WO2022210979A1 - 射出成形機の制御装置、射出成形機、及び制御方法 - Google Patents

射出成形機の制御装置、射出成形機、及び制御方法 Download PDF

Info

Publication number
WO2022210979A1
WO2022210979A1 PCT/JP2022/016305 JP2022016305W WO2022210979A1 WO 2022210979 A1 WO2022210979 A1 WO 2022210979A1 JP 2022016305 W JP2022016305 W JP 2022016305W WO 2022210979 A1 WO2022210979 A1 WO 2022210979A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
metering
mold
back pressure
speed
Prior art date
Application number
PCT/JP2022/016305
Other languages
English (en)
French (fr)
Inventor
洋嗣 丸本
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2023511532A priority Critical patent/JPWO2022210979A1/ja
Priority to DE112022001896.8T priority patent/DE112022001896T5/de
Priority to CN202280009107.5A priority patent/CN116745095A/zh
Publication of WO2022210979A1 publication Critical patent/WO2022210979A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to an injection molding machine control device, an injection molding machine, and a control method.
  • the back pressure generated by rotating the screw and feeding the molding material to the tip of the screw is controlled to be constant.
  • back pressure of the molding material to the screw is less likely to occur. In this case, molding may become unstable.
  • Patent Literature 1 describes a technique for adjusting the rotational speed based on the positional deviation and the back pressure deviation in the vicinity of the metering completion position after performing backward movement and rotation control of the screw at a predetermined speed.
  • One aspect of the present invention provides a technique for improving the molding stability of a molded product by setting the rotation speed and retraction speed of the screw to appropriate values.
  • a control device for an injection molding machine includes a determination section, an acquisition section, and an adjustment section.
  • the determination part indicates the position of the screw in the cylinder after it has moved to accumulate the molding material necessary for molding the molded product in the weighing process of weighing the molding material accumulated in the cylinder for injection molding.
  • a retraction speed for retracting the screw is determined based on the metering position and the predetermined metering time.
  • the acquisition unit acquires the back pressure of the screw when the screw is controlled to follow the retraction speed and the predetermined rotation speed in the metering process.
  • the adjuster adjusts the rotation speed according to the back pressure.
  • the stability of molding of the molded product is improved.
  • FIG. 1 is a diagram showing a state of an injection molding machine according to one embodiment when mold opening is completed.
  • FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping.
  • FIG. 3 is a diagram showing functional blocks of components of a control device according to an embodiment.
  • FIG. 4 is a diagram illustrating a case where the back pressure acquired by the acquisition unit according to the first embodiment is higher than the set back pressure.
  • FIG. 5 is a diagram illustrating a case where the back pressure acquired by the acquisition unit according to the first embodiment is lower than the set back pressure of 50%.
  • FIG. 6 is a diagram exemplifying a case where the back pressure acquired by the acquisition unit according to the first embodiment is within the range of 50% to 100% of the set back pressure.
  • FIG. 4 is a diagram illustrating a case where the back pressure acquired by the acquisition unit according to the first embodiment is higher than the set back pressure.
  • FIG. 5 is a diagram illustrating a case where the back pressure acquired
  • FIG. 7 is a flow chart showing a parameter setting process for use in reverse speed control in the weighing process in the control device according to the first embodiment.
  • FIG. 8 is a flowchart showing a parameter setting process when back pressure control is switched to reverse speed control in the metering process in the control device according to the first embodiment.
  • FIG. 1 is a diagram showing a state of the injection molding machine according to one embodiment when mold opening is completed.
  • FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping.
  • the X-axis direction, Y-axis direction and Z-axis direction are directions perpendicular to each other.
  • the X-axis direction and Y-axis direction represent the horizontal direction, and the Z-axis direction represents the vertical direction.
  • the X-axis direction is the mold opening/closing direction
  • the Y-axis direction is the width direction of the injection molding machine 10 .
  • the Y-axis direction negative side is called the operating side
  • the Y-axis direction positive side is called the non-operating side.
  • the injection molding machine 10 includes a mold clamping device 100 that opens and closes a mold device 800, an ejector device 200 that ejects a molded product molded by the mold device 800, and the mold device 800.
  • a moving device 400 for moving the injection device 300 forward and backward with respect to the mold device 800;
  • a control device 700 for controlling each component of the injection molding machine 10;
  • a frame 900 that supports the components.
  • the frame 900 includes a mold clamping device frame 910 that supports the mold clamping device 100 and an injection device frame 920 that supports the injection device 300 .
  • the mold clamping device frame 910 and the injection device frame 920 are each installed on the floor 2 via leveling adjusters 930 .
  • a control device 700 is arranged in the inner space of the injection device frame 920 . Each component of the injection molding machine 10 will be described below.
  • the moving direction of the movable platen 120 when the mold is closed (for example, the X-axis positive direction) is defined as the front, and the moving direction of the movable platen 120 when the mold is opened is defined as the rear (for example, the X-axis negative direction). do.
  • the mold clamping device 100 performs mold closing, pressure increase, mold clamping, depressurization, and mold opening of the mold device 800 .
  • Mold apparatus 800 includes a fixed mold 810 and a movable mold 820 .
  • the mold clamping device 100 is, for example, a horizontal type, and the mold opening/closing direction is horizontal.
  • the mold clamping device 100 includes a stationary platen 110 to which a stationary mold 810 is attached, a movable platen 120 to which a movable mold 820 is attached, a moving mechanism 102 that moves the movable platen 120 in the mold opening/closing direction with respect to the stationary platen 110, have
  • the fixed platen 110 is fixed to the mold clamping device frame 910 .
  • a stationary mold 810 is attached to the surface of the stationary platen 110 facing the movable platen 120 .
  • the movable platen 120 is arranged movably in the mold opening/closing direction with respect to the mold clamping device frame 910 .
  • a guide 101 for guiding the movable platen 120 is laid on the mold clamping device frame 910 .
  • a movable die 820 is attached to the surface of the movable platen 120 facing the fixed platen 110 .
  • the moving mechanism 102 moves the movable platen 120 back and forth with respect to the fixed platen 110 to perform mold closing, pressure increase, mold clamping, pressure release, and mold opening of the mold device 800 .
  • the moving mechanism 102 includes a toggle support 130 spaced apart from the stationary platen 110 , tie bars 140 connecting the stationary platen 110 and the toggle support 130 , and moving the movable platen 120 relative to the toggle support 130 in the mold opening/closing direction.
  • a toggle mechanism 150 that operates the toggle mechanism 150
  • a mold clamping motor 160 that operates the toggle mechanism 150
  • a motion conversion mechanism 170 that converts the rotary motion of the mold clamping motor 160 into a linear motion
  • a mold that adjusts the interval between the stationary platen 110 and the toggle support 130.
  • a thickness adjustment mechanism 180 .
  • the toggle support 130 is spaced apart from the fixed platen 110 and mounted on the mold clamping device frame 910 so as to be movable in the mold opening/closing direction.
  • the toggle support 130 may be arranged so as to be movable along a guide laid on the mold clamping device frame 910 .
  • the guides of the toggle support 130 may be common with the guides 101 of the movable platen 120 .
  • the fixed platen 110 is fixed to the mold clamping device frame 910, and the toggle support 130 is arranged to be movable in the mold opening/closing direction with respect to the mold clamping device frame 910.
  • the stationary platen 110 may be arranged to be movable relative to the mold clamping device frame 910 in the mold opening/closing direction.
  • the tie bar 140 connects the stationary platen 110 and the toggle support 130 with a gap L in the mold opening/closing direction.
  • a plurality of (for example, four) tie bars 140 may be used.
  • the multiple tie bars 140 are arranged parallel to the mold opening/closing direction and extend according to the mold clamping force.
  • At least one tie bar 140 may be provided with a tie bar strain detector 141 that detects strain of the tie bar 140 .
  • Tie-bar distortion detector 141 sends a signal indicating the detection result to control device 700 .
  • the detection result of the tie bar strain detector 141 is used for detection of mold clamping force and the like.
  • the tie bar strain detector 141 is used as a mold clamping force detector that detects the mold clamping force, but the present invention is not limited to this.
  • the mold clamping force detector is not limited to the strain gauge type, but may be of piezoelectric type, capacitive type, hydraulic type, electromagnetic type, etc., and its mounting position is not limited to the tie bar 140 either.
  • the toggle mechanism 150 is arranged between the movable platen 120 and the toggle support 130 and moves the movable platen 120 relative to the toggle support 130 in the mold opening/closing direction.
  • the toggle mechanism 150 has a crosshead 151 that moves in the mold opening/closing direction, and a pair of link groups that bend and stretch as the crosshead 151 moves.
  • a pair of link groups each has a first link 152 and a second link 153 that are connected by a pin or the like so as to be bendable and stretchable.
  • the first link 152 is swingably attached to the movable platen 120 with a pin or the like.
  • the second link 153 is swingably attached to the toggle support 130 with a pin or the like.
  • a second link 153 is attached to the crosshead 151 via a third link 154 .
  • the crosshead 151 advances and retreats with respect to the toggle support 130
  • the first link 152 and the second link 153 bend and stretch, and the movable platen 120 advances and retreats with respect to the toggle support 130 .
  • the configuration of the toggle mechanism 150 is not limited to the configurations shown in FIGS. 1 and 2.
  • the number of nodes in each link group is five, but the number may be four, and one end of the third link 154 is coupled to the node between the first link 152 and the second link 153. may be
  • the mold clamping motor 160 is attached to the toggle support 130 and operates the toggle mechanism 150 .
  • the mold clamping motor 160 advances and retreats the crosshead 151 with respect to the toggle support 130 , thereby bending and stretching the first link 152 and the second link 153 to advance and retreat the movable platen 120 with respect to the toggle support 130 .
  • the mold clamping motor 160 is directly connected to the motion conversion mechanism 170, but may be connected to the motion conversion mechanism 170 via a belt, pulley, or the like.
  • the motion conversion mechanism 170 converts rotary motion of the mold clamping motor 160 into linear motion of the crosshead 151 .
  • the motion conversion mechanism 170 includes a threaded shaft and a threaded nut that screws onto the threaded shaft. Balls or rollers may be interposed between the screw shaft and the screw nut.
  • the mold clamping device 100 Under the control of the control device 700, the mold clamping device 100 performs a mold closing process, a pressure increasing process, a mold clamping process, a depressurizing process, a mold opening process, and the like.
  • the mold clamping motor 160 is driven to advance the crosshead 151 to the mold closing completion position at the set movement speed, thereby advancing the movable platen 120 and bringing the movable mold 820 into contact with the fixed mold 810. .
  • the position and moving speed of the crosshead 151 are detected using, for example, a mold clamping motor encoder 161 or the like.
  • the mold clamping motor encoder 161 detects rotation of the mold clamping motor 160 and sends a signal indicating the detection result to the control device 700 .
  • the crosshead position detector for detecting the position of the crosshead 151 and the crosshead movement speed detector for detecting the movement speed of the crosshead 151 are not limited to the mold clamping motor encoder 161, and general ones are used. can. Further, the movable platen position detector for detecting the position of the movable platen 120 and the movable platen moving speed detector for detecting the moving speed of the movable platen 120 are not limited to the mold clamping motor encoder 161, and general ones are used. can.
  • the mold clamping motor 160 is further driven to further advance the crosshead 151 from the mold closing completion position to the mold clamping position, thereby generating mold clamping force.
  • the mold clamping motor 160 is driven to maintain the position of the crosshead 151 at the mold clamping position.
  • the mold clamping force generated in the pressurizing process is maintained.
  • a cavity space 801 (see FIG. 2) is formed between the movable mold 820 and the fixed mold 810, and the injection device 300 fills the cavity space 801 with a liquid molding material.
  • a molded product is obtained by solidifying the filled molding material.
  • the number of cavity spaces 801 may be one or plural. In the latter case, multiple moldings are obtained simultaneously.
  • the insert material may be arranged in part of the cavity space 801 and the other part of the cavity space 801 may be filled with the molding material.
  • a molded product in which the insert material and the molding material are integrated is obtained.
  • the mold clamping motor 160 is driven to retract the crosshead 151 from the mold clamping position to the mold opening start position, thereby retracting the movable platen 120 and reducing the mold clamping force.
  • the mold opening start position and the mold closing completion position may be the same position.
  • the mold clamping motor 160 is driven to retract the crosshead 151 from the mold opening start position to the mold opening completion position at a set moving speed, thereby retracting the movable platen 120 and moving the movable mold 820 to the fixed metal. away from the mold 810; After that, the ejector device 200 ejects the molded product from the movable mold 820 .
  • the setting conditions in the mold closing process, pressure rising process, and mold clamping process are collectively set as a series of setting conditions.
  • the moving speed and position of the crosshead 151 including the mold closing start position, the moving speed switching position, the mold closing completion position, and the mold clamping position
  • the mold clamping force in the mold closing process and the pressurizing process are set as a series of setting conditions.
  • the mold closing start position, the movement speed switching position, the mold closing completion position, and the mold clamping position are arranged in this order from the rear side to the front side, and represent the start point and end point of the section in which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural.
  • the moving speed switching position does not have to be set. Only one of the mold clamping position and the mold clamping force may be set.
  • the setting conditions in the depressurization process and the mold opening process are set in the same way.
  • the moving speed and position of the crosshead 151 (mold opening start position, moving speed switching position, and mold opening completion position) in the depressurizing process and the mold opening process are collectively set as a series of setting conditions.
  • the mold opening start position, the movement speed switching position, and the mold opening completion position are arranged in this order from the front side to the rear side, and represent the start point and end point of the section for which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural.
  • the moving speed switching position does not have to be set.
  • the mold opening start position and the mold closing completion position may be the same position. Also, the mold opening completion position and the mold closing start position may be the same position.
  • the moving speed, position, etc. of the crosshead 151 the moving speed, position, etc. of the movable platen 120 may be set.
  • the mold clamping force may be set instead of the position of the crosshead (for example, mold clamping position) or the position of the movable platen.
  • the toggle mechanism 150 amplifies the driving force of the mold clamping motor 160 and transmits it to the movable platen 120 .
  • the amplification factor is also called toggle factor.
  • the toggle magnification changes according to the angle ⁇ formed between the first link 152 and the second link 153 (hereinafter also referred to as “link angle ⁇ ”).
  • the link angle ⁇ is obtained from the position of the crosshead 151 .
  • the toggle magnification becomes maximum.
  • the mold thickness is adjusted so that a predetermined mold clamping force can be obtained during mold clamping.
  • the distance L between the fixed platen 110 and the toggle support 130 is adjusted so that the link angle ⁇ of the toggle mechanism 150 becomes a predetermined angle when the movable mold 820 touches the fixed mold 810 . to adjust.
  • the mold clamping device 100 has a mold thickness adjusting mechanism 180.
  • the mold thickness adjustment mechanism 180 adjusts the mold thickness by adjusting the distance L between the stationary platen 110 and the toggle support 130 .
  • the timing of mold thickness adjustment is, for example, between the end of a molding cycle and the start of the next molding cycle.
  • the mold thickness adjusting mechanism 180 is, for example, a threaded shaft 181 formed at the rear end of the tie bar 140, a screw nut 182 held by the toggle support 130 so as to be rotatable and non-retractable, and screwed to the threaded shaft 181. and a mold thickness adjusting motor 183 that rotates the screw nut 182 .
  • a threaded shaft 181 and a threaded nut 182 are provided for each tie bar 140 .
  • the rotational driving force of the mold thickness adjusting motor 183 may be transmitted to the multiple screw nuts 182 via the rotational driving force transmission portion 185 .
  • Multiple screw nuts 182 can be rotated synchronously. By changing the transmission path of the rotational driving force transmission portion 185, it is also possible to rotate the plurality of screw nuts 182 individually.
  • the rotational driving force transmission section 185 is configured by, for example, gears.
  • a driven gear is formed on the outer circumference of each screw nut 182
  • a driving gear is attached to the output shaft of the mold thickness adjusting motor 183
  • an intermediate gear that meshes with a plurality of driven gears and the driving gear is formed in the central portion of the toggle support 130. rotatably held.
  • the rotational driving force transmission section 185 may be configured by a belt, a pulley, or the like instead of the gear.
  • the operation of the mold thickness adjusting mechanism 180 is controlled by the control device 700.
  • the control device 700 drives the mold thickness adjusting motor 183 to rotate the screw nut 182 .
  • the position of toggle support 130 with respect to tie bar 140 is adjusted, and the distance L between stationary platen 110 and toggle support 130 is adjusted.
  • a plurality of mold thickness adjusting mechanisms may be used in combination.
  • the interval L is detected using the mold thickness adjustment motor encoder 184.
  • the mold thickness adjusting motor encoder 184 detects the amount and direction of rotation of the mold thickness adjusting motor 183 and sends a signal indicating the detection result to the control device 700 .
  • the detection result of the mold thickness adjustment motor encoder 184 is used for monitoring and controlling the position and interval L of the toggle support 130 .
  • the toggle support position detector that detects the position of the toggle support 130 and the gap detector that detects the gap L are not limited to the mold thickness adjustment motor encoder 184, and general ones can be used.
  • the mold clamping device 100 may have a mold temperature controller that adjusts the temperature of the mold device 800 .
  • the mold device 800 has a flow path for a temperature control medium inside.
  • the mold temperature controller adjusts the temperature of the mold device 800 by adjusting the temperature of the temperature control medium supplied to the flow path of the mold device 800 .
  • the mold clamping device 100 of this embodiment is a horizontal type in which the mold opening/closing direction is horizontal, it may be a vertical type in which the mold opening/closing direction is a vertical direction.
