WO2017170271A1 - 熱交換器用フィン材及び熱交換器 - Google Patents

熱交換器用フィン材及び熱交換器 Download PDF

Info

Publication number
WO2017170271A1
WO2017170271A1 PCT/JP2017/012153 JP2017012153W WO2017170271A1 WO 2017170271 A1 WO2017170271 A1 WO 2017170271A1 JP 2017012153 W JP2017012153 W JP 2017012153W WO 2017170271 A1 WO2017170271 A1 WO 2017170271A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
film
fin material
resin
heat exchanger
Prior art date
Application number
PCT/JP2017/012153
Other languages
English (en)
French (fr)
Inventor
佳也 世古
智章 外山
上田 薫
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to CN201780016477.0A priority Critical patent/CN108885070A/zh
Priority to MX2018011494A priority patent/MX2018011494A/es
Priority to EP17774808.4A priority patent/EP3438593A4/en
Priority to US16/077,217 priority patent/US20190032972A1/en
Publication of WO2017170271A1 publication Critical patent/WO2017170271A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Definitions

  • the present invention relates to a fin material used for a heat exchanger and a heat exchanger using the same.
  • heat exchangers for air conditioners have been required to improve heat exchange efficiency and be compact, and have been designed with the fin spacing as narrow as possible. Therefore, in the outdoor unit during the cooling operation, the dew condensation water adhering to the fin surface tends to exist in a bridge shape between the fins. This increases the ventilation resistance, that is, the resistance value of the airflow passing between the fins, and as a result, the heat exchange efficiency may be reduced.
  • hydrophilic colored film As a solution to this, by forming a hydrophilic colored film on the fin surface and making the condensed water a uniform and thin water film, the drainage is improved, the increase in ventilation resistance due to the condensed water is suppressed, and the heat exchange performance is improved.
  • the technique to maintain is adopted.
  • the material for forming the hydrophilic colored film include, for example, a chromate treatment and an inorganic film containing silica such as water glass and colloidal silica, or a hydrophilic polymer such as a cellulose resin and an acrylic resin.
  • An organic film containing is proposed.
  • the fins are also required to have a design property in order to visually display the effects of coolness and luxury, and colored fin materials have been proposed.
  • a coloring method a method of incorporating a pigment in the film can be mentioned.
  • the film component is easily eluted in water, so when condensed water adheres, the pigment drains together with the film component. It will flow into the water. As a result, fin discoloration and drain water contamination may occur.
  • Patent Documents 1 and 2 many of the conventional design fin materials have pigments in a film made of a corrosion-resistant resin such as an epoxy resin and a urethane resin with a low water elution amount, and these corrosion-resistant films are used as a base, On top of that, a fin material composed of a plurality of layers coated with the hydrophilic coloring film as described above has been proposed. Further, Patent Document 3 proposes a colored hydrophilic coating containing a hydrophilic resin, a hydrophilic inorganic material, and specific pigment particles and specifying a Lab display system.
  • a corrosion-resistant resin such as an epoxy resin and a urethane resin with a low water elution amount
  • the aluminum fin material as in Patent Documents 1 and 2 requires a plurality of coating processes, which deteriorates the workability of coating, increases the cost of paint, and is poor in mass productivity.
  • the aluminum fin material using the hydrophilic coloring film of Patent Document 3 since the film contains an inorganic material having high hardness such as an alkali metal salt of silica or alumina, the aluminum alloy plate is processed into a fin material. In this case, since the hardness of the coating film is high, the mold wear is large, which may cause a problem that the fin material is likely to crack.
  • the present invention has been made in view of such a background, has excellent hydrophilicity, designability, and fading resistance, has a hydrophilic colored film obtained in a single coating process, and prevents deterioration of moldability.
  • An object of the present invention is to provide a heat exchanger fin material that can be produced, and a heat exchanger using the same.
  • One embodiment of the present invention is a substrate made of aluminum; A heat exchanger fin material having a coating formed of one layer or two or more layers formed on the substrate, The coating film has a hydrophilic coloring film on the outermost surface, The hydrophilic colored film contains an acrylic-modified epoxy resin (A), a melamine resin (B), a perfluoroalkyl group-containing alcohol resin (C), and a pigment (D).
  • A acrylic-modified epoxy resin
  • B a melamine resin
  • C perfluoroalkyl group-containing alcohol resin
  • D a pigment
  • the content of the pigment (D) in the hydrophilic colored film is 1 to 80 mg / m 2 ,
  • the water contact angle of the hydrophilic coloring film is 20 ° or less, It exists in the fin material for heat exchangers whose elution rate to the flowing water of the said hydrophilic coloring film
  • membrane is 1 mass% or less after the immersion test which immerses the said fin material for heat exchangers in flowing water with a flow rate of 5 L / hour for 24 hours.
  • Another aspect of the present invention is a heat exchanger provided with fins made of the fin material for heat exchanger.
  • the coating film contains, on its outermost surface, an acrylic-modified epoxy resin, a melamine resin, a perfluoroalkyl group-containing alcohol resin, and a pigment, and the content of the pigment in the film is It has a hydrophilic colored film of 1 to 80 mg / m 2 . Since the hydrophilic colored film contains a perfluoroalkyl group-containing alcohol resin, it exhibits excellent hydrophilicity, and since it contains the predetermined amount of the pigment, it is rich in hue and can exhibit high design properties. Further, since the hydrophilic colored film contains a melamine resin together with the acrylic-modified epoxy resin, it is possible to form a crosslinked structure between the acrylic-modified epoxy resin and the melamine resin.
  • the heat exchanger fin material has a low elution amount of the hydrophilic colored film into water and is excellent in fading resistance.
  • the hydrophilic coloring film of the said structure irrespective of the kind of pigment, the above-mentioned outstanding hydrophilic property and fade resistance can be exhibited.
  • a hydrophilic colored film is excellent in water resistance from the viewpoint that elution into water can be suppressed.
  • the hydrophilic coloring film does not necessarily contain an inorganic compound having high hardness such as an alkali metal salt of silicic acid or alumina. For this reason, it is possible to prevent, for example, mold wear during molding or cracks in the fin material. That is, the moldability of the fin material can be prevented from being lowered. Further, the hydrophilic colored film can be obtained by a single coating process, and for example, it is not necessary to form two or more kinds of paints repeatedly to separate the hydrophilic layer and the colored layer.
