WO2017170539A1 - アクチュエータ - Google Patents

アクチュエータ Download PDF

Info

Publication number
WO2017170539A1
WO2017170539A1 PCT/JP2017/012620 JP2017012620W WO2017170539A1 WO 2017170539 A1 WO2017170539 A1 WO 2017170539A1 JP 2017012620 W JP2017012620 W JP 2017012620W WO 2017170539 A1 WO2017170539 A1 WO 2017170539A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
gas
chamber
cylinder
actuator
Prior art date
Application number
PCT/JP2017/012620
Other languages
English (en)
French (fr)
Inventor
大輔 篠平
敦志 柳川
裕士 永井
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to KR1020187030103A priority Critical patent/KR102287002B1/ko
Publication of WO2017170539A1 publication Critical patent/WO2017170539A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/041Removal or measurement of solid or liquid contamination, e.g. filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members

Definitions

  • the present invention relates to an actuator.
  • Patent Document 1 As an actuator used in a precision positioning device or the like, a gas pressure actuator that includes a cylinder having a gas chamber and a piston and generates thrust when gas is supplied to the gas chamber has been provided.
  • a gas pressure actuator that includes a cylinder having a gas chamber and a piston and generates thrust when gas is supplied to the gas chamber has been provided.
  • an object of the present invention is to provide an actuator that can realize suction of a part to be sucked with a compact configuration.
  • an actuator is an actuator that generates thrust when gas is supplied, and a cylinder that supplies gas therein and a piston that reciprocates in the cylinder. And a gas chamber formed in the cylinder, the gas chamber being capable of maintaining a vacuum, a second gas chamber that is supplied with gas and reciprocates the piston in accordance with the supply, and A communication flow path is formed in the piston.
  • the communication channel communicates the tip of the piston and the first gas chamber.
  • the actuator is an actuator that generates a thrust when gas is supplied, a cylinder to which the gas is supplied, a piston that reciprocates in the cylinder, a gas chamber formed in the cylinder, An atmosphere opening portion that opens the gas supplied into the cylinder to the atmosphere, and the gas chamber includes a first gas chamber that can be held in a vacuum, and a gas that is supplied and reciprocatingly moves the piston in accordance with the supply.
  • a communication channel that communicates the tip of the piston and the first gas chamber is formed in the piston, and the atmosphere opening portion includes the first gas chamber, the second gas chamber, and the second gas chamber. It is formed so as to communicate with each other.
  • the front end portion of the piston and the first gas chamber that can be maintained in a vacuum are communicated with each other by a communication flow path formed in the piston. Therefore, when the first gas chamber is maintained in a vacuum, the communication flow path in the piston communicated with the first gas chamber is evacuated, and a negative pressure is generated at the tip of the piston. As a result, the part to be sucked can be sucked at the tip of the piston. As described above, in this actuator, the part to be sucked can be sucked by the communication flow path formed in the piston without separately providing a suction mechanism at the tip of the piston. Therefore, the suction of the part to be attracted can be realized with a compact configuration.
  • the actuator is formed so as to communicate with at least one between the first gas chamber and the second gas chamber and between the first gas chamber and the third gas chamber, and is supplied into the cylinder.
  • the gas supplied into the cylinder is released into the atmosphere from at least one of the first gas chamber and the second gas chamber and between the first gas chamber and the second gas chamber by the atmosphere opening portion. Opened. Thereby, the leak of the gas from the at least one side of the 2nd gas chamber and the 3rd gas chamber to the 1st gas chamber side can be controlled, and the vacuum in the 1st gas chamber can fully be held.
  • the gas chamber further includes a third gas chamber that is supplied with gas and reciprocates the piston in accordance with the supply, and the air release portion is between the first gas chamber and the third gas chamber. Also, it may be formed so as to communicate with each other. In this case, the gas supplied into the cylinder is released to the atmosphere from between the first gas chamber and the third gas chamber by the atmosphere opening portion. Thereby, the leak of the gas from the 2nd gas chamber side to the 1st gas chamber side can be suppressed, and the vacuum in a 1st gas chamber can fully be hold
  • the atmosphere release part may be an atmosphere release channel formed in the piston.
  • the atmosphere release portion is configured as an atmosphere release channel formed in the piston, the gas can be released to the atmosphere without considering the arrangement relationship between the piston and the cylinder, and a more compact configuration Can be realized.
  • the first gas chamber may be able to be held at a positive pressure.
  • the gas is sent into the communication flow path in the piston communicated with the first gas chamber, and a positive pressure is generated at the tip of the piston.
  • the part to be attracted can be attached and detached at the tip of the piston.
  • the suction target component can be attached and detached without providing a separate attachment / detachment mechanism at the tip of the piston by the communication flow path formed in the piston. Therefore, the attachment / detachment of the part to be attracted can be realized with a compact configuration.
  • a filter may be provided at the tip of the piston.
  • the filter can prevent foreign matter from being sucked from the tip portion of the piston. As a result, failure of the actuator due to contamination can be prevented.
  • an actuator capable of realizing suction of a part to be sucked with a compact configuration.
  • FIG. 1 is a schematic sectional view showing an actuator according to the first embodiment of the present invention.
  • the actuator 10 according to the present embodiment is a drive mechanism that performs positioning control, load control, and the like, for example, a die bonder used in a post-process of semiconductor manufacturing, a roll tension control in a web conveyance device, and the like. Used for.
  • the actuator 10 is a gas pressure actuator that generates thrust when supplied with gas.
  • the gas may be, for example, compressed air or other various gases.
  • the actuator 10 according to the present embodiment is used for adsorbing an adsorbed component such as a semiconductor chip, a wafer, a liquid crystal glass plate, and the like.
  • the actuator 10 includes a cylinder 11 into which gas is supplied, a piston 12 that reciprocates in the cylinder 11, a control pressure chamber 20A, a constant pressure chamber 20B, which are gas chambers formed in the cylinder 11, and a vacuum control chamber. 20C.
  • the vacuum control chamber 20C is located between the control pressure chamber 20A and the constant pressure chamber 20B.
  • regression direction the direction from the constant pressure chamber 20B side to the control pressure chamber 20A side
  • the direction from the control pressure chamber 20A side to the constant pressure chamber 20B side is also referred to as “traveling direction”.
  • the cylinder 11 has a substantially cylindrical or polygonal cylindrical shape, and accommodates a piston 12 therein.
  • the cylinder 11 is formed with an opening hole 11c penetrating from the inner wall surface 11a to the outer wall surface 11b.
  • the opening hole 11c is positioned corresponding to a vacuum control chamber 20C (details will be described later) in the cylinder 11, and communicates with the vacuum control chamber 20C.
  • the opening hole 11 c is connected to the vacuum generation unit 41 and the gas supply unit 42 via the switching unit 22.
  • the vacuum generation unit 41 is a vacuum holding unit for holding the vacuum control chamber 20C in vacuum by reducing the pressure of the vacuum control chamber 20C.
  • As the vacuum generation unit 41 for example, a vacuum pump or an air ejector is used.
  • the gas supply unit 42 is a positive pressure holding unit that holds the vacuum control chamber 20C at a positive pressure by supplying gas to the vacuum control chamber 20C.
  • the switching unit 22 switches the connection between the opening hole 11 c and the vacuum generation unit 41 and the connection between the opening hole 11 c and the gas supply unit 42.
  • the switching unit 22 is, for example, a three-way valve. Note that the switching of the switching unit 22 may be controlled by a control unit (not shown) or may be manually switched.
  • the piston 12 is formed on a piston main body 13, head portions 14 and 15 formed on both ends of the piston main body 13, a rod portion 16 connected to the head portion 15, and an outer peripheral surface 13 a of the piston main body 13.
  • Partition portions 17 and 18 are provided.
  • the head part 14 and the partition part 17 are located on the backward direction side, and the head part 15 and the partition part 18 are located on the traveling direction side.
  • the rod part 16 protrudes to the advancing direction side.
  • the piston main body part 13, the head parts 14 and 15, the rod part 16, and the partition parts 17 and 18 will be described in detail.
  • the piston main body 13 has a substantially cylindrical or polygonal cylindrical shape and extends along the axial direction of the cylinder 11.
  • the piston main body 13 is accommodated in the cylinder 11 so as to freely advance and retract.
  • the head parts 14 and 15 are enlarged diameter parts in which the outer diameter of the piston main body part 13 is enlarged.
  • the head portions 14 and 15 have a substantially disk shape and protrude outward from the outer peripheral surface 13 a of the piston main body portion 13.
  • the head portion 14 is located at the end of the piston main body 13 on the retraction direction side, and the head portion 15 is located at the end of the piston main body 13 on the traveling direction side.
  • the rod portion 16 is connected to an end surface 15f of the head portion 15 (an end surface opposite to the piston main body portion 13).
  • the rod portion 16 extends from the end surface 15f of the head portion 15 in the traveling direction.
  • the rod portion 16 penetrates the cylinder 11 and protrudes outside the cylinder 11.
  • the rod portion 16 is substantially columnar and has an outer diameter slightly smaller than that of the piston main body portion 13.
  • the distal end portion 16f of the rod portion 16 is exposed to the outside of the cylinder 11, and constitutes a distal end portion 12f of the piston 12 that performs suction of a component to be attracted to be described later.
  • a cap portion 19 is provided at the distal end portion 16 f of the rod portion 16.
  • the cap portion 19 is a cylindrical member having a small diameter and a large diameter, and has a substantially T-shaped cross section.
  • the cap portion 19 is formed with a through hole 19 a that communicates with a communication channel 23 (details will be described later) formed in the piston 12.
  • a filter 27 is disposed in the through hole 19 a of the cap portion 19. That is, the filter 27 is provided at the tip 12 f of the piston 12.
  • the filter 27 has a function of preventing foreign matter from being sucked from the front end portion 12f of the piston 12 when the suction target component is sucked by the front end portion 12f of the piston 12.
  • the filter 27 captures foreign matter in the atmosphere, suppresses foreign matter from entering the communication channel 23 from the tip 12 f of the piston 12, and consequently does not enter the cylinder 11 through the communication channel 23. I am doing so.
  • the filter 27 is a substantially cylindrical member in which a through hole smaller than a foreign object is formed, for example, and is accommodated in the through hole 19a.
  • the partition parts 17 and 18 are formed between the head part 14 and the head part 15.
  • the partition parts 17 and 18 are enlarged diameter parts in which the outer diameter of the piston main body part 13 is enlarged.
  • the partition parts 17 and 18 are substantially disk-shaped, and protrude from the outer peripheral surface 13 a of the piston main body part 13. In the axial direction of the piston 12, the widths of the partition parts 17 and 18 are smaller than the widths of the head parts 14 and 15.
  • the partition part 17 is located in the retraction direction side in the piston main body part 13. Specifically, the partition portion 17 is located closer to the head portion 14 than the partition portion 18 and is located at a predetermined distance from the head portion 14. Accordingly, the piston main body 13 has a portion sandwiched between the partition portion 17 and the head portion 14. Since the outer diameters of the partition part 17 and the head part 14 are larger than the outer diameter of the piston main body part 13, the sandwiched part is recessed more inward than the partition part 17 and the head part 14. That is, a groove portion 12 a is formed between the partition portion 17 and the head portion 14 in the piston 12.
  • the partition portion 18 is located on the traveling direction side in the piston main body portion 13. Specifically, the partition portion 18 is located closer to the head portion 15 than the partition portion 17 and is located with a predetermined distance from the head portion 15. Thereby, the piston main body 13 has a portion sandwiched between the partition portion 18 and the head portion 15. Since the outer diameters of the partition portion 18 and the head portion 15 are larger than the outer diameter of the piston main body portion 13, the sandwiched portion is recessed inward from the partition portion 18 and the head portion 15. That is, a groove portion 12 b is formed between the partition portion 18 and the head portion 15 in the piston 12.
  • a static pressure bearing (air bearing) (not shown) is provided between the inner wall surface 11a of the cylinder 11 and the piston 12.
  • a gas layer is formed in the gap between the inner wall surface 11 a of the cylinder 11 and the piston 12 by supplying gas from a supply source (a gas supply unit 40 described later) to the static pressure bearing.
  • the piston 12 repeats advancing movement and retreating movement in a state of non-contact with the inner wall surface 11a of the cylinder 11.
  • Progressive movement is movement in the direction of travel (the direction from the control pressure chamber 20A side to the constant pressure chamber 20B side) (hereinafter also simply referred to as “progressive movement”).
  • the retreat movement is a retreat direction (a direction from the constant pressure chamber 20B side to the control pressure chamber 20A side) (hereinafter also simply referred to as “retreat movement”).
  • a communication flow path 23 that connects the tip 12f of the piston 12 and the vacuum control chamber 20C is formed.
  • One end portion of the communication channel 23 passes through the tip portion 12f of the piston 12 and communicates with the atmosphere.
  • the other end portion of the communication flow path 23 penetrates the outer peripheral surface 13a of the piston main body 13 between the partition portion 17 and the partition portion 18 and communicates with the vacuum control chamber 20C.
  • the communication channel 23 extends in a substantially L shape.
  • the communication flow path 23 includes an atmosphere communication portion 23a and a vacuum communication portion 23b communicated with the atmosphere communication portion 23a.
  • the air communication portion 23 a extends along the axial direction of the piston main body 13 at a position substantially in the center in the radial direction of the piston main body 13.
  • the air communication portion 23a extends from between the partition portion 17 and the partition portion 18 in the piston main body portion 13 (that is, a position corresponding to a vacuum control chamber 20C described later) until it penetrates the tip portion 12f of the piston 12. It is in communication with the atmosphere.
  • the vacuum communication part 23b is bent in the radial direction of the piston main body part 13 from the end of the atmosphere communication part 23a opposite to the side communicating with the atmosphere.