  • the mold clamping device 100 of this embodiment has the mold clamping motor 160 as a drive source, the mold clamping motor 160 may be replaced by a hydraulic cylinder. Further, the mold clamping device 100 may have a linear motor for mold opening and closing and an electromagnet for mold clamping.
  • the moving direction of the movable platen 120 when the mold is closed (for example, the positive direction of the X axis) is defined as the front, and the moving direction of the movable platen 120 when the mold is opened (for example, X-axis negative direction) will be described as the rear.
  • the ejector device 200 is attached to the movable platen 120 and advances and retreats together with the movable platen 120 .
  • the ejector device 200 has an ejector rod 210 that ejects a molded product from the mold device 800 and a drive mechanism 220 that moves the ejector rod 210 in the moving direction of the movable platen 120 (X-axis direction).
  • the ejector rod 210 is disposed in a through hole of the movable platen 120 so that it can move back and forth.
  • the front end of ejector rod 210 contacts ejector plate 826 of movable mold 820 .
  • the front end of ejector rod 210 may or may not be connected to ejector plate 826 .
  • the drive mechanism 220 has, for example, an ejector motor and a motion conversion mechanism that converts the rotary motion of the ejector motor into the linear motion of the ejector rod 210 .
  • the motion conversion mechanism includes a threaded shaft and a threaded nut that screws onto the threaded shaft. Balls or rollers may be interposed between the screw shaft and the screw nut.
  • the ejector device 200 performs an ejecting process under the control of the control device 700 .
  • the ejector plate 826 is moved forward by advancing the ejector rod 210 from the standby position to the ejecting position at a set moving speed to eject the molded product.
  • the ejector motor is driven to retract the ejector rod 210 at the set movement speed, and the ejector plate 826 is retracted to the original standby position.
  • the position and moving speed of the ejector rod 210 are detected using, for example, an ejector motor encoder.
  • the ejector motor encoder detects rotation of the ejector motor and sends a signal indicating the detection result to the control device 700 .
  • the ejector rod position detector for detecting the position of the ejector rod 210 and the ejector rod moving speed detector for detecting the moving speed of the ejector rod 210 are not limited to ejector motor encoders, and general ones can be used.
  • the moving direction of the screw 330 during filling (for example, the negative direction of the X axis) is defined as the forward direction, and the moving direction of the screw 330 during metering is defined as the forward direction. (For example, the positive direction of the X-axis) will be described as the rear.
  • the injection device 300 is installed on a slide base 301 , and the slide base 301 is arranged to move forward and backward relative to the injection device frame 920 .
  • the injection device 300 is arranged to move back and forth with respect to the mold device 800 .
  • the injection device 300 touches the mold device 800 and fills the cavity space 801 in the mold device 800 with the molding material.
  • the injection device 300 includes, for example, a cylinder 310 that heats the molding material, a nozzle 320 that is provided at the front end of the cylinder 310, a screw 330 that is rotatably arranged in the cylinder 310 so that it can move back and forth, and a screw that rotates. , an injection motor 350 for advancing and retreating the screw 330 , and a load detector 360 for detecting the load transmitted between the injection motor 350 and the screw 330 .
  • the cylinder 310 heats the molding material supplied inside from the supply port 311 .
  • the molding material includes, for example, resin.
  • the molding material is formed into, for example, a pellet shape and supplied to the supply port 311 in a solid state.
  • a supply port 311 is formed in the rear portion of the cylinder 310 .
  • a cooler 312 such as a water-cooled cylinder is provided on the outer circumference of the rear portion of the cylinder 310 .
  • a heater 313 such as a band heater and a temperature detector 314 are provided on the outer periphery of the cylinder 310 ahead of the cooler 312 .
  • the cylinder 310 is divided into a plurality of zones in the axial direction of the cylinder 310 (for example, the X-axis direction).
  • a heater 313 and a temperature detector 314 are provided in each of the plurality of zones.
  • a set temperature is set for each of the plurality of zones, and the controller 700 controls the heater 313 so that the temperature detected by the temperature detector 314 becomes the set temperature.
  • the nozzle 320 is provided at the front end of the cylinder 310 and pressed against the mold device 800 .
  • a heater 313 and a temperature detector 314 are provided around the nozzle 320 .
  • the controller 700 controls the heater 313 so that the detected temperature of the nozzle 320 becomes the set temperature.
  • the screw 330 is arranged in the cylinder 310 so as to be rotatable and advanceable.
  • the molding material is sent forward along the helical groove of the screw 330 .
  • the molding material is gradually melted by the heat from the cylinder 310 while being fed forward.
  • the screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 . After that, when the screw 330 is advanced, the liquid molding material accumulated in front of the screw 330 is injected from the nozzle 320 and filled in the mold device 800 .
  • a backflow prevention ring 331 is movably attached to the front of the screw 330 as a backflow prevention valve that prevents backflow of the molding material from the front to the rear of the screw 330 when the screw 330 is pushed forward.
  • the anti-backflow ring 331 is pushed backward by the pressure of the molding material in front of the screw 330 when the screw 330 is advanced, and is relatively to the screw 330 until it reaches a closed position (see FIG. 2) that blocks the flow path of the molding material. fall back. This prevents the molding material accumulated in front of the screw 330 from flowing backward.
  • the anti-backflow ring 331 is pushed forward by the pressure of the molding material sent forward along the helical groove of the screw 330 when the screw 330 is rotated, and is in an open position where the flow path of the molding material is opened. (see FIG. 1) relative to the screw 330. Thereby, the molding material is sent forward of the screw 330 .
  • the anti-backflow ring 331 may be either a co-rotating type that rotates together with the screw 330 or a non-co-rotating type that does not rotate together with the screw 330 .
  • the injection device 300 may have a drive source that advances and retracts the backflow prevention ring 331 with respect to the screw 330 between the open position and the closed position.
  • the metering motor 340 rotates the screw 330 .
  • the drive source for rotating the screw 330 is not limited to the metering motor 340, and may be, for example, a hydraulic pump.
  • the injection motor 350 moves the screw 330 forward and backward. Between the injection motor 350 and the screw 330, a motion conversion mechanism or the like that converts the rotary motion of the injection motor 350 into the linear motion of the screw 330 is provided.
  • the motion conversion mechanism has, for example, a screw shaft and a screw nut screwed onto the screw shaft. Balls, rollers, or the like may be provided between the screw shaft and the screw nut.
  • the drive source for advancing and retreating the screw 330 is not limited to the injection motor 350, and may be, for example, a hydraulic cylinder.
  • a load detector 360 detects the load transmitted between the injection motor 350 and the screw 330 .
  • the detected load is converted into pressure by the control device 700 .
  • the load detector 360 is provided in a load transmission path between the injection motor 350 and the screw 330 and detects the load acting on the load detector 360 .
  • the load detector 360 sends a detected load signal to the control device 700 .
  • the load detected by the load detector 360 is converted into the pressure acting between the screw 330 and the molding material, the pressure received by the screw 330 from the molding material, the back pressure on the screw 330, and the pressure acting on the molding material from the screw 330. Used for control and monitoring of pressure, etc.
  • the pressure detector that detects the pressure of the molding material is not limited to the load detector 360, and a general one can be used.
  • a nozzle pressure sensor or a mold internal pressure sensor may be used.
  • a nozzle pressure sensor is installed at the nozzle 320 .
  • the mold internal pressure sensor is installed inside the mold apparatus 800 .
  • the injection device 300 Under the control of the control device 700, the injection device 300 performs a weighing process, a filling process, a holding pressure process, and the like.
  • the filling process and the holding pressure process may collectively be called an injection process.
  • the weighing motor 340 is driven to rotate the screw 330 at a set rotation speed, and the molding material is fed forward along the helical groove of the screw 330. Along with this, the molding material is gradually melted.
  • the screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 .
  • the rotation speed of the screw 330 is detected using a metering motor encoder 341, for example.
  • Weighing motor encoder 341 detects the rotation of weighing motor 340 and sends a signal indicating the detection result to control device 700 .
  • the screw rotation speed detector for detecting the rotation speed of the screw 330 is not limited to the weighing motor encoder 341, and a general one can be used.
  • the injection motor 350 may be driven to apply a set back pressure to the screw 330 in order to limit rapid retraction of the screw 330 .
  • the back pressure on the screw 330 is detected using a load detector 360, for example.
  • the metering process is completed when the screw 330 is retracted to the metering completion position and a predetermined amount of molding material is accumulated in front of the screw 330 .
  • the position and rotational speed of the screw 330 in the moving direction in the weighing process are collectively set as a series of setting conditions. For example, a weighing start position, rotation speed switching position, and weighing completion position are set. These positions are arranged in this order from the front side to the rear side, and represent the start point and end point of the section in which the rotational speed is set. A rotation speed is set for each section.
  • the rotational speed switching position may be one or plural. The rotation speed switching position does not have to be set. Also, the back pressure is set for each section.
  • the injection motor 350 is driven to advance the screw 330 at a set movement speed, and the liquid molding material accumulated in front of the screw 330 is filled into the cavity space 801 in the mold device 800 .
  • the position and moving speed of the screw 330 are detected using an injection motor encoder 351, for example.
  • the injection motor encoder 351 detects rotation of the injection motor 350 and sends a signal indicating the detection result to the control device 700 .
  • V/P switching switching from the filling process to the holding pressure process
  • the position at which V/P switching takes place is also called the V/P switching position.
  • the set moving speed of the screw 330 may be changed according to the position of the screw 330, time, and the like.
  • the position and movement speed of the screw 330 in the filling process are collectively set as a series of setting conditions.
  • a filling start position also called an “injection start position”
  • a moving speed switching position and a V/P switching position are set. These positions are arranged in this order from the rear side to the front side, and represent the start point and end point of the section for which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural. The moving speed switching position does not have to be set.
  • the upper limit value of the pressure of the screw 330 is set for each section in which the moving speed of the screw 330 is set.
  • the pressure of screw 330 is detected by load detector 360 .
  • the screw 330 is advanced at the set travel speed.
  • the screw 330 exceeds the set pressure, the screw 330 is advanced at a moving speed slower than the set moving speed so that the pressure of the screw 330 is equal to or less than the set pressure for the purpose of mold protection.
  • the screw 330 may be temporarily stopped at the V/P switching position, and then the V/P switching may be performed. Immediately before the V/P switching, instead of stopping the screw 330, the screw 330 may be slowly advanced or slowly retracted.
  • the screw position detector for detecting the position of the screw 330 and the screw moving speed detector for detecting the moving speed of the screw 330 are not limited to the injection motor encoder 351, and general ones can be used.
  • the injection motor 350 is driven to push the screw 330 forward, and the pressure of the molding material at the front end of the screw 330 (hereinafter also referred to as “holding pressure”) is maintained at the set pressure.
  • the remaining molding material is pushed toward the mold device 800 .
  • a shortage of molding material due to cooling shrinkage in the mold apparatus 800 can be replenished.
  • the holding pressure is detected using the load detector 360, for example.
  • the set value of the holding pressure may be changed according to the elapsed time from the start of the holding pressure process.
  • a plurality of holding pressures and holding times for holding the holding pressure in the holding pressure step may be set respectively, and may be collectively set as a series of setting conditions.
  • the molding material in the cavity space 801 inside the mold device 800 is gradually cooled, and when the holding pressure process is completed, the entrance of the cavity space 801 is closed with the solidified molding material. This state is called a gate seal, and prevents the molding material from flowing back from the cavity space 801 .
  • the cooling process is started. In the cooling process, the molding material inside the cavity space 801 is solidified. A metering step may be performed during the cooling step for the purpose of shortening the molding cycle time.
  • the injection device 300 of the present embodiment is of the in-line screw method, it may be of the pre-plastic method or the like.
  • a pre-plastic injection apparatus supplies molding material melted in a plasticizing cylinder to an injection cylinder, and injects the molding material from the injection cylinder into a mold apparatus.
  • a screw is arranged to be rotatable and non-retractable, or a screw is arranged to be rotatable and reciprocal.
  • a plunger is arranged in the injection cylinder so that it can move back and forth.
  • the injection device 300 of the present embodiment is a horizontal type in which the axial direction of the cylinder 310 is horizontal, but may be a vertical type in which the axial direction of the cylinder 310 is vertical.
  • the mold clamping device combined with the vertical injection device 300 may be either vertical or horizontal.
  • the mold clamping device combined with the horizontal injection device 300 may be horizontal or vertical.
  • the moving direction of the screw 330 during filling (for example, the negative direction of the X-axis) is defined as forward, and the moving direction of the screw 330 during weighing (eg, the positive direction of the X-axis). is described as backward.
  • the moving device 400 advances and retreats the injection device 300 with respect to the mold device 800 . Further, the moving device 400 presses the nozzle 320 against the mold device 800 to generate nozzle touch pressure.
  • the moving device 400 includes a hydraulic pump 410, a motor 420 as a drive source, a hydraulic cylinder 430 as a hydraulic actuator, and the like.
  • the hydraulic pump 410 has a first port 411 and a second port 412 .
  • Hydraulic pump 410 is a pump that can rotate in both directions, and by switching the rotation direction of motor 420, hydraulic fluid (for example, oil) is sucked from one of first port 411 and second port 412 and discharged from the other. to generate hydraulic pressure. Note that the hydraulic pump 410 can also suck the working fluid from the tank and discharge the working fluid from either the first port 411 or the second port 412 .
  • the motor 420 operates the hydraulic pump 410 .
  • Motor 420 drives hydraulic pump 410 with a rotational direction and rotational torque according to a control signal from control device 700 .
  • Motor 420 may be an electric motor or may be an electric servomotor.
  • the hydraulic cylinder 430 has a cylinder body 431 , a piston 432 and a piston rod 433 .
  • the cylinder body 431 is fixed with respect to the injection device 300 .
  • the piston 432 partitions the inside of the cylinder body 431 into a front chamber 435 as a first chamber and a rear chamber 436 as a second chamber.
  • Piston rod 433 is fixed relative to stationary platen 110 .
  • the front chamber 435 of the hydraulic cylinder 430 is connected to the first port 411 of the hydraulic pump 410 via the first flow path 401 .
  • the hydraulic fluid discharged from the first port 411 is supplied to the front chamber 435 through the first flow path 401, thereby pushing the injection device 300 forward.
  • the injection device 300 is advanced and the nozzle 320 is pressed against the stationary mold 810 .
  • the front chamber 435 functions as a pressure chamber that generates nozzle touch pressure of the nozzle 320 by the pressure of the hydraulic fluid supplied from the hydraulic pump 410 .
  • the rear chamber 436 of the hydraulic cylinder 430 is connected to the second port 412 of the hydraulic pump 410 via the second flow path 402 .
  • the hydraulic fluid discharged from the second port 412 is supplied to the rear chamber 436 of the hydraulic cylinder 430 through the second flow path 402, thereby pushing the injection device 300 rearward.
  • the injection device 300 is retracted and the nozzle 320 is separated from the stationary mold 810 .
  • the moving device 400 includes the hydraulic cylinder 430 in this embodiment, the present invention is not limited to this.
  • an electric motor and a motion conversion mechanism that converts the rotary motion of the electric motor to the linear motion of the injection device 300 may be used instead of the hydraulic cylinder 430.
  • the control device 700 is composed of, for example, a computer, and has a CPU (Central Processing Unit) 701, a storage medium 702 such as a memory, an input interface 703, and an output interface 704, as shown in FIGS.
  • the control device 700 performs various controls by causing the CPU 701 to execute programs stored in the storage medium 702 .
  • the control device 700 also receives signals from the outside through an input interface 703 and transmits signals to the outside through an output interface 704 .
  • the control device 700 repeatedly performs a weighing process, a mold closing process, a pressurizing process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurizing process, a mold opening process, and an ejecting process, thereby producing a molded product.
  • a series of operations for obtaining a molded product for example, the operation from the start of the weighing process to the start of the next weighing process, is also called “shot” or "molding cycle”.
  • the time required for one shot is also called “molding cycle time" or "cycle time”.
  • a single molding cycle has, for example, a weighing process, a mold closing process, a pressurization process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurization process, a mold opening process, and an ejection process in this order.
  • the order here is the order of the start of each step.
  • the filling process, holding pressure process, and cooling process are performed during the clamping process.
  • the start of the clamping process may coincide with the start of the filling process. Completion of the depressurization process coincides with the start of the mold opening process.
  • the metering step may occur during the cooling step of the previous molding cycle and may occur during the clamping step.
  • the mold closing process may be performed at the beginning of the molding cycle.
  • the filling process may also be initiated during the mold closing process.
  • the ejecting process may be initiated during the mold opening process. If an on-off valve for opening and closing the flow path of the nozzle 320 is provided, the mold opening process may be initiated during the metering process. This is because the molding material does not leak from the nozzle 320 as long as the on-off valve closes the flow path of the nozzle 320 even if the mold opening process is started during the metering process.
  • One molding cycle includes processes other than the weighing process, mold closing process, pressurizing process, mold clamping process, filling process, holding pressure process, cooling process, depressurizing process, mold opening process, and ejecting process.