  • the heat exchanger includes fins made of the heat exchanger fin material. Therefore, the fin can exhibit excellent hydrophilicity, designability, and fading resistance.
  • FIG. 1 Sectional drawing of the fin material in Example 1.
  • FIG. 2 Sectional drawing of the fin material in Example 1.
  • the fin material has a substrate made of aluminum.
  • aluminum is a generic term for metals and alloys mainly composed of aluminum, and is a concept including pure aluminum and aluminum alloys.
  • the coating film formed on the substrate has one layer or two or more layers.
  • the coating film formed by applying the same type of coating material once is one layer, but the coating film formed by repeatedly applying the coating material having the same component composition a plurality of times is also one layer.
  • the coating film has a hydrophilic coloring film on the outermost surface, and the hydrophilic coloring film includes an acrylic-modified epoxy resin (A), a melamine resin (B), a perfluoroalkyl group-containing alcohol resin (C), and a pigment (D). Containing.
  • A acrylic-modified epoxy resin
  • B melamine resin
  • C perfluoroalkyl group-containing alcohol resin
  • D pigment
  • the acrylic-modified epoxy resin (A) contributes to improvement of the fading resistance of the hydrophilic colored film.
  • the acrylic-modified epoxy resin (A) is obtained, for example, by a reaction with a bisphenol type epoxy resin (A1) and an acrylic resin (A2) having a hydroxyl group or a carboxyl group.
  • the bisphenol type epoxy resin (A1) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and the like, among which bisphenol A type epoxy resin is preferable.
  • the acrylic resin (A2) include an acrylic polymer having acrylic acid or methacrylic acid as a monomer component, that is, an acrylic polymer having a structural unit derived from acrylic acid or methacrylic acid.
  • the acrylic resin (A2) for example, an acrylic copolymer having acrylic acid and methacrylic acid as monomer components, that is, a copolymer having a structural unit derived from acrylic acid and a structural unit derived from methacrylic acid Coalesce is mentioned.
  • the acrylic copolymer may further contain a polymerizable unsaturated carboxylic acid such as maleic acid or phthalic acid as a monomer component. That is, the acrylic copolymer may have a structural unit derived from a polymerizable unsaturated carboxylic acid other than acrylic acid and methacrylic acid.
  • a structural unit derived from maleic acid, a phthalic acid-derived structural unit It may have a structural unit, or a structural unit derived from maleic acid and a structural unit derived from phthalic acid.
  • the hydrophilic colored film preferably contains 45 to 65 parts by mass of the acrylic-modified epoxy resin (A) with respect to 100 parts by mass of the resin component. In this case, it is possible to improve the hydrophilicity and fading resistance of the hydrophilic colored film in a well-balanced manner. From the viewpoint of improving the hydrophilicity and fading resistance in a more balanced manner, the hydrophilic colored film preferably contains 50 to 60 parts by mass of the acrylic-modified epoxy resin (A) with respect to 100 parts by mass of the resin component. .
  • content of the above-mentioned acrylic modified epoxy resin (A) is content of solid content, also about the below-mentioned melamine resin (B), perfluoroalkyl group containing alcohol resin (C), and pigment (D). It is the same.
  • the melamine resin (B) contributes to improvement of the fading resistance of the hydrophilic coloring film. That is, in the hydrophilic colored film, the hydrophilic colored film containing the pigment is less likely to be eluted in water by forming a crosslinked structure of the melamine resin (B) and the acrylic-modified epoxy resin (A). Such a crosslinked structure can be formed by heating.
  • the hydrophilic colored film preferably contains 2 to 13 parts by mass of the melamine resin (B) with respect to 100 parts by mass of the resin component.
  • the cross-linking structure is improved, and the fading resistance can be improved while suppressing the decrease in hydrophilicity and moldability of the hydrophilic colored film.
  • the ratio of the content of the melamine resin (B) to the content of the acrylic-modified epoxy resin (A) is preferably 0.03 to 0.25 in terms of mass ratio.
  • the hydrophilic colored film comprises 3 to 8 parts by mass of the melamine resin (B) with respect to 100 parts by mass of the resin component. It is more preferable to contain.
  • the ratio of the content of the melamine resin (B) to the content of the acrylic-modified epoxy resin (A) is more preferably 1/12 to 1/10 by mass ratio.
  • the perfluoroalkyl group-containing alcohol resin (C) contributes to the improvement of the hydrophilicity of the hydrophilic coloring film.
  • the perfluoroalkyl group-containing alcohol resin (C) can be obtained, for example, by reacting a fluorine compound (C1) having a perfluoroalkyl group with a polymer (C2) having a hydroxyl group.
  • the perfluoroalkyl group-containing alcohol resin (C) preferably has at least one of structural units represented by the following formulas (I) and (II), and has a repeating structure of the formula (I) or the formula (II): More preferably, it consists of a polymer having units.
  • N in the formulas (I) and (II) is an arbitrary natural number appropriately determined according to the molecular weight of each available resin.
  • R in the formula (I) has at least a group represented by the following formula (III), and in a polymer having a structural unit represented by the formula (I), a part of R is H. It may be.
  • R 1 to R 3 in formula (II) are each independently H or a group represented by formula (III), and at least one of R 1 to R 3 is a group represented by formula (III) . In addition, it is preferable that at least one of R 1 to R 3 is H.
  • J and k in the formula (III) are each independently an arbitrary natural number, j is usually 1 to 8, preferably 2 to 6, and k is usually 1 to 20, preferably 6 to 16.
  • a perfluoroalkyl group-containing alcohol resin (C) with respect to 100 parts by mass of the resin component in the hydrophilic coloring film.
  • the ratio of the content of the perfluoroalkyl group-containing alcohol resin (C) to the content of the acrylic-modified epoxy resin (A) is preferably 5/14 to 11/8 in mass ratio.
  • the ratio of the content of the perfluoroalkyl group-containing alcohol resin (C) to the content of the melamine resin (B) is preferably 3/1 to 10/1 by mass ratio.
  • 35 perfluoroalkyl group-containing alcohol resin (C) is added to 100 parts by mass of the resin component in the hydrophilic colored film. More preferably, it is contained in an amount of 45 parts by mass.
  • the ratio of the content of the perfluoroalkyl group-containing alcohol resin (C) to the content of the acrylic-modified epoxy resin (A) is more preferably 7/12 to 9/10 by mass ratio.
