apparatus.
  • FIG. 2 is a diagram illustrating a state in which the nozzle of the injection molding machine according to the embodiment is separated from the mold apparatus.
  • the injection molding machine includes a mold clamping apparatus 10 that performs mold closing, mold clamping, and mold opening of the mold apparatus 30, an injection apparatus 40 that fills the mold apparatus 30 with a molding material, and an injection apparatus for the mold apparatus 30. And a control device 90 for controlling the mold clamping device 10, the injection device 40, and the moving device 50.
  • the mold clamping apparatus 10 performs mold closing, mold clamping, and mold opening of the mold apparatus 30 under the control of the control apparatus 90.
  • the mold opening / closing direction of the mold clamping device 10 is the horizontal direction in FIGS. 1 and 2, but may be the vertical direction.
  • the moving direction of the movable platen 13 when the mold is closed (right direction in FIGS. 1 and 2) is the front, and the moving direction of the movable platen 13 when the mold is opened (left in FIGS. 1 and 2). (Direction) will be described as the rear.
  • the mold clamping device 10 includes a fixed platen 12, a movable platen 13, and the like.
  • the fixed platen 12 is fixed to the frame Fr.
  • a fixed mold 32 is attached to a surface of the fixed platen 12 facing the movable platen 13.
  • the movable platen 13 is movable along a guide (for example, a guide rail) 17 laid on the frame Fr.
  • a movable mold 33 is attached to the surface of the movable platen 13 facing the fixed platen 12.
  • the fixed mold 32 and the movable mold 33 constitute a mold apparatus 30.
  • the mold is closed, clamped, and opened by moving the movable platen 13 back and forth with respect to the fixed platen 12.
  • the mold is closed by moving the movable platen 13 forward and bringing the movable mold 33 into contact with the fixed mold 32. Subsequently, the mold is clamped by further moving the movable platen 13 and generating a mold clamping force.
  • a cavity space 34 is formed between the movable mold 33 and the fixed mold 32 during mold clamping, and the cavity space 34 is filled with a liquid molding material.
  • a molded product is obtained by solidifying the filled molding material.
  • a plurality of cavity spaces 34 may be provided, and in this case, a plurality of molded products can be obtained simultaneously.
  • the movable platen 13 is retracted, and the movable mold 33 is separated from the fixed mold 32 to open the mold.
  • the injection device 40 fills the mold material 30 with a molding material under the control of the control device 90.
  • the moving direction of the screw 43 during filling (the left direction in FIGS. 1 and 2) is the front, and the moving direction of the screw 43 during the weighing (the right direction in FIGS. 1 and 2) is the rear. explain.
  • the injection device 40 can move forward and backward with respect to the frame Fr, and can move forward and backward with respect to the mold device 30.
  • the injection apparatus 40 is touched by the mold apparatus 30 and fills the cavity space 34 in the mold apparatus 30 with the molding material.
  • a molded product is obtained by cooling and solidifying the molding material filled in the cavity space 34.
  • the injection device 40 includes, for example, a cylinder 41, a nozzle 42, a screw 43, a cooler 44, a metering motor 45, an injection motor 46, a load detector 47, a heater 48, and a temperature detector 49.
  • the cylinder 41 heats the molding material supplied to the inside from the supply port 41a.
  • the supply port 41 a is formed at the rear part of the cylinder 41.
  • a cooler 44 such as a water-cooled cylinder is provided on the outer periphery of the rear portion of the cylinder 41.
  • a heater 48 such as a band heater and a temperature detector 49 are provided on the outer periphery of the cylinder 41.
  • the cylinder 41 is divided into a plurality of zones in the axial direction of the cylinder 41 (the left-right direction in FIGS. 1 and 2).
  • a heater 48 and a temperature detector 49 are provided in each zone.
  • the control device 90 controls the heater 48 so that the temperature detected by the temperature detector 49 becomes the set temperature.
  • the nozzle 42 is provided at the front end of the cylinder 41 and is pressed against the mold apparatus 30.
  • a heater 48 and a temperature detector 49 are provided on the outer periphery of the nozzle 42.
  • the control device 90 controls the heater 48 so that the detected temperature of the nozzle 42 becomes the set temperature.
  • the screw 43 is disposed in the cylinder 41 so as to be rotatable and movable back and forth.
  • the molding material is fed forward along the spiral groove of the screw 43.
  • the molding material is gradually melted by the heat from the cylinder 41 while being fed forward.
  • the screw 43 is retracted. Thereafter, when the screw 43 is advanced, the molding material in front of the screw 43 is injected from the nozzle 42 and filled in the mold apparatus 30.
  • the weighing motor 45 rotates the screw 43.
  • the injection motor 46 moves the screw 43 back and forth.
  • the rotational motion of the injection motor 46 is converted into a linear motion of the screw 43 by a motion conversion mechanism such as a ball screw.
  • the load detector 47 is provided in a force transmission path between the injection motor 46 and the screw 43 and detects a load acting on the load detector 47.
  • the load detector 47 sends a signal indicating the detection result to the control device 90.
  • the detection result of the load detector 47 is used for control and monitoring of the pressure received by the screw 43 from the molding material, the back pressure against the screw 43, and the pressure acting on the molding material from the screw 43.
  • the control device 90 has a CPU (Central Processing Unit) 91, a storage medium 92 such as a memory, an input interface 93, and an output interface 94 as shown in FIGS.
  • the control device 90 performs various controls by causing the CPU 91 to execute a program stored in the storage medium 92. Further, the control device 90 receives a signal from the outside through the input interface 93 and transmits a signal through the output interface 94 to the outside.
  • the control device 90 controls a filling process, a pressure holding process, a weighing process, and the like.
  • the injection motor 46 is driven to advance the screw 43 at a set speed, and the liquid molding material accumulated in front of the screw 43 is filled into the cavity space 34 in the mold apparatus 30.
  • the position and speed of the screw 43 are detected using, for example, the encoder 46a of the injection motor 46.
  • the encoder 46 a detects the rotation of the injection motor 46 and sends a signal indicating the detection result to the control device 90.
  • V / P switching switching from the filling process to the pressure holding process
  • the set speed of the screw 43 may be changed according to the position and time of the screw 43.
  • the screw 43 may be temporarily stopped at the set position, and then V / P switching may be performed. Immediately before the V / P switching, instead of stopping the screw 43, the screw 43 may be moved forward or backward at a slow speed.
  • the injection motor 46 is driven to push the screw 43 forward at the set pressure, and pressure is applied to the molding material filled in the cavity space 34 in the mold apparatus 30. Insufficient molding material due to cooling shrinkage can be replenished.
  • the pressure of the molding material is detected using a load detector 47, for example.
  • the molding material in the cavity space 34 is gradually cooled, and when the pressure-holding process is completed, the inlet of the cavity space 34 is closed with the solidified molding material. This state is called a gate seal, and backflow of the molding material from the cavity space 34 is prevented.
  • the cooling process is started. In the cooling process, the molding material in the cavity space 34 is solidified. In order to shorten the molding cycle, a metering step may be performed during the cooling step.
  • the metering motor 45 is driven to rotate the screw 43 at a set rotational speed, and the molding material is fed forward along the spiral groove of the screw 43. Along with this, the molding material is gradually melted. As the liquid molding material is fed to the front of the screw 43 and accumulated in the front portion of the cylinder 41, the screw 43 is retracted. The number of rotations of the screw 43 is detected by using, for example, an encoder 45a of the measuring motor 45. The encoder 45a sends a signal indicating the detection result to the control device 90.
  • the set back pressure may be applied to the screw 43 by driving the injection motor 46 in order to limit the rapid retreat of the screw 43.
  • the back pressure with respect to the screw 43 is detected using a load detector 47, for example.
  • the moving device 50 moves the injection device 40 relative to the mold device 30 under the control of the control device 90.
  • the moving device 50 has, for example, a cylinder as a drive source, and moves the injection device 40 relative to the mold device 30 by expansion and contraction of the cylinder.
  • the moving device 50 may have a motor as a drive source. The rotational motion of the motor is converted into a linear motion of the injection device 40 by a motion conversion mechanism such as a ball screw.
  • the moving device 50 suppresses leakage of the molding material from between the mold device 30 and the nozzle 42 by pressing the nozzle 42 against the mold device 30 in the filling process and the pressure holding process.
  • the force that presses the nozzle 42 against the mold apparatus 30 is referred to as a nozzle touch force.
  • the moving device 50 reduces the nozzle touch force or releases the nozzle 42 from the mold device 30 after the pressure holding process and before the next filling process. May be. In either case, the position of the nozzle 42 changes with respect to the mold apparatus 30.
  • the moving device 50 presses the nozzle 42 against the mold device 30 before the start of the cycle operation for repeatedly manufacturing a molded product, and reduces the nozzle touch force after the cycle operation is completed, or moves the nozzle 42 from the mold device 30. May be separated.
  • the control device 90 obtains the output of the heater 48 based on the detected temperature of the nozzle 42 and the set temperature of the nozzle 42, and controls the heater 48 with the obtained output.
  • the output of the heater 48 is obtained by, for example, PI calculation or PID calculation so that the deviation between the detected temperature of the nozzle 42 and the set temperature of the nozzle 42 becomes zero.
  • the control device 90 predicts the temperature change in order to suppress the temperature change of the nozzle 42 due to the displacement of the nozzle 42 with respect to the mold device 30.
  • the prediction of the temperature change is performed by using, for example, data on the temperature change of the nozzle 42 due to the displacement of the nozzle 42 with respect to the past mold apparatus 30 or a heat conduction equation.
  • the prediction of the temperature change may be performed before the temperature change starts, or may be performed before the time t0 illustrated in FIG.