  • a pre-measuring suck-back process may be performed in which the screw 330 is retracted to a preset measuring start position before starting the measuring process. It is possible to reduce the pressure of molding material accumulated in front of the screw 330 before the start of the metering process, and to prevent the screw 330 from abrupt retraction at the start of the metering process.
  • a post-weighing suck-back process may be performed in which the screw 330 is retracted to a preset filling start position (also referred to as an "injection start position").
  • a preset filling start position also referred to as an "injection start position”
  • the pressure of the molding material accumulated in front of the screw 330 before the start of the filling process can be reduced, and leakage of the molding material from the nozzle 320 before the start of the filling process can be prevented.
  • the control device 700 is connected to an operation device 750 that receives user input operations and a display device 760 that displays screens.
  • the operation device 750 and the display device 760 may be configured by, for example, a touch panel 770 and integrated.
  • a touch panel 770 as a display device 760 displays a screen under the control of the control device 700 .
  • Information such as the settings of the injection molding machine 10 and the current state of the injection molding machine 10 may be displayed on the screen of the touch panel 770 .
  • an operation unit such as a button for receiving an input operation by the user or an input field may be displayed.
  • a touch panel 770 as the operation device 750 detects an input operation on the screen by the user and outputs a signal corresponding to the input operation to the control device 700 .
  • the user can operate the operation unit provided on the screen while confirming the information displayed on the screen to set the injection molding machine 10 (including input of set values). can.
  • the user can operate the operation unit provided on the screen to cause the injection molding machine 10 to operate corresponding to the operation unit.
  • the operation of the injection molding machine 10 may be, for example, the operation (including stopping) of the mold clamping device 100, the ejector device 200, the injection device 300, the moving device 400, and the like.
  • the operation of the injection molding machine 10 may be switching of screens displayed on the touch panel 770 as the display device 760 .
  • the operating device 750 and the display device 760 of the present embodiment are described as being integrated as the touch panel 770, they may be provided independently. Also, a plurality of operating devices 750 may be provided. The operating device 750 and the display device 760 are arranged on the operating side (Y-axis negative direction) of the mold clamping device 100 (more specifically, the stationary platen 110).
  • FIG. 3 is a diagram showing functional blocks of components of the control device 700 according to one embodiment.
  • Each functional block illustrated in FIG. 3 is conceptual and does not necessarily need to be physically configured as illustrated. All or part of each functional block can be functionally or physically distributed and integrated in arbitrary units.
  • Each processing function performed by each functional block is implemented by a program executed by the CPU 701, in whole or in part. Alternatively, each functional block may be implemented as hardware by wired logic.
  • the control device 700 includes a setting information storage section 711 , an input processing section 712 , a determination section 713 , a detection section 604 and an adjustment section 716 .
  • the setting information storage unit 711 stores various parameters that have undergone input processing or adjustment.
  • the input processing unit 712 processes information input by the user via the operation device 750 .
  • the determining unit 713 determines the position of the screw in the cylinder for specifying the amount of molding material necessary for molding the molded product in the weighing step of weighing the molding material accumulated in the cylinder 310 in injection molding.
  • a retraction speed for retracting the screw 330 is determined based on the position and the predetermined metering time.
  • a detector 604 detects the back pressure of the screw 310 during the metering process at retraction and rotation speeds.
  • the adjuster 716 adjusts the rotational speed according to the back pressure. A specific description of each configuration will be given later.
  • the weighing motor 340 rotates and the screw 330 rotates. According to the rotation, the flight (thread) of the screw 330 moves, and the resin pellets (solid molding material) filled in the thread groove of the screw 330 are sent forward.
  • the resin pellets are gradually melted by being heated by heat from heaters 313_1 to 313_5 via cylinder 310 while moving forward in cylinder 310 . Then, the resin pellets are completely melted at the tip of the cylinder 310 . Then, as the liquid molding material (resin) is fed forward of the screw 330 and accumulated in the front portion of the cylinder 310, the screw 330 retreats.
  • the controller 700 controls the injection motor 350 to retract the screw 330 at a predetermined retraction speed, and controls the metering motor 340 to rotate the screw 330 at a predetermined rotational speed. control.
  • the injection motor encoder 351 detects rotation of the injection motor 350 and transmits a signal indicating the detection result to the control device 700 .
  • the screw retraction speed detector that detects the retraction speed of the screw 330 is not limited to the injection motor encoder 351, and a general one can be used. Thereby, the control device 700 can control the screw 330 to reach a predetermined retraction speed.
  • the weighing motor encoder 341 detects rotation of the weighing motor 340 and transmits a signal indicating the detection result to the control device 700 .
  • the screw rotation speed detector that detects the rotation speed of the screw 330 is not limited to the weighing motor encoder 341, and a general one can be used. Thereby, the control device 700 can control the screw 330 to have a predetermined rotational speed.
  • the load detector 360 detects back pressure on the screw 330 and transmits a signal indicating the detection result to the control device 700 .
  • a general load detector that detects the back pressure of the screw 330 can be used.
  • control device 700 of this embodiment adjusts the rotational speed of the screw 330 so that the back pressure detected by the load detector 360 becomes an appropriate value in the second half of the weighing process.
  • the back pressure is controlled to be constant. is completed.
  • the retraction speed and the rotation speed of the screw 330 are set in advance, but it is difficult for the user to perform the setting, and requires time and effort. For this reason, depending on the settings, the mold apparatus 800 may be underfilled or overfilled with the molding material.
  • control device 700 reduces the burden of setting the reverse speed and rotation speed.
  • the input processing unit 712 inputs and processes parameters and the like set by the user via the operation device 750 and necessary for molding the molded product. For example, the input processor 712 processes inputs for settings related to metering position, cooling time, and set back pressure and cycle.
  • the user specifies the cooling time required for cooling the molded product based on the type of molding material, the thickness of the molded product, etc., and inputs the cooling time from the operation device 750 .
  • the cooling time may be set automatically. For example, even if the input processing unit 712 inputs the thickness of the molded product, the type of molding material, etc., and the determination unit 713 determines the cooling time based on the thickness of the molded product, the type of molding material, etc. good.
  • the metering position refers to the position of the screw 330 in the cylinder 310 when the metering process is completed in the metering process of metering the molding material accumulated in the cylinder 310, in other words, the position of the screw 330 in the cylinder 310 when the molding material necessary for molding the molded product is accumulated.
  • the position of the screw 330 is shown after it has been moved to
  • the metering position is determined from the metering start position of the screw 330 and the stroke amount of the screw 330 for accumulating the molding material necessary for molding the molded article.
  • the weighing start position is determined according to the embodiment.
  • the stroke amount of screw 330 can be derived from the weight of the molded product. Therefore, the user can specify the weighing position at the completion of weighing from the start position and stroke amount of the screw 330 at the time of weighing.
  • the set back pressure is specified by the user based on the type of molding material and the shape of the molded product. Then, the user inputs the set back pressure from the operation device 750 .
  • the set back pressure is the value determined as the reference for the back pressure detected when weighing is completed. In this embodiment, it is necessary to adjust the rotational speed of the screw 330 and the like so that the set back pressure is 50% to 100% when metering is completed.
  • the determination unit 713 determines the input processed cooling time as the measurement time.
  • the determination unit 713 determines the weighing position determined based on the amount of molding material to be filled for molding the molded product in the weighing step of weighing the molding material accumulated in the cylinder 310, and the cooling time. Based on the determined metering time, the retraction speed of the screw 330 moving within the cylinder 310 for accumulating molding material is determined. The stroke amount is determined from the metering position as described above. Therefore, for example, the determination unit 713 can determine the backward speed by dividing the stroke amount by the measurement time.
  • the input processing unit 712 inputs and processes the initial value of the rotational speed of the screw 330 from the user.
  • the initial value of the rotation speed of the screw 330 is set by the user according to the type of molding material, the amount of molding material, and the like. Note that the initial value of the rotation speed is not limited to the example set by the user.
  • the determination unit 713 may determine a rotation speed stored in advance as the initial value of the rotation speed. The rotation speed is adjusted to an appropriate value according to the subsequent configuration. Therefore, the initial value of the rotational speed may be any value.
  • the setting information storage unit 711 stores information necessary for the weighing process.
  • the set information storage unit 711 stores set back pressure, retraction speed, and rotation speed. It is assumed that the set back pressure to be stored is a value input and processed by the input processing unit 712 .
  • the reverse speed to be stored is the value determined by determination unit 713 .
  • the rotational speed to be stored may be the rotational speed input by the input processing unit 712 .
  • the stored rotation speed is updated each time the adjustment unit 716 adjusts it.
  • the setting information storage unit 711 of this embodiment stores the set back pressure, the retraction speed, and the rotational speed after adjustment. As a result, in the subsequent processing, by reading the parameters from the setting information storage unit 711, the settings for molding the molded product can be automated.
  • the acquisition unit 714 acquires the retraction speed of the screw 330 based on the rotation speed of the injection motor 350 detected by the injection motor encoder 351 . Also, the acquisition unit 714 acquires the actual rotation speed of the screw 330 based on the number of revolutions of the weighing motor 340 detected by the weighing motor encoder 341 .
  • the control unit 715 controls the injection motor 350 so that the actual retraction speed of the screw 330 acquired by the acquisition unit 714 becomes the retraction speed stored in the setting information storage unit 711 .
  • control unit 715 controls the weighing motor 340 so that the actual rotation speed of the screw 330 acquired by the acquisition unit 714 becomes the rotation speed stored in the setting information storage unit 711 .
  • the acquisition unit 714 acquires the back pressure of the screw 330 from the load detector 360 when the screw 330 is controlled by the control unit 715 so as to follow the backward speed and the predetermined rotation speed in the weighing process. .
  • the acquisition unit 714 acquires the back pressure when the weighing process is completed.
  • the adjustment unit 716 adjusts the rotation speed based on the back pressure obtained when the weighing process is completed.
  • the adjustment unit 716 rotates so that the back pressure detected when the weighing process is completed is within the range of 50% to 100% of the set back pressure determined as the reference at the time of completion of weighing. Adjust speed.
  • the control unit 715 controls the weighing motor 340 so as to achieve the adjusted rotational speed. By repeating this process, the rotation speed can be adjusted so that the back pressure detected when the weighing process is completed is reduced.
  • the back pressure detected when weighing is started is unstable, so the rotation speed is adjusted based on the back pressure acquired when weighing is completed.
  • FIG. 4 is a diagram illustrating a case where the back pressure acquired by the acquisition unit 714 according to this embodiment is higher than the set back pressure.
  • rotational speed 1401, metering position 1402, and back pressure 1403 are used.
  • the controller 715 controls the metering motor 340 to increase the rotational speed R1 of the screw 330 from the metering start time '0', and then maintain the rotational speed R1.
  • the control unit 715 controls the injection motor 350 to retract the screw 330 to the metering position Pf at the metering completion time tf. Then, the control unit 715 terminates the retraction control of the screw 330 and reduces the rotational speed to '0'.
  • the measurement time from the start of measurement to the measurement completion time tf is set to be equal to or shorter than the cooling time.
  • the acquisition unit 714 acquires a back pressure higher than the set back pressure of 100% (see back pressure 1403 in FIG. 4). For this reason, the adjustment unit 716 determines overfilling, and adjusts the next rotation speed to be lower than the rotation speed R1.
  • FIG. 5 is a diagram illustrating a case where the back pressure acquired by the acquisition unit 714 according to this embodiment is lower than the set back pressure of 50%.
  • the rotation speed is 1501 and the back pressure is 1503 . Since the retraction speed is the same as in FIG. 4, the metering position 1402 is the same as in FIG.
  • control unit 715 controls metering motor 340 to increase rotational speed of screw 330 from metering start time '0' to rotational speed R2 (rotational speed R2 ⁇ rotational speed R1). Maintain the rotational speed R2.
  • the control unit 715 controls the injection motor 350 to retract the screw 330 to the metering position Pf at the metering completion time tf. Then, the control unit 715 terminates the retraction control of the screw 330 and reduces the rotational speed to '0'.
  • the acquisition unit 714 acquires back pressure lower than the set back pressure of 50% (see back pressure 1503 in FIG. 5). Therefore, the adjustment unit 716 determines that the fuel is underfilled, and adjusts the next rotation speed to be higher than the rotation speed R2.
  • FIG. 6 is a diagram illustrating a case where the back pressure acquired by the acquisition unit 714 according to this embodiment is within the range of 50% to 100% of the set back pressure.
  • the rotation speed is 1601 and the back pressure is 1603 . Since the retraction speed is the same as in FIGS. 4 and 5, the metering position 1402 is the same as in FIGS.
  • control unit 715 controls metering motor 340 to increase rotational speed of screw 330 from metering start time '0' to rotational speed R3 (rotational speed R2 ⁇ rotational speed R3 ⁇ rotational speed R1). After that, the rotational speed R3 is maintained.
  • the control unit 715 controls the injection motor 350 to retract the screw 330 to the metering position Pf at the metering completion time tf. Then, the control unit 715 terminates the retraction control of the screw 330 and reduces the rotational speed to '0'.
  • the acquisition unit 714 acquires the back pressure within the set back pressure range of 50% to 100% (see back pressure 1603 in FIG. 6). Therefore, the adjustment unit 716 determines that the rotation speed has been adjusted to an appropriate value, and stores the rotation speed R3 in the setting information storage unit 711 . This completes the rotation speed adjustment.
  • FIG. 7 is a flow chart showing a parameter setting process for use in reverse speed control in the metering process in the control device 700 according to this embodiment. It is assumed that the molded product, the type of molding material, and the cycle have already been determined before setting the parameters.
  • the input processing unit 712 inputs parameters and the like necessary for molding a molded product from the user via the operation device 750 (S701).
  • Parameters include, for example, set back pressure, cooling time, metering position, initial value of rotation speed, and settings for cycles.
  • the determining unit 713 determines the cooling time as the metering time, and calculates the initial retraction speed of the screw 330 moving inside the cylinder 310 based on the metering position and the metering time (S702).
  • the measurement time is stored in the setting information storage unit 711 .
  • control unit 715 controls the molding process including the weighing step in which the screw 330 is retracted at the initial retraction speed (S703).
  • the determining unit 713 adjusts the retraction speed based on the control result of the molding process in S703 so that the weighing is completed within the weighing period (S704: an example of the determining step).
  • the adjusted reverse speed is stored in the setting information storage unit 711 .
  • control unit 715 controls the forming process including the metering step in which the screw 330 is retracted at the retraction speed adjusted in S704 (S705).
  • the acquisition unit 714 acquires the back pressure at the weighing completion time tf from the load detector 360 (S706: an example of the acquisition process).
  • the adjustment unit 716 determines whether the acquired back pressure is within the range of 50% to 100% of the set back pressure (S707).
  • the adjustment unit 716 determines whether the acquired back pressure is greater than 100% of the set back pressure. (S708). If it is determined that the acquired back pressure is greater than 100% of the set back pressure (S708: Yes), the rotational speed of the screw 330 is adjusted to decrease by a predetermined value (S709: an example of an adjustment process). After that, the process is performed again from S705.
  • the adjustment unit 716 determines that the acquired back pressure is not greater than 100% of the set back pressure (S708: No), it is not greater than 100% of the set back pressure and 50% to 100% of the set back pressure. %, it is determined that the back pressure is less than 50% of the set back pressure, and the rotational speed of the screw 330 is increased by a predetermined value (S710: an example of an adjustment process). After that, the process is performed again from S705.
  • FIG. 8 is a flowchart showing a parameter setting process when the control device 700 according to the present embodiment switches from back pressure control to backward speed control in the metering process. In the example shown in FIG. 8, it is assumed that the setting for back pressure control has already been performed.
  • control unit 715 performs a forming process including a weighing process by back pressure control (S801).
  • the input processing unit 712 receives input from the user via the operation device 750 to switch from back pressure control to reverse speed control (S802).
  • the decision unit decides the set back pressure, the metering position, the cooling time, the initial values of the rotation speed, etc., based on the results of the back pressure control (S803).
  • the set back pressure is set, for example, based on the back pressure set for back pressure control.
  • the weighing position is set to the same position as during back pressure control.
  • the cooling time is also set in the same manner as in back pressure control.
  • the initial value of the rotation speed is also set to the rotation speed during back pressure control. It should be noted that these parameters are not limited to the method of determining them based on the results of back pressure control, and may be changed by the user.
  • the determination unit 713 calculates the initial retraction speed of the screw 330 moving within the cylinder 310 based on the actual value of the metering time and the metering position (S804).
  • the control device 700 having the configuration described above, can set an appropriate reverse speed and rotation speed, thereby reducing the setting burden on the user.
  • the mold device 800 can be prevented from being underfilled or overfilled with the molding material, the burden on the mold device 800 can be reduced.