  • the vacuum communication portion 23b extends along the radial direction of the piston main body 13 until it penetrates the outer peripheral surface 13a of the piston main body 13, and communicates with the vacuum control chamber 20C.
  • the atmosphere release channel 24 is an atmosphere release part that opens the gas supplied into the cylinder 11 to the atmosphere. Details of the air release channel 24 will be described later.
  • control pressure chamber 20A the control pressure chamber 20A, the constant pressure chamber 20B, and the vacuum control chamber 20C will be described in detail.
  • the control pressure chamber 20A (second gas chamber) and the constant pressure chamber 20B (third gas chamber) are supplied with gas from a gas supply unit 40 as a supply source, and reciprocate the piston 12 in accordance with the supply of the gas. That is, a difference between the pressure in the control pressure chamber 20A and the pressure in the constant pressure chamber 20B is generated according to the supply of gas to the control pressure chamber 20A and the constant pressure chamber 20B. A move is made.
  • the control pressure chamber 20 ⁇ / b> A is formed between the head portion 14 and the cylinder 11.
  • the control pressure chamber 20 ⁇ / b> A is defined by an end surface 14 f (an end surface opposite to the piston main body 13) of the head portion 14 and an inner wall surface 11 a of the cylinder 11.
  • the control pressure chamber 20 ⁇ / b> A is supplied with a controlled supply amount of gas from the gas supply unit 40.
  • control pressure chamber 20 ⁇ / b> A is connected by the gas supply unit 40 and the control flow path 31.
  • the gas supply part 40 supplies gas in the state adjusted to the fixed pressure through the regulator etc. which are not illustrated, for example.
  • a servo valve 30 is provided in the control flow path 31.
  • the servo valve 30 controls the supply amount of gas supplied to the control pressure chamber 20A.
  • the servo valve 30 controls the supply amount of the gas with high accuracy and high response according to the electric signal input to the servo valve 30, and supplies the gas to the control pressure chamber 20A with the controlled supply amount. .
  • the servo valve 30 receives a signal indicating each pressure in the control pressure chamber 20A and the constant pressure chamber 20B detected by pressure sensors (not shown) provided in the control pressure chamber 20A and the constant pressure chamber 20B, respectively.
  • the gas supply amount from the gas supply unit 40 is controlled so that each pressure in the control pressure chamber 20A and the constant pressure chamber 20B indicated by the signal is in an appropriate state.
  • the appropriate state is, for example, a state in which the thrust of the actuator 10 output as a difference between the pressure in the control pressure chamber 20A and the pressure in the constant pressure chamber 20B has a desired magnitude.
  • the servo valve 30 adjusts the gas supply amount based on a preset flow rate characteristic (for example, a supply amount corresponding to the pressure in the control pressure chamber 20A necessary for generating a thrust having a desired magnitude). You may control.
  • the servo valve 30 includes a supply port Ps to which gas is supplied from the gas supply unit 40, a control port Pc for supplying gas to the control pressure chamber 20A with a controlled supply amount, and an exhaust port Ex for exhausting gas to the atmosphere. And have.
  • the servo valve 30 is a three-way valve having a gas inlet / outlet port in three directions of a supply port Ps, a control port Pc, and an exhaust port Ex.
  • a spool type or nozzle flapper type servo valve may be used as the servo valve 30 .
  • a spool type servo valve is used as the servo valve 30 a large volume of gas can flow.
  • a nozzle flapper type servo valve is used as the servo valve 30, the responsiveness can be increased.
  • the constant pressure chamber 20B (third gas chamber) is formed between the head portion 15 and the cylinder 11.
  • the constant pressure chamber 20 ⁇ / b> B is partitioned by the end surface 15 f of the head portion 15 and the inner wall surface 11 a of the cylinder 11.
  • the constant pressure chamber 20B is supplied with gas from the gas supply unit 40 at a constant pressure.
  • the constant pressure chamber 20 ⁇ / b> B is connected to a position upstream of the servo valve 30 in the control flow path 31 by a constant pressure flow path 32. Thereby, the gas from the gas supply unit 40 is supplied to the constant pressure chamber 20 ⁇ / b> B at a constant pressure without passing through the servo valve 30.
  • the vacuum control chamber 20 ⁇ / b> C (first gas chamber) is formed between the partition portion 17, the partition portion 18, and the cylinder 11. That is, the vacuum control chamber 20C is located between the control pressure chamber 20A and the constant pressure chamber 20B.
  • the vacuum control chamber 20C includes an end surface 17e of the partition portion 17 (end surface opposite to the head portion 14), an end surface 18e of the partition portion 18 (end surface opposite to the head portion 15), and the inner wall surface 11a of the cylinder 11. It is divided by.
  • the vacuum control chamber 20C can be kept in a vacuum.
  • the opening hole 11c and the vacuum generation part 41 are connected by switching of the switching part 22, so that the gas in the vacuum control chamber 20C is sucked by the vacuum generation part 41 through the opening hole 11c of the cylinder 11. Is done. Thereby, the vacuum control chamber 20C is kept in a vacuum.
  • the vacuum is not limited to an absolute vacuum having a pressure of 0, and includes, for example, a negative pressure state where the pressure is lower than atmospheric pressure.
  • the communication flow path 23 in the piston 12 communicated with the vacuum control chamber 20C is evacuated, and a negative pressure is generated at the front end portion 12f of the piston 12.
  • the negative pressure refers to a pressure lower than the atmospheric pressure.
  • the vacuum control chamber 20C can be maintained at a positive pressure.
  • the positive pressure is a pressure higher than the atmospheric pressure.
  • the opening 11c and the gas supply unit 42 are connected by switching the switching unit 22 so that the gas is supplied into the vacuum control chamber 20C by the gas supply unit 42 through the opening 11c of the cylinder 11. Is done.
  • the vacuum control chamber 20C is not in a vacuum but is maintained at a positive pressure.
  • the positive pressure refers to a pressure higher than the atmospheric pressure.
  • gas is ejected from the through-hole 19a of the cap part 19 provided in the front-end
  • the attracted component is detached from the front end surface 19f of the cap portion 19. That is, the part to be attracted is attached to and detached from the front end part 12 f of the piston 12 through the through hole 19 a of the cap part 19.
  • the atmosphere opening flow path 24 opens part of the gas supplied into the cylinder 11 between the vacuum control chamber 20C, the control pressure chamber 20A and the constant pressure chamber 20B to the atmosphere. Thereby, the open air flow path 24 suppresses the leakage of gas from the control pressure chamber 20A and the constant pressure chamber 20B side to the vacuum control chamber 20C side, and makes the vacuum control chamber 20C to the control pressure chamber 20A and the constant pressure chamber 20B. It has the function of creating a sufficiently independent space.
  • the atmosphere opening flow path 24 is formed independently so as not to cross the communication flow path 23 and to communicate with it.
  • the air release channel 24 extends along the axial direction of the piston body 13 at a position outside the communication channel 23 in the radial direction of the piston body 13.
  • One end of the atmosphere opening channel 24 penetrates through the tip 12 f of the piston 12 and communicates with the atmosphere.
  • the air release channel 24 is formed so as to communicate with both the vacuum control chamber 20C and the control pressure chamber 20A and between the vacuum control chamber 20C and the constant pressure chamber 20B.
  • the atmosphere open channel 24 includes an atmosphere communication portion 24a and space communication portions 24b and 24c communicated with the atmosphere communication portion 24a.
  • the atmospheric communication portion 24 a extends along the axial direction of the piston main body portion 13 substantially in parallel with the atmospheric communication portion 23 a of the communication flow path 23.
  • the atmosphere communication portion 24a extends from a position corresponding to the groove portion 12a of the piston 12 until it penetrates the tip portion 12f of the piston 12, and communicates with the atmosphere.
  • the space communication part 24b is bent in the radial direction of the piston body 13 from the end of the atmosphere communication part 24a opposite to the side communicating with the atmosphere.
  • the space communication portion 24b extends along the radial direction of the piston main body 13 until it penetrates the outer peripheral surface 13a of the piston main body 13, and the space between the partition portion 17 and the head portion 14 in the groove 12a (that is, Between the vacuum control chamber 20C and the control pressure chamber 20A).
  • the space communication part 24c is bent in the radial direction of the piston main body part 13 from the middle part located corresponding to the groove part 12b in the atmosphere communication part 24a.
  • the space communication portion 24c extends along the radial direction of the piston main body 13 until it penetrates the outer peripheral surface 13a of the piston main body 13, and the space between the partition portion 18 and the head portion 15 in the groove 12b (that is, Between the vacuum control chamber 20C and the constant pressure chamber 20B).
  • the gas flowing in the direction of arrow A2 (that is, the retraction direction) between the head portion 15 of the piston 12 and the inner wall surface 11a of the cylinder 11 is blocked by the partition portion 18 from entering the vacuum control chamber 20C. It flows into the space communication part 24c in the groove part 12b. The gas flowing into the space communication portion 24c is released to the atmosphere through the air communication portion 24a communicated with the space communication portion 24c. Thereby, the gas leakage from the constant pressure chamber 20B side to the vacuum control chamber 20C side is suppressed.
  • vacuum control chamber 20C when the vacuum control chamber 20C is held in a vacuum, vacuum breakage due to gas leakage from the control pressure chamber 20A and the constant pressure chamber 20B to the vacuum control chamber 20C side can be suppressed. That is, the vacuum in the vacuum control chamber 20C can be sufficiently maintained.
  • the leading end portion 12f of the piston 12 and the vacuum control chamber 20C that can be kept in vacuum are communicated with each other by the communication flow path 23 formed in the piston 12. Therefore, when the vacuum control chamber 20C is held in vacuum, the communication flow path 23 in the piston 12 communicated with the vacuum control chamber 20C is evacuated, and a negative pressure is generated at the tip 12f of the piston 12. As a result, the part to be sucked can be sucked by the tip 12f of the piston 12. As described above, in this actuator 10, the suction target component can be sucked by the communication flow path 23 formed in the piston 12 without separately providing a suction mechanism at the tip 12 f of the piston 12. Therefore, the suction of the part to be attracted can be realized with a compact configuration.
  • the gas supplied into the cylinder 11 is separated between the vacuum control chamber 20C and the control pressure chamber 20A by the atmosphere opening flow path 24, and between the vacuum control chamber 20C and the vacuum control chamber 20C. It is opened to the atmosphere from between the constant pressure chambers. Thereby, gas leakage from both the control pressure chamber 20A and the constant pressure chamber 20B to the vacuum control chamber 20C side can be suppressed, and the vacuum in the vacuum control chamber 20C can be sufficiently maintained.
  • the atmosphere opening portion is configured as the atmosphere opening flow path 24 formed in the piston 12, the arrangement relationship between the piston 12 and the cylinder 11 should be taken into consideration. Therefore, the gas can be released to the atmosphere, and a more compact configuration can be realized.
  • the position of the hydrostatic bearing in the head portions 14 and 15 (that is, the position of the gas layer formed between the inner wall surface 11 a of the cylinder 11 and the piston 12) Move by movement.
  • the atmosphere opening part is formed in the piston 12, even if the piston 12 reciprocates, the hydrostatic bearing and the atmosphere opening part do not interfere with each other. Therefore, it is only necessary to secure the space for the hydrostatic bearing based on only the reciprocating distance of the piston 12 regardless of the formation position of the atmosphere opening portion, so that a more compact configuration can be realized.
  • the actuator 10 when the vacuum control chamber 20C is held at a positive pressure, gas is sent into the communication flow path 23 in the piston 12 communicated with the vacuum control chamber 20C, and the piston A positive pressure is generated at the front end 12f of the twelve.
  • the part to be attracted can be attached and detached at the front end 12f of the piston 12.
  • the adsorbed component can be attached / detached by the communication flow path 23 formed in the piston 12 without providing a separate attachment / detachment mechanism at the front end portion 12f of the piston 12. . Therefore, the attachment / detachment of the part to be attracted can be realized with a compact configuration.
  • the filter 27 when the suction target component is sucked by the tip portion 12f of the piston 12, the filter 27 can prevent foreign matter from being sucked from the tip portion 12f of the piston 12. it can. As a result, failure of the actuator 10 due to foreign matter can be prevented.
  • the actuator 10A includes the same elements and structures as the actuator 10 according to the first embodiment. Therefore, the same elements and structures as those of the actuator 10 according to the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions from the first embodiment will be described.
  • FIG. 2 is a schematic cross-sectional view showing an actuator 10A according to the second embodiment.
  • the actuator 10 ⁇ / b> A according to the present embodiment includes a first air release portion 26 formed in the cylinder 11 in place of the air release flow path 24 formed in the piston 12. This is different from the actuator 10 according to the embodiment.
  • the atmosphere release unit 26 opens the gas supplied into the cylinder 11 to the atmosphere.
  • the atmosphere release unit 26 opens part of the gas supplied into the cylinder 11 between the control pressure chamber 20A, the constant pressure chamber 20B, and the vacuum control chamber 20C to the atmosphere. Thereby, the air release part 26 suppresses the gas leakage from the control pressure chamber 20A and the constant pressure chamber 20B side to the vacuum control chamber 20C side, and the vacuum control chamber 20C is sufficient with respect to the control pressure chamber 20A and the constant pressure chamber 20B. It has a function to make it an independent space.
  • the atmosphere opening portion 26 is formed to communicate with both the vacuum control chamber 20C and the control pressure chamber 20A and between the vacuum control chamber 20C and the constant pressure chamber 20B. Specifically, the atmosphere opening portion 26 is a first atmosphere opening portion 26a formed between the vacuum control chamber 20C and the control pressure chamber 20A, and a first opening formed between the vacuum control chamber 20C and the constant pressure chamber 20B. And two atmospheric open portions 26b.
  • the first atmosphere opening portion 26 a is formed at a position corresponding to the groove portion 12 a of the piston 12 in the cylinder 11.
  • the first atmosphere opening portion 26a is a through-hole penetrating from the inner wall surface 11a to the outer wall surface 11b of the cylinder 11 and communicates with the atmosphere.
  • the gas flowing in the direction of arrow A1 that is, the traveling direction