  • FIG. 3 is a diagram illustrating prediction of nozzle temperature change due to nozzle displacement with respect to the mold apparatus according to the embodiment.
  • the solid line indicates the prediction of the temperature change of the nozzle 42 when the nozzle 42 whose temperature is stable while being in contact with the mold apparatus 30 is retracted and separated from the mold apparatus 30 at time t0.
  • the alternate long and two short dashes line predicts the temperature change of the nozzle 42 when the nozzle 42 whose temperature is stable in a state of being separated from the mold apparatus 30 is moved forward with respect to the mold apparatus 30 and brought into contact at time t0. Show.
  • FIG. 3 shows a prediction when switching between a state in which the nozzle 42 is separated from the mold apparatus 30 and a state in which the nozzle 42 is in contact with the mold apparatus 30, but the nozzle touch is performed with the nozzle 42 in contact with the mold apparatus 30. The same tendency is shown when the force is changed.
  • the control device 90 corrects the output of the heater 48 based on the predicted temperature change.
  • the heater 48 that is the target of output correction is a heater 48 that heats the nozzle 42.
  • the number of heaters 48 for heating the nozzle 42 is one in FIGS. 1 and 2, but may be more than one.
  • the nozzle 42 may be divided into a plurality of zones in the front-rear direction, and a heater 48 may be provided for each zone.
  • the control device 90 may correct at least one output of the heater 48 that heats the nozzle 42.
  • amendment contains only the heater 48 which heats the nozzle 42 in this embodiment, you may further contain the heater 48 which heats the cylinder 41. FIG. This is because heat moves between the cylinder 41 and the nozzle 42.
  • Correction is made once lower than the value obtained by calculation or PID calculation. This correction may be performed before time t0 shown in FIG. 3 or may be performed after time t0.
  • the detected temperature of the nozzle 42 is predicted to temporarily drop from the set temperature as indicated by a two-dot chain line in FIG.
  • the output is corrected once higher than the value obtained by the PI calculation or PID calculation. This correction may be performed before time t0 shown in FIG. 3 or may be performed after time t0.
  • the control device 90 controls the heater 48 with the corrected output. Therefore, the temperature change of the nozzle 42 due to the displacement of the nozzle 42 with respect to the mold apparatus 30 can be suppressed, the time until the temperature of the nozzle 42 returns to the set temperature can be shortened, and the time when the molten state of the molding material is unstable can be shortened. .
  • the control device 90 may store the temperature change of the nozzle 42 when the heater 48 is controlled with the corrected output, and correct the output of the heater 48 from the next time using the stored data.
  • the temperature change of the nozzle 42 can be further suppressed.
  • the control device 90 obtains the timing for correcting the output of the heater 48 based on the predicted temperature change, and corrects the output at the obtained timing.
  • the correction of the output of the heater 48 may be started before the temperature change of the nozzle 42 starts (for example, before time t0 in FIG. 3).
  • the start timing of the output correction of the heater 48 may be set near the time t0 so that the deviation width of the detected temperature from the set temperature does not become too large before the time t0.
  • the maximum deviation width of the detected temperature from the set temperature only needs to be reduced by the output correction of the heater 48.
  • the control device 90 obtains an output correction amount of the heater 48 based on the predicted temperature change, and corrects the output by the obtained correction amount.
  • FIG. 4 shows a change in nozzle temperature over time when the output of the heater is not corrected, a change over time in the correction amount of the output of the heater, and a nozzle when the output of the heater is corrected, due to nozzle retreat according to an embodiment.
  • the nozzle 42 that has been previously touched on the mold apparatus 30 is moved backward to separate the nozzle 42 from the mold apparatus 30 at time t ⁇ b> 0.
  • the figure at the time of reducing the nozzle touch force at time t0 while touching the mold device 30 by slightly retreating the nozzle 42 previously touched to the mold device 30 is the same as FIG. The illustration is omitted because it exists.
  • the control device 90 obtains the output of the heater 48 based on the detected temperature of the nozzle 42 and the set temperature of the nozzle 42, and controls the heater 48 with the obtained output.
  • the output of the heater 48 is obtained by, for example, PI calculation or PID calculation so that the deviation between the detected temperature of the nozzle 42 and the set temperature of the nozzle 42 becomes zero. Therefore, the detected temperature of the nozzle 42 is stabilized at the set temperature.
  • the output of the heater 48 is not corrected unless the output of the heater 48 is corrected.
  • the amount of heat flowing out to the nozzle decreases, and the detected temperature of the nozzle 42 temporarily rises from the set temperature. Thereafter, the detected temperature of the nozzle 42 becomes unstable for a while until the detected temperature of the nozzle 42 is stabilized at the set temperature.
  • the control device 90 predicts a temporal change in the nozzle temperature due to the backward movement of the nozzle 42 when the output of the heater 48 is not corrected.
  • the prediction is performed using, for example, data on the temporal change in nozzle temperature due to the retreat of the nozzle 42 when the output of the past heater 48 is not corrected, a heat conduction equation, or the like.
  • the control device 90 calculates the correction amount of the output of the heater 48 so as to suppress the fluctuation of the nozzle temperature based on the predicted time change of the nozzle temperature.
  • the output of the heater 48 is represented by the current value of the heater 48, for example.
  • the current value of the heater 48 may be expressed as a ratio of an on time during which current is supplied to the heater 48 and an off time during which no current is supplied to the heater 48 (that is, a ratio of the on time in a unit time). .
  • the heater 48 that is the target of output correction is a heater 48 that heats the nozzle 42.
  • the number of heaters 48 for heating the nozzle 42 is one in FIGS. 1 and 2, but may be more than one.
  • the nozzle 42 may be divided into a plurality of zones in the front-rear direction, and a heater 48 may be provided for each zone.
  • the control device 90 may correct at least one output of the heater 48 that heats the nozzle 42.
  • amendment contains only the heater 48 which heats the nozzle 42 in this embodiment, you may further contain the heater 48 which heats the cylinder 41. FIG. This is because heat moves between the cylinder 41 and the nozzle 42.
  • the correction amount of the output of the heater 48 is negative in the time zones T1 and T3 where the detected temperature of the nozzle 42 is predicted to exceed the set temperature when the output of the heater 48 is not corrected. Therefore, in the time zones T1 and T3, the corrected output of the heater 48 is a value smaller than the value obtained by the PI calculation or the PID calculation. For example, in the time zones T1 and T3, the ratio of the on time to the unit time after correction is set to a value smaller than the value required for the PI calculation or PID calculation.
  • the correction amount of the output of the heater 48 is positive in the time zones T2 and T4 where the detected temperature of the nozzle 42 is predicted to be lower than the set temperature when the output of the heater 48 is not corrected. Accordingly, in the time zones T2 and T4, the corrected output of the heater 48 is set to a value larger than the value obtained by the PI calculation or the PID calculation. For example, in the time zones T2 and T4, the ratio of the on time to the unit time after correction is set to a value larger than the value required for the PI calculation or the PID calculation.
  • the control device 90 controls the heater 48 with the corrected output.
  • the corrected output of the heater 48 may be expressed as a sum of a value obtained by PI calculation or PID calculation and a correction amount.
  • the control device 90 may store the temperature change of the nozzle 42 when the heater 48 is controlled with the corrected output, and correct the output of the heater 48 from the next time using the stored data.
  • the temperature change of the nozzle 42 can be further suppressed.
  • FIG. 5 is a diagram illustrating a change in nozzle temperature over time when the output of the heater is not corrected, a change over time in the correction amount of the output of the heater, and a nozzle when correcting the output of the heater due to the advance of the nozzle according to an embodiment. It is a figure which shows the time change of temperature.
  • the nozzle 42 that has been separated from the mold apparatus 30 in advance is moved forward to touch the mold apparatus 30 at the time t ⁇ b> 0.
  • the nozzle 42 that has been separated from the mold apparatus 30 in advance is slightly advanced so that the nozzle 42 is moved away from the mold apparatus 30 at time t0, it is the same as FIG. Omitted.
  • the control device 90 obtains the output of the heater 48 based on the detected temperature of the nozzle 42 and the set temperature of the nozzle 42, and controls the heater 48 with the obtained output.
  • the output of the heater 48 is obtained by, for example, PI calculation or PID calculation so that the deviation between the detected temperature of the nozzle 42 and the set temperature of the nozzle 42 becomes zero. Therefore, the detected temperature of the nozzle 42 is stabilized at the set temperature.
  • the mold apparatus 30 When the nozzle 42 is touched at the time t0 by advancing the nozzle 42 that has been separated from the mold apparatus 30 in advance, if the output of the heater 48 is not corrected, the mold apparatus 30 is moved from the nozzle 42 to the mold apparatus 30. The amount of heat flowing out to the nozzle increases, and the detected temperature of the nozzle 42 once falls from the set temperature. Thereafter, the detected temperature of the nozzle 42 becomes unstable for a while until the detected temperature of the nozzle 42 is stabilized at the set temperature.
  • the control device 90 predicts the time change of the nozzle temperature due to the advancement of the nozzle 42 when the output of the heater 48 is not corrected.
  • the prediction is performed by using, for example, data on a temporal change in nozzle temperature due to advance of the nozzle 42 when the output of the past heater 48 is not corrected, a heat conduction equation, or the like.
  • the control device 90 calculates the correction amount of the output of the heater 48 so as to suppress the fluctuation of the nozzle temperature based on the predicted time change of the nozzle temperature.
  • the output of the heater 48 is represented by the current value of the heater 48, for example.