Abstract

射出成形機の制御装置は、決定部と、取得部と、調整部と、を有する。決定部は、射出成形を行うためにシリンダに蓄積される成形材料を計量する計量工程において、成形品の成形に必要な成形材料を蓄積するために移動した後のシリンダ内のスクリュの位置を示した計量位置と、予め定められた計量時間と、に基づいて、当該スクリュを後退させる後退速度を決定する。取得部は、計量工程において、後退速度及び予め定められた回転速度に従うようにスクリュが制御されている時のスクリュの背圧を取得する。調整部は、背圧に従って、回転速度を調整する。

Description

射出成形機の制御装置、射出成形機、及び制御方法
 本発明は、射出成形機の制御装置、射出成形機、及び制御方法に関する。
 通常の射出成形機においては、計量工程において、スクリュを回転させて成形材料をスクリュの先端側に送り込むことで生じる背圧を一定になるよう制御している。しかしながら、計量工程においては、成形材料の種類によっては背圧がある値に達するまで長時間を要することがある。このような成形材料を用いる場合、スクリュへの成形材料の背圧が発生しにくい。この場合、成形が不安定になる可能性がある。
 そこで、背圧の代わりに、スクリュの後退速度を設定して成形品を成形する技術が提案されている。例えば、特許文献1は、所定の速度でスクリュの後退移動及び回転制御を行った後に計量完了位置近傍において位置偏差及び背圧の偏差に基づいて回転速度を調整する技術が記載されている。
特開2004-154988公報
 特許文献1に記載された技術では、予め設定された後退速度及び回転速度を用いて制御を行うことで生じる偏差を計量完了位置の近傍で調整することで、計量の精度を向上させている。しかしながら、スクリュの後退移動及び回転制御を所定の速度で行う場合に、速度を設定するのが難しいという問題がある。
 本発明の一態様は、スクリュの回転速度及び後退速度を適切な値になるように設定することで、成形品の成形の安定性を向上させる技術を提供する。
 本発明の一態様に係る射出成形機の制御装置は、決定部と、取得部と、調整部と、を有する。決定部は、射出成形を行うためにシリンダに蓄積される成形材料を計量する計量工程において、成形品の成形に必要な成形材料を蓄積するために移動した後のシリンダ内のスクリュの位置を示した計量位置と、予め定められた計量時間と、に基づいて、当該スクリュを後退させる後退速度を決定する。取得部は、計量工程において、後退速度及び予め定められた回転速度に従うようにスクリュが制御されている時のスクリュの背圧を取得する。調整部は、背圧に従って、回転速度を調整する。
 本発明の一態様によれば、スクリュの回転速度及び後退速度を適切な値になるように設定することで、成形品の成形の安定性を向上させる。
図1は、一実施形態に係る射出成形機の型開完了時の状態を示す図である。 図2は、一実施形態に係る射出成形機の型締時の状態を示す図である。 図3は、一実施形態に係る制御装置の構成要素を機能ブロックで示す図である。 図4は、第1の実施形態に係る取得部が取得した背圧が設定背圧より高い場合を例示した図である。 図5は、第1の実施形態に係る取得部が取得した背圧が設定背圧50%より低い場合を例示した図である。 図6は、第1の実施形態に係る取得部が取得した背圧が設定背圧50%~100%の範囲内の場合を例示した図である。 図7は、第1の実施形態に係る制御装置において計量工程の後退速度制御で用いるパラメータの設定処理を示したフローチャートである。 図8は、第1の実施形態に係る制御装置において計量工程で背圧制御から後退速度制御に切り替えた場合のパラメータの設定処理を示したフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の又は対応する符号を付し、説明を省略することがある。
 図1は、一実施形態に係る射出成形機の型開完了時の状態を示す図である。図2は、一実施形態に係る射出成形機の型締時の状態を示す図である。本明細書において、X軸方向、Y軸方向およびZ軸方向は互いに垂直な方向である。X軸方向およびY軸方向は水平方向を表し、Z軸方向は鉛直方向を表す。型締装置100が横型である場合、X軸方向は型開閉方向であり、Y軸方向は射出成形機10の幅方向である。Y軸方向負側を操作側と呼び、Y軸方向正側を反操作側と呼ぶ。
 図1~図2に示すように、射出成形機10は、金型装置800を開閉する型締装置100と、金型装置800で成形された成形品を突き出すエジェクタ装置200と、金型装置800に成形材料を射出する射出装置300と、金型装置800に対し射出装置300を進退させる移動装置400と、射出成形機10の各構成要素を制御する制御装置700と、射出成形機10の各構成要素を支持するフレーム900とを有する。フレーム900は、型締装置100を支持する型締装置フレーム910と、射出装置300を支持する射出装置フレーム920とを含む。型締装置フレーム910および射出装置フレーム920は、それぞれ、レベリングアジャスタ930を介して床2に設置される。射出装置フレーム920の内部空間に、制御装置700が配置される。以下、射出成形機10の各構成要素について説明する。
 (型締装置)
 型締装置100の説明では、型閉時の可動プラテン120の移動方向(例えばX軸正方向)を前方とし、型開時の可動プラテン120の移動方向(例えばX軸負方向)を後方として説明する。
 型締装置100は、金型装置800の型閉、昇圧、型締、脱圧および型開を行う。金型装置800は、固定金型810と可動金型820とを含む。
 型締装置100は例えば横型であって、型開閉方向が水平方向である。型締装置100は、固定金型810が取付けられる固定プラテン110と、可動金型820が取付けられる可動プラテン120と、固定プラテン110に対し可動プラテン120を型開閉方向に移動させる移動機構102と、を有する。
 固定プラテン110は、型締装置フレーム910に対し固定される。固定プラテン110における可動プラテン120との対向面に固定金型810が取付けられる。
 可動プラテン120は、型締装置フレーム910に対し型開閉方向に移動自在に配置される。型締装置フレーム910上には、可動プラテン120を案内するガイド101が敷設される。可動プラテン120における固定プラテン110との対向面に可動金型820が取付けられる。
 移動機構102は、固定プラテン110に対し可動プラテン120を進退させることにより、金型装置800の型閉、昇圧、型締、脱圧、および型開を行う。移動機構102は、固定プラテン110と間隔をおいて配置されるトグルサポート130と、固定プラテン110とトグルサポート130を連結するタイバー140と、トグルサポート130に対して可動プラテン120を型開閉方向に移動させるトグル機構150と、トグル機構150を作動させる型締モータ160と、型締モータ160の回転運動を直線運動に変換する運動変換機構170と、固定プラテン110とトグルサポート130の間隔を調整する型厚調整機構180と、を有する。
 トグルサポート130は、固定プラテン110と間隔をおいて配設され、型締装置フレーム910上に型開閉方向に移動自在に載置される。なお、トグルサポート130は、型締装置フレーム910上に敷設されるガイドに沿って移動自在に配置されてもよい。トグルサポート130のガイドは、可動プラテン120のガイド101と共通のものでもよい。
 なお、本実施形態では、固定プラテン110が型締装置フレーム910に対し固定され、トグルサポート130が型締装置フレーム910に対し型開閉方向に移動自在に配置されるが、トグルサポート130が型締装置フレーム910に対し固定され、固定プラテン110が型締装置フレーム910に対し型開閉方向に移動自在に配置されてもよい。
 タイバー140は、固定プラテン110とトグルサポート130とを型開閉方向に間隔Lをおいて連結する。タイバー140は、複数本(例えば4本)用いられてよい。複数本のタイバー140は、型開閉方向に平行に配置され、型締力に応じて伸びる。少なくとも1本のタイバー140には、タイバー140の歪を検出するタイバー歪検出器141が設けられてよい。タイバー歪検出器141は、その検出結果を示す信号を制御装置700に送る。タイバー歪検出器141の検出結果は、型締力の検出などに用いられる。
 なお、本実施形態では、型締力を検出する型締力検出器として、タイバー歪検出器141が用いられるが、本発明はこれに限定されない。型締力検出器は、歪ゲージ式に限定されず、圧電式、容量式、油圧式、電磁式などでもよく、その取付け位置もタイバー140に限定されない。
 トグル機構150は、可動プラテン120とトグルサポート130との間に配置され、トグルサポート130に対し可動プラテン120を型開閉方向に移動させる。トグル機構150は、型開閉方向に移動するクロスヘッド151と、クロスヘッド151の移動によって屈伸する一対のリンク群と、を有する。一対のリンク群は、それぞれ、ピンなどで屈伸自在に連結される第1リンク152と第2リンク153とを有する。第1リンク152は可動プラテン120に対しピンなどで揺動自在に取付けられる。第2リンク153はトグルサポート130に対しピンなどで揺動自在に取付けられる。第2リンク153は、第3リンク154を介してクロスヘッド151に取付けられる。トグルサポート130に対しクロスヘッド151を進退させると、第1リンク152と第2リンク153とが屈伸し、トグルサポート130に対し可動プラテン120が進退する。
 なお、トグル機構150の構成は、図1および図2に示す構成に限定されない。例えば図1および図2では、各リンク群の節点の数が5つであるが、4つでもよく、第3リンク154の一端部が、第1リンク152と第2リンク153との節点に結合されてもよい。
 型締モータ160は、トグルサポート130に取付けられており、トグル機構150を作動させる。型締モータ160は、トグルサポート130に対しクロスヘッド151を進退させることにより、第1リンク152と第2リンク153とを屈伸させ、トグルサポート130に対し可動プラテン120を進退させる。型締モータ160は、運動変換機構170に直結されるが、ベルトやプーリなどを介して運動変換機構170に連結されてもよい。
 運動変換機構170は、型締モータ160の回転運動をクロスヘッド151の直線運動に変換する。運動変換機構170は、ねじ軸と、ねじ軸に螺合するねじナットとを含む。ねじ軸と、ねじナットとの間には、ボールまたはローラが介在してよい。
 型締装置100は、制御装置700による制御下で、型閉工程、昇圧工程、型締工程、脱圧工程、および型開工程などを行う。
 型閉工程では、型締モータ160を駆動してクロスヘッド151を設定移動速度で型閉完了位置まで前進させることにより、可動プラテン120を前進させ、可動金型820を固定金型810にタッチさせる。クロスヘッド151の位置や移動速度は、例えば型締モータエンコーダ161などを用いて検出する。型締モータエンコーダ161は、型締モータ160の回転を検出し、その検出結果を示す信号を制御装置700に送る。
 なお、クロスヘッド151の位置を検出するクロスヘッド位置検出器、およびクロスヘッド151の移動速度を検出するクロスヘッド移動速度検出器は、型締モータエンコーダ161に限定されず、一般的なものを使用できる。また、可動プラテン120の位置を検出する可動プラテン位置検出器、および可動プラテン120の移動速度を検出する可動プラテン移動速度検出器は、型締モータエンコーダ161に限定されず、一般的なものを使用できる。
 昇圧工程では、型締モータ160をさらに駆動してクロスヘッド151を型閉完了位置から型締位置までさらに前進させることで型締力を生じさせる。
 型締工程では、型締モータ160を駆動して、クロスヘッド151の位置を型締位置に維持する。型締工程では、昇圧工程で発生させた型締力が維持される。型締工程では、可動金型820と固定金型810との間にキャビティ空間801(図2参照)が形成され、射出装置300がキャビティ空間801に液状の成形材料を充填する。充填された成形材料が固化されることで、成形品が得られる。
 キャビティ空間801の数は、1つでもよいし、複数でもよい。後者の場合、複数の成形品が同時に得られる。キャビティ空間801の一部にインサート材が配置され、キャビティ空間801の他の一部に成形材料が充填されてもよい。インサート材と成形材料とが一体化した成形品が得られる。
 脱圧工程では、型締モータ160を駆動してクロスヘッド151を型締位置から型開開始位置まで後退させることにより、可動プラテン120を後退させ、型締力を減少させる。型開開始位置と、型閉完了位置とは、同じ位置であってよい。
 型開工程では、型締モータ160を駆動してクロスヘッド151を設定移動速度で型開開始位置から型開完了位置まで後退させることにより、可動プラテン120を後退させ、可動金型820を固定金型810から離間させる。その後、エジェクタ装置200が可動金型820から成形品を突き出す。
 型閉工程、昇圧工程および型締工程における設定条件は、一連の設定条件として、まとめて設定される。例えば、型閉工程および昇圧工程におけるクロスヘッド151の移動速度や位置(型閉開始位置、移動速度切換位置、型閉完了位置、および型締位置を含む)、型締力は、一連の設定条件として、まとめて設定される。型閉開始位置、移動速度切換位置、型閉完了位置、および型締位置は、後側から前方に向けてこの順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。型締位置と型締力とは、いずれか一方のみが設定されてもよい。
 脱圧工程および型開工程における設定条件も同様に設定される。例えば、脱圧工程および型開工程におけるクロスヘッド151の移動速度や位置(型開開始位置、移動速度切換位置、および型開完了位置)は、一連の設定条件として、まとめて設定される。型開開始位置、移動速度切換位置、および型開完了位置は、前側から後方に向けて、この順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。型開開始位置と型閉完了位置とは同じ位置であってよい。また、型開完了位置と型閉開始位置とは同じ位置であってよい。
 なお、クロスヘッド151の移動速度や位置などの代わりに、可動プラテン120の移動速度や位置などが設定されてもよい。また、クロスヘッドの位置(例えば型締位置)や可動プラテンの位置の代わりに、型締力が設定されてもよい。