  • the partition portion 17 from entering the vacuum control chamber 20C. It flows in the first atmosphere opening part 26a in the groove part 12a. Then, the air is released from the first atmosphere opening portion 26 a to the outside of the cylinder 11.
  • the second atmosphere opening portion 26 b is formed at a position corresponding to the groove portion 12 b of the piston 12 in the cylinder 11.
  • the second atmosphere opening portion 26b is a through hole that penetrates from the inner wall surface 11a to the outer wall surface 11b of the cylinder 11 and communicates with the atmosphere.
  • the gas flowing in the direction of the arrow A2 that is, the retraction direction
  • the partition portion 18 from entering the vacuum control chamber 20C. It flows into the second atmosphere opening part 26b in the groove part 12b. Then, the atmosphere is released from the second atmosphere opening portion 26 b to the outside of the cylinder 11.
  • the axial direction length in the groove part 12a of the piston main-body part 13, ie, the distance between the partition part 17 and the head part 14, is long.
  • the axial length of the groove portion 12b of the piston main body portion 13, that is, the distance between the partition portion 18 and the head portion 15 is increased. That is, the hydrostatic bearing and the air release portion 26 are located apart from each other in the axial direction of the piston 12. This is to prevent the space for the hydrostatic bearing and the atmosphere opening portion 26 from interfering with each other even when the piston 12 reciprocates, and to ensure a sufficient space for the hydrostatic bearing.
  • the communication channel 23 formed in the piston 12 does not separately provide a suction mechanism at the tip portion 12f of the piston 12. Therefore, it is possible to suck the parts to be sucked. Therefore, the suction of the part to be attracted can be realized with a compact configuration.
  • the gas supplied into the cylinder 11 is transferred between the vacuum control chamber 20C and the control pressure chamber 20A and between the vacuum control chamber 20C and the constant pressure by the atmosphere opening unit 26. Open to the atmosphere from the room. Thereby, gas leakage from both the control pressure chamber 20A and the constant pressure chamber 20B to the vacuum control chamber 20C side can be suppressed, and the vacuum in the vacuum control chamber 20C can be sufficiently maintained.
  • the actuator 10B includes the same elements and structures as the actuator 10 according to the first embodiment. Therefore, the same elements and structures as those of the actuator 10 according to the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions from the first embodiment will be described.
  • FIG. 3 is a schematic cross-sectional view showing an actuator 10B according to the third embodiment.
  • the actuator 10B according to this embodiment does not include the constant pressure chamber 20B, and the first embodiment is different in that an elastic member 50 is provided in a space corresponding to the constant pressure chamber 20B. This is different from the actuator 10.
  • the actuator 10B includes the control pressure chamber 20A and the vacuum control chamber 20C as in the first embodiment, but does not include the constant pressure chamber 20B unlike the first embodiment. That is, no gas is supplied from the gas supply unit 40 into the cylinder 11 on the head unit 15 side of the piston 12. Correspondingly, in the present embodiment, no static pressure bearing is provided between the head portion 15 of the piston 12 and the inner wall surface 11a of the cylinder 11, and between the head portion 15 and the inner wall surfaces 11a and 12 is provided. No air layer is formed. Moreover, the piston 12 does not have the partition part 18 and the groove part 12b.
  • the actuator 10B according to the present embodiment does not include the constant pressure chamber 20B, it is not necessary to release the gas from the constant pressure chamber 20B to the atmosphere.
  • the air release channel 24 according to the present embodiment does not have the space communication portion 24c.
  • the air release flow path 24 is formed so as to communicate between the vacuum control chamber 20C and the control pressure chamber 20A, while between the vacuum control chamber 20C and the constant pressure chamber 20B. It is not formed to communicate.
  • the elastic member 50 is provided between the head portion 15 and the cylinder 11.
  • the elastic member 50 is disposed in a space defined by the end surface 15 f of the head portion 15 and the inner wall surface 11 a of the cylinder 11.
  • the elastic member 50 is, for example, a coil spring, rubber, artificial muscle, or the like.
  • the elastic member 50 expands and contracts in the axial direction of the piston 12 in accordance with the supply of gas from the gas supply unit 40 to the control pressure chamber 20A, and reciprocates the piston 12.
  • the suction flow mechanism 23 formed in the piston 12 allows the tip 12f of the piston 12 to be provided with no suction mechanism. Therefore, it is possible to suck the parts to be sucked. Therefore, the suction of the part to be attracted can be realized with a compact configuration.
  • the gas supplied into the cylinder 11 is opened to the atmosphere from between the vacuum control chamber 20C and the control pressure chamber 20A by the atmosphere opening flow path 24. Thereby, the gas leakage from the control pressure chamber 20A side to the vacuum control chamber 20C side can be suppressed, and the vacuum in the vacuum control chamber 20C can be sufficiently maintained.
  • the actuator 10C has the same elements and structure as the actuator 10 according to the first embodiment. Therefore, the same elements and structures as those of the actuator 10 according to the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions from the first embodiment will be described.
  • FIG. 4 is a schematic sectional view showing an actuator 10C according to the fourth embodiment.
  • the actuator 10C according to the present embodiment is different in the shape of the piston 12 and the position of the hydrostatic bearing, and has two constant pressure chambers 20D and 20E instead of the constant pressure chamber 20B. And it differs from the actuator 10 which concerns on 1st Embodiment by the point from which the structure of the air release flow path 24 in piston 12 differs.
  • the widths of the head portions 14 and 15 are smaller than those in the first embodiment, and are substantially the same as the widths of the partition portions 17 and 18.
  • the piston 12 includes a main body extension 25 that protrudes from the end face 15 f side of the head portion 15, and head portions 28 and 29 formed on the main body extension 25.
  • the main body extension portion 25 is disposed between the piston main body portion 13 and the rod portion 16.
  • the main body extension 25 is substantially cylindrical and extends from the end surface 15 f side of the head portion 15 along the axial direction of the cylinder 11.
  • the main body extension 25 is formed integrally with the piston main body 13 and has an outer diameter substantially the same as the outer diameter of the piston main body 13.
  • the main body extension portion 25 is connected to the rod portion 16 at an end surface 29f of the head portion 29 (an end surface on the side opposite to the piston main body portion 13).
  • the head portions 28 and 29 are enlarged diameter portions in which the outer diameter of the main body extension portion 25 is enlarged.
  • the head portions 28 and 29 are substantially disk-shaped and protrude outward from the outer peripheral surface 25 a of the main body extension 25. Further, in the axial direction of the piston 12, the widths of the head portions 28 and 29 are larger than the widths of the partition portions 17 and 18.
  • the head portion 28 is located in the middle of the main body extension 25, and the head portion 29 is located at the end of the main body extension 25 (the end opposite to the end face 15f).
  • the head portion 28 and the head portion 29 are positioned with a predetermined interval.
  • the main body extension 25 has a portion sandwiched between the head portion 28 and the head portion 29. Since the outer diameter of the head portions 28 and 29 is larger than the outer diameter of the main body extension portion 25, the sandwiched portion is recessed inward of the head portions 28 and 29. That is, a groove portion 12 e is formed between the head portion 28 and the head portion 29 in the piston 12.
  • a hydrostatic bearing is provided between the head portions 28 and 29 of the piston 12 and the inner wall surface 11a of the cylinder 11. Therefore, the gas from the constant pressure chamber 20D (details will be described later) flows in the direction of the arrow A3 between the head portion 28 of the piston 12 and the inner wall surface 11a of the cylinder 11. That is, a gas layer is formed between the head portion 28 of the piston 12 and the inner wall surface 11 a of the cylinder 11. Further, gas from the constant pressure chamber 20E (details will be described later) flows in the direction of arrow A4 between the head portion 29 of the piston 12 and the inner wall surface 11a of the cylinder 11. That is, a gas layer is formed between the head portion 29 of the piston 12 and the inner wall surface 11 a of the cylinder 11. As a result, the piston 12 is not in contact with the inner wall surface 11 a of the cylinder 11.
  • the constant pressure chamber 20D (third gas chamber) is formed between the head unit 15, the head unit 28, and the cylinder 11.
  • the constant pressure chamber 20 ⁇ / b> D is partitioned by an end surface 15 f of the head portion 15, an end surface 28 f of the head portion 28 (end surface on the piston main body portion 13 side), and an inner wall surface 11 a of the cylinder 11.
  • the constant pressure chamber 20D is supplied with gas from the gas supply unit 40 at a constant pressure.
  • the constant pressure chamber 20 ⁇ / b> D is connected to a branch channel 32 a that branches from the constant pressure channel 32. Thereby, the gas from the gas supply part 40 is supplied to the constant pressure chamber 20D in the state of a fixed pressure.
  • the constant pressure chamber 20E (third gas chamber) is formed between the head portion 29 and the cylinder 11.
  • the constant pressure chamber 20 ⁇ / b> E is partitioned by the end surface 29 f of the head portion 29 and the inner wall surface 11 a of the cylinder 11.
  • the constant pressure chamber 20E is supplied with gas from the gas supply unit 40 at a constant pressure.
  • the constant pressure chamber 20E is connected to a branch channel 32b that branches from the constant pressure channel 32. Thereby, the gas from the gas supply part 40 is supplied to the constant pressure chamber 20E in the state of a fixed pressure.
  • the atmosphere opening flow path 24 in the piston 12 has a space communication portion 24d connected to the air communication portion 24a in addition to the air communication portion 24a and the space communication portions 24b and 24c.
  • the space communication part 24d is bent in the radial direction of the piston main body part 13 from the middle part located corresponding to the groove part 12e in the atmosphere communication part 24a.
  • the space communication portion 24d extends along the radial direction of the piston main body 13 until it penetrates the outer peripheral surface 13a of the piston main body 13, and the space between the head portion 28 and the head portion 29 in the groove portion 12e (i.e., Between the constant pressure chamber 20D and the constant pressure chamber 20E).
  • the gas flowing in the direction of arrow A3 (that is, the traveling direction) between the head portion 28 of the piston 12 and the inner wall surface 11a of the cylinder 11 flows into the space communication portion 24d in the groove portion 12e.
  • the gas flowing into the space communication portion 24d is released to the atmosphere through the air communication portion 24a communicated with the space communication portion 24d.
  • the gas flowing in the direction of arrow A4 (that is, the retraction direction) between the head portion 29 of the piston 12 and the inner wall surface 11a of the cylinder 11 flows into the space communication portion 24d in the groove portion 12e.
  • the gas flowing into the space communication portion 24d is released to the atmosphere through the air communication portion 24a communicated with the space communication portion 24d.
  • the gas is also released from the atmosphere between the constant pressure chamber 20D and the constant pressure chamber 20E.
  • leakage of gas from the constant pressure chambers 20D, 20E to the vacuum control chamber 20C side is suppressed, when the vacuum control chamber 20C is held in vacuum, the vacuum breakage due to the leakage of the gas can be suppressed. it can. That is, the vacuum in the vacuum control chamber 20C can be sufficiently maintained.
  • control pressure chamber 20A and the constant pressure chamber 20E reciprocate the piston 12 according to the supply of gas from the gas supply unit 40 that is a supply source. That is, a difference between the pressure in the control pressure chamber 20A and the pressure in the constant pressure chamber 20E is generated according to the supply of gas to the control pressure chamber 20A and the constant pressure chamber 20E, and the forward movement and retraction of the piston 12 according to this difference. A move is made.
  • the end surface 15f of the head portion 15 and the end surface 28f of the head portion 28 have the same area. Therefore, the force acting in the retreating direction with respect to the end surface 15f and the force acting in the traveling direction with respect to the end surface 28f.
  • the suction flow mechanism 23 formed in the piston 12 does not separately provide a suction mechanism at the tip portion 12f of the piston 12. Therefore, it is possible to suck the parts to be sucked. Therefore, the suction of the part to be attracted can be realized with a compact configuration.
  • the atmosphere opening portion is not both between the first gas chamber and the second gas chamber and between the first gas chamber and the third gas chamber, It may be formed so as to communicate with either one. That is, the atmosphere open flow path 24 may have either the space communication part 24b or the space communication part 24c, instead of both the space communication part 24b and the space communication part 24c. Moreover, the air release part 26 may have either one of the 1st air release part 26a and the 2nd air release part 26b instead of both the 1st air release part 26a and the 2nd air release part 26b. . Moreover, in 4th Embodiment, the air release flow path 24 does not need to have the space communication part 24d.
  • the gas chamber has a second gas chamber and a third gas chamber that reciprocate the piston 12 in response to gas supply. Does not have to be provided with an air release portion. That is, the atmosphere opening flow path 24 may not be formed in the piston 12, and the atmosphere opening portion 26 may not be formed in the cylinder 11.
  • the constant pressure chamber 20B is not included in the gas chamber.
  • the present invention is not limited to this, and the control pressure chamber 20A may not be included in the gas chamber.
  • the elastic member is provided in the space corresponding to the constant pressure chamber 20B.
  • the invention is not limited to this, and a linear motion motor or the like is provided in the space corresponding to the control pressure chamber 20A or the constant pressure chamber 20B. May be provided.
  • the vacuum control chamber 20C may not be maintained at a positive pressure.
  • the vacuum control chamber 20 ⁇ / b> C may be directly connected to the vacuum generation unit 41 without going through the switching unit 22.
  • the cap portion 19 may not be provided at the tip portion 16 f of the rod portion 16.
  • the filter 27 may be provided directly at the tip 12 f of the piston 12 instead of in the through hole 19 a of the cap 19. Furthermore, the filter 27 may not be provided.
  • the vacuum control chamber 20C is located between the control pressure chamber 20A and the constant pressure chamber 20B, but the present invention is not limited to this.
  • the vacuum control chamber 20C may be located farther from the rod portion 16 than the control pressure chamber 20A and the constant pressure chamber 20B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Actuator (AREA)