  • the current value of the heater 48 includes an on time during which current is supplied to the heater 48 (hereinafter also referred to as “on time of the heater 48”) and an off time during which current is not supplied to the heater 48 (hereinafter referred to as “heating”). (Also referred to as “off time of device 48”) (that is, the ratio of on time to unit time).
  • the heater 48 that is the target of output correction is a heater 48 that heats the nozzle 42.
  • the number of heaters 48 for heating the nozzle 42 is one in FIGS. 1 and 2, but may be more than one.
  • the nozzle 42 may be divided into a plurality of zones in the front-rear direction, and a heater 48 may be provided for each zone.
  • the control device 90 may correct at least one output of the heater 48 that heats the nozzle 42.
  • amendment contains only the heater 48 which heats the nozzle 42 in this embodiment, you may further contain the heater 48 which heats the cylinder 41. FIG. This is because heat moves between the cylinder 41 and the nozzle 42.
  • the correction amount of the output of the heater 48 is positive in the time zones T1 and T3 where the detected temperature of the nozzle 42 is predicted to be lower than the set temperature when the output of the heater 48 is not corrected. Therefore, in the time zones T1 and T3, the corrected output of the heater 48 is set to a value larger than the value obtained by the PI calculation or the PID calculation. For example, in the time zones T1 and T3, the ratio of the on time to the unit time after correction is set to a value larger than values required for the PI calculation and the PID calculation.
  • the correction amount of the output of the heater 48 is negative in the time zones T2 and T4 where the detected temperature of the nozzle 42 is predicted to exceed the set temperature when the output of the heater 48 is not corrected. Accordingly, in the time zones T2 and T4, the corrected output of the heater 48 is set to a value smaller than the value obtained by the PI calculation or the PID calculation. For example, in the time zones T2 and T4, the ratio of the on-time to the corrected unit time is set to a value smaller than the value required for the PI calculation or PID calculation.
  • the control device 90 controls the heater 48 with the corrected output.
  • the corrected output of the heater 48 may be expressed as a sum of a value obtained by PI calculation or PID calculation and a correction amount.
  • the control device 90 may store the temperature change of the nozzle 42 when the heater 48 is controlled with the corrected output, and correct the output of the heater 48 from the next time using the stored data.
  • the temperature change of the nozzle 42 can be further suppressed.
  • FIG. 6 is a functional block diagram showing the components of the control system according to one embodiment.
  • Each functional block illustrated in FIG. 6 is conceptual and does not necessarily need to be physically configured as illustrated. All or a part of each functional block can be configured to be functionally or physically distributed and integrated in arbitrary units.
  • Each processing function performed in each functional block may be realized entirely or arbitrarily by a program executed by the CPU, or may be realized as hardware by wired logic.
  • the control device 90 includes a temperature control unit 95 that creates a command for the heater 48 based on the detected temperature of the nozzle 42 and the set temperature of the nozzle 42.
  • the temperature control unit 95 creates a command for the heater 48 so that the deviation between the detected temperature of the nozzle 42 and the set temperature of the nozzle 42 becomes zero.
  • a command for the heater 48 is created by PI calculation, PID calculation, or the like.
  • the command for the heater 48 includes, for example, an on time and an off time of the heater 48.
  • the control device 90 predicts the temperature change of the nozzle 42 due to the displacement of the nozzle 42 and suppresses the temperature change, so that the correction amount of the output of the heater 48 is set based on the predicted temperature change. It has the calculating part 96 to calculate. The prediction of the temperature change of the nozzle 42 and the calculation of the correction amount of the output of the heater 48 may be performed based on the past command to the heater 48 and the detected temperature of the nozzle 42 at the time of the command.
  • the calculation unit 96 calculates a correction amount for the on time and off time of the heater 48.
  • the calculation unit 96 calculates at least one correction amount for the start time of the on time, the end time of the on time, the length of the on time, the start time of the off time, the end time of the off time, and the length of the off time. It's okay.
  • correction by the calculation unit 96 will be described with reference to FIGS. 7 and 8.
  • FIG. 7 is a diagram showing a temporal change in ON / OFF of the output of the heater and a temporal change in the detected temperature of the nozzle according to an embodiment.
  • a thick alternate long and short dash line indicates a time change in ON / OFF of the output of the heater
  • a thick solid line indicates a time change in the detected temperature of the nozzle.
  • the nozzle 42 that has been previously touched on the mold apparatus 30 is moved backward to separate the nozzle 42 from the mold apparatus 30 at time t ⁇ b> 0.
  • the figure at the time of reducing the nozzle touch force at time t0 while touching the mold apparatus 30 by slightly retreating the nozzle 42 previously touched to the mold apparatus 30 is the same as FIG. The illustration is omitted because it exists.
  • FIG. 7 (a) is a diagram showing the temporal change in ON / OFF of the output of the heater before correction and the temporal change in the detected temperature of the nozzle according to one embodiment.
  • the output of the heater 48 is on / off controlled, and the detected temperature of the nozzle 42 is kept constant at the set temperature until time t0. Time t0 overlaps with the ON time of the heater 48. After time t0, since the nozzle 42 is separated from the mold apparatus 30, the amount of heat flow from the nozzle 42 to the outside decreases, and the detected temperature of the nozzle 42 temporarily rises from the set temperature. Thereafter, the detected temperature of the nozzle 42 becomes unstable for a while until the detected temperature of the nozzle 42 is stabilized at the set temperature.
  • FIG. 7 (b) is a diagram showing a temporal change in ON / OFF of the output of the heater and a temporal change in the detected temperature of the nozzle after the first correction according to one embodiment.
  • the calculation unit 96 heats the heater 48 so that the off time of the heater 48 overlaps the time t0 as shown in FIG. 7B.
  • the correction amount of the output of the device 48 is calculated.
  • the start time of the off time may be set earlier than the time t0, and the end time of the off time may be set later than the time t0.
  • the detected temperature of the nozzle 42 is set to the set temperature as shown in FIG. It descends slightly from. Thereafter, the detected temperature of the nozzle 42 becomes unstable for a while until the detected temperature of the nozzle 42 is stabilized at the set temperature.
  • FIG. 7 (c) is a diagram showing a temporal change in ON / OFF of the output of the heater and a temporal change in the detected temperature of the nozzle after the second correction according to an embodiment.
  • the calculation unit 96 sets the heater 48 so that the off time of the heater 48 is shortened as shown in FIG. 7C.
  • the amount of output correction is calculated.
  • the start time of the off time in FIG. 7C is the same as the start time of the off time shown in FIG. 7B, but the end time of the off time shown in FIG. Is set earlier than the end time of the off-time shown in FIG.
  • the end time of the off time may be later than the time t0.
  • This correction balances the amount of heat supplied from the heater 48 to the nozzle 42 and the amount of heat flowing out of the nozzle 42 to the outside, and as shown in FIG.
  • the detected temperature of 42 is kept constant at the set temperature.
  • FIG. 8 is a diagram illustrating a temporal change in ON / OFF of the output of the heater and a temporal change in the detected temperature of the nozzle according to an embodiment.
  • a thick alternate long and short dash line indicates a time change of ON / OFF of the output of the heater
  • a thick solid line indicates a time change of the detected temperature of the nozzle.
  • the nozzle 42 that has been separated from the mold apparatus 30 in advance is moved forward to touch the mold apparatus 30 at the time t ⁇ b> 0. Since the nozzle 42 that has been separated from the mold apparatus 30 in advance is slightly advanced so that the nozzle 42 is moved away from the mold apparatus 30 at time t0, it is the same as FIG. Omitted.
  • FIG. 8 (a) is a diagram showing a change over time in ON / OFF of the output of the heater before correction and a change over time in the detected temperature of the nozzle according to an embodiment.
  • the output of the heater 48 is on / off controlled, and the detected temperature of the nozzle 42 is kept constant at the set temperature until time t0.
  • the time t0 overlaps the off time of the heater 48.
  • the detected temperature of the nozzle 42 becomes unstable for a while until the detected temperature of the nozzle 42 is stabilized at the set temperature.
  • FIG. 8 (b) is a diagram showing the change in the heater output on / off time and the change in the detected temperature of the nozzle over time after the first correction according to an embodiment.
  • the calculation unit 96 heats the heater 48 so that the ON time of the heater 48 overlaps the time t0 as shown in FIG. 8B.
  • the correction amount of the output of the device 48 is calculated.
  • the start time of the on time may be set earlier than the time t0, and the end time of the on time may be set later than the time t0.
  • the detected temperature of the nozzle 42 is set to the set temperature as shown in FIG. rises slightly. Thereafter, the detected temperature of the nozzle 42 becomes unstable for a while until the detected temperature of the nozzle 42 is stabilized at the set temperature.
  • FIG. 8 (c) is a diagram showing a temporal change in ON / OFF of the output of the heater and a temporal change in the detected temperature of the nozzle after the second correction according to the embodiment.
  • the calculation unit 96 sets the heater 48 so that the ON time of the heater 48 is shortened as shown in FIG. 8C.
  • the amount of output correction is calculated.
  • the start time of the on time shown in FIG. 8C is the same as the start time of the on time shown in FIG. 8B, but the end time of the on time shown in FIG. Is set earlier than the end time of the on-time shown in FIG.
  • the end time of the on-time may be later than the time t0.
  • the injection device 40 of the above embodiment is an inline screw system, but may be a pre-plastic system.
  • a pre-plastic injection device supplies a molding material melted in a plasticizing cylinder to the injection cylinder, and injects the molding material from the injection cylinder into a mold device.
  • a screw is rotatably or rotatably and reciprocally disposed, and in the injection cylinder, a plunger is reciprocally disposed.
  • a nozzle that touches the mold device is provided at the tip of the injection cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