 ところで、トグル機構150は、型締モータ160の駆動力を増幅して可動プラテン120に伝える。その増幅倍率は、トグル倍率とも呼ばれる。トグル倍率は、第1リンク152と第2リンク153とのなす角θ(以下、「リンク角度θ」とも呼ぶ)に応じて変化する。リンク角度θは、クロスヘッド151の位置から求められる。リンク角度θが180°のとき、トグル倍率が最大になる。
 金型装置800の交換や金型装置800の温度変化などにより金型装置800の厚さが変化した場合、型締時に所定の型締力が得られるように、型厚調整が行われる。型厚調整では、例えば可動金型820が固定金型810にタッチする型タッチの時点でトグル機構150のリンク角度θが所定の角度になるように、固定プラテン110とトグルサポート130との間隔Lを調整する。
 型締装置100は、型厚調整機構180を有する。型厚調整機構180は、固定プラテン110とトグルサポート130との間隔Lを調整することで、型厚調整を行う。なお、型厚調整のタイミングは、例えば成形サイクル終了から次の成形サイクル開始までの間に行われる。型厚調整機構180は、例えば、タイバー140の後端部に形成されるねじ軸181と、トグルサポート130に回転自在に且つ進退不能に保持されるねじナット182と、ねじ軸181に螺合するねじナット182を回転させる型厚調整モータ183とを有する。
 ねじ軸181およびねじナット182は、タイバー140ごとに設けられる。型厚調整モータ183の回転駆動力は、回転駆動力伝達部185を介して複数のねじナット182に伝達されてよい。複数のねじナット182を同期して回転できる。なお、回転駆動力伝達部185の伝達経路を変更することで、複数のねじナット182を個別に回転することも可能である。
 回転駆動力伝達部185は、例えば歯車などで構成される。この場合、各ねじナット182の外周に従動歯車が形成され、型厚調整モータ183の出力軸には駆動歯車が取付けられ、複数の従動歯車および駆動歯車と噛み合う中間歯車がトグルサポート130の中央部に回転自在に保持される。なお、回転駆動力伝達部185は、歯車の代わりに、ベルトやプーリなどで構成されてもよい。
 型厚調整機構180の動作は、制御装置700によって制御される。制御装置700は、型厚調整モータ183を駆動して、ねじナット182を回転させる。その結果、トグルサポート130のタイバー140に対する位置が調整され、固定プラテン110とトグルサポート130との間隔Lが調整される。なお、複数の型厚調整機構が組合わせて用いられてもよい。
 間隔Lは、型厚調整モータエンコーダ184を用いて検出する。型厚調整モータエンコーダ184は、型厚調整モータ183の回転量や回転方向を検出し、その検出結果を示す信号を制御装置700に送る。型厚調整モータエンコーダ184の検出結果は、トグルサポート130の位置や間隔Lの監視や制御に用いられる。なお、トグルサポート130の位置を検出するトグルサポート位置検出器、および間隔Lを検出する間隔検出器は、型厚調整モータエンコーダ184に限定されず、一般的なものを使用できる。
 型締装置100は、金型装置800の温度を調節する金型温調器を有してもよい。金型装置800は、その内部に、温調媒体の流路を有する。金型温調器は、金型装置800の流路に供給する温調媒体の温度を調節することで、金型装置800の温度を調節する。
 なお、本実施形態の型締装置100は、型開閉方向が水平方向である横型であるが、型開閉方向が上下方向である竪型でもよい。
 なお、本実施形態の型締装置100は、駆動源として、型締モータ160を有するが、型締モータ160の代わりに、油圧シリンダを有してもよい。また、型締装置100は、型開閉用にリニアモータを有し、型締用に電磁石を有してもよい。
 (エジェクタ装置)
 エジェクタ装置200の説明では、型締装置100の説明と同様に、型閉時の可動プラテン120の移動方向(例えばX軸正方向)を前方とし、型開時の可動プラテン120の移動方向(例えばX軸負方向)を後方として説明する。
 エジェクタ装置200は、可動プラテン120に取付けられ、可動プラテン120と共に進退する。エジェクタ装置200は、金型装置800から成形品を突き出すエジェクタロッド210と、エジェクタロッド210を可動プラテン120の移動方向(X軸方向)に移動させる駆動機構220とを有する。
 エジェクタロッド210は、可動プラテン120の貫通穴に進退自在に配置される。エジェクタロッド210の前端部は、可動金型820のエジェクタプレート826と接触する。エジェクタロッド210の前端部は、エジェクタプレート826と連結されていても、連結されていなくてもよい。
 駆動機構220は、例えば、エジェクタモータと、エジェクタモータの回転運動をエジェクタロッド210の直線運動に変換する運動変換機構とを有する。運動変換機構は、ねじ軸と、ねじ軸に螺合するねじナットとを含む。ねじ軸と、ねじナットとの間には、ボールまたはローラが介在してよい。
 エジェクタ装置200は、制御装置700による制御下で、突き出し工程を行う。突き出し工程では、エジェクタロッド210を設定移動速度で待機位置から突き出し位置まで前進させることにより、エジェクタプレート826を前進させ、成形品を突き出す。その後、エジェクタモータを駆動してエジェクタロッド210を設定移動速度で後退させ、エジェクタプレート826を元の待機位置まで後退させる。
 エジェクタロッド210の位置や移動速度は、例えばエジェクタモータエンコーダを用いて検出する。エジェクタモータエンコーダは、エジェクタモータの回転を検出し、その検出結果を示す信号を制御装置700に送る。なお、エジェクタロッド210の位置を検出するエジェクタロッド位置検出器、およびエジェクタロッド210の移動速度を検出するエジェクタロッド移動速度検出器は、エジェクタモータエンコーダに限定されず、一般的なものを使用できる。
 (射出装置)
 射出装置300の説明では、型締装置100の説明やエジェクタ装置200の説明とは異なり、充填時のスクリュ330の移動方向(例えばX軸負方向)を前方とし、計量時のスクリュ330の移動方向(例えばX軸正方向)を後方として説明する。
 射出装置300はスライドベース301に設置され、スライドベース301は射出装置フレーム920に対し進退自在に配置される。射出装置300は、金型装置800に対し進退自在に配置される。射出装置300は、金型装置800にタッチし、金型装置800内のキャビティ空間801に成形材を充填する。射出装置300は、例えば、成形材料を加熱するシリンダ310と、シリンダ310の前端部に設けられるノズル320と、シリンダ310内に進退自在に且つ回転自在に配置されるスクリュ330と、スクリュ330を回転させる計量モータ340と、スクリュ330を進退させる射出モータ350と、射出モータ350とスクリュ330の間で伝達される荷重を検出する荷重検出器360と、を有する。
 シリンダ310は、供給口311から内部に供給された成形材料を加熱する。成形材料は、例えば樹脂などを含む。成形材料は、例えばペレット状に形成され、固体の状態で供給口311に供給される。供給口311はシリンダ310の後部に形成される。シリンダ310の後部の外周には、水冷シリンダなどの冷却器312が設けられる。冷却器312よりも前方において、シリンダ310の外周には、バンドヒータなどの加熱器313と温度検出器314とが設けられる。
 シリンダ310は、シリンダ310の軸方向(例えばX軸方向)に複数のゾーンに区分される。複数のゾーンのそれぞれに加熱器313と温度検出器314とが設けられる。複数のゾーンのそれぞれに設定温度が設定され、温度検出器314の検出温度が設定温度になるように、制御装置700が加熱器313を制御する。
 ノズル320は、シリンダ310の前端部に設けられ、金型装置800に対し押し付けられる。ノズル320の外周には、加熱器313と温度検出器314とが設けられる。ノズル320の検出温度が設定温度になるように、制御装置700が加熱器313を制御する。
 スクリュ330は、シリンダ310内に回転自在に且つ進退自在に配置される。スクリュ330を回転させると、スクリュ330の螺旋状の溝に沿って成形材料が前方に送られる。成形材料は、前方に送られながら、シリンダ310からの熱によって徐々に溶融される。液状の成形材料がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330が後退させられる。その後、スクリュ330を前進させると、スクリュ330前方に蓄積された液状の成形材料がノズル320から射出され、金型装置800内に充填される。
 スクリュ330の前部には、スクリュ330を前方に押すときにスクリュ330の前方から後方に向かう成形材料の逆流を防止する逆流防止弁として、逆流防止リング331が進退自在に取付けられる。
 逆流防止リング331は、スクリュ330を前進させるときに、スクリュ330前方の成形材料の圧力によって後方に押され、成形材料の流路を塞ぐ閉塞位置(図2参照)までスクリュ330に対し相対的に後退する。これにより、スクリュ330前方に蓄積された成形材料が後方に逆流するのを防止する。
 一方、逆流防止リング331は、スクリュ330を回転させるときに、スクリュ330の螺旋状の溝に沿って前方に送られる成形材料の圧力によって前方に押され、成形材料の流路を開放する開放位置(図1参照)までスクリュ330に対し相対的に前進する。これにより、スクリュ330の前方に成形材料が送られる。
 逆流防止リング331は、スクリュ330と共に回転する共回りタイプと、スクリュ330と共に回転しない非共回りタイプのいずれでもよい。
 なお、射出装置300は、スクリュ330に対し逆流防止リング331を開放位置と閉塞位置との間で進退させる駆動源を有していてもよい。
 計量モータ340は、スクリュ330を回転させる。スクリュ330を回転させる駆動源は、計量モータ340には限定されず、例えば油圧ポンプなどでもよい。
 射出モータ350は、スクリュ330を進退させる。射出モータ350とスクリュ330との間には、射出モータ350の回転運動をスクリュ330の直線運動に変換する運動変換機構などが設けられる。運動変換機構は、例えばねじ軸と、ねじ軸に螺合するねじナットとを有する。ねじ軸とねじナットの間には、ボールやローラなどが設けられてよい。スクリュ330を進退させる駆動源は、射出モータ350には限定されず、例えば油圧シリンダなどでもよい。
 荷重検出器360は、射出モータ350とスクリュ330との間で伝達される荷重を検出する。検出した荷重は、制御装置700で圧力に換算される。荷重検出器360は、射出モータ350とスクリュ330との間の荷重の伝達経路に設けられ、荷重検出器360に作用する荷重を検出する。
 荷重検出器360は、検出した荷重の信号を制御装置700に送る。荷重検出器360によって検出される荷重は、スクリュ330と成形材料との間で作用する圧力に換算され、スクリュ330が成形材料から受ける圧力、スクリュ330に対する背圧、スクリュ330から成形材料に作用する圧力などの制御や監視に用いられる。
 なお、成形材料の圧力を検出する圧力検出器は、荷重検出器360に限定されず、一般的なものを使用できる。例えば、ノズル圧センサ、又は型内圧センサが用いられてもよい。ノズル圧センサは、ノズル320に設置される。型内圧センサは、金型装置800の内部に設置される。
 射出装置300は、制御装置700による制御下で、計量工程、充填工程および保圧工程などを行う。充填工程と保圧工程とをまとめて射出工程と呼んでもよい。
 計量工程では、計量モータ340を駆動してスクリュ330を設定回転速度で回転させ、スクリュ330の螺旋状の溝に沿って成形材料を前方に送る。これに伴い、成形材料が徐々に溶融される。液状の成形材料がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330が後退させられる。スクリュ330の回転速度は、例えば計量モータエンコーダ341を用いて検出する。計量モータエンコーダ341は、計量モータ340の回転を検出し、その検出結果を示す信号を制御装置700に送る。なお、スクリュ330の回転速度を検出するスクリュ回転速度検出器は、計量モータエンコーダ341に限定されず、一般的なものを使用できる。
 計量工程では、スクリュ330の急激な後退を制限すべく、射出モータ350を駆動してスクリュ330に対して設定背圧を加えてよい。スクリュ330に対する背圧は、例えば荷重検出器360を用いて検出する。スクリュ330が計量完了位置まで後退し、スクリュ330の前方に所定量の成形材料が蓄積されると、計量工程が完了する。
 計量工程におけるスクリュ330の移動方向の位置および回転速度は、一連の設定条件として、まとめて設定される。例えば、計量開始位置、回転速度切換位置および計量完了位置が設定される。これらの位置は、前側から後方に向けてこの順で並び、回転速度が設定される区間の始点や終点を表す。区間毎に、回転速度が設定される。回転速度切換位置は、1つでもよいし、複数でもよい。回転速度切換位置は、設定されなくてもよい。また、区間毎に背圧が設定される。
 充填工程では、射出モータ350を駆動してスクリュ330を設定移動速度で前進させ、スクリュ330の前方に蓄積された液状の成形材料を金型装置800内のキャビティ空間801に充填させる。スクリュ330の位置や移動速度は、例えば射出モータエンコーダ351を用いて検出する。射出モータエンコーダ351は、射出モータ350の回転を検出し、その検出結果を示す信号を制御装置700に送る。スクリュ330の位置が設定位置に達すると、充填工程から保圧工程への切換(所謂、V/P切換)が行われる。V/P切換が行われる位置をV/P切換位置とも呼ぶ。スクリュ330の設定移動速度は、スクリュ330の位置や時間などに応じて変更されてもよい。
 充填工程におけるスクリュ330の位置および移動速度は、一連の設定条件として、まとめて設定される。例えば、充填開始位置(「射出開始位置」とも呼ぶ。)、移動速度切換位置およびV/P切換位置が設定される。これらの位置は、後側から前方に向けてこの順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。