  • the ratio of the content of the perfluoroalkyl group-containing alcohol resin (C) to the content of the melamine resin (B) is more preferably 7/1 to 9/1 by mass ratio.
  • the hydrophilic colored film can contain other resin components other than the acrylic-modified epoxy resin (A), melamine resin (B), and perfluoroalkyl group-containing alcohol resin (C).
  • the content of the other resin component is 10 parts by mass or less with respect to 100 parts by mass of the total amount of the acrylic-modified epoxy resin (A), the melamine resin (B), and the perfluoroalkyl group-containing alcohol resin (C). Is preferably 5 parts by mass or less, more preferably 1 part by mass or less.
  • the resin component in the hydrophilic coloring film is substantially composed of an acrylic-modified epoxy resin (A), a melamine resin (B), and a perfluoroalkyl group-containing alcohol resin (C).
  • the above “consisting essentially of” means that no other resin components are contained except for resin components brought into the paint from resin raw materials, pigments, solvents and the like.
  • the pigment (D) colors the hydrophilic colored film and contributes to its design.
  • the content of the pigment (D) in the hydrophilic colored film is 1 to 80 mg / m 2 .
  • the content of the pigment (D) is less than 1 mg / m 2 , a sufficient coloring effect cannot be obtained, and the design properties of the fin material may be deteriorated.
  • the content of the pigment (D) in the hydrophilic colored film is preferably 5 to 60 mg / m 2 , and more preferably 10 to 50 mg / m 2 .
  • the pigment (D) substances corresponding to various colors can be used.
  • the pigment (D) may be either an inorganic pigment or an organic pigment, but an organic pigment is preferable.
  • examples of the blue pigment include copper phthalocyanine, copper free phthalocyanine, and indanthrone compounds.
  • examples of red pigments include monoazo, condensed azo, quinacridone, and perylene compounds.
  • Examples of yellow pigments include monoazo, disazo, condensed azo, metal complex azomethine, benzimidazolone, isoindolinone, and quinophthalone compounds.
  • the pigment (D) is added as a pigment dispersion in a paint for forming a hydrophilic colored film.
  • the substance that modifies the pigment particle surface (that is, the modifier) is preferably a cationic or nonionic surfactant from the viewpoint of dispersibility in the paint.
  • an anionic surfactant is used, the coagulation of the modifier proceeds and the pigment settles within a weakly acidic and neutral range of pH 5.0 to 8.0, which may result in poor dispersibility.
  • An acrylic resin can also be used as a modifier. However, when an acrylic resin is used, the hydrophilicity of the surface of the hydrophilic colored film obtained after film formation may be hindered. Tend to decrease.
  • the water contact angle of the hydrophilic colored film is 20 ° or less.
  • the surface of the fin material can exhibit sufficiently excellent hydrophilicity.
  • the water contact angle is more preferably 15 ° or less.
  • the water contact angle of the hydrophilic colored film can be adjusted, for example, by adjusting the composition of the hydrophilic colored film as described above.
  • the dissolution rate of the hydrophilic coloring film in flowing water after the immersion test in which the fin material for heat exchanger is immersed in flowing water at a flow rate of 5 L / hour for 24 hours is 1% by mass or less.
  • elution of the hydrophilic colored film into water is surely and sufficiently suppressed, and the fading resistance can be sufficiently improved.
  • the elution rate of the hydrophilic colored film into running water can be adjusted, for example, by adjusting the composition of the hydrophilic colored film as described above.
  • the fading resistance can be improved more reliably and sufficiently.
  • the degree of fading of the hydrophilic colored film can be adjusted, for example, by adjusting the composition of the hydrophilic colored film as described above.
  • the thickness of the hydrophilic coloring film can be adjusted as appropriate, but can be set to 0.5 to 2 ⁇ m, for example.
  • the hydrophilic colored film preferably contains at least one of an antibacterial agent and an antifungal agent. In this case, the antibacterial and antifungal properties of the hydrophilic colored film can be improved.
  • the coating film may have a corrosion-resistant film containing at least one resin selected from the group consisting of an acrylic resin, an epoxy resin, a urethane resin, and an ester resin between the hydrophilic coloring film and the substrate. preferable.
  • the corrosion resistance of the fin material can be further improved.
  • the thickness of the corrosion-resistant film can be adjusted to a range of 0.3 to 5 ⁇ m, for example. If the thickness of the corrosion-resistant film is too small, the corrosion resistance may not be sufficiently secured, and if the thickness is too large, the heat transfer performance of the fin material may be reduced.
  • a base treatment layer made of a chemical conversion film can be provided between the coating film and the substrate.
  • the adhesion between the coating film and the substrate can be improved.
  • the corrosion resistance of the fin material can be improved, and the under-film corrosion caused when corrosive substances such as water and salt compounds permeate the surface of the substrate is suppressed, thereby preventing film cracking and film peeling. Can do.
  • Examples of chemical coatings include chemical coatings such as chromate treatment such as phosphate chromate and chromate chromate, and non-chromate treatment using titanium phosphate, zirconium phosphate, molybdenum phosphate, zinc phosphate, zirconium oxide, etc. other than chromium compounds.
  • a film obtained by treatment, so-called chemical conversion treatment can be employed.
  • the chemical conversion treatment methods such as chromate treatment and non-chromate treatment include a reaction type and a coating type, and any method may be used.
  • the base treatment layer can be formed at 100 mg / m 2 or less.
  • the fin material is used for manufacturing a heat exchanger as follows, for example. Specifically, first, a coil-shaped fin material is cut into a predetermined size to obtain a plurality of plate-shaped fins. Next, the press machine performs slit processing, louver molding, and color processing on the fin. Next, a plurality of fins are stacked and arranged in a state of being spaced apart from each other while passing the metal tube arranged at a predetermined position through a hole provided in the fin. Thereafter, the metal tube and the fin are brought into close contact with each other by inserting a tube expansion plug into the metal tube to increase the outer diameter of the metal tube. In this way, a heat exchanger can be obtained.
  • the heat exchanger can be used for, for example, an indoor unit or an outdoor unit of an air conditioner.
  • Example 1 fin materials (samples E1 to E20) according to examples of the present invention and fin materials (samples R1 to R11) according to comparative examples are produced and their characteristics are evaluated.
  • the fin material 1 of the samples E1 to E20 has a substrate 2 made of aluminum and a coating film 3 formed on the surface thereof.
  • the coating film 3 is composed of a hydrophilic coloring film 31.