金型装置にタッチされ、前記金型装置の内部に成形材料を射出するノズルと、前記ノズルを加熱する加熱器と、前記ノズルの温度を検出する温度検出器と、前記ノズルの検出温度と前記ノズルの設定温度とに基づいて、前記加熱器の出力を求め、求めた前記出力で前記加熱器を制御する制御装置と、前記ノズルを前記金型装置に対し進退させる移動装置とを備え、前記制御装置は、前記ノズルの変位による前記ノズルの温度変化を予測し、前記温度変化を抑制するため、予測した前記温度変化に基づいて前記出力を補正し、補正した前記出力で前記加熱器を制御する、射出成形機。

Description

射出成形機
 本発明は、射出成形機に関する。
 特許文献1に記載の射出成形機は、ノズルの温度を検出し、該検出温度が設定温度に一致するようにPID制御してノズルヒータをON/OFF制御する。連続成形作業開始後のショット数や経過時間が許容範囲外の間だけ、ノズルヒータの通電時間を増大させる。これにより、連続成形作業の初期段階、つまりノズルを金型にタッチさせたばかりの段階において、ノズル先端部の温度が極端に低下してノズル詰まり等が発生しなくなる。
日本国特開平9-248847号公報
 ノズルを加熱する加熱器の出力は、ノズルの検出温度とノズルの設定温度との偏差がゼロになるように、例えばPI演算やPID演算などにより求められる。ノズルの検出温度とノズルの設定温度との偏差が略ゼロであるときに、金型装置に対するノズルの位置が変化すると、ノズルと金型装置との間の熱の移動量が変化するため、ノズルの検出温度が設定温度から大きくずれる。その後、ノズルの検出温度が設定温度に戻るまでの時間が長く、成形材料の溶融状態が不安定になる時間が長かった。
 本発明は、上記課題に鑑みてなされたものであって、金型装置に対するノズルの変位によるノズルの温度変化を抑制できる、射出成形機の提供を主な目的とする。
 上記課題を解決するため、本発明の一態様によれば、
 金型装置にタッチされ、前記金型装置の内部に成形材料を射出するノズルと、
 前記ノズルを加熱する加熱器と、
 前記ノズルの温度を検出する温度検出器と、
 前記ノズルの検出温度と前記ノズルの設定温度とに基づいて、前記加熱器の出力を求め、求めた前記出力で前記加熱器を制御する制御装置と、
 前記ノズルを前記金型装置に対し進退させる移動装置とを備え、
 前記制御装置は、前記ノズルの変位による前記ノズルの温度変化を予測し、前記温度変化を抑制するため、予測した前記温度変化に基づいて前記出力を補正し、補正した前記出力で前記加熱器を制御する、射出成形機が提供される。
 本発明の一態様によれば、金型装置に対するノズルの変位によるノズルの温度変化を抑制できる、射出成形機が提供される。
一実施形態による射出成形機のノズルが金型装置に接触した状態を示す図である。 一実施形態による射出成形機のノズルが金型装置から離間した状態を示す図である。 一実施形態による金型装置に対するノズルの変位によるノズルの温度変化の予測を示す図である。 一実施形態によるノズルの後退による、加熱器の出力を補正しないときのノズル温度の時間変化、加熱器の出力の補正量の時間変化、および加熱器の出力を補正するときのノズル温度の時間変化を示す図である。 一実施形態によるノズルの前進による、加熱器の出力を補正しないときのノズル温度の時間変化、加熱器の出力の補正量の時間変化、および加熱器の出力を補正するときのノズル温度の時間変化を示す図である。 一実施形態による制御系の構成要素を機能ブロックで示す図である。 一実施形態による加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。 一実施形態による加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の構成については同一の符号を付して説明を省略する。
 図1は、一実施形態による射出成形機のノズルが金型装置に接触した状態を示す図である。図2は、一実施形態による射出成形機のノズルが金型装置から離間した状態を示す図である。
 射出成形機は、金型装置30の型閉、型締および型開を行う型締装置10と、金型装置30内に成形材料を充填する射出装置40と、金型装置30に対し射出装置40を移動させる移動装置50と、型締装置10、射出装置40および移動装置50を制御する制御装置90とを有する。
 型締装置10は、制御装置90による制御下で、金型装置30の型閉、型締および型開を行う。型締装置10の型開閉方向は、図1および図2では水平方向であるが、上下方向でもよい。型締装置10の説明では、型閉時の可動プラテン13の移動方向(図1および図2中右方向)を前方とし、型開時の可動プラテン13の移動方向(図1および図2中左方向)を後方として説明する。
 型締装置10は、固定プラテン12、可動プラテン13などを有する。固定プラテン12は、フレームFrに対し固定される。固定プラテン12における可動プラテン13との対向面に固定金型32が取り付けられる。一方、可動プラテン13は、フレームFr上に敷設されるガイド(例えばガイドレール)17に沿って移動自在とされる。可動プラテン13における固定プラテン12との対向面に可動金型33が取り付けられる。固定金型32と可動金型33とで金型装置30が構成される。
 固定プラテン12に対し可動プラテン13を進退させることにより、型閉、型締、型開が行われる。可動プラテン13を前進させ、可動金型33を固定金型32に接触させることで型閉が行われる。続いて、可動プラテン13をさらに前進させ、型締力を生じさせることで型締が行われる。型締時に可動金型33と固定金型32との間にキャビティ空間34が形成され、キャビティ空間34に液状の成形材料が充填される。充填された成形材料が固化されることで、成形品が得られる。キャビティ空間34の数は複数でもよく、その場合、複数の成形品が同時に得られる。その後、可動プラテン13を後退させ、可動金型33を固定金型32から離間させることで型開が行われる。
 射出装置40は、制御装置90による制御下で、金型装置30の内部に成形材料を充填する。射出装置40の説明では、充填時のスクリュ43の移動方向(図1および図2中左方向)を前方とし、計量時のスクリュ43の移動方向(図1および図2中右方向)を後方として説明する。
 射出装置40は、フレームFrに対し進退自在とされ、金型装置30に対し進退自在とされる。射出装置40は、金型装置30にタッチされ、金型装置30内のキャビティ空間34に成形材料を充填する。キャビティ空間34に充填された成形材料を冷却固化させることで、成形品が得られる。射出装置40は、例えば、シリンダ41、ノズル42、スクリュ43、冷却器44、計量モータ45、射出モータ46、荷重検出器47、加熱器48、および温度検出器49などを有する。
 シリンダ41は、供給口41aから内部に供給された成形材料を加熱する。供給口41aはシリンダ41の後部に形成される。シリンダ41の後部の外周には、水冷シリンダなどの冷却器44が設けられる。冷却器44よりも前方において、シリンダ41の外周には、バンドヒータなどの加熱器48と温度検出器49とが設けられる。
 シリンダ41は、シリンダ41の軸方向(図1および図2中左右方向)に複数のゾーンに区分される。各ゾーンに加熱器48と温度検出器49とが設けられる。ゾーン毎に、温度検出器49の検出温度が設定温度になるように、制御装置90が加熱器48を制御する。
 ノズル42は、シリンダ41の前端部に設けられ、金型装置30に対し押し付けられる。ノズル42の外周には、加熱器48と温度検出器49とが設けられる。ノズル42の検出温度が設定温度になるように、制御装置90が加熱器48を制御する。
 スクリュ43は、シリンダ41内において回転自在に且つ進退自在に配設される。スクリュ43を回転させると、スクリュ43の螺旋状の溝に沿って成形材料が前方に送られる。成形材料は、前方に送られながら、シリンダ41からの熱によって徐々に溶融される。液状の成形材料がスクリュ43の前方に送られシリンダ41の前部に蓄積されるにつれ、スクリュ43が後退させられる。その後、スクリュ43を前進させると、スクリュ43前方の成形材料がノズル42から射出され、金型装置30内に充填される。
 計量モータ45は、スクリュ43を回転させる。
 射出モータ46は、スクリュ43を進退させる。射出モータ46の回転運動は、ボールねじなどの運動変換機構によってスクリュ43の直線運動に変換される。
 荷重検出器47は、射出モータ46とスクリュ43との間の力の伝達経路に設けられ、荷重検出器47に作用する荷重を検出する。荷重検出器47は、その検出結果を示す信号を制御装置90に送る。荷重検出器47の検出結果は、スクリュ43が成形材料から受ける圧力、スクリュ43に対する背圧、スクリュ43から成形材料に作用する圧力などの制御や監視に用いられる。
 制御装置90は、図1や図2に示すようにCPU(Central Processing Unit)91と、メモリなどの記憶媒体92と、入力インターフェイス93と、出力インターフェイス94とを有する。制御装置90は、記憶媒体92に記憶されたプログラムをCPU91に実行させることにより、各種の制御を行う。また、制御装置90は、入力インターフェイス93で外部からの信号を受信し、出力インターフェイス94で外部に信号を送信する。制御装置90は、充填工程、保圧工程、計量工程などを制御する。