 スクリュ330の移動速度が設定される区間毎に、スクリュ330の圧力の上限値が設定される。スクリュ330の圧力は、荷重検出器360によって検出される。スクリュ330の圧力が設定圧力以下である場合、スクリュ330は設定移動速度で前進される。一方、スクリュ330の圧力が設定圧力を超える場合、金型保護を目的として、スクリュ330の圧力が設定圧力以下となるように、スクリュ330は設定移動速度よりも遅い移動速度で前進される。
 なお、充填工程においてスクリュ330の位置がV/P切換位置に達した後、V/P切換位置にスクリュ330を一時停止させ、その後にV/P切換が行われてもよい。V/P切換の直前において、スクリュ330の停止の代わりに、スクリュ330の微速前進または微速後退が行われてもよい。また、スクリュ330の位置を検出するスクリュ位置検出器、およびスクリュ330の移動速度を検出するスクリュ移動速度検出器は、射出モータエンコーダ351に限定されず、一般的なものを使用できる。
 保圧工程では、射出モータ350を駆動してスクリュ330を前方に押し、スクリュ330の前端部における成形材料の圧力(以下、「保持圧力」とも呼ぶ。)を設定圧に保ち、シリンダ310内に残る成形材料を金型装置800に向けて押す。金型装置800内での冷却収縮による不足分の成形材料を補充できる。保持圧力は、例えば荷重検出器360を用いて検出する。保持圧力の設定値は、保圧工程の開始からの経過時間などに応じて変更されてもよい。保圧工程における保持圧力および保持圧力を保持する保持時間は、それぞれ複数設定されてよく、一連の設定条件として、まとめて設定されてよい。
 保圧工程では金型装置800内のキャビティ空間801の成形材料が徐々に冷却され、保圧工程完了時にはキャビティ空間801の入口が固化した成形材料で塞がれる。この状態はゲートシールと呼ばれ、キャビティ空間801からの成形材料の逆流が防止される。保圧工程後、冷却工程が開始される。冷却工程では、キャビティ空間801内の成形材料の固化が行われる。成形サイクル時間の短縮を目的として、冷却工程中に計量工程が行われてよい。
 なお、本実施形態の射出装置300は、インライン・スクリュ方式であるが、プリプラ方式などでもよい。プリプラ方式の射出装置は、可塑化シリンダ内で溶融された成形材料を射出シリンダに供給し、射出シリンダから金型装置内に成形材料を射出する。可塑化シリンダ内には、スクリュが回転自在に且つ進退不能に配置され、またはスクリュが回転自在に且つ進退自在に配置される。一方、射出シリンダ内には、プランジャが進退自在に配置される。
 また、本実施形態の射出装置300は、シリンダ310の軸方向が水平方向である横型であるが、シリンダ310の軸方向が上下方向である竪型であってもよい。竪型の射出装置300と組み合わされる型締装置は、竪型でも横型でもよい。同様に、横型の射出装置300と組み合わされる型締装置は、横型でも竪型でもよい。
 (移動装置)
 移動装置400の説明では、射出装置300の説明と同様に、充填時のスクリュ330の移動方向(例えばX軸負方向)を前方とし、計量時のスクリュ330の移動方向(例えばX軸正方向)を後方として説明する。
 移動装置400は、金型装置800に対し射出装置300を進退させる。また、移動装置400は、金型装置800に対しノズル320を押し付け、ノズルタッチ圧力を生じさせる。移動装置400は、液圧ポンプ410、駆動源としてのモータ420、液圧アクチュエータとしての液圧シリンダ430などを含む。
 液圧ポンプ410は、第1ポート411と、第2ポート412とを有する。液圧ポンプ410は、両方向回転可能なポンプであり、モータ420の回転方向を切換えることにより、第1ポート411および第2ポート412のいずれか一方から作動液(例えば油)を吸入し他方から吐出して液圧を発生させる。なお、液圧ポンプ410はタンクから作動液を吸引して第1ポート411および第2ポート412のいずれか一方から作動液を吐出することもできる。
 モータ420は、液圧ポンプ410を作動させる。モータ420は、制御装置700からの制御信号に応じた回転方向および回転トルクで液圧ポンプ410を駆動する。モータ420は、電動モータであってよく、電動サーボモータであってよい。
 液圧シリンダ430は、シリンダ本体431、ピストン432、およびピストンロッド433を有する。シリンダ本体431は、射出装置300に対して固定される。ピストン432は、シリンダ本体431の内部を、第1室としての前室435と、第2室としての後室436とに区画する。ピストンロッド433は、固定プラテン110に対して固定される。
 液圧シリンダ430の前室435は、第1流路401を介して、液圧ポンプ410の第1ポート411と接続される。第1ポート411から吐出された作動液が第1流路401を介して前室435に供給されることで、射出装置300が前方に押される。射出装置300が前進され、ノズル320が固定金型810に押し付けられる。前室435は、液圧ポンプ410から供給される作動液の圧力によってノズル320のノズルタッチ圧力を生じさせる圧力室として機能する。
 一方、液圧シリンダ430の後室436は、第2流路402を介して液圧ポンプ410の第2ポート412と接続される。第2ポート412から吐出された作動液が第2流路402を介して液圧シリンダ430の後室436に供給されることで、射出装置300が後方に押される。射出装置300が後退され、ノズル320が固定金型810から離間される。
 なお、本実施形態では移動装置400は液圧シリンダ430を含むが、本発明はこれに限定されない。例えば、液圧シリンダ430の代わりに、電動モータと、その電動モータの回転運動を射出装置300の直線運動に変換する運動変換機構とが用いられてもよい。
 (制御装置)
 制御装置700は、例えばコンピュータで構成され、図1~図2に示すようにCPU(Central Processing Unit)701と、メモリなどの記憶媒体702と、入力インターフェース703と、出力インターフェース704とを有する。制御装置700は、記憶媒体702に記憶されたプログラムをCPU701に実行させることにより、各種の制御を行う。また、制御装置700は、入力インターフェース703で外部からの信号を受信し、出力インターフェース704で外部に信号を送信する。
 制御装置700は、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、および突き出し工程などを繰り返し行うことにより、成形品を繰り返し製造する。成形品を得るための一連の動作、例えば計量工程の開始から次の計量工程の開始までの動作を「ショット」または「成形サイクル」とも呼ぶ。また、1回のショットに要する時間を「成形サイクル時間」または「サイクル時間」とも呼ぶ。
 一回の成形サイクルは、例えば、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、および突き出し工程をこの順で有する。ここでの順番は、各工程の開始の順番である。充填工程、保圧工程、および冷却工程は、型締工程の間に行われる。型締工程の開始は充填工程の開始と一致してもよい。脱圧工程の完了は型開工程の開始と一致する。
 なお、成形サイクル時間の短縮を目的として、同時に複数の工程を行ってもよい。例えば、計量工程は、前回の成形サイクルの冷却工程中に行われてもよく、型締工程の間に行われてよい。この場合、型閉工程が成形サイクルの最初に行われることとしてもよい。また、充填工程は、型閉工程中に開始されてもよい。また、突き出し工程は、型開工程中に開始されてもよい。ノズル320の流路を開閉する開閉弁が設けられる場合、型開工程は、計量工程中に開始されてもよい。計量工程中に型開工程が開始されても、開閉弁がノズル320の流路を閉じていれば、ノズル320から成形材料が漏れないためである。
 なお、一回の成形サイクルは、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、および突き出し工程以外の工程を有してもよい。
 例えば、保圧工程の完了後、計量工程の開始前に、スクリュ330を予め設定された計量開始位置まで後退させる計量前サックバック工程が行われてもよい。計量工程の開始前にスクリュ330の前方に蓄積された成形材料の圧力を削減でき、計量工程の開始時のスクリュ330の急激な後退を防止できる。
 また、計量工程の完了後、充填工程の開始前に、スクリュ330を予め設定された充填開始位置(「射出開始位置」とも呼ぶ。)まで後退させる計量後サックバック工程が行われてもよい。充填工程の開始前にスクリュ330の前方に蓄積された成形材料の圧力を削減でき、充填工程の開始前のノズル320からの成形材料の漏出を防止できる。
 制御装置700は、ユーザによる入力操作を受け付ける操作装置750や画面を表示する表示装置760と接続されている。操作装置750および表示装置760は、例えばタッチパネル770で構成され、一体化されてよい。表示装置760としてのタッチパネル770は、制御装置700による制御下で、画面を表示する。タッチパネル770の画面には、例えば、射出成形機10の設定、現在の射出成形機10の状態等の情報が表示されてもよい。また、タッチパネル770の画面には、例えば、ユーザによる入力操作を受け付けるボタン、入力欄等の操作部が表示されてもよい。操作装置750としてのタッチパネル770は、ユーザによる画面上の入力操作を検出し、入力操作に応じた信号を制御装置700に出力する。これにより、例えば、ユーザは、画面に表示される情報を確認しながら、画面に設けられた操作部を操作して、射出成形機10の設定(設定値の入力を含む)等を行うことができる。また、ユーザが画面に設けられた操作部を操作することにより、操作部に対応する射出成形機10の動作を行わせることができる。なお、射出成形機10の動作は、例えば、型締装置100、エジェクタ装置200、射出装置300、移動装置400等の動作(停止も含む)であってもよい。また、射出成形機10の動作は、表示装置760としてのタッチパネル770に表示される画面の切り替え等であってもよい。
 なお、本実施形態の操作装置750および表示装置760は、タッチパネル770として一体化されているものとして説明したが、独立に設けられてもよい。また、操作装置750は、複数設けられてもよい。操作装置750および表示装置760は、型締装置100(より詳細には固定プラテン110)の操作側(Y軸負方向)に配置される。
 図3は、一実施形態に係る制御装置700の構成要素を機能ブロックで示す図である。図3に図示される各機能ブロックは概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。各機能ブロックの全部または一部を、任意の単位で機能的または物理的に分散・統合して構成することが可能である。各機能ブロックにて行われる各処理機能は、その全部または任意の一部が、CPU701にて実行されるプログラムにて実現される。または各機能ブロックをワイヤードロジックによるハードウェアとして実現してもよい。図3に示すように、制御装置700は、設定情報記憶部711と、入力処理部712と、決定部713と、検出部604と、調整部716と、を備える。設定情報記憶部711は、入力処理又は調整等が行われた各種パラメータを記憶する。入力処理部712は、操作装置750を介してユーザに入力された情報を処理する。決定部713は、射出成形において、シリンダ310に蓄積される成形材料を計量する計量工程において、成形品を成形するために必要な成形材料の量を特定するシリンダ内のスクリュの位置を示した計量位置と、予め定められた計量時間と、に基づいて、スクリュ330を後退させる後退速度を決定する。検出部604は、後退速度及び回転速度で計量工程を行った時のスクリュの310の背圧を検出する。調整部716は、背圧に従って、回転速度を調整する。なお、各構成の具体的な説明について後述する。
 次に、射出成形機10の動作について説明する。
 計量工程では、計量モータ340が回転駆動し、スクリュ330が回転する。当該回転に従って、スクリュ330のフライト(ねじ山)が動き、スクリュ330のねじ溝内に充填された樹脂ペレット(固体状の成形材料)が前方に送られる。樹脂ペレットは、シリンダ310内を前方に移動しながら、シリンダ310を介した加熱器313_1~313_5からの熱などで加熱されることで、徐々に溶融される。そして、樹脂ペレットは、シリンダ310の先端部において完全に溶融した状態となる。そして、液状の成形材料(樹脂)がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330は後退する。
 本実施形態の計量工程において、制御装置700は、射出モータ350を制御して所定の後退速度でスクリュ330を後退させる制御とともに、計量モータ340を制御して所定の回転速度でスクリュ330を回転させる制御を行う。
 射出モータエンコーダ351は、射出モータ350の回転を検出し、その検出結果を示す信号を制御装置700に送信する。スクリュ330の後退速度を検出するスクリュ後退速度検出器は、射出モータエンコーダ351に限定されず、一般的なものを使用できる。これにより、制御装置700は、スクリュ330が所定の後退速度になるように制御できる。
 計量モータエンコーダ341は、計量モータ340の回転を検出し、その検出結果を示す信号を制御装置700に送信する。スクリュ330の回転速度を検出するスクリュ回転速度検出器は、計量モータエンコーダ341に限定されず、一般的なものを使用できる。これにより、制御装置700は、スクリュ330が所定の回転速度になるよう制御できる。
 荷重検出器360は、スクリュ330に対する背圧を検出し、その検出結果を示す信号を制御装置700に送信する。スクリュ330の背圧を検出する荷重検出器は、一般的なものを使用できる。
 そして、本実施形態の制御装置700は、荷重検出器360が検出する背圧が、計量工程の後半で適切な値になるように、スクリュ330の回転速度を調整する。
 つまり、一般的な計量工程においては、背圧を一定になるよう制御しているが、成形材料の種類や、成形品のサイズ等によっては、成形材料の背圧が一定になる前に、計測が完了する場合ある。このような場合は、予めスクリュ330の後退速度及び回転速度を設定するが、ユーザが当該設定を行うのは難しく、手間及び経験を要する。このため設定によっては、金型装置800に対して成形材料が過小充填や過充填になる可能性がある。