  • a chemical conversion film 4 is formed between the substrate 2 and the coating film 3.
  • the laminated structure of the samples R1 to R11 is the same as that of the samples E1 to E20.
  • Samples E1 to E20 and Samples R1 to R11 have different constituent components of the hydrophilic colored film 31 as shown in Table 1 described later. Each component amount in Table 1 is a solid content.
  • a method for manufacturing the fin material will be described.
  • the substrate 2 a JIS A 1050-H26, 0.1 mm thick aluminum plate was prepared.
  • a chemical conversion film 4 made of phosphate chromate was formed on the surface of the substrate 2.
  • a coating having a predetermined composition (see Table 1) is applied on the chemical conversion film 4 using a bar coater, and heated at a temperature of 225 ° C. for 10 seconds, thereby forming a coating made of a hydrophilic colored film 31 having a thickness of 1 ⁇ m. Film 3 was formed. Thus, the fin material 1 illustrated in FIG. 1 was obtained.
  • Samples E1 to E20 are manufactured by the same method as described above except that the composition of the paint for forming the hydrophilic colored film is different. The same applies to the samples R1 to R11.
  • Acrylic-modified epoxy resin (A): Polyacrylic acid-bisphenol A type epoxy Melamine resin (B): Melamine resin Perfluoroalkyl group-containing alcohol resin (C): Polyvinyl alcohol-fluorine compound (XO-OC- (CH 2 ) 4 )-(CF 2 ) 15 -CF 3 complex (X: H or Na)
  • D-b1 Phthalocyanine blue pigment (dispersant: nonionic surfactant)
  • D-b2 Phthalocyanine blue pigment (dispersant: anionic surfactant)
  • D-b3 phthalocyanine blue pigment (dispersant: polyacrylic acid resin)
  • D-y1 Fast yellow pigment (dispersant: nonionic surfactant)
  • D-r1 Toluidine red pigment (dispersant: nonionic surfactant)
  • each fin material was cut
  • the light source was set to the Lab display system, and the color tone of the surface of the hydrophilic colored film was measured (operation A).
  • the test plate was immersed in flowing water at a temperature of 25 ° C. and a flow rate of 5 L / hour for 24 hours and sufficiently dried, and then the color tone of the surface of the hydrophilic colored film was measured (operation B).
  • the color fading resistance was evaluated by calculating the color tone difference ( ⁇ L, ⁇ a, ⁇ b) between the operation A and the operation B.
  • the content of the acrylic-modified epoxy resin is preferably 45 parts by mass or more with respect to 100 parts by mass of the resin component in order to improve the fading resistance.
  • the sample E1 is more hydrophilic. From this result, in order to sufficiently increase the hydrophilicity, it is understood that the content of the acrylic-modified epoxy resin is preferably 65 parts by mass or less with respect to 100 parts by mass of the resin component. In sample R2, it is considered that the hydrophilicity was lowered due to the accelerated crosslinking reaction between the acrylic-modified epoxy resin and the hydrophilic group of the fluoropolymer.
  • the ratio of the content of the perfluoroalkyl group-containing alcohol resin to the content of the acrylic-modified epoxy resin is a mass ratio (perfluoroalkyl group-containing alcohol resin / Acrylic-modified epoxy resin) is preferably in the range of 5/14 to 11/8, more preferably 7/12 to 9/10.
  • the content of the melamine resin is preferably 2 parts by mass or more with respect to 100 parts by mass of the resin component.
  • the sample R3 having a small content of melamine resin sufficient coating film hardness cannot be obtained, and the pigment may be easily released into water.
  • sample E1, sample E4, and sample E6 were richer in color. From this result, the content of the pigment in the film is preferably 1 mg / m 2 or more, and more preferably 10 mg / m 2 or more.
  • the amount of pigment in the film is preferably 80 mg / m 2 or less, and more preferably 50 mg / m 2 or less.
  • the sample E1 is more hydrophilic. This is because, when the dispersant used for the pigment is a polyacrylic acid resin as in sample R11, the polyacrylic acid resin tends to bleed out on the surface of the film, resulting in a decrease in hydrophilicity. It is thought that it is because there is.
  • the sample E1 and the sample E20 it can be seen that the sample E1 is superior in pigment dispersibility during production. This is because when the dispersant used for the pigment is an anionic surfactant as in Sample E20, the pigment is likely to precipitate in the paint. In this case, the paint is managed and handled. There is a risk that it may become difficult and productivity may deteriorate. From such a viewpoint, the dispersant used for the pigment is preferably a cationic or nonionic surfactant.
  • the heat exchange has a hydrophilic film composed of an acrylic-modified epoxy resin, a melamine resin, a perfluoroalkyl group-containing alcohol resin, and a pigment, and the amount of pigment in the film is specified to be 1 to 80 mg / m 2.
  • the fin materials for samples are excellent in hydrophilicity, design properties, and fading resistance.
  • the hydrophilic coloring film does not necessarily need to contain an inorganic compound having high hardness such as an alkali metal salt of silicic acid or alumina. For this reason, it is possible to prevent, for example, mold wear during molding or cracks in the fin material.
  • the hydrophilic colored film can be obtained by a single coating process. For example, two or more kinds of paints are repeatedly applied to form a hydrophilic layer and a colored layer. There is no need to form them separately.
  • This example is an example of a fin material for a heat exchanger having a coating composed of a hydrophilic colored coating and a corrosion-resistant coating.
  • the fin material 1 of this example includes a hydrophilic colored film 31 and a corrosion-resistant film 32 as the coating film 3, and the outermost layer is formed of the hydrophilic colored film 31.
  • Other configurations are the same as those of the first embodiment. That is, the fin material 1 of this example includes a substrate 2, a chemical conversion film 4 formed on the substrate 2, a corrosion resistant film 32 formed on the chemical conversion film 4, and a hydrophilic coloring formed on the corrosion resistant film 32. And a coating 31.
  • the corrosion-resistant film 32 the corrosion resistance of the fin material can be further enhanced.
  • the present example is an example of a heat exchanger provided with fins made of the fin material of the first embodiment.
  • the heat exchanger 7 is a cross fin tube type, and includes a large number of plate-like fins 8 made of the fin material 1, and a metal tube 9 for heat transfer that passes through these fins. .
  • the fins 8 are arranged in parallel at a predetermined interval.