Abstract

気体が供給されることにより推力を発生するアクチュエータであって、気体が内部に供給されるシリンダと、シリンダ内を往復動するピストンと、シリンダ内に形成される気体室と、を備え、気体室は、真空に保持可能な第一気体室と、気体が供給され、その供給に応じてピストンを往復動させる第二気体室及び第三気体室とを有し、ピストン内には、ピストンの先端部と第一気体室とを連通する連通流路が形成されている。

Description

アクチュエータ
 本発明は、アクチュエータに関する。
 従来、例えば、特許文献1に示すように、精密位置決め装置等に用いられるアクチュエータとして、気体室及びピストンを有するシリンダを備え、気体室に気体が供給されることにより推力を発生する気体圧アクチュエータが知られている。
特開2004-144196号公報
 上記特許文献1に記載されているような従来のアクチュエータを用いて半導体チップ等を吸着する際には、ピストンの先端部に吸着機構を別途設ける必要がある。例えば、半導体チップのボンディングの際、半導体チップを吸着するためには、ピストンの先端部に半導体チップの押し付け機構とは別に半導体チップの吸着機構を設置する必要がある。したがって、従来のアクチュエータでは、半導体チップ等の被吸着部品の吸着をコンパクトな構成で実現することが困難である。
 そこで本発明は、被吸着部品の吸着をコンパクトな構成で実現することができるアクチュエータを提供することを目的とする。
 上記課題を解決するため、本発明の一形態に係るアクチュエータは、気体が供給されることにより推力を発生するアクチュエータであって、気体が内部に供給されるシリンダと、シリンダ内を往復動するピストンと、シリンダ内に形成される気体室と、を備え、気体室は、真空に保持可能な第一気体室と、気体が供給され、その供給に応じてピストンを往復動させる第二気体室及び第三気体室とを有し、ピストン内には、ピストンの先端部と第一気体室とを連通する連通流路が形成されている。
 また、アクチュエータは、気体が供給されることにより推力を発生するアクチュエータであって、気体が内部に供給されるシリンダと、シリンダ内を往復動するピストンと、シリンダ内に形成される気体室と、シリンダ内に供給された気体を大気に開放する大気開放部と、備え、気体室は、真空に保持可能な第一気体室と、気体が供給され、その供給に応じてピストンを往復動させる第二気体室とを有し、ピストン内には、ピストンの先端部と第一気体室とを連通する連通流路が形成されており、大気開放部は、第一気体室と第二気体室との間に連通するように形成されている。
 アクチュエータでは、ピストン内に形成された連通流路により、ピストンの先端部と、真空に保持可能な第一気体室とが連通されている。よって、第一気体室が真空に保持されると、当該第一気体室に連通されたピストン内の連通流路が真空引きされて、ピストンの先端部に負圧が生じる。その結果、ピストンの先端部で被吸着部品の吸着を行うことができる。以上のように、このアクチュエータでは、ピストン内に形成された連通流路によって、ピストンの先端部に吸着機構を別途設けることなく、被吸着部品の吸着を行うことができる。したがって、被吸着部品の吸着をコンパクトな構成で実現することができる。
 また、アクチュエータは、第一気体室と第二気体室との間、及び、第一気体室と第三気体室との間の少なくとも一方に連通するように形成されており、シリンダ内に供給された気体を大気に開放する大気開放部を備えていてもよい。この場合、シリンダ内に供給された気体が、大気開放部によって、第一気体室と第二気体室との間、及び、第一気体室と第二気体室との間の少なくとも一方から大気へ開放される。これにより、第二気体室及び第三気体室の少なくとも一方側から第一気体室側への気体の漏れを抑制し、第一気体室における真空を十分に保持することができる。
 また、アクチュエータにおいて、気体室は、気体が供給され、その供給に応じてピストンを往復動させる第三気体室を更に有し、大気開放部は、第一気体室と第三気体室との間にも連通するように形成されていてもよい。この場合、シリンダ内に供給された気体が、大気開放部によって、第一気体室と第三気体室との間から大気へ開放される。これにより、第二気体室側から第一気体室側への気体の漏れを抑制し、第一気体室における真空を十分に保持することができる。
 また、大気開放部は、ピストン内に形成された大気開放流路であってもよい。この場合、大気開放部が、ピストン内に形成された大気開放流路として構成されているため、ピストンとシリンダとの配置関係に配慮することなく気体を大気開放することができ、よりコンパクトな構成を実現することが可能となる。
 また、第一気体室は、正圧にも保持可能であってもよい。この場合、第一気体室が正圧に保持されると、当該第一気体室に連通されたピストン内の連通流路に気体が送り込まれ、ピストンの先端部に正圧が生じる。その結果、ピストンの先端部で被吸着部品の脱着を行うことができる。以上のように、この場合、ピストン内に形成された連通流路によって、ピストンの先端部に脱着機構を別途設けることなく、被吸着部品の脱着を行うことができる。したがって、コンパクトな構成で被吸着部品の脱着も実現することができる。
 また、ピストンの先端部には、フィルタが設けられていてもよい。この場合、ピストンの先端部で被吸着部品の吸着を行う際に、ピストンの先端部から異物が吸い込まれることをフィルタによって防止することができる。その結果、異物混入によるアクチュエータの故障を防止することができる。
 本発明によれば、被吸着部品の吸着をコンパクトな構成で実現することができるアクチュエータが提供される。
本発明の第1実施形態に係るアクチュエータを示す概略断面図である。 本発明の第2実施形態に係るアクチュエータを示す概略断面図である。 本発明の第3実施形態に係るアクチュエータを示す概略断面図である。 本発明の第4実施形態に係るアクチュエータを示す概略断面図である。
 以下、添付図面を参照しながら本発明に係るアクチュエータの実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
 図1は、本発明の第1実施形態に係るアクチュエータを示す概略断面図である。図1に示すように、本実施形態に係るアクチュエータ10は、位置決め制御及び荷重制御等を行う駆動機構であって、例えば半導体製造の後工程に用いられるダイボンダ、ウェブ搬送装置におけるロールの張力制御等に用いられる。アクチュエータ10は、気体が供給されることにより推力を発生する気体圧アクチュエータである。なお、気体は、例えば圧縮空気でもよいし、その他の種々の気体でもよい。また、本実施形態に係るアクチュエータ10は、例えば半導体チップ、ウェーハ、液晶用ガラス板等の被吸着部品を吸着するために用いられる。
 アクチュエータ10は、気体が内部に供給されるシリンダ11と、シリンダ11内を往復動するピストン12と、シリンダ11内に形成される気体室である制御圧室20A、定圧室20B、及び真空制御室20Cとを備えている。なお、詳細は後述するが、真空制御室20Cは、制御圧室20Aと定圧室20Bとの間に位置している。以下、定圧室20B側から制御圧室20A側へ向かう方向を「退行方向」ともいい、制御圧室20A側から定圧室20B側へ向かう方向を「進行方向」ともいう。
 シリンダ11は、略円筒又は多角形の筒状であって、その内部にピストン12を収容している。シリンダ11には、内壁面11aから外壁面11bまでを貫通する開口孔11cが形成されている。開口孔11cは、シリンダ11内の真空制御室20C(詳細は、後述する)に対応して位置しており、真空制御室20Cと連通されている。開口孔11cは、切替部22を介して真空発生部41及び気体供給部42と接続されている。真空発生部41は、真空制御室20Cを減圧することで真空制御室20Cを真空に保持するための真空保持部である。真空発生部41としては、例えば真空ポンプ又はエアエジェクタ等が用いられる。気体供給部42は、真空制御室20Cに気体を供給することで真空制御室20Cを正圧に保持する正圧保持部である。
 切替部22は、開口孔11cと真空発生部41との接続、及び、開口孔11cと気体供給部42との接続を切り替える。切替部22は、例えば三方弁である。なお、切替部22は、不図示の制御部によってその切り替えが制御されてもよく、手動で切り替えられてもよい。
 ピストン12は、ピストン本体部13と、ピストン本体部13の両端側に形成されたヘッド部14,15と、ヘッド部15に接続されたロッド部16と、ピストン本体部13の外周面13aに形成された仕切り部17,18とを有している。ヘッド部14及び仕切り部17は退行方向側に位置しており、ヘッド部15及び仕切り部18は進行方向側に位置している。また、ロッド部16は、進行方向側に突出している。以下、ピストン本体部13、ヘッド部14,15、ロッド部16、及び仕切り部17,18について詳細に説明する。
 ピストン本体部13は、略円柱又は多角形の筒状であって、シリンダ11の軸方向に沿って延びている。ピストン本体部13は、シリンダ11内に進退自在に収容されている。ヘッド部14,15は、ピストン本体部13の外径が拡大された拡径部である。ヘッド部14,15は、略円板状であって、ピストン本体部13の外周面13aよりも外側に突出している。ヘッド部14は、ピストン本体部13における退行方向側の端部に位置し、ヘッド部15は、ピストン本体部13における進行方向側の端部に位置している。
 ロッド部16は、ヘッド部15の端面15f(ピストン本体部13とは反対側の端面)に接続されている。ロッド部16は、ヘッド部15の端面15fから進行方向に延びている。ロッド部16は、シリンダ11を貫通し、シリンダ11の外部に突出している。ロッド部16は、略円柱状であって、ピストン本体部13よりもやや小さい外径を有している。ロッド部16の先端部16fは、シリンダ11の外部に露出しており、後述する被吸着部品の吸着を行うピストン12の先端部12fを構成している。ロッド部16の先端部16fには、キャップ部19が設けられている。
 キャップ部19は、小径及び大径を有する円筒部材であって、断面略T字状をなしている。キャップ部19には、ピストン12内に形成された連通流路23(詳細は、後述する)と連通された貫通孔19aが形成されている。キャップ部19の貫通孔19a内には、フィルタ27が配設されている。すなわち、ピストン12の先端部12fにフィルタ27が設けられている。
 フィルタ27は、ピストン12の先端部12fで被吸着部品の吸着を行う際に、ピストン12の先端部12fから異物が吸い込まれることを防止する機能を有する。フィルタ27は、大気中の異物を補足し、ピストン12の先端部12fから連通流路23内に異物が混入することを抑制し、ひいては連通流路23を通ってシリンダ11内に異物が混入しないようにしている。フィルタ27は、例えば異物よりも小さい貫通孔が形成された略円柱状の部材であり、貫通孔19a内に収容されている。
 仕切り部17,18は、ヘッド部14とヘッド部15との間に形成されている。仕切り部17,18は、ピストン本体部13の外径が拡大された拡径部である。仕切り部17,18は、略円板状であって、ピストン本体部13の外周面13aよりも突出している。ピストン12の軸方向で、仕切り部17,18の幅は、ヘッド部14,15の幅よりも小さい。