 そこで、本実施形態にかかる制御装置700は、後退速度及び回転速度の設定負担を軽減する。
 入力処理部712は、ユーザから操作装置750を介して設定された、成形品の成形を行うために必要なパラメータ等を入力処理する。例えば、入力処理部712は、計量位置、冷却時間、及び設定背圧の及びサイクルに関する設定について入力処理する。
 例えば、ユーザは、成形材料の種類、及び成形品の厚み等に基づいて、成形品が冷却に要する冷却時間を特定し、ユーザが操作装置750から冷却時間を入力する。本実施形態では、ユーザが冷却時間を入力する例について説明するが、自動で冷却時間を設定してもよい。例えば、入力処理部712が、成形品の厚みや、成形材料の種類等を入力処理し、決定部713が、成形品の厚みや、成形材料の種類等に基づいて冷却時間を決定してもよい。
 計量位置は、シリンダ310に蓄積される成形材料を計量する計量工程において、計量工程が完了した時のシリンダ310内のスクリュ330の位置、換言すれば、成形品の成形に必要な成形材料を蓄積するために移動した後のスクリュ330の位置を示している。計量位置は、スクリュ330の計量開始位置と、成形品の成形に必要な成形材料を蓄積するためのスクリュ330のストローク量と、から定められる。計量開始位置は、実施態様に応じて定められる。スクリュ330のストローク量は、成形品の重量から導出できる。このため、ユーザは、スクリュ330の計量時の開始位置及びストローク量から、計量完了時の計量位置を特定できる。
 設定背圧は、成形材料の種類や成形品の形状等に基づいて、ユーザが特定する。そして、ユーザが操作装置750から設定背圧を入力する。設定背圧とは、計量完了時に検出される背圧の基準として定めた値とする。本実施形態においては、計量完了時に設定背圧の50%~100%になるように、スクリュ330の回転速度等を調整が必要となる。
 決定部713は、入力処理された冷却時間を、計量時間として決定する。
 さらに、決定部713は、シリンダ310に蓄積される成形材料を計量する計量工程における、成形品を成形するための充填する成形材料の量に基づいて定められた計量位置と、冷却時間に基づいて定められた計量時間と、に基づいて、シリンダ310内を移動する、成形材料を蓄積させるためのスクリュ330の後退速度を決定する。上述したように計量位置からストローク量が定められる。このため、例えば、決定部713は、当該ストローク量を、計量時間で除算することで、後退速度を決定できる。
 また、入力処理部712は、ユーザからスクリュ330の回転速度の初期値を入力処理する。スクリュ330の回転速度の初期値は、成形材料の種類や、成形材料の量などに応じてユーザが定められる値とする。なお、回転速度の初期値は、ユーザが設定する例に制限するものではなく、例えば、決定部713が、予め記憶している回転速度を、回転速度の初期値として決定してもよい。回転速度は、以降の構成によって適切な値になるように調整される。このため、回転速度の初期値は、任意の値でよい。
 設定情報記憶部711は、計量工程において必要な情報を記憶する。例えば、設定情報記憶部711は、設定背圧、後退速度、及び回転速度を記憶する。記憶される設定背圧は、入力処理部712によって入力処理された値とする。記憶される後退速度は、決定部713によって決定された値とする。記憶される回転速度は、入力処理部712によって入力された回転速度でもよい。記憶される回転速度は、調整部716によって調整される毎に、更新される。
 本実施形態の設定情報記憶部711が、設定背圧、後退速度、及び調整された後の回転速度を記憶している。これにより、以降の処理は、設定情報記憶部711からパラメータを読み出すことで、成形品を成形するための設定を自動化できる。
 取得部714は、射出モータエンコーダ351によって検出された射出モータ350の回転数に基づいて、スクリュ330の後退速度を取得する。また、取得部714は、計量モータエンコーダ341によって検出された計量モータ340の回転数に基づいて、スクリュ330の実際の回転速度を取得する。
 制御部715は、取得部714により取得された実際のスクリュ330の後退速度が、設定情報記憶部711に記憶された後退速度になるように、射出モータ350を制御する。
 また、制御部715は、取得部714により取得された実際のスクリュ330の回転速度が、設定情報記憶部711に記憶された、回転速度になるように、計量モータ340を制御する。
 そして、取得部714は、計量工程で、後退速度及び予め定められた回転速度に従うように制御部715によってスクリュ330が制御されている時に、荷重検出器360から、スクリュ330の背圧を取得する。本実施形態にかかる取得部714は、計量工程が完了した時の背圧を取得する。
 調整部716は、計量工程が完了した時に取得した背圧に基づいて、回転速度を調整する。本実施形態においては、調整部716は、計量完了時の基準として定めた設定背圧の50%~100%の範囲内に、計量工程が完了した時に検出された背圧が収まるように、回転速度を調整する。これにより次の射出成形の計量工程においては、制御部715が、調整された回転速度になるように、計量モータ340を制御する。当該処理を繰り返すことで、計量工程が完了した時に検出された背圧が収まるように、回転速度を調整できる。
 本実施形態においては、計量開始した時には検出される背圧が不安定のため、計量完了時に取得した背圧に基づいて、回転速度を調整する。
 図4は、本実施形態に係る取得部714が取得した背圧が設定背圧より高い場合を例示した図である。図4に示される例では、回転速度1401、計量位置1402、背圧1403とする。回転速度1401に示されるように、制御部715は、計量モータ340を制御して、計量開始時間'0'からスクリュ330の回転速度R1まで増加させた後、回転速度R1を維持する。当該回転制御と共に、計量位置1402に示されるように、制御部715は、射出モータ350を制御して、スクリュ330を、計量完了時間tfに計量位置Pfまで後退させる。そして、制御部715は、スクリュ330の後退制御を終了させると共に、回転速度を'0'まで低下させる。なお、計量開始から計量完了時刻tfまでの計量時間は、冷却時間と同じ又は冷却時間よりも短い時間が設定される。
 図4に示される例では、計量完了時刻tfにおいて、取得部714は、設定背圧100%より高い背圧を取得する(図4の背圧1403参照)。このため、調整部716は、過充填と判定して、次の回転速度を、回転速度R1より低くなるように調整する。
 図5は、本実施形態に係る取得部714が取得した背圧が設定背圧50%より低い場合を例示した図である。図5に示される例では、回転速度1501、背圧1503とする。後退速度は、図4と同様のため、計量位置1402は、図4と同様となる。回転速度1501に示されるように、制御部715は、計量モータ340を制御して、計量開始時間'0'からスクリュ330の回転速度R2(回転速度R2<回転速度R1)まで増加させた後、回転速度R2を維持する。当該回転制御と共に、計量位置1402に示されるように、制御部715は、射出モータ350を制御して、スクリュ330を、計量完了時間tfに計量位置Pfまで後退させる。そして、制御部715は、スクリュ330の後退制御を終了させると共に、回転速度を'0'まで低下させる。
 図5に示される例では、計量完了時刻tfにおいて、取得部714は、設定背圧50%より低い背圧を取得する(図5の背圧1503参照)。このため、調整部716は、過小充填と判定して、次の回転速度を、回転速度R2より高くなるように調整する。
 図6は、本実施形態に係る取得部714が取得した背圧が設定背圧50%~100%の範囲内の場合を例示した図である。図6に示される例では、回転速度1601、背圧1603とする。後退速度は、図4、図5と同様のため、計量位置1402は、図4、図5と同様となる。回転速度1601に示されるように、制御部715は、計量モータ340を制御して、計量開始時間'0'からスクリュ330の回転速度R3(回転速度R2<回転速度R3<回転速度R1)まで増加させた後、回転速度R3を維持する。当該回転制御と共に、計量位置1402に示されるように、制御部715は、射出モータ350を制御して、スクリュ330を、計量完了時間tfに計量位置Pfまで後退させる。そして、制御部715は、スクリュ330の後退制御を終了させると共に、回転速度を'0'まで低下させる。
 計量完了時刻tfにおいて、取得部714は、設定背圧50%~100%の範囲内の背圧を取得する(図6の背圧1603参照)。このため、調整部716は、適切な回転速度に調整されたものと判定し、回転速度R3を設定情報記憶部711に記憶する。これにより、回転速度の調整は終了する。
 次に、制御装置700において計量工程の後退速度制御で用いるパラメータの設定処理について説明する。図7は、本実施形態に係る制御装置700において計量工程の後退速度制御で用いるパラメータの設定処理を示したフローチャートである。パラメータの設定を行う前に、成形品、成形材料の種類、及びサイクルはすでに決定されているものとする。
 まず、入力処理部712は、ユーザから操作装置750を介して、成形品の成形を行うために必要なパラメータ等を入力処理する(S701)。パラメータとしては、例えば、設定背圧、冷却時間、計量位置、回転速度の初期値、及びサイクルに関する設定が含まれる。
 決定部713は、冷却時間を計量時間として決定すると共に、計量位置と計量時間とに基づいて、シリンダ310内を移動するスクリュ330の初期後退速度を算出する(S702)。計量時間は、設定情報記憶部711に記憶される。
 そして、制御部715が、初期後退速度でスクリュ330を後退させた計量工程を含んだ成形処理を制御する(S703)。
 そして、決定部713は、S703の成形処理の制御結果から、計量期間内に計量が完了するように、後退速度を調整する(S704:決定工程の一例)。調整した後退速度は、設定情報記憶部711に記憶される。
 その後、制御部715が、S704で調整された後退速度でスクリュ330を後退させた計量工程を含んだ成形処理を制御する(S705)。
 取得部714は、荷重検出器360から、計量完了時刻tfにおける背圧を取得する(S706:取得工程の一例)。
 調整部716は、取得した背圧が設定背圧の50%~100%の範囲内か判定する(S707)。
 調整部716は、取得した背圧が設定背圧の50%~100%の範囲外と判定した場合(S707:No)、取得した背圧が設定背圧の100%より大きいか否かを判定する(S708)。取得した背圧が設定背圧の100%より大きいと判定した場合(S708:Yes)、スクリュ330の回転速度を所定値下げる調整を行う(S709:調整工程の一例)。その後、再びS705から処理を行う。
 一方、調整部716は、取得した背圧が設定背圧の100%より大きくないと判定した場合(S708:No)、設定背圧の100%より大きくなく、且つ設定背圧の50%~100%の範囲外である以上、設定背圧の50%より小さいと判定し、スクリュ330の回転速度を所定値上げる調整を行う(S710:調整工程の一例)。その後、再びS705から処理を行う。
 その後、S707において、調整部716が、取得した背圧が設定背圧の50%~100%の範囲内と判定した場合、現在のスクリュ330の回転速度を設定情報記憶部711に記憶し、処理を終了する。
 上述した制御を行うことで、計量工程完了時に適切な背圧になるような後退速度、及び回転速度を設定することができる。
 上述した処理手順では、ユーザに入力されたパラメータに基づいて最初から後退速度の制御を行う場合について説明した。上述した処理手順は射出成形機の制御方法の一例として示したもので、後退速度制御を最初から行う手法に制限するものではない。射出成形機の制御方法としては、例えば、通常の背圧制御から、後退速度制御に切り替えてもよい。そこで、次に、背圧制御から後退速度制御に切り替える場合について説明する。
 図8は、本実施形態に係る制御装置700において計量工程で背圧制御から後退速度制御に切り替えた場合のパラメータの設定処理を示したフローチャートである。図8に示す例では、背圧制御のための設定は既に行われているものとする。
 まず、制御部715が、背圧制御による計量工程を含んだ形成処理を行う(S801)。
 入力処理部712は、ユーザから操作装置750を介して、背圧制御から、後退速度制御に切り替える入力を受け付ける(S802)。
 決定部は、背圧制御時の実績から、設定背圧、計量位置、冷却時間、及び回転速度の初期値等を決定する(S803)。設定背圧は、例えば、背圧制御用に設定された背圧を基準に設定される。計量位置は、背圧制御時と同様の位置が設定される。冷却時間も背圧制御時と同様の時間が設定される。回転速度の初期値も背圧制御時の回転速度が設定される。なお、これらのパラメータは、背圧制御時の実績に基づいて決定する手法に制限するものではなく、ユーザが変更等を行ってもよい。
 そして、決定部713は、計量時間の実績値、及び計量位置に基づいて、シリンダ310内を移動するスクリュ330の初期後退速度を算出する(S804)。
 以降の処理は、図7のS703~S710と同様の処理を行うことで、回転速度の調整まで完了する(S805~S812)。
 本実施形態にかかる制御装置700は、上述した構成を備えることで、適切な後退速度及び回転速度を設定できるので、ユーザの設定負担を軽減できる。
 さらに、金型装置800に対して成形材料が過小充填や過充填を抑止できるので、金型装置800に対する負担を軽減できる。
 以上、本発明に係る射出成形機の制御装置、射出成形機、及び制御方法の実施形態について説明したが、本発明は上記実施形態などに限定されない。請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本発明の技術的範囲に属する。
 本願は、2021年3月31日に出願した日本国特許出願2021-062316号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
10・・・射出成形機 300・・・射出装置 330・・・スクリュ 340・・・計量モータ 350・・・射出モータ 700・・・制御装置 711・・・設定情報記憶部 712・・・入力処理部 713・・・決定部 714・・・取得部 715・・・制御部 716・・・調整部