  • the width of the fins 8 is, for example, 25.4 mm
  • the height is, for example, 290 mm
  • the lamination pitch of the fins 8 is, for example, 1.4 mm
  • the overall width of the heat exchanger 1 is, for example, 300 mm.
  • the height direction of the fin 8 is the rolling parallel direction of the substrate.
  • the metal tubes 9 at the width of the fins 8 are arranged in two rows, and the number of metal tubes 9 at the height of the fins 8 is 14 steps. In FIG. 3, the number of metal tubes 9 is omitted for the convenience of drawing.
  • the metal tube 9 is a copper tube having a spiral groove on the inner surface. The dimensions of the metal tube are as follows: outer diameter: 7.0 mm, bottom wall thickness: 0.45 mm, fin height: 0.20 mm, fin apex angle: 15.0 °, helical angle: 10.0 °.
  • the heat exchanger 7 was produced as follows. First, an assembly hole (not shown) having a fin collar portion having a height of 1 to 4 mm for inserting and fixing the metal tube 8 into the fin 8 made of the fin material 1 was formed by press working. After laminating the fins 8, a separately produced metal tube 7 was inserted into the assembly hole. As the metal tube 9, a copper tube was used which was subjected to grooving on the inner surface by rolling or the like, and was subjected to regular cutting and hairpin bending. Next, a tube expansion plug was inserted from one end of the metal tube 9, and the metal tube 9 was fixed to the fin 8 by expanding the outer diameter of the metal tube 9. After removing the tube expansion plug, the U vent tube was brazed to the metal tube 9 to obtain the heat exchanger 7.
  • the heat exchanger 7 has excellent fin 8 hydrophilicity, designability, and fading resistance. Further, the hydrophilic coloring film 31 of the fin material 1 does not necessarily contain an inorganic compound having high hardness such as an alkali metal salt of silicic acid or alumina. Therefore, for example, it is possible to prevent the mold material from being worn during the molding of the fin material 1 at the time of manufacturing the heat exchanger 7, and the fin material 1 from being cracked.
  • an inorganic compound having high hardness such as an alkali metal salt of silicic acid or alumina. Therefore, for example, it is possible to prevent the mold material from being worn during the molding of the fin material 1 at the time of manufacturing the heat exchanger 7, and the fin material 1 from being cracked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

親水性、意匠性、及び耐退色性に優れ、一度の塗装工程にて得られる親水性着色皮膜を有し、成形性の低下を防止できる熱交換器用フィン材及びこれを用いた熱交換器を提供すること。アルミニウムからなる基板(2)と、その上に形成された1層又は2層以上の皮膜からなる塗膜(3)とを有する熱交換器用フィン材及びこれを用いた熱交換器である。塗膜(3)は、最表面に親水性着色皮膜(31)を有し、親水性着色皮膜(31)は、アクリル変性エポキシ樹脂(A)、メラミン樹脂(B)、パーフルオロアルキル基含有アルコール樹脂(C)、及び顔料(D)を含有する。親水性着色皮膜(31)中の顔料(D)の含有量が1~80mg/m2である。親水性着色皮膜(31)の水接触角が20°以下である。熱交換器用フィン材を流速5L/時間の流水に24時間浸漬する浸漬試験後における上記親水性着色皮膜の流水への溶出率が1質量%以下である。

Description

熱交換器用フィン材及び熱交換器
 本発明は、熱交換器に用いられるフィン材、及びこれを用いた熱交換器に関する。
 近年、空調機器用熱交換器は、熱交換効率の向上とコンパクト化が求められ、フィン間隔を可能な限り狭くする設計が取り入れられている。そのため、冷房運転中の室外機において、フィン表面に付着した結露水が、フィン間でブリッジ状に存在し易くなる。これにより、通風抵抗、すなわちフィン間を通過する気流の抵抗値を増加させ、結果、熱交換効率の低下を招くおそれがある。