 仕切り部17は、ピストン本体部13における退行方向側に位置している。具体的に、仕切り部17は、仕切り部18よりもヘッド部14側に位置し、ヘッド部14と所定の間隔を有して位置している。これにより、ピストン本体部13は、仕切り部17とヘッド部14とに挟まれた部分を有する。仕切り部17及びヘッド部14の外径がピストン本体部13の外径よりも大きいため、当該挟まれた部分は、仕切り部17及びヘッド部14よりも内側に窪んでいる。すなわち、ピストン12における仕切り部17とヘッド部14との間には、溝部12aが形成されている。
 仕切り部18は、ピストン本体部13における進行方向側に位置している。具体的に、仕切り部18は、仕切り部17よりもヘッド部15側に位置し、ヘッド部15と所定の間隔を有して位置している。これにより、ピストン本体部13は、仕切り部18とヘッド部15とに挟まれた部分を有する。仕切り部18及びヘッド部15の外径がピストン本体部13の外径よりも大きいため、当該挟まれた部分は、仕切り部18及びヘッド部15よりも内側に窪んでいる。すなわち、ピストン12における仕切り部18とヘッド部15との間には、溝部12bが形成されている。
 シリンダ11の内壁面11aとピストン12との間には、例えば不図示の静圧軸受(エアベアリング)が設けられている。供給源(後述する気体供給部40)からの気体が静圧軸受に供給されることにより、シリンダ11の内壁面11aとピストン12との隙間には気体の層が形成される。
 本実施形態では、ピストン12のヘッド部14とシリンダ11の内壁面11aとの間、及び、ピストン12のヘッド部15とシリンダ11の内壁面11aとの間に静圧軸受が設けられている。よって、ピストン12のヘッド部14とシリンダ11の内壁面11aとの間には、制御圧室20A(詳細は、後述する)からの気体が矢印A1方向に流れる。すなわち、ピストン12のヘッド部14とシリンダ11の内壁面11aとの間に、気体の層が形成されている。また、ピストン12のヘッド部15とシリンダ11の内壁面11aとの間には、定圧室20B(詳細は、後述する)からの気体が矢印A2方向に流れる。すなわち、ピストン12のヘッド部15とシリンダ11の内壁面11aとの間に、気体の層が形成されている。これにより、ピストン12は、シリンダ11の内壁面11aに対して非接触状態とされている。
 ピストン12は、シリンダ11の内壁面11aに対して非接触とされた状態で、進行移動及び退行移動を繰り返す。進行移動とは、進行方向(制御圧室20A側から定圧室20B側へ向かう方向)の移動(以下、単に「進行移動」ともいう)である。退行移動とは、退行方向(定圧室20B側から制御圧室20A側へ向かう方向)の移動(以下、単に「退行移動」ともいう)である。
 ピストン12内には、ピストン12の先端部12fと真空制御室20Cとを連通する連通流路23が形成されている。連通流路23の一端部は、ピストン12の先端部12fを貫通して大気と連通されている。連通流路23の他端部は、仕切り部17と仕切り部18との間におけるピストン本体部13の外周面13aを貫通して真空制御室20Cと連通されている。連通流路23は、略L字状に延びている。
 具体的に、連通流路23は、大気連通部23aと、大気連通部23aと連通された真空連通部23bとを有している。大気連通部23aは、ピストン本体部13の径方向で略中心の位置で、ピストン本体部13の軸方向に沿って延びている。大気連通部23aは、ピストン本体部13における仕切り部17と仕切り部18との間(すなわち、後述する真空制御室20Cに対応する位置)からピストン12の先端部12fを貫通するまで延びており、大気と連通されている。
 真空連通部23bは、大気連通部23aにおける大気と連通された側とは反対側の端部からピストン本体部13の径方向に屈曲している。真空連通部23bは、ピストン本体部13の外周面13aを貫通するまでピストン本体部13の径方向に沿って延びており、真空制御室20Cと連通されている。
 また、ピストン12内には、大気開放流路24が形成されている。大気開放流路24は、シリンダ11内に供給された気体を大気に開放する大気開放部である。大気開放流路24の詳細は、後述する。
 次に、制御圧室20A、定圧室20B、及び真空制御室20Cについて詳細に説明する。
 制御圧室20A(第二気体室)及び定圧室20B(第三気体室)は、供給源である気体供給部40から気体が供給され、その気体の供給に応じてピストン12を往復動させる。すなわち、制御圧室20A及び定圧室20Bへの気体の供給に応じて制御圧室20A内の圧力と定圧室20B内の圧力との差が生じ、この差に応じてピストン12の進行移動及び退行移動が行われる。
 制御圧室20Aは、ヘッド部14とシリンダ11との間に形成されている。制御圧室20Aは、ヘッド部14の端面14f(ピストン本体部13とは反対側の端面)とシリンダ11の内壁面11aとで区画されている。制御圧室20Aは、気体供給部40からの気体が制御された供給量で供給される。
 具体的に、制御圧室20Aは、気体供給部40と制御流路31によって接続されている。気体供給部40は、例えば不図示のレギュレータ等を通して一定圧に調節した状態で気体を供給する。制御流路31には、サーボ弁30が設けられている。サーボ弁30は、制御圧室20Aへ供給される気体の供給量を制御する。サーボ弁30は、サーボ弁30に入力された電気信号に応じて、この気体の供給量を高精度及び高応答に制御すると共に、制御された供給量で、気体を制御圧室20Aへ供給する。
 サーボ弁30は、例えば、制御圧室20A及び定圧室20Bにそれぞれ設けられた圧力センサ(不図示)によって検出された制御圧室20A及び定圧室20B内の各圧力を示す信号が入力されると、当該信号が示す制御圧室20A及び定圧室20B内の各圧力が適切な状態となるように、気体供給部40からの気体の供給量を制御する。ここで、適切な状態とは、例えば、制御圧室20A内の圧力と定圧室20B内の圧力の差として出力されるアクチュエータ10の推力が所望の大きさとなる状態である。サーボ弁30は、例えば、予め設定された流量特性(例えば、所望の大きさの推力を生じさせるために必要な制御圧室20A内の圧力に対応した供給量)に基づき、気体の供給量を制御してもよい。
 サーボ弁30は、気体供給部40から気体が供給される供給ポートPsと、制御された供給量で気体を制御圧室20Aへ供給する制御ポートPcと、気体を大気中へ排気する排気ポートExとを有している。サーボ弁30は、供給ポートPs、制御ポートPc、及び排気ポートExの三方向に気体の出入口を有する三方弁である。
 なお、サーボ弁30としては、例えばスプール型又はノズルフラッパ型のサーボ弁を用いてもよい。サーボ弁30として例えばスプール型のサーボ弁を用いた場合には、大容量で気体を流すことができる。また、サーボ弁30として例えばノズルフラッパ型のサーボ弁を用いた場合には、応答性を速くすることができる。
 定圧室20B(第三気体室)は、ヘッド部15とシリンダ11との間に形成されている。定圧室20Bは、ヘッド部15の端面15fとシリンダ11の内壁面11aとで区画されている。定圧室20Bは、気体供給部40からの気体が一定圧で供給される。
 具体的に、定圧室20Bは、制御流路31におけるサーボ弁30よりも上流側の位置に、定圧流路32によって接続されている。これにより、気体供給部40からの気体が、サーボ弁30を介することなく、一定圧の状態で定圧室20Bへ供給される。
 真空制御室20C(第一気体室)は、仕切り部17、仕切り部18、及びシリンダ11の間に形成されている。すなわち、真空制御室20Cは、制御圧室20Aと定圧室20Bとの間に位置している。真空制御室20Cは、仕切り部17の端面17e(ヘッド部14とは反対側の端面)、仕切り部18の端面18e(ヘッド部15とは反対側の端面)、及びシリンダ11の内壁面11aとで区画されている。真空制御室20Cは、真空に保持可能となっている。
 具体的には、切替部22の切り替えにより開口孔11cと真空発生部41とが接続されることで、シリンダ11の開口孔11cを通し、真空発生部41により真空制御室20C内の気体が吸引される。これにより、真空制御室20Cが真空に保持される。なお、真空とは、圧力が0の絶対真空に限られず、例えば大気圧より圧力が低い負圧状態も含まれる。
 真空制御室20Cが真空に保持されると、当該真空制御室20Cに連通されたピストン12内の連通流路23が真空引きされて、ピストン12の先端部12fに負圧が生じる。ここで、負圧とは、大気圧よりも低い圧をいう。これにより、ピストン12の先端部12fに設けられたキャップ部19の貫通孔19a内に矢印L1の方向に大気が吸引される。その結果、キャップ部19の先端面19fに被吸着部品が吸着される。すなわち、キャップ部19を介して、ピストン12の先端部12fに被吸着部品が吸着される。
 また、真空制御室20Cは、正圧にも保持可能となっている。正圧とは、大気圧よりも高い圧である。具体的には、切替部22の切り替えにより開口孔11cと気体供給部42とが接続されることで、シリンダ11の開口孔11cを通し、気体供給部42により真空制御室20C内に気体が供給される。これにより、真空制御室20Cが真空ではなくなり、正圧に保持される。
 真空制御室20Cが正圧に保持されると、当該真空制御室20Cに連通されたピストン12内の連通流路23に気体が送り込まれ、ピストン12の先端部12fに正圧が生じる。ここで、正圧とは、大気圧よりも高い圧をいう。これにより、ピストン12の先端部12fに設けられたキャップ部19の貫通孔19aから矢印L2の方向に気体が噴出される。その結果、キャップ部19の先端面19fから被吸着部品が脱着される。すなわち、キャップ部19の貫通孔19aを介して、ピストン12の先端部12fに被吸着部品が脱着される。
 次に、ピストン12内に形成された大気開放流路24について、詳細に説明する。
 大気開放流路24は、シリンダ11内に供給された気体のうち、真空制御室20Cと制御圧室20A及び定圧室20Bとの間に存在する気体の一部を大気開放する。これにより、大気開放流路24は、制御圧室20A及び定圧室20B側から真空制御室20C側への気体の漏れを抑制し、真空制御室20Cを制御圧室20A及び定圧室20Bに対して十分に独立した空間とする機能を有している。
 大気開放流路24は、連通流路23とは交差せず且つ連通しないよう独立に形成されている。大気開放流路24は、連通流路23よりもピストン本体部13の径方向で外側の位置で、ピストン本体部13の軸方向に沿って延びている。大気開放流路24の一端部は、ピストン12の先端部12fを貫通して大気と連通されている。また、大気開放流路24は、真空制御室20Cと制御圧室20Aとの間、及び、真空制御室20Cと定圧室20Bとの間の両方に連通するように形成されている。
 具体的に、大気開放流路24は、大気連通部24aと、大気連通部24aと連通された空間連通部24b,24cとを有している。大気連通部24aは、連通流路23の大気連通部23aと略平行に、ピストン本体部13の軸方向に沿って延びている。大気連通部24aは、ピストン12の溝部12aに対応する位置からピストン12の先端部12fを貫通するまで延びており、大気と連通されている。