Claims (5)

  1.  射出成形を行うためにシリンダに蓄積される成形材料を計量する計量工程において、成形品の成形に必要な成形材料を蓄積するために移動した後の前記シリンダ内のスクリュの位置を示した計量位置と、予め定められた計量時間と、に基づいて、当該スクリュを後退させる後退速度を決定する決定部と、
     前記計量工程において、前記後退速度及び予め定められた回転速度に従うように前記スクリュが制御されている時の前記スクリュの背圧を取得する取得部と、
     前記背圧に従って、前記回転速度を調整する調整部と、
     を有する、射出成形機の制御装置。
  2.  前記取得部は、前記計量工程が完了した時の前記背圧を取得する、
     請求項1に記載の射出成形機の制御装置。
  3.  前記決定部による前記後退速度の決定に用いる前記計量時間は、前記成形材料が充填される金型装置の冷却時間に基づいて定められている、
     請求項1に記載の射出成形機の制御装置。
  4.  射出成形を行うためにシリンダに蓄積される成形材料を計量する計量工程において、成形品の成形に必要な成形材料を蓄積するために移動した後の前記シリンダ内のスクリュの位置を示した計量位置と、予め定められた計量時間と、に基づいて、当該スクリュを後退させる後退速度を決定する決定部と、
     前記計量工程において、前記後退速度及び予め定められた回転速度に従うように前記スクリュが制御されている時の前記スクリュの背圧を取得する取得部と、
     前記背圧に従って、前記回転速度を調整する調整部と、
     を有する、射出成形機。
  5.  射出成形を行うためにシリンダに蓄積される成形材料を計量する計量工程において、成形品を成形するために必要な成形材料の量を特定する前記シリンダ内のスクリュの位置を示した計量位置と、予め定められた計量時間と、に基づいて、当該スクリュを後退させる後退速度を決定する決定工程と、
     前記計量工程において、前記後退速度及び予め定められた回転速度に従うように前記スクリュが制御されている時の前記スクリュの背圧を取得する取得工程と、
     前記背圧に従って、前記回転速度を調整する調整工程と、
     を有する、射出成形機の制御方法。
PCT/JP2022/016305 2021-03-31 2022-03-30 射出成形機の制御装置、射出成形機、及び制御方法 WO2022210979A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023511532A JPWO2022210979A1 (ja) 2021-03-31 2022-03-30
DE112022001896.8T DE112022001896T5 (de) 2021-03-31 2022-03-30 Steuervorrichtung für spritzgiessmaschine, spritzgiessmaschine und steuerverfahren
CN202280009107.5A CN116745095A (zh) 2021-03-31 2022-03-30 注射成型机、注射成型机的控制装置及控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-062316 2021-03-31
JP2021062316 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210979A1 true WO2022210979A1 (ja) 2022-10-06

Family

ID=83459636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016305 WO2022210979A1 (ja) 2021-03-31 2022-03-30 射出成形機の制御装置、射出成形機、及び制御方法

Country Status (4)

Country Link
JP (1) JPWO2022210979A1 (ja)
CN (1) CN116745095A (ja)
DE (1) DE112022001896T5 (ja)
WO (1) WO2022210979A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577287A (ja) * 1991-05-24 1993-03-30 Niigata Eng Co Ltd 電動式射出成形機の材料供給制御装置
JPH05212762A (ja) * 1992-02-03 1993-08-24 Sumitomo Jukikai Plast Mach Kk 射出成形機
JP2002200656A (ja) * 2001-01-05 2002-07-16 Sumitomo Heavy Ind Ltd 射出成形機の制御方法
JP2006168325A (ja) * 2004-12-20 2006-06-29 Toyo Mach & Metal Co Ltd 射出成形機の計量制御方法および射出成形機
JP2007015349A (ja) * 2005-07-11 2007-01-25 Meiki Co Ltd ディスク基板成形用射出成形機の計量方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766371B2 (ja) 2002-11-05 2006-04-12 ファナック株式会社 射出成形機の計量方法及び制御装置
JP7181176B2 (ja) 2019-10-10 2022-11-30 株式会社荏原製作所 排気システムおよび排気方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577287A (ja) * 1991-05-24 1993-03-30 Niigata Eng Co Ltd 電動式射出成形機の材料供給制御装置
JPH05212762A (ja) * 1992-02-03 1993-08-24 Sumitomo Jukikai Plast Mach Kk 射出成形機
JP2002200656A (ja) * 2001-01-05 2002-07-16 Sumitomo Heavy Ind Ltd 射出成形機の制御方法
JP2006168325A (ja) * 2004-12-20 2006-06-29 Toyo Mach & Metal Co Ltd 射出成形機の計量制御方法および射出成形機
JP2007015349A (ja) * 2005-07-11 2007-01-25 Meiki Co Ltd ディスク基板成形用射出成形機の計量方法

Also Published As

Publication number Publication date
DE112022001896T5 (de) 2024-01-18
JPWO2022210979A1 (ja) 2022-10-06
CN116745095A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
JP7321998B2 (ja) 射出成形機
CN108568956B (zh) 注射成型机
CN110352122B (zh) 注射成型机及注射成型方法
JP7114284B2 (ja) 射出成形機
JP7118835B2 (ja) 射出成形機
CN108688106B (zh) 注射成型机
JP7317476B2 (ja) 射出成形機
WO2022210979A1 (ja) 射出成形機の制御装置、射出成形機、及び制御方法
JP7315441B2 (ja) 射出成形機
CN110315718B (zh) 注射成型用数据管理装置及注射成型机
JP7396952B2 (ja) 射出成形機
JP2022157852A (ja) 射出成形機、射出成形機の制御装置、及び制御方法
JP2020059165A (ja) 射出成形機
JP2018122507A (ja) 射出成形機
WO2022210791A1 (ja) 可動プラテン
JP2022131247A (ja) 射出成形機
WO2022210969A1 (ja) 射出成形機
US20230173728A1 (en) Controller of injection molding machine and method of controlling injection molding machine
WO2022210988A1 (ja) 射出成形機の監視装置
JP2023148762A (ja) 射出成形機の制御装置、射出成形機、及び射出成形機の制御方法
JP2022131756A (ja) 射出成形機
JP2023084850A (ja) 射出成形機の制御装置、及び射出成形機の制御方法
JP2022157892A (ja) 可動プラテン
JP2022131751A (ja) 射出成形機
JP6751037B2 (ja) 射出成形機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511532

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009107.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001896

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781189

Country of ref document: EP

Kind code of ref document: A1