 この解決法として、フィン表面に親水性着色皮膜を形成し、結露水を均一かつ薄い水膜にすることで、排水性を向上させ、結露水による通風抵抗の増加を抑制し、熱交換性能を維持する手法が取り入れられる。この親水性着色皮膜を形成する材料は、例として、クロメート処理を施した上に、水ガラスやコロイダルシリカなどのシリカを含む無機系皮膜、あるいはセルロース樹脂やアクリル系樹脂などの親水性の高分子を含む有機系皮膜が提案される。
 一方で、最近のエアコンでは、清涼感、高級感といった効果を視覚的に発揮させるため、フィンにも意匠性が求められており、着色されたフィン材が提案されている。着色手法として、顔料を皮膜中に含有させる手法が挙げられるが、上記のような親水性着色皮膜では、皮膜成分が水に溶出しやすいため、結露水が付着した際、皮膜成分とともに顔料がドレイン水に流出してしまう。その結果、フィンの色落ち及びドレイン水の汚染を引き起こすおそれがある。
 そこで、特許文献1及び2には、従来の意匠性フィン材の多くは、水溶出量の低いエポキシ樹脂、ウレタン樹脂といった耐食性樹脂からなる皮膜中に顔料を存在させ、これら耐食性皮膜を下地とし、その上に上記のような親水性着色皮膜を塗装した複数層からなるフィン材が提案されている。また、特許文献3では、親水性樹脂と親水性無機材料と特定の顔料粒子とを含有し、Lab表示系を特定した着色親水性被膜が提案されている。
特開2003-231977号公報 特開2006-321965号公報 特開2009-214001号公報
 しかしながら、特許文献1および2のようなアルミニウムフィン材では、複数回の塗装工程が必要となり、塗装作業性を悪化させ、かつ塗料費が増加し、量産性が悪い。また、特許文献3の親水性着色皮膜を使用するアルミニウムフィン材では、皮膜中に珪酸のアルカリ金属塩やアルミナといった硬度の高い無機材料を皮膜中に含むため、アルミニウム合金板をフィン材に加工する際に、塗膜硬度が高いために金型摩耗が大きく、フィン材にクラックが発生しやすい問題となる恐れがある。
 本発明は、かかる背景に鑑みてなされたものであり、親水性、意匠性、及び耐退色性に優れ、一度の塗装工程にて得られる親水性着色皮膜を有し、成形性の低下を防止できる熱交換器用フィン材、及びこれを用いた熱交換器を提供しようとするものである。
 本発明の一態様は、アルミニウムからなる基板と、
 該基板上に形成された1層又は2層以上の皮膜からなる塗膜と、を有する熱交換器用フィン材であって、
 上記塗膜は、最表面に親水性着色皮膜を有し、
 該親水性着色皮膜は、アクリル変性エポキシ樹脂(A)、メラミン樹脂(B)、パーフルオロアルキル基含有アルコール樹脂(C)、及び顔料(D)を含有し、
 上記親水性着色皮膜中の顔料(D)の含有量が1~80mg/m2であり、
 上記親水性着色皮膜の水接触角が20°以下であり、
 上記熱交換器用フィン材を流速5L/時間の流水に24時間浸漬する浸漬試験後における上記親水性着色皮膜の流水への溶出率が1質量%以下である、熱交換器用フィン材にある。
 本発明の他の態様は、上記熱交換器用フィン材からなるフィンを備えた、熱交換器にある。
 上記熱交換器用フィン材においては、上記塗膜が、その最表面に、アクリル変性エポキシ樹脂、メラミン樹脂、パーフルオロアルキル基含有アルコール樹脂、及び顔料を含有し、かつ皮膜中の顔料の含有量が1~80mg/m2である親水性着色皮膜を有している。親水性着色皮膜は、パーフルオロアルキル基含有アルコール樹脂を含有するため優れた親水性を示し、顔料を上記所定量含有するため色相に富み、高い意匠性を発揮することができる。また、親水性着色皮膜は、アクリル変性エポキシ樹脂と共にメラミン樹脂を含有するため、アクリル変性エポキシ樹脂とメラミン樹脂との架橋構造の形成が可能になり、この架橋構造により、親水性着色皮膜の各樹脂成分や顔料等の構成成分が保持される。そのため、親水性着色皮膜からパーフルオロアルキル基含有アルコール樹脂等の親水性樹脂が顔料等と共に例えば結露水等の水へ溶出し難くなる。すなわち、熱交換器用フィン材は、親水性着色皮膜の水への溶出量が低く、耐退色性に優れる。また、上記構成の親水性着色皮膜においては、顔料の種類によらず、上述の優れた親水性、耐退色性を発揮することができる。また、親水性着色皮膜は、水への溶出を抑制できるという観点から、耐水性に優れるともいえる。
 さらに、親水性着色皮膜は、珪酸のアルカリ金属塩やアルミナ等の硬度の高い無機系化合物を必ずしも含む必要がない。そのため、例えば成形時に金型摩耗を起こしたり、フィン材にクラックが発生したりすることを防止できる。すなわち、フィン材の成形性の低下を防止できる。また、親水性着色皮膜は、一度の塗装工程にて得ることが可能であり、例えば2種類以上の塗料を重ね塗りして親水層と着色層とを分けて形成する必要がない。
 上記熱交換器は、上記熱交換器用フィン材からなるフィンを備えている。そのため、フィンが優れた親水性、意匠性、及び耐退色性を発揮することができる。
実施例1における、フィン材の断面図。 変形例における、フィン材の断面図。 実施例2における、熱交換器の概略図。
 フィン材及びこれを用いた熱交換器の実施形態について説明する。
 フィン材は、アルミニウムからなる基板を有する。本明細書において、「アルミニウム」は、アルミニウムを主体とする金属及び合金の総称であり、純アルミニウム及びアルミニウム合金を含む概念である。
 基板上に形成された塗膜は、1層又は2層以上の皮膜を有する。同一種類の塗料を一回塗布して形成した塗膜は1層であるが、さらに成分組成が同一の塗料を複数回重ね塗りして形成した塗膜も1層である。
 塗膜は最表面に親水性着色皮膜を有し、親水性着色皮膜は、アクリル変性エポキシ樹脂(A)、メラミン樹脂(B)、パーフルオロアルキル基含有アルコール樹脂(C)、及び顔料(D)を含有する。
 アクリル変性エポキシ樹脂(A)は、親水性着色皮膜の耐退色性等の向上に寄与する。アクリル変性エポキシ樹脂(A)は、例えばビスフェノール型エポキシ樹脂(A1)および水酸基あるいはカルボキシル基を有するアクリル樹脂(A2)との反応によって得られる。ビスフェノール型エポキシ樹脂(A1)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などが挙げられるが、中でもビスフェノールA型エポキシ樹脂が好ましい。また、アクリル樹脂(A2)としては、例えば、アクリル酸又はメタクリル酸を単量体成分とするアクリル重合体、すなわち、アクリル酸又はメタクリル酸由来の構造単位を有するアクリル重合体が挙げられる。また、アクリル樹脂(A2)としては、例えば、アクリル酸とメタクリル酸とを単量体成分とするアクリル共重合体、すなわち、アクリル酸由来の構造単位とメタクリル酸由来の構造単位とを有する共重合体が挙げられる。また、アクリル共重合体は、さらにマレイン酸、フタル酸などの重合性不飽和カルボン酸をさらに単量体成分として有していてもよい。すなわち、アクリル共重合体は、アクリル酸及びメタクリル酸以外の重合性不飽和カルボン酸由来の構造単位を有していてもよく、具体的には、例えばマレイン酸由来の構造単位、フタル酸由来の構造単位、又はマレイン酸由来の構造単位及びフタル酸由来の構造単位を有していてもよい。