 空間連通部24bは、大気連通部24aにおける大気と連通された側とは反対側の端部からピストン本体部13の径方向に屈曲している。空間連通部24bは、ピストン本体部13の外周面13aを貫通するまでピストン本体部13の径方向に沿って延びており、溝部12aにおける仕切り部17とヘッド部14との間の空間(すなわち、真空制御室20Cと制御圧室20Aとの間)に連通されている。
 空間連通部24cは、大気連通部24aにおける溝部12bに対応して位置する途中部からピストン本体部13の径方向に屈曲している。空間連通部24cは、ピストン本体部13の外周面13aを貫通するまでピストン本体部13の径方向に沿って延びており、溝部12bにおける仕切り部18とヘッド部15との間の空間(すなわち、真空制御室20Cと定圧室20Bとの間)に連通されている。
 このような大気開放流路24が形成されていることにより、ピストン12のヘッド部14とシリンダ11の内壁面11aとの間において矢印A1方向(すなわち、進行方向)に流れる気体は、仕切り部17によって真空制御室20Cへの侵入が遮られつつ、溝部12aにおける空間連通部24bへ流れ込む。そして、空間連通部24bへ流れ込んだ気体は、空間連通部24bと連通された大気連通部24aを通して大気へ開放される。これにより、制御圧室20A側から真空制御室20C側への気体の漏れが抑制される。
 また、ピストン12のヘッド部15とシリンダ11との内壁面11aとの間において矢印A2方向(すなわち、退行方向)に流れる気体は、仕切り部18によって真空制御室20Cへの侵入が遮られつつ、溝部12bにおける空間連通部24cへ流れ込む。そして、空間連通部24cへ流れ込んだ気体は、空間連通部24cと連通された大気連通部24aを通して大気へ開放される。これにより、定圧室20B側から真空制御室20C側への気体の漏れが抑制される。
 したがって、真空制御室20Cを真空に保持する際に、制御圧室20A及び定圧室20Bから真空制御室20C側への気体の漏れによる真空破壊を抑制することができる。すなわち、真空制御室20Cの真空を十分に保持することができる。
 以上、本実施形態に係るアクチュエータ10によれば、ピストン12内に形成された連通流路23により、ピストン12の先端部12fと、真空に保持可能な真空制御室20Cとが連通されている。よって、真空制御室20Cが真空に保持されると、当該真空制御室20Cに連通されたピストン12内の連通流路23が真空引きされて、ピストン12の先端部12fに負圧が生じる。その結果、ピストン12の先端部12fで被吸着部品の吸着を行うことができる。以上のように、このアクチュエータ10では、ピストン12内に形成された連通流路23によって、ピストン12の先端部12fに吸着機構を別途設けることなく、被吸着部品の吸着を行うことができる。したがって、被吸着部品の吸着をコンパクトな構成で実現することができる。
 また、本実施形態に係るアクチュエータ10によれば、シリンダ11内に供給された気体が、大気開放流路24によって、真空制御室20Cと制御圧室20Aとの間、及び、真空制御室20Cと定圧室との間から大気へ開放される。これにより、制御圧室20A及び定圧室20Bの両方側から真空制御室20C側への気体の漏れを抑制し、真空制御室20Cにおける真空を十分に保持することができる。
 また、本実施形態に係るアクチュエータ10によれば、大気開放部が、ピストン12内に形成された大気開放流路24として構成されているため、ピストン12とシリンダ11との配置関係に配慮することなく気体を大気開放することができ、よりコンパクトな構成を実現することが可能となる。
 例えば、ピストン12の軸方向において、ヘッド部14,15における静圧軸受の位置(すなわちシリンダ11の内壁面11aとピストン12との間に形成された気体の層の位置)は、ピストン12の往復動によって移動する。本実施形態によれば、ピストン12内に大気開放部が形成されているため、ピストン12が往復動しても、静圧軸受と大気開放部とは干渉しない。よって、大気開放部の形成位置によらず、ピストン12の往復動距離だけを踏まえて静圧軸受用の空間を確保すればよいため、よりコンパクトな構成を実現することが可能となる。
 また、本実施形態に係るアクチュエータ10によれば、真空制御室20Cが正圧に保持されると、当該真空制御室20Cに連通されたピストン12内の連通流路23に気体が送り込まれ、ピストン12の先端部12fに正圧が生じる。その結果、ピストン12の先端部12fで被吸着部品の脱着を行うことができる。以上のように、本実施形態によれば、ピストン12内に形成された連通流路23によって、ピストン12の先端部12fに脱着機構を別途設けることなく、被吸着部品の脱着を行うことができる。したがって、コンパクトな構成で被吸着部品の脱着も実現することができる。
 また、本実施形態に係るアクチュエータ10によれば、ピストン12の先端部12fで被吸着部品の吸着を行う際に、ピストン12の先端部12fから異物が吸い込まれることをフィルタ27によって防止することができる。その結果、異物混入によるアクチュエータ10の故障を防止することができる。
(第2実施形態)
 次に、図2を参照して、第2実施形態に係るアクチュエータ10Aについて説明する。なお、アクチュエータ10Aは、第1実施形態に係るアクチュエータ10と同様の要素や構造を備えている。そのため、第1実施形態に係るアクチュエータ10と同様の要素や構造には同一の符号を付して詳細な説明は省略し、第1実施形態と異なる部分について説明する。
 図2は、第2実施形態に係るアクチュエータ10Aを示す概略断面図である。図2に示すように、本実施形態に係るアクチュエータ10Aは、ピストン12に形成された大気開放流路24に代えて、シリンダ11に形成された大気開放部26を備えている点で、第1実施形態に係るアクチュエータ10と相違している。大気開放部26は、シリンダ11内に供給された気体を大気に開放する。
 大気開放部26は、シリンダ11内に供給された気体のうち、制御圧室20A及び定圧室20Bと真空制御室20Cとの間に存在する気体の一部を大気開放する。これにより、大気開放部26は、制御圧室20A及び定圧室20B側から真空制御室20C側への気体の漏れを抑制し、真空制御室20Cを制御圧室20A及び定圧室20Bに対して十分に独立した空間とする機能を有している。
 大気開放部26は、真空制御室20Cと制御圧室20Aとの間、及び、真空制御室20Cと定圧室20Bとの間の両方に連通するように形成されている。具体的に、大気開放部26は、真空制御室20Cと制御圧室20Aとの間に形成された第一大気開放部26aと、真空制御室20Cと定圧室20Bとの間に形成された第二大気開放部26bとを有している。
 第一大気開放部26aは、シリンダ11におけるピストン12の溝部12aに対応する位置に形成されている。第一大気開放部26aは、シリンダ11の内壁面11aから外壁面11bまでを貫通する貫通孔であり、大気と連通されている。これにより、ピストン12のヘッド部14とシリンダ11の内壁面11aとの間において矢印A1方向(すなわち、進行方向)に流れる気体は、仕切り部17によって真空制御室20Cへの侵入が遮られつつ、溝部12aにおける第一大気開放部26a内に流れる。そして、第一大気開放部26aからシリンダ11の外側へ大気開放される。
 第二大気開放部26bは、シリンダ11におけるピストン12の溝部12bに対応する位置に形成されている。第二大気開放部26bは、シリンダ11の内壁面11aから外壁面11bまでを貫通する貫通孔であり、大気と連通されている。これにより、ピストン12のヘッド部15とシリンダ11の内壁面11aとの間において矢印A2方向(すなわち、退行方向)に流れる気体は、仕切り部18によって真空制御室20Cへの侵入が遮られつつ、溝部12bにおける第二大気開放部26b内に流れる。そして、第二大気開放部26bからシリンダ11の外側へ大気開放される。
 なお、本実施形態では、第1実施形態に比べて、ピストン本体部13の溝部12aにおける軸方向長さ、すなわち仕切り部17とヘッド部14との間の距離が長くなっている。また、ピストン本体部13の溝部12bにおける軸方向長さ、すなわち仕切り部18とヘッド部15との間の距離が長くなっている。すなわち、ピストン12の軸方向で静圧軸受と大気開放部26とが離れて位置している。これは、ピストン12が往復動しても静圧軸受用の空間と大気開放部26とが干渉しないようにし、静圧軸受用の空間を十分に確保するためである。
 以上、本実施形態に係るアクチュエータ10Aにおいても、上記第1実施形態に係るアクチュエータ10同様、ピストン12内に形成された連通流路23によって、ピストン12の先端部12fに吸着機構を別途設けることなく、被吸着部品の吸着を行うことができる。したがって、被吸着部品の吸着をコンパクトな構成で実現することができる。
 また、本実施形態に係るアクチュエータ10Aによれば、シリンダ11内に供給された気体が、大気開放部26によって、真空制御室20Cと制御圧室20Aとの間、及び、真空制御室20Cと定圧室との間から大気へ開放される。これにより、制御圧室20A及び定圧室20Bの両方側から真空制御室20C側への気体の漏れを抑制し、真空制御室20Cにおける真空を十分に保持することができる。
(第3実施形態)
 次に、図3を参照して、第3実施形態に係るアクチュエータ10Bについて説明する。なお、アクチュエータ10Bは、第1実施形態に係るアクチュエータ10と同様の要素や構造を備えている。そのため、第1実施形態に係るアクチュエータ10と同様の要素や構造には同一の符号を付して詳細な説明は省略し、第1実施形態と異なる部分について説明する。
 図3は、第3実施形態に係るアクチュエータ10Bを示す概略断面図である。図3に示すように、本実施形態に係るアクチュエータ10Bは、定圧室20Bを備えておらず、定圧室20Bに対応する空間に弾性部材50が設けられている点等で、第1実施形態に係るアクチュエータ10と相違している。
 アクチュエータ10Bは、第1実施形態と同様に制御圧室20A及び真空制御室20Cを備えている一方で、第1実施形態とは異なり定圧室20Bを備えていない。すなわち、ピストン12のヘッド部15側においては、シリンダ11内に気体供給部40から気体が供給されていない。これに対応し、本実施形態では、ピストン12のヘッド部15とシリンダ11の内壁面11aとの間に静圧軸受が設けられておらず、ヘッド部15と内壁面11aと12との間に空気の層が形成されていない。また、ピストン12は、仕切り部18及び溝部12bを有していない。
 また、本実施形態に係るアクチュエータ10Bでは、定圧室20Bを備えていないため、定圧室20Bからの気体を大気開放する必要がない。このため、本実施形態に係る大気開放流路24は、空間連通部24cを有していない。すなわち、本実施形態では、大気開放流路24は、真空制御室20Cと制御圧室20Aとの間を連通するように形成されている一方で、真空制御室20Cと定圧室20Bとの間に連通するようには形成されていない。