 充填工程では、射出モータ46を駆動してスクリュ43を設定速度で前進させ、スクリュ43の前方に蓄積された液状の成形材料を金型装置30内のキャビティ空間34に充填させる。スクリュ43の位置や速度は、例えば射出モータ46のエンコーダ46aを用いて検出する。エンコーダ46aは、射出モータ46の回転を検出し、その検出結果を示す信号を制御装置90に送る。スクリュ43の位置が設定位置に達すると、充填工程から保圧工程への切替(所謂、V/P切替)が行われる。スクリュ43の設定速度は、スクリュ43の位置や時間などに応じて変更されてよい。
 尚、充填工程においてスクリュ43の位置が設定位置に達した後、その設定位置にスクリュ43を一時停止させ、その後にV/P切替が行われてもよい。V/P切替の直前において、スクリュ43の停止の代わりに、スクリュ43の微速前進または微速後退が行われてもよい。
 保圧工程では、射出モータ46を駆動してスクリュ43を設定圧力で前方に押し、金型装置30内のキャビティ空間34に充填された成形材料に圧力をかける。冷却収縮による不足分の成形材料が補充できる。成形材料の圧力は、例えば荷重検出器47を用いて検出する。
 保圧工程ではキャビティ空間34の成形材料が徐々に冷却され、保圧工程完了時にはキャビティ空間34の入口が固化した成形材料で塞がれる。この状態はゲートシールと呼ばれ、キャビティ空間34からの成形材料の逆流が防止される。保圧工程後、冷却工程が開始される。冷却工程では、キャビティ空間34内の成形材料の固化が行われる。成形サイクルの短縮のため、冷却工程中に計量工程が行われてよい。
 計量工程では、計量モータ45を駆動してスクリュ43を設定回転数で回転させ、スクリュ43の螺旋状の溝に沿って成形材料を前方に送る。これに伴い、成形材料が徐々に溶融される。液状の成形材料がスクリュ43の前方に送られシリンダ41の前部に蓄積されるにつれ、スクリュ43が後退させられる。スクリュ43の回転数は、例えば計量モータ45のエンコーダ45aを用いて検出する。エンコーダ45aは、その検出結果を示す信号を制御装置90に送る。
 計量工程では、スクリュ43の急激な後退を制限すべく、射出モータ46を駆動してスクリュ43に対して設定背圧を加えてよい。スクリュ43に対する背圧は、例えば荷重検出器47を用いて検出する。スクリュ43が設定位置まで後退し、スクリュ43の前方に所定量の成形材料が蓄積されると、計量工程が終了する。
 移動装置50は、制御装置90による制御下で、金型装置30に対し射出装置40を移動させる。移動装置50は、例えば、駆動源としてシリンダを有し、シリンダの伸縮により金型装置30に対し射出装置40を移動させる。尚、移動装置50は、駆動源としてモータを有してもよい。モータの回転運動は、ボールねじなどの運動変換機構によって射出装置40の直線運動に変換される。
 移動装置50は、充填工程や保圧工程において、金型装置30に対しノズル42を押し付けることで、金型装置30とノズル42との間からの成形材料の漏出を抑制する。金型装置30に対しノズル42を押し付ける力を、ノズルタッチ力と呼ぶ。
 移動装置50は、金型装置30や型締装置10の保護のため、保圧工程の後、次の充填工程の前に、ノズルタッチ力を低下させたり、金型装置30からノズル42を離してもよい。いずれの場合も、金型装置30に対しノズル42の位置が変化する。
 尚、移動装置50は、成形品を繰り返し製造するサイクル運転の開始前に金型装置30に対しノズル42を押し付け、サイクル運転の終了後にノズルタッチ力を低下させたり金型装置30からノズル42を離してもよい。
 ノズル42が金型装置30にタッチしている場合、ノズル42から金型装置30に熱が流出する。ノズルタッチ力が大きいほど、ノズル42から金型装置30への熱の流出量が大きい。一方、ノズル42が金型装置30から離れている場合、ノズル42から金型装置30への熱の流出は生じない。
 制御装置90は、ノズル42の検出温度とノズル42の設定温度とに基づいて、加熱器48の出力を求め、求めた出力で加熱器48を制御する。加熱器48の出力は、ノズル42の検出温度とノズル42の設定温度との偏差がゼロになるように、例えばPI演算やPID演算などにより求められる。
 制御装置90は、金型装置30に対するノズル42の変位によるノズル42の温度変化を抑制するため、その温度変化を予測する。温度変化の予測は、例えば過去の金型装置30に対するノズル42の変位によるノズル42の温度変化のデータや、熱伝導方程式など用いて行う。温度変化の予測は、温度変化が始まる前に行われてよく、図3に示す時刻t0の前に行われてよい。
 図3は、一実施形態による金型装置に対するノズルの変位によるノズルの温度変化の予測を示す図である。図3において、実線は、金型装置30に接触した状態で温度が安定したノズル42を、時刻t0で金型装置30に対し後退させて離間させたときの、ノズル42の温度変化の予測を示す。一方、二点鎖線は、金型装置30から離れた状態で温度が安定したノズル42を、金型装置30に対し前進させて時刻t0で接触させたときの、ノズル42の温度変化の予測を示す。
 図3に実線で示すように、金型装置30に接触した状態で温度が安定したノズル42を、時刻t0で金型装置30に対し後退させて離間させると、ノズル42から金型装置30への熱の流出量が減り、ノズル42の検出温度が設定温度から一旦上昇すると予測される。その後、ノズル42の検出温度が設定温度で安定するまで、しばらくノズル42の検出温度が不安定になる。
 一方、図3に二点鎖線で示すように、金型装置30から離れた状態で温度が安定したノズル42を、金型装置30に対し前進させて時刻t0で接触させると、ノズル42から金型装置30への熱の流出量が増え、ノズル42の検出温度が設定温度から一旦下降すると予測される。その後、ノズル42の検出温度が設定温度で安定するまで、しばらくノズル42の検出温度が不安定になる。
 尚、図3は金型装置30に対しノズル42を離間させた状態と接触させた状態とに切り替える場合の予測を示すが、金型装置30に対しノズル42を接触させた状態のままノズルタッチ力を変更する場合も同様の傾向を示す。
 制御装置90は、予測した温度変化に基づいて加熱器48の出力を補正する。出力補正の対象となる加熱器48は、ノズル42を加熱する加熱器48である。尚、ノズル42を加熱する加熱器48の数は、図1および図2では1つであるが、複数でもよい。例えば、ノズル42が前後方向に複数のゾーンに区画され、ゾーン毎に加熱器48が設けられてもよい。ノズル42を加熱する加熱器48のうち少なくとも1つの出力を制御装置90が補正すればよい。
 尚、出力補正の対象となる加熱器48は、本実施形態ではノズル42を加熱する加熱器48のみを含むが、シリンダ41を加熱する加熱器48をさらに含んでもよい。シリンダ41とノズル42との間で熱が移動するためである。
 例えば金型装置30に対しノズル42が後退する場合、図3に実線で示すようにノズル42の検出温度が設定温度から一旦上昇すると予測されるので、制御装置90は加熱器48の出力をPI演算やPID演算により求められる値よりも一旦低く補正する。この補正は、図3に示す時刻t0の前に行われてよく、時刻t0の後にも行われてもよい。
 一方、金型装置30に対しノズル42が前進する場合、図3に二点鎖線で示すようにノズル42の検出温度が設定温度から一旦下降すると予測されるので、制御装置90は加熱器48の出力をPI演算やPID演算により求められる値よりも一旦高く補正する。この補正は、図3に示す時刻t0の前に行われてよく、時刻t0の後にも行われてもよい。
 制御装置90は、補正した出力で加熱器48を制御する。よって、金型装置30に対するノズル42の変位によるノズル42の温度変化を抑制でき、ノズル42の温度が設定温度に戻るまでの時間を短縮でき、成形材料の溶融状態が不安定な時間を短縮できる。
 制御装置90は、補正した出力で加熱器48を制御したときのノズル42の温度変化を記憶し、記憶したデータを用いて次回以降の加熱器48の出力を補正してもよい。ノズル42の温度変化をより抑制できる。
 制御装置90は、予測した温度変化に基づいて加熱器48の出力を補正するタイミングを求め、求めたタイミングで出力を補正する。ノズル42の温度変化が始まる前(例えば図3では時刻t0の前)に、加熱器48の出力の補正が開始されてよい。加熱器48の出力補正の開始タイミングは、時刻t0の前に検出温度の設定温度からのずれ幅が大きくなり過ぎないように、時刻t0の近くに設定されてよい。加熱器48の出力補正によって、検出温度の設定温度からの最大ずれ幅が小さくなればよい。