 親水性着色皮膜は、その樹脂成分100質量部に対してアクリル変性エポキシ樹脂(A)を45~65質量部含有することが好ましい。この場合には、親水性着色皮膜の親水性及び耐退色性をバランス良く向上させることが可能になる。親水性及び耐退色性をよりバランス良く向上させるという観点から、親水性着色皮膜は、その樹脂成分100質量部に対してアクリル変性エポキシ樹脂(A)を50~60質量部含有することがより好ましい。なお、上述のアクリル変性エポキシ樹脂(A)の含有量は、固形分の含有量であり、後述のメラミン樹脂(B)、パーフルオロアルキル基含有アルコール樹脂(C)、及び顔料(D)についても同様である。
 メラミン樹脂(B)は、親水性着色皮膜の耐退色性等の向上に寄与する。すなわち、親水性着色皮膜においては、メラミン樹脂(B)とアクリル変性エポキシ樹脂(A)との架橋構造が形成されることにより、顔料を含む親水性着色皮膜が水に溶出し難くなる。このような架橋構造は、加熱により形成させることができる。
 親水性着色皮膜は、その樹脂成分100質量部に対してメラミン樹脂(B)を2~13質量部含有することが好ましい。この場合には、架橋構造が良好になり親水性着色皮膜の親水性や成形性の低下を抑制しつつ、耐退色性を向上させることができる。同様の観点から、アクリル変性エポキシ樹脂(A)の含有量に対するメラミン樹脂(B)の含有量の比は、質量比で0.03~0.25であることが好ましい。親水性や成形性の低下をより抑制しつつ、耐退色性をより向上させるという観点から、親水性着色皮膜は、その樹脂成分100質量部に対してメラミン樹脂(B)を3~8質量部含有することがより好ましい。同様の観点から、アクリル変性エポキシ樹脂(A)の含有量に対するメラミン樹脂(B)の含有量の比は、質量比で1/12~1/10であることがより好ましい。
 パーフルオロアルキル基含有アルコール樹脂(C)は、親水性着色皮膜の親水性等の向上に寄与する。パーフルオロアルキル基含有アルコール樹脂(C)は、例えば、パーフルオロアルキル基を有するフッ素系化合物(C1)と水酸基を有するポリマー(C2)とを反応させることによって得られる。パーフルオロアルキル基含有アルコール樹脂(C)は、下記の式(I)及び式(II)で表される構造単位の少なくとも一方を有することが好ましく、式(I)又は式(II)の繰り返し構造単位を有するポリマーからなることがより好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(I)及び(II)におけるnは、入手可能な各樹脂の分子量などに応じて適宜決定される任意の自然数である。また、式(I)におけるRは、少なくとも下記の式(III)で表される基を有し、式(I)で表される構造単位を有するポリマーにおいては、Rの一部がHとなっていてもよい。式(II)におけるR1~R3は、各々独立にH又は式(III)で表される基であり、R1~R3の少なくとも1つは式(III)で表される基である。また、R1~R3の少なくとも1つはHであることが好ましい。式(III)におけるj、kはそれぞれ独立に任意の自然数であり、jは通常1~8、好ましくは2~6であり、kは通常1~20、好ましくは6~16である。
Figure JPOXMLDOC01-appb-C000003
 親水性着色皮膜中の樹脂成分100質量部に対してパーフルオロアルキル基含有アルコール樹脂(C)を30~50質量部含有することが好ましい。この場合には、耐退色性の低下を抑制しつつ、親水性を向上させることができる。同様の観点から、アクリル変性エポキシ樹脂(A)の含有量に対するパーフルオロアルキル基含有アルコール樹脂(C)の含有量の比が質量比で5/14~11/8であることが好ましい。さらに同様の観点から、メラミン樹脂(B)の含有量に対するパーフルオロアルキル基含有アルコール樹脂(C)の含有量の比が質量比で3/1~10/1であることが好ましい。
 耐退色性の低下をより抑制しつつ、親水性をより向上させることができるという観点から、親水性着色皮膜中の樹脂成分100質量部に対してパーフルオロアルキル基含有アルコール樹脂(C)を35~45質量部含有することがより好ましい。同様の観点から、アクリル変性エポキシ樹脂(A)の含有量に対するパーフルオロアルキル基含有アルコール樹脂(C)の含有量の比が質量比で7/12~9/10であることがより好ましい。さらに同様の観点から、メラミン樹脂(B)の含有量に対するパーフルオロアルキル基含有アルコール樹脂(C)の含有量の比が質量比で7/1~9/1であることがより好ましい。
 親水性着色皮膜は、アクリル変性エポキシ樹脂(A)、メラミン樹脂(B)、パーフルオロアルキル基含有アルコール樹脂(C)以外の他の樹脂成分を含有することができる。他の樹脂成分の含有量は、アクリル変性エポキシ樹脂(A)とメラミン樹脂(B)とパーフルオロアルキル基含有アルコール樹脂(C)との合計量100質量部に対して10質量部以下であることが好ましく、5質量部以下であることがより好ましく、1質量部以下であることがさらに好ましい。親水性着色皮膜中の樹脂成分は、実質的にアクリル変性エポキシ樹脂(A)とメラミン樹脂(B)とパーフルオロアルキル基含有アルコール樹脂(C)とからなることが特に好ましい。なお、上述の「実質的に~からなる」とは、樹脂原料、顔料、溶媒等から塗料中にもたらされる樹脂成分を除いて他の樹脂成分を含有しないことを意味する。
 顔料(D)は、親水性着色皮膜を着色させ、その意匠性に寄与する。親水性着色皮膜中の顔料(D)の含有量は1~80mg/m2である。顔料(D)の含有量が1mg/m2未満の場合には、十分な着色効果が得られず、フィン材の意匠性が低下するおそれがある。一方、80mg/m2を超える場合には、顔料の種類によらず、親水性着色皮膜の色の黒ずみが高くなり、色彩効果が低下する。すなわち、この場合にもフィン材の意匠性が低下するおそれがある。フィン材の意匠性を高めるという観点から、親水性着色皮膜中の顔料(D)の含有量は5~60mg/m2であることが好ましく、10~50mg/m2であることがより好ましい。
 顔料(D)としては、各種色に応じた物質を用いることができる。顔料(D)としては、無機系顔料、有機系顔料のいずれでもよいが、有機系顔料が好ましい。具体的には、青色系顔料としては、銅フタロシアニン系、銅フリーフタロシアニン系、インダントロン系化合物等が挙げられる。赤色系顔料としては、モノアゾ系、縮合アゾ系、キナクリドン系、ペリレン系化合物等が挙げられる。黄色系顔料としては、モノアゾ系、ジスアゾ系、縮合アゾ系、金属錯塩アゾメチン系、ベンズイミダゾロン系、イソインドリノン系、キノフタロン系化合物等が挙げられる。