 弾性部材50は、ヘッド部15とシリンダ11との間に設けられている。弾性部材50は、ヘッド部15の端面15fとシリンダ11の内壁面11aとで区画される空間に配置されている。弾性部材50は、例えば、コイルばね、ゴム、人工筋肉等である。弾性部材50は、気体供給部40から制御圧室20Aへの気体の供給に応じて、ピストン12の軸方向に伸縮し、ピストン12を往復動させる。
 以上、本実施形態に係るアクチュエータ10Bにおいても、上記第1実施形態に係るアクチュエータ10同様、ピストン12内に形成された連通流路23によって、ピストン12の先端部12fに吸着機構を別途設けることなく、被吸着部品の吸着を行うことができる。したがって、被吸着部品の吸着をコンパクトな構成で実現することができる。
 また、本実施形態に係るアクチュエータ10Bにおいても、シリンダ11内に供給された気体が、大気開放流路24によって、真空制御室20Cと制御圧室20Aとの間から大気へ開放される。これにより、制御圧室20A側から真空制御室20C側への気体の漏れを抑制し、真空制御室20Cにおける真空を十分に保持することができる。
(第4実施形態)
 次に、図4を参照して、第4実施形態に係るアクチュエータ10Cについて説明する。なお、アクチュエータ10Cは、第1実施形態に係るアクチュエータ10と同様の要素や構造を備えている。そのため、第1実施形態に係るアクチュエータ10と同様の要素や構造には同一の符号を付して詳細な説明は省略し、第1実施形態と異なる部分について説明する。
 図4は、第4実施形態に係るアクチュエータ10Cを示す概略断面図である。図4に示すように、本実施形態に係るアクチュエータ10Cは、ピストン12の形状及び静圧軸受の位置が異なる点、定圧室20Bに代えて二つの定圧室20D,20Eを有している点、及び、ピストン12内の大気開放流路24の構成が異なる点で、第1実施形態に係るアクチュエータ10と相違している。
 本実施形態において、ピストン12の軸方向で、ヘッド部14,15の幅は、第1実施形態に比べて小さくなっており、仕切り部17,18の幅と略同じとなっている。ピストン12は、ヘッド部15の端面15f側から突出する本体延長部25と、本体延長部25に形成されたヘッド部28,29とを有している。本体延長部25は、ピストン本体部13とロッド部16との間に配置されている。本体延長部25は、略円柱状であって、シリンダ11の軸方向に沿ってヘッド部15の端面15f側から延びている。本体延長部25は、ピストン本体部13と一体的に形成されており、ピストン本体部13の外径と略同じ外径を有している。本体延長部25は、ヘッド部29の端面29f(ピストン本体部13とは反対側の端面)においてロッド部16と接続されている。
 ヘッド部28,29は、本体延長部25の外径が拡大された拡径部である。ヘッド部28,29は、略円板状であって、本体延長部25の外周面25aよりも外側に突出している。また、ピストン12の軸方向で、ヘッド部28,29の幅は、仕切り部17,18の幅よりも大きい。
 ヘッド部28は、本体延長部25の途中部に位置しており、ヘッド部29は、本体延長部25の端部(端面15fとは反対側の端部)に位置している。ヘッド部28とヘッド部29とは、所定の間隔を有して位置している。これにより、本体延長部25は、ヘッド部28とヘッド部29とに挟まれた部分を有する。ヘッド部28,29の外径が本体延長部25の外径よりも大きいため、当該挟まれた部分は、ヘッド部28,29よりも内側に窪んでいる。すなわち、ピストン12におけるヘッド部28とヘッド部29との間には、溝部12eが形成されている。
 本実施形態では、ピストン12のヘッド部28,29とシリンダ11の内壁面11aとの間に静圧軸受が設けられている。よって、ピストン12のヘッド部28とシリンダ11の内壁面11aとの間には、定圧室20D(詳細は、後述する)からの気体が矢印A3方向に流れる。すなわち、ピストン12のヘッド部28とシリンダ11の内壁面11aとの間に、気体の層が形成されている。また、ピストン12のヘッド部29とシリンダ11の内壁面11aとの間には、定圧室20E(詳細は、後述する)からの気体が矢印A4方向に流れる。すなわち、ピストン12のヘッド部29とシリンダ11の内壁面11aとの間に、気体の層が形成されている。これにより、ピストン12は、シリンダ11の内壁面11aに対して非接触状態とされている。
 なお、本実施形態では、ピストン12のヘッド部14,15とシリンダ11の内壁面11aとの間に静圧軸受が設けられていない。よって、ピストン12のヘッド部14,15とシリンダ11の内壁面11aとの間には静圧軸受による気体の層は形成されないが、制御圧室20A及び定圧室20Dと真空制御室20Cとの差圧により、ヘッド部14と内壁面11aとの間には矢印A1方向に気体が流れ、ヘッド部15と内壁面11aとの間には矢印A2方向に気体が流れる。
 定圧室20D(第三気体室)は、ヘッド部15、ヘッド部28、及びシリンダ11の間に形成されている。定圧室20Dは、ヘッド部15の端面15fと、ヘッド部28の端面28f(ピストン本体部13側の端面)と、シリンダ11の内壁面11aとで区画されている。定圧室20Dは、気体供給部40からの気体が一定圧で供給される。具体的に、定圧室20Dは、定圧流路32から分岐する分岐流路32aと接続されている。これにより、気体供給部40からの気体が、一定圧の状態で定圧室20Dへ供給される。
 定圧室20E(第三気体室)は、ヘッド部29とシリンダ11との間に形成されている。定圧室20Eは、ヘッド部29の端面29fと、シリンダ11の内壁面11aとで区画されている。定圧室20Eは、気体供給部40からの気体が一定圧で供給される。具体的に、定圧室20Eは、定圧流路32から分岐する分岐流路32bと接続されている。これにより、気体供給部40からの気体が、一定圧の状態で定圧室20Eへ供給される。
 また、本実施形態において、ピストン12内の大気開放流路24は、大気連通部24a、空間連通部24b,24cに加え、大気連通部24aと連通された空間連通部24dを有している。
 空間連通部24dは、大気連通部24aにおける溝部12eに対応して位置する途中部からピストン本体部13の径方向に屈曲している。空間連通部24dは、ピストン本体部13の外周面13aを貫通するまでピストン本体部13の径方向に沿って延びており、溝部12eにおけるヘッド部28とヘッド部29との間の空間(すなわち、定圧室20Dと定圧室20Eとの間)に連通されている。
 ピストン12のヘッド部28とシリンダ11の内壁面11aとの間において矢印A3方向(すなわち、進行方向)に流れる気体は、溝部12eにおける空間連通部24dへ流れ込む。そして、空間連通部24dへ流れ込んだ気体は、空間連通部24dと連通された大気連通部24aを通して大気へ開放される。また、ピストン12のヘッド部29とシリンダ11の内壁面11aとの間において矢印A4方向(すなわち、退行方向)に流れる気体は、溝部12eにおける空間連通部24dへ流れ込む。そして、空間連通部24dへ流れ込んだ気体は、空間連通部24dと連通された大気連通部24aを通して大気へ開放される。以上のように、定圧室20Dと定圧室20Eとの間からも気体が大気開放される。これにより、定圧室20D,20E側から真空制御室20C側への気体の漏れが抑制されるため、真空制御室20Cを真空に保持する際に、当該気体の漏れによる真空破壊を抑制することができる。すなわち、真空制御室20Cの真空を十分に保持することができる。
 本実施形態では、制御圧室20A及び定圧室20Eが、供給源である気体供給部40からの気体の供給に応じてピストン12を往復動させる。すなわち、制御圧室20A及び定圧室20Eへの気体の供給に応じて制御圧室20A内の圧力と定圧室20E内の圧力との差が生じ、この差に応じてピストン12の進行移動及び退行移動が行われる。なお、定圧室20Dでは、ヘッド部15の端面15fとヘッド部28の端面28fとの面積が同じであるため、端面15fに対して退行方向に働く力と端面28fに対して進行方向に働く力とが互いに打ち消し合い、ピストン12を進行方向及び退行方向に移動させる力が生じない。このため、定圧室20D内の圧力によらず、上述したように制御圧室20Aと定圧室20Eとの圧力差に起因してピストン12進行移動及び退行移動が行われる。
 以上、本実施形態に係るアクチュエータ10Cにおいても、上記第1実施形態に係るアクチュエータ10同様、ピストン12内に形成された連通流路23によって、ピストン12の先端部12fに吸着機構を別途設けることなく、被吸着部品の吸着を行うことができる。したがって、被吸着部品の吸着をコンパクトな構成で実現することができる。
 以上、本発明の種々の実施形態について説明したが、本発明は上記実施形態に限定されず、各請求項に記載した要旨を変更しない範囲で変形し、又は他に適用してもよい。
 上記第1、第3及び第4実施形態において、大気開放部が、第一気体室と第二気体室との間、及び、第一気体室と第三気体室との間の両方ではなく、何れか一方に連通するように形成されていてもよい。すなわち、大気開放流路24は、空間連通部24b及び空間連通部24cの両方ではなく、空間連通部24b及び空間連通部24cの何れか一方を有していてもよい。また、大気開放部26は、第一大気開放部26a及び第二大気開放部26bの両方ではなく、第一大気開放部26a及び第二大気開放部26bの何れか一方を有していてもよい。また、第4実施形態において、大気開放流路24は、空間連通部24dを有していなくてもよい。
 さらに、上記第1、第2、及び第4実施形態のように、気体室が、気体の供給に応じてピストン12を往復動させる第二気体室及び第三気体室を有している場合には、大気開放部を備えていなくてもよい。すなわち、ピストン12内に大気開放流路24が形成されていなくてもよく、シリンダ11に大気開放部26が形成されていなくてもよい。
 また、上記第3実施形態では、気体室のうち定圧室20Bを有していないとしたが、これに限られず、気体室のうち制御圧室20Aを有していないとしてもよい。また、上記第3実施形態では、定圧室20Bに対応する空間に弾性部材が設けられているとしたが、これに限られず、制御圧室20A又は定圧室20Bに対応する空間に直動モータ等が設けられていてもよい。
 また、真空制御室20Cは、正圧に保持されなくてもよい。真空制御室20Cは、切替部22を介することなく、真空発生部41に直接接続されていてもよい。
 また、ロッド部16の先端部16fには、キャップ部19が設けられていなくてもよい。フィルタ27は、キャップ部19の貫通孔19a内ではなく、ピストン12の先端部12fに直接設けられていてもよい。さらに、フィルタ27が設けられていなくてもよい。
 上記実施形態では、真空制御室20Cが制御圧室20Aと定圧室20Bとの間に位置しているとしたが、これに限られない。例えば、真空制御室20Cが制御圧室20A及び定圧室20Bよりもロッド部16から離れて位置していてもよい。
 10,10A,10B,10C…アクチュエータ、11…シリンダ、12…ピストン、20A…制御圧室(第二気体室)、20B…定圧室(第三気体室)、20C…真空制御室(第一気体室)、20D,20E…定圧室(第三気体室)、23…連通流路、24…大気開放流路(大気開放部)、26…大気開放部、27…フィルタ。