 制御装置90は、予測した温度変化に基づいて加熱器48の出力の補正量を求め、求めた補正量で出力を補正する。予測した検出温度の設定温度からの最大ずれ幅ΔTmaxが大きいほど、補正量が大きく設定される。例えば金型装置30に対しノズル42を接触させた状態と離間させた状態とに切り替える場合、金型装置30に対しノズル42を接触させた状態のままノズルタッチ力を変更する場合に比べ、最大ずれ幅ΔTmaxが大きくなると予測されるので、補正量が大きく設定される。また、金型装置30にノズル42を接触させた状態のままノズルタッチ力を変更する場合、ノズルタッチ力の変更幅が大きいほど、最大ずれ幅ΔTmaxが大きくなると予測されるので、補正量が大きく設定される。
 図4は、一実施形態によるノズルの後退による、加熱器の出力を補正しないときのノズル温度の時間変化、加熱器の出力の補正量の時間変化、および加熱器の出力を補正するときのノズル温度の時間変化を示す図である。図4では、予め金型装置30にタッチさせたノズル42を後退させることにより、時刻t0で金型装置30からノズル42を離間させる。尚、予め金型装置30にタッチさせたノズル42を僅かに後退させることにより、金型装置30にタッチさせたまま時刻t0でノズルタッチ力を低下させた場合の図は、図4と同様であるので図示を省略する。
 制御装置90は、ノズル42の検出温度とノズル42の設定温度とに基づいて、加熱器48の出力を求め、求めた出力で加熱器48を制御する。加熱器48の出力は、ノズル42の検出温度とノズル42の設定温度との偏差がゼロになるように、例えばPI演算やPID演算などにより求められる。そのため、ノズル42の検出温度は設定温度で安定化する。
 予め金型装置30にタッチさせたノズル42を後退させることにより、時刻t0で金型装置30からノズル42を離間させる場合に、加熱器48の出力を補正しないと、ノズル42から金型装置30への熱の流出量が減り、ノズル42の検出温度が設定温度から一旦上昇する。その後、ノズル42の検出温度が設定温度で安定化するようになるまで、しばらくノズル42の検出温度が不安定になる。
 そこで、制御装置90は、ノズル42の後退を開始する前に、加熱器48の出力を補正しない場合のノズル42の後退によるノズル温度の時間変化を予測する。その予測は、例えば過去の加熱器48の出力を補正しない場合のノズル42の後退によるノズル温度の時間変化のデータや、熱伝導方程式など用いて行う。
 制御装置90は、予測したノズル温度の時間変化に基づいて、ノズル温度の変動を抑制するように、加熱器48の出力の補正量を算出する。加熱器48の出力は、例えば加熱器48の電流値で表される。加熱器48の電流値は、加熱器48に電流を供給するオン時間と、加熱器48に電流を供給しないオフ時間との割合(つまり、単位時間に占めるオン時間の割合)で表してもよい。
 出力補正の対象となる加熱器48は、ノズル42を加熱する加熱器48である。尚、ノズル42を加熱する加熱器48の数は、図1および図2では1つであるが、複数でもよい。例えば、ノズル42が前後方向に複数のゾーンに区画され、ゾーン毎に加熱器48が設けられてもよい。ノズル42を加熱する加熱器48のうち少なくとも1つの出力を制御装置90が補正すればよい。
 尚、出力補正の対象となる加熱器48は、本実施形態ではノズル42を加熱する加熱器48のみを含むが、シリンダ41を加熱する加熱器48をさらに含んでもよい。シリンダ41とノズル42との間で熱が移動するためである。
 加熱器48の出力の補正量は、加熱器48の出力を補正しない場合にノズル42の検出温度が設定温度を超えると予測される時間帯T1、T3においてマイナスとされる。従って、時間帯T1、T3において、補正後の加熱器48の出力は、PI演算やPID演算により求められる値よりも小さい値とされる。例えば、時間帯T1、T3において、補正後の単位時間に占めるオン時間の割合は、PI演算やPID演算に求められる値よりも小さい値とされる。
 一方、加熱器48の出力の補正量は、加熱器48の出力を補正しない場合にノズル42の検出温度が設定温度を下回ると予測される時間帯T2、T4においてプラスとされる。従って、時間帯T2、T4において、補正後の加熱器48の出力は、PI演算やPID演算により求められる値よりも大きい値とされる。例えば、時間帯T2、T4において、補正後の単位時間に占めるオン時間の割合は、PI演算やPID演算に求められる値よりも大きい値とされる。
 制御装置90は、補正した出力で加熱器48を制御する。補正後の加熱器48の出力は、PI演算やPID演算により求められる値と、補正量との和で表されてよい。補正した出力で加熱器48を制御することにより、金型装置30に対するノズル42の後退によるノズル42の温度変化を抑制でき、ノズル42の検出温度が設定温度で安定化するまでの時間を短縮でき、成形材料の溶融状態が不安定な時間を短縮できる。
 制御装置90は、補正した出力で加熱器48を制御したときのノズル42の温度変化を記憶し、記憶したデータを用いて次回以降の加熱器48の出力を補正してもよい。ノズル42の温度変化をより抑制できる。
 図5は、一実施形態によるノズルの前進による、加熱器の出力を補正しないときのノズル温度の時間変化、加熱器の出力の補正量の時間変化、および加熱器の出力を補正するときのノズル温度の時間変化を示す図である。図5では、予め金型装置30から離されたノズル42を前進させることにより、時刻t0で金型装置30にノズル42をタッチさせる。尚、予め金型装置30から離されたノズル42を僅かに前進させることにより、金型装置30からノズル42を離したまま時刻t0で近づける場合の図は、図5と同様であるので図示を省略する。
 制御装置90は、ノズル42の検出温度とノズル42の設定温度とに基づいて、加熱器48の出力を求め、求めた出力で加熱器48を制御する。加熱器48の出力は、ノズル42の検出温度とノズル42の設定温度との偏差がゼロになるように、例えばPI演算やPID演算などにより求められる。そのため、ノズル42の検出温度は設定温度で安定化する。
 予め金型装置30から離されたノズル42を前進させることにより、時刻t0で金型装置30にノズル42をタッチさせる場合に、加熱器48の出力を補正しないと、ノズル42から金型装置30への熱の流出量が増え、ノズル42の検出温度が設定温度から一旦下降する。その後、ノズル42の検出温度が設定温度で安定化するようになるまで、しばらくノズル42の検出温度が不安定になる。
 そこで、制御装置90は、ノズル42の前進を開始する前に、加熱器48の出力を補正しない場合のノズル42の前進によるノズル温度の時間変化を予測する。その予測は、例えば過去の加熱器48の出力を補正しない場合のノズル42の前進によるノズル温度の時間変化のデータや、熱伝導方程式など用いて行う。
 制御装置90は、予測したノズル温度の時間変化に基づいて、ノズル温度の変動を抑制するように、加熱器48の出力の補正量を算出する。加熱器48の出力は、例えば加熱器48の電流値で表される。加熱器48の電流値は、加熱器48に電流を供給するオン時間(以下、「加熱器48のオン時間」とも呼ぶ。)と、加熱器48に電流を供給しないオフ時間(以下、「加熱器48のオフ時間」とも呼ぶ。)との割合(つまり、単位時間に占めるオン時間の割合)で表してもよい。
 出力補正の対象となる加熱器48は、ノズル42を加熱する加熱器48である。尚、ノズル42を加熱する加熱器48の数は、図1および図2では1つであるが、複数でもよい。例えば、ノズル42が前後方向に複数のゾーンに区画され、ゾーン毎に加熱器48が設けられてもよい。ノズル42を加熱する加熱器48のうち少なくとも1つの出力を制御装置90が補正すればよい。
 尚、出力補正の対象となる加熱器48は、本実施形態ではノズル42を加熱する加熱器48のみを含むが、シリンダ41を加熱する加熱器48をさらに含んでもよい。シリンダ41とノズル42との間で熱が移動するためである。
 加熱器48の出力の補正量は、加熱器48の出力を補正しない場合にノズル42の検出温度が設定温度を下回ると予測される時間帯T1、T3においてプラスとされる。従って、時間帯T1、T3において、補正後の加熱器48の出力は、PI演算やPID演算により求められる値よりも大きい値とされる。例えば、時間帯T1、T3において、補正後の単位時間に占めるオン時間の割合は、PI演算やPID演算に求められる値よりも大きい値とされる。
 一方、加熱器48の出力の補正量は、加熱器48の出力を補正しない場合にノズル42の検出温度が設定温度を超えると予測される時間帯T2、T4においてマイナスとされる。従って、時間帯T2、T4において、補正後の加熱器48の出力は、PI演算やPID演算により求められる値よりも小さい値とされる。例えば、時間帯T2、T4において、補正後の単位時間に占めるオン時間の割合は、PI演算やPID演算に求められる値よりも小さい値とされる。
 制御装置90は、補正した出力で加熱器48を制御する。補正後の加熱器48の出力は、PI演算やPID演算により求められる値と、補正量との和で表されてよい。補正した出力で加熱器48を制御することにより、金型装置30に対するノズル42の前進によるノズル42の温度変化を抑制でき、ノズル42の検出温度が設定温度で安定化するまでの時間を短縮でき、成形材料の溶融状態が不安定な時間を短縮できる。
 制御装置90は、補正した出力で加熱器48を制御したときのノズル42の温度変化を記憶し、記憶したデータを用いて次回以降の加熱器48の出力を補正してもよい。ノズル42の温度変化をより抑制できる。