Claims (7)

  1.  気体が供給されることにより推力を発生するアクチュエータであって、
     前記気体が内部に供給されるシリンダと、
     前記シリンダ内を往復動するピストンと、
     前記シリンダ内に形成される気体室と、を備え、
     前記気体室は、真空に保持可能な第一気体室と、前記気体が供給され、その供給に応じて前記ピストンを往復動させる第二気体室及び第三気体室とを有し、
     前記ピストン内には、前記ピストンの先端部と前記第一気体室とを連通する連通流路が形成されている、アクチュエータ。
  2.  前記第一気体室と前記第二気体室との間、及び、前記第一気体室と前記第三気体室との間の少なくとも一方に連通するように形成されており、前記シリンダ内に供給された前記気体を大気に開放する大気開放部を備える、請求項1に記載のアクチュエータ。
  3.  気体が供給されることにより推力を発生するアクチュエータであって、
     前記気体が内部に供給されるシリンダと、
     前記シリンダ内を往復動するピストンと、
     前記シリンダ内に形成される気体室と、
     前記シリンダ内に供給された前記気体を大気に開放する大気開放部と、備え、
     前記気体室は、真空に保持可能な第一気体室と、前記気体が供給され、その供給に応じて前記ピストンを往復動させる第二気体室とを有し、
     前記ピストン内には、前記ピストンの先端部と前記第一気体室とを連通する連通流路が形成されており、
     前記大気開放部は、前記第一気体室と前記第二気体室との間に連通するように形成されている、アクチュエータ。
  4.  前記気体室は、前記気体が供給され、その供給に応じて前記ピストンを往復動させる第三気体室を更に有し、
     前記大気開放部は、前記第一気体室と前記第三気体室との間にも連通するように形成されている、請求項3に記載のアクチュエータ。
  5.  前記大気開放部は、前記ピストン内に形成された大気開放流路である、請求項2~4の何れか一項に記載のアクチュエータ。
  6.  前記第一気体室は、正圧にも保持可能である、請求項1~5の何れか一項に記載のアクチュエータ。
  7.  前記ピストンの先端部には、フィルタが設けられている、請求項1~6の何れか一項に記載のアクチュエータ。
PCT/JP2017/012620 2016-03-29 2017-03-28 アクチュエータ WO2017170539A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187030103A KR102287002B1 (ko) 2016-03-29 2017-03-28 액추에이터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016065275A JP6591333B2 (ja) 2016-03-29 2016-03-29 アクチュエータ
JP2016-065275 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170539A1 true WO2017170539A1 (ja) 2017-10-05

Family

ID=59964552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012620 WO2017170539A1 (ja) 2016-03-29 2017-03-28 アクチュエータ

Country Status (4)

Country Link
JP (1) JP6591333B2 (ja)
KR (1) KR102287002B1 (ja)
TW (1) TWI634269B (ja)
WO (1) WO2017170539A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259867A (zh) * 2019-06-25 2019-09-20 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一体式自平衡减振气缸

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355366B2 (en) * 2018-08-30 2022-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Systems and methods for shuttered wafer cleaning
KR102500362B1 (ko) 2018-10-19 2023-02-14 주식회사 엘지에너지솔루션 배터리 관리 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047385A (ja) * 1999-08-05 2001-02-20 Fuji Mach Mfg Co Ltd 電気部品装着ヘッド
JP2012143861A (ja) * 2010-12-20 2012-08-02 Kyocera Corp 真空吸着ノズル組み立て体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355745A (ja) * 2000-06-13 2001-12-26 Tokyo Electron Ltd ゲートバルブ
JP3825737B2 (ja) * 2002-10-24 2006-09-27 住友重機械工業株式会社 精密位置決め装置及びこれを用いた加工機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047385A (ja) * 1999-08-05 2001-02-20 Fuji Mach Mfg Co Ltd 電気部品装着ヘッド
JP2012143861A (ja) * 2010-12-20 2012-08-02 Kyocera Corp 真空吸着ノズル組み立て体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259867A (zh) * 2019-06-25 2019-09-20 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一体式自平衡减振气缸

Also Published As

Publication number Publication date
JP2017180556A (ja) 2017-10-05
TW201734321A (zh) 2017-10-01
TWI634269B (zh) 2018-09-01
KR102287002B1 (ko) 2021-08-09
JP6591333B2 (ja) 2019-10-16
KR20180125539A (ko) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2017170539A1 (ja) アクチュエータ
AU2009295049B2 (en) Fluid regulator
US8960217B2 (en) Pilot relay
KR20140143209A (ko) 리니어 액추에이터 및 진공 제어 장치
JP2008039083A (ja) 閉鎖力増強機構付きダイヤフラム型電磁弁
CN107269698B (zh) 空气轴承
KR20140022026A (ko) 공압 구동기 제어용 포핏밸브 조립체
US10281055B2 (en) Hydraulic servo valve
JP5688583B2 (ja) 単動形方向切換弁
KR101634420B1 (ko) 진공 제어 시스템 및 진공 제어 방법
JP2007078126A (ja) 非接触支持装置
JP2005003163A (ja) 精密気体圧制御弁
JP6967760B2 (ja) Xyステージ移動機構
WO2019171604A1 (ja) バルブ装置
JP2010133491A (ja) 外部パイロット式オペレートバルブ
JP2017044333A (ja) アクチュエータシステム
JP4365191B2 (ja) アクティブ振動制御装置及びシステム
JP2001227509A (ja) フリクションレスエアシリンダ
JP2013185668A (ja) アクチュエータ
JP3781393B2 (ja) アクチュエータ
JP2018194067A (ja) ポジショナ
JP2018176325A (ja) ワーク吸着システム
JPH0510330A (ja) 静圧軸受装置
JP2021110338A (ja) スプール型流量制御弁
JPH11125212A (ja) シリンダの制御方法、シリンダの制御回路及び制御システム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030103

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775076

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775076

Country of ref document: EP

Kind code of ref document: A1