 図6は、一実施形態による制御系の構成要素を機能ブロックで示す図である。図6に図示される各機能ブロックは概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。各機能ブロックの全部または一部を、任意の単位で機能的または物理的に分散・統合して構成することが可能である。各機能ブロックにて行われる各処理機能は、その全部または任意の一部が、CPUにて実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現されうる。
 図6に示すように制御装置90は、ノズル42の検出温度とノズル42の設定温度とに基づき加熱器48に対する指令を作成する温度制御部95を有する。温度制御部95は、ノズル42の検出温度とノズル42の設定温度の偏差がゼロになるように加熱器48に対する指令を作成する。加熱器48に対する指令は、PI演算やPID演算などにより作成される。加熱器48に対する指令は、例えば加熱器48のオン時間やオフ時間を含む。
 また、図6に示すように制御装置90は、ノズル42の変位によるノズル42の温度変化を予測し、温度変化を抑制するため、予測した温度変化に基づいて加熱器48の出力の補正量を算出する演算部96を有する。ノズル42の温度変化の予測、および加熱器48の出力の補正量の算出は、過去の加熱器48に対する指令と、その指令のときのノズル42の検出温度とに基づき行われてよい。
 温度制御部95が加熱器48のオン時間やオフ時間を制御する場合、演算部96は加熱器48のオン時間やオフ時間の補正量を算出する。演算部96は、オン時間の開始時刻、オン時間の終了時刻、オン時間の長さ、オフ時間の開始時刻、オフ時間の終了時刻、およびオフ時間の長さの少なくとも1つの補正量を算出してよい。以下、演算部96による補正について、図7および図8を参照して説明する。
 図7は、一実施形態による加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。図7において、太い一点鎖線は加熱器の出力のオン/オフの時間変化を示し、太い実線はノズルの検出温度の時間変化を示す。図7では、予め金型装置30にタッチさせたノズル42を後退させることにより、時刻t0で金型装置30からノズル42を離間させる。尚、予め金型装置30にタッチさせたノズル42を僅かに後退させることにより、金型装置30にタッチさせたまま時刻t0でノズルタッチ力を低下させた場合の図は、図7と同様であるので図示を省略する。
 図7(a)は、一実施形態による補正前の加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。図7(a)では、加熱器48の出力がオン/オフ制御されており、時刻t0まではノズル42の検出温度が設定温度で一定に維持されている。時刻t0は、加熱器48のオン時間と重なっている。時刻t0以降は、ノズル42が金型装置30から離間されるので、ノズル42から外部への熱の流出量が減り、ノズル42の検出温度が設定温度から一旦上昇する。その後、ノズル42の検出温度が設定温度で安定化するようになるまで、しばらくノズル42の検出温度が不安定になる。
 図7(b)は、一実施形態による1回目の補正後の加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。演算部96は、図7(a)に示す加熱器48に対する指令とノズル42の検出温度とに基づき、図7(b)に示すように加熱器48のオフ時間が時刻t0と重なるように加熱器48の出力の補正量を算出する。オフ時間の開始時刻は時刻t0よりも早く設定されてよく、オフ時間の終了時刻は時刻t0よりも遅く設定されてよい。この補正により、加熱器48からノズル42に供給される熱の供給量がノズル42から外部への熱の流出量を下回ると、図7(b)に示すようにノズル42の検出温度が設定温度から僅かに下降する。その後、ノズル42の検出温度が設定温度で安定化するようになるまで、しばらくノズル42の検出温度が不安定になる。
 図7(c)は、一実施形態による2回目の補正後の加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。演算部96は、図7(b)に示す加熱器48に対する指令とノズル42の検出温度とに基づき、図7(c)に示すように加熱器48のオフ時間が短くなるように加熱器48の出力の補正量を算出する。例えば、図7(c)のオフ時間の開始時刻は図7(b)に示すオフ時間の開始時刻と同じであるが、図7(c)に示すオフ時間の終了時刻は図7(b)に示すオフ時間の終了時刻よりも早く設定される。オフ時間の終了時刻は時刻t0よりも遅くてよい。この補正により、加熱器48からノズル42に供給される熱の供給量と、ノズル42から外部への熱の流出量とのバランスが取れ、図7(c)に示すように時刻t0以降もノズル42の検出温度が設定温度で一定に維持される。
 図8は、一実施形態による加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。図8において、太い一点鎖線は加熱器の出力のオン/オフの時間変化を示し、太い実線はノズルの検出温度の時間変化を示す。図8では、予め金型装置30から離されたノズル42を前進させることにより、時刻t0で金型装置30にノズル42をタッチさせる。尚、予め金型装置30から離されたノズル42を僅かに前進させることにより、金型装置30からノズル42を離したまま時刻t0で近づける場合の図は、図8と同様であるので図示を省略する。
 図8(a)は、一実施形態による補正前の加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。図8(a)では、加熱器48の出力がオン/オフ制御されており、時刻t0まではノズル42の検出温度が設定温度で一定に維持されている。時刻t0は、加熱器48のオフ時間と重なっている。時刻t0以降は、ノズル42が金型装置30にタッチされるので、ノズル42から外部への熱の流出量が増え、ノズル42の検出温度が設定温度から一旦下降する。その後、ノズル42の検出温度が設定温度で安定化するようになるまで、しばらくノズル42の検出温度が不安定になる。
 図8(b)は、一実施形態による1回目の補正後の加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。演算部96は、図8(a)に示す加熱器48に対する指令とノズル42の検出温度とに基づき、図8(b)に示すように加熱器48のオン時間が時刻t0と重なるように加熱器48の出力の補正量を算出する。オン時間の開始時刻は時刻t0よりも早く設定されてよく、オン時間の終了時刻は時刻t0よりも遅く設定されてよい。この補正により、加熱器48からノズル42に供給される熱の供給量がノズル42から外部への熱の流出量を上回ると、図8(b)に示すようにノズル42の検出温度が設定温度から僅かに上昇する。その後、ノズル42の検出温度が設定温度で安定化するようになるまで、しばらくノズル42の検出温度が不安定になる。
 図8(c)は、一実施形態による2回目の補正後の加熱器の出力のオン/オフの時間変化、およびノズルの検出温度の時間変化を示す図である。演算部96は、図8(b)に示す加熱器48に対する指令とノズル42の検出温度とに基づき、図8(c)に示すように加熱器48のオン時間が短くなるように加熱器48の出力の補正量を算出する。例えば、図8(c)のオン時間の開始時刻は図8(b)に示すオン時間の開始時刻と同じであるが、図8(c)に示すオン時間の終了時刻は図8(b)に示すオン時間の終了時刻よりも早く設定される。オン時間の終了時刻は時刻t0よりも遅くてよい。この補正により、加熱器48からノズル42に供給される熱の供給量と、ノズル42から外部への熱の流出量とのバランスが取れ、図8(c)に示すように時刻t0以降もノズル42の検出温度が設定温度で一定に維持される。
 以上、射出成形機の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
 上記実施形態の射出装置40は、インライン・スクリュ方式であるが、プリプラ方式でもよい。プリプラ方式の射出装置は、可塑化シリンダ内で溶融された成形材料を射出シリンダに供給し、射出シリンダから金型装置内に成形材料を射出する。可塑化シリンダ内にはスクリュが回転自在にまたは回転自在に且つ進退自在に配設され、射出シリンダ内にはプランジャが進退自在に配設される。射出シリンダの先端には、金型装置にタッチされるノズルが設けられる。
 本出願は、2016年3月31日に日本国特許庁に出願した特願2016-071606号に基づく優先権を主張するものであり、特願2016-071606号の全内容を本出願に援用する。
10 型締装置
12 固定プラテン
13 可動プラテン
30 金型装置
32 固定金型
33 可動金型
40 射出装置
41 シリンダ
42 ノズル
48 加熱器
49 温度検出器
50 移動装置
90 制御装置

Claims (3)

  1.  金型装置にタッチされ、前記金型装置の内部に成形材料を射出するノズルと、
     前記ノズルを加熱する加熱器と、
     前記ノズルの温度を検出する温度検出器と、
     前記ノズルの検出温度と前記ノズルの設定温度とに基づいて前記加熱器の出力を求め、求めた前記出力で前記加熱器を制御する制御装置と、
     前記ノズルを前記金型装置に対し進退させる移動装置とを備え、
     前記制御装置は、前記ノズルの変位による前記ノズルの温度変化を予測し、前記温度変化を抑制するため、予測した前記温度変化に基づいて前記出力を補正し、補正した前記出力で前記加熱器を制御する、射出成形機。
  2.  前記制御装置は、前記温度変化を予測し、前記温度変化を抑制するため、予測した前記温度変化に基づいて前記出力を補正するタイミングを求め、求めたタイミングで前記出力を補正する、請求項1に記載の射出成形機。
  3.  前記制御装置は、前記温度変化を予測し、前記温度変化を抑制するため、予測した前記温度変化に基づいて前記出力の補正量を求め、求めた補正量で前記出力を補正する、請求項1または2に記載の射出成形機。
PCT/JP2017/013719 2016-03-31 2017-03-31 射出成形機 WO2017171044A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780014533.7A CN108698295B (zh) 2016-03-31 2017-03-31 注射成型机
JP2018509678A JP6791948B2 (ja) 2016-03-31 2017-03-31 射出成形機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071606 2016-03-31
JP2016-071606 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171044A1 true WO2017171044A1 (ja) 2017-10-05

Family

ID=59966058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013719 WO2017171044A1 (ja) 2016-03-31 2017-03-31 射出成形機

Country Status (3)

Country Link
JP (1) JP6791948B2 (ja)
CN (1) CN108698295B (ja)
WO (1) WO2017171044A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384386B2 (en) 2017-11-23 2019-08-20 Coretech System Co., Ltd. Method for setting up a molding system
TWI670163B (zh) * 2017-11-23 2019-09-01 科盛科技股份有限公司 一種成型系統及其設定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192752A (zh) * 2021-12-08 2022-03-18 万丰镁瑞丁新材料科技有限公司 一种新型螺杆式压铸结构及其压铸方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281755A (ja) * 1995-04-14 1996-10-29 Fanuc Ltd 射出成形機のノズル温度制御方法
JP2004122141A (ja) * 2002-09-30 2004-04-22 Nissei Plastics Ind Co 金属成形機におけるノズルの移動制御方法
JP2011079222A (ja) * 2009-10-07 2011-04-21 Nissei Plastics Ind Co 射出成形機の温度制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427170B2 (ja) * 1997-06-23 2003-07-14 株式会社名機製作所 射出成形機
JP3830453B2 (ja) * 2003-01-15 2006-10-04 ファナック株式会社 射出成形機のモニタ装置
JP5159401B2 (ja) * 2008-04-10 2013-03-06 パナソニック株式会社 射出ノズル温度制御方法
CN202623147U (zh) * 2012-06-21 2012-12-26 苏州正豪塑胶电子有限公司 具有恒温控制机构的注塑机头
JP2015196316A (ja) * 2014-04-01 2015-11-09 安尾 清一 プラスチック射出成形機ノズルヒーター部の保温・樹脂付着防止カバー
JP6002171B2 (ja) * 2014-04-17 2016-10-05 日精樹脂工業株式会社 射出機及びノズルねじ込み方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281755A (ja) * 1995-04-14 1996-10-29 Fanuc Ltd 射出成形機のノズル温度制御方法
JP2004122141A (ja) * 2002-09-30 2004-04-22 Nissei Plastics Ind Co 金属成形機におけるノズルの移動制御方法
JP2011079222A (ja) * 2009-10-07 2011-04-21 Nissei Plastics Ind Co 射出成形機の温度制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384386B2 (en) 2017-11-23 2019-08-20 Coretech System Co., Ltd. Method for setting up a molding system
TWI670163B (zh) * 2017-11-23 2019-09-01 科盛科技股份有限公司 一種成型系統及其設定方法
US10562218B2 (en) 2017-11-23 2020-02-18 Coretech System Co., Ltd. Method for setting up a molding system

Also Published As

Publication number Publication date
CN108698295A (zh) 2018-10-23
JPWO2017171044A1 (ja) 2019-02-14
CN108698295B (zh) 2020-12-11
JP6791948B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
EP3100840B1 (en) Injection molding machine
WO2017171044A1 (ja) 射出成形機
JP6815892B2 (ja) 射出成形機
JP6385831B2 (ja) 射出成形機
WO2018143291A1 (ja) 射出成形機
JP6009385B2 (ja) 射出成形機
JP6419559B2 (ja) 射出成形機
JP6356041B2 (ja) 射出成形機
JP6552933B2 (ja) 射出成形機
JP2016124173A (ja) 型締装置、成形装置および成形方法
JP6906926B2 (ja) 射出成形機
JP2022157852A (ja) 射出成形機、射出成形機の制御装置、及び制御方法
JP5946732B2 (ja) 温度補正機能を有する射出成形機の温度制御装置および射出成形機の温度制御方法
KR102371314B1 (ko) 사출성형기
JP2018069627A (ja) 射出成形機
JP6404081B2 (ja) 射出成形機
JP6385832B2 (ja) 射出成形機
WO2022210979A1 (ja) 射出成形機の制御装置、射出成形機、及び制御方法
JP2018122509A (ja) 射出成形機
JP6716154B2 (ja) 射出成形機
KR102363611B1 (ko) 사출성형기
JP3232550B2 (ja) 射出圧縮成形における型締圧力の制御方法
JP3806787B2 (ja) 射出成形方法
WO2020045359A1 (ja) 射出成形機
JP6611160B2 (ja) 射出成形機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509678

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775575

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775575

Country of ref document: EP

Kind code of ref document: A1