 顔料(D)は、顔料分散体として、親水性着色皮膜を形成するための塗料中に添加される。顔料の粒子表面を修飾する物質(すなわち、修飾剤)としては、塗料中での分散性の点から、カチオン型あるいはノニオン型の界面活性剤であることが好ましい。アニオン型の界面活性剤を使用した場合、pH5.0~8.0の弱酸性および中性範囲内で、修飾剤の凝集が進行し、顔料が沈降するため、分散性に乏しくなるおそれがある。また、修飾剤としてアクリル系樹脂を使用することも可能であるが、アクリル系樹脂を用いた場合には、成膜後に得られる親水性着色皮膜の表面の親水性を阻害するおそれがあり、親水性が低下する傾向がある。
 親水性着色皮膜の水接触角が20°以下であることが好ましい。この場合には、フィン材の表面が十分に優れた親水性を示すことができる。水接触角は15°以下であることがより好ましい。親水性着色皮膜の水接触角は、例えば親水性着色皮膜の組成を上述のように調整することにより調整することができる。
 熱交換器用フィン材を流速5L/時間の流水に24時間浸漬する浸漬試験後における親水性着色皮膜の流水への溶出率が1質量%以下であることが好ましい。この場合には、親水性着色皮膜の水への溶出が確実かつ十分に抑制され、耐退色性を十分に向上させることができる。親水性着色皮膜の流水への溶出率は、例えば親水性着色皮膜の組成を上述のように調整することにより調整することができる。
 浸漬試験後の親水性着色皮膜の退色度が、Lab表色系において(ΔL,Δa,Δb)=(±2.5,±1.0,±1.0)であることが好ましい。この場合には、耐退色性をより確実かつ十分に向上させることができる。親水性着色皮膜の退色度は、例えば親水性着色皮膜の組成を上述のように調整することにより調整することができる。
 親水性着色皮膜の厚みは、適宜調整可能であるが、例えば0.5~2μmにすることができる。親水性着色皮膜は、抗菌剤及び抗カビ剤の少なくとも一方を含有することが好ましい。この場合には、親水性着色皮膜の抗菌性や防カビ性を向上させることができる。
 塗膜は、親水性着色皮膜と基板との間に、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、エステル系樹脂からなる群より選ばれる少なくとも1種の樹脂を含有する耐食性皮膜を有することが好ましい。この場合には、フィン材の耐食性をより向上させることができる。耐食性皮膜の厚みは、例えば0.3~5μmの範囲に調整することができる。耐食性皮膜の厚みが小さすぎると、耐食性が十分に確保できなくなる恐れがあり、厚みが大きくなりすぎると、フィン材の伝熱性能が低下するおそれがある。
 塗膜と基板との間には、化成皮膜から成る下地処理層を設けることができる。この場合には、塗膜と基板との密着性を向上させることができる。さらに、フィン材の耐食性を向上させることができ、水、塩化合物などの腐食性物質が基板の表面に浸透した際に惹起される皮膜下腐食が抑制され、皮膜割れや皮膜剥離を防止することができる。
 化成皮膜としては、例えば、リン酸クロメート、クロム酸クロメートなどのクロメート処理、クロム化合物以外のリン酸チタンやリン酸ジルコニウム、リン酸モリブデン、リン酸亜鉛、酸化ジルコニウムなどによるノンクロメート処理などの化学皮膜処理、いわゆる化成処理により得られる皮膜を採用することができる。なお、クロメート処理やノンクロメート処理などの化成処理方法には、反応型及び塗布型があるが、いずれの手法でもよい。下地処理層は100mg/m2以下で形成することができる。
 フィン材は、例えば以下のようにして熱交換器の製造に用いられる。具体的には、まず、コイル状のフィン材が所定の寸法に切断され、複数の板状のフィンを得る。次いで、プレス機によって、フィンにスリット加工、ルーバー成型、カラー加工を施す。次いで、所定の位置に配置した金属管をフィンに設けた孔に通しながら、複数のフィンを互いに所定の間隔を空けた状態で積層配置する。その後、金属管内に拡管プラグを挿入して金属管の外径を拡大させることにより、金属管とフィンを密着させる。このようにして、熱交換器を得ることができる。熱交換器は、例えば空調機の室内機、室外機に用いることができる。
(実施例1)
 本例は、本発明の実施例にかかるフィン材(試料E1~試料E20)および比較例にかかるフィン材(試料R1~試料R11)を作製し、これらの特性を評価する例である。図1に例示されるように、試料E1~試料E20のフィン材1は、アルミニウムよりなる基板2と、その表面に形成された塗膜3とを有する。塗膜3は、親水性着色皮膜31からなる。基板2と塗膜3との間には化成皮膜4が形成されている。試料R1~試料R11の皮膜の積層構成は試料E1~試料E20と同様である。各試料E1~試料E20、試料R1~試料R11は、後述の表1に示すごとく親水性着色皮膜31の構成成分が互いに異なる。表1における各成分量は固形分量である。
 以下、フィン材の製造方法について説明する。まず、基板2として、JIS A 1050-H26、板厚0.1mmのアルミニウム板を準備した。この基板2に対して化成処理を行うことにより、基板2の表面にリン酸クロメートよりなる化成皮膜4を形成した。
 次に、化成皮膜4上に、バーコーターを用いて所定組成(表1参照)の塗料を塗布し、温度225℃で10秒間加熱することにより、膜厚1μmの親水性着色皮膜31よりなる塗膜3を形成した。このようにして、図1に例示されるフィン材1を得た。各試料E1~試料E20は、親水性着色皮膜を形成するための塗料の組成が異なる点を除いては、上記と同様の方法により製造される。試料R1~試料R11についても同様である。
 なお、表1おいて、親水性着色皮膜の各構成成分として、以下のものを使用した。
 アクリル変性エポキシ樹脂(A):ポリアクリル酸-ビスフェノールA型エポキシ
 メラミン樹脂(B):メラミン樹脂
 パーフルオロアルキル基含有アルコール樹脂(C):ポリビニルアルコール-フッ素化合物(XO-OC-(CH2)4)-(CF2)15-CF3の複合体(X:HあるいはNa)
<顔料(D)>
(1)D-b1:フタロシアニンブルー系顔料(分散剤:ノニオン型界面活性剤)
(2)D-b2:フタロシアニンブルー系顔料(分散剤:アニオン型界面活性剤)
(3)D-b3:フタロシアニンブルー系顔料(分散剤:ポリアクリル酸系樹脂)
(4)D-y1:ファストエロー系顔料(分散剤:ノニオン型界面活性剤)
(5)D-r1:トルイジンレッド系顔料(分散剤:ノニオン型界面活性剤)
Figure JPOXMLDOC01-appb-T000004
 次に、以下の手順にて各試料のフィン材の親水性、耐水性、意匠性、耐退色性、顔料分散性の評価を実施した。その結果を表2に示す。
<親水性>
 協和界面科学(株)製の自動接触角計DM-701を用いて、θ/2法により水接触角を測定した。具体的には、各フィン材を50mm×100mmに切断して供試板を作製した。次いで、各供試板の親水性着色皮膜上に純水2μlを滴下し、滴下後30秒後の水の接触角を測定した。その結果を表2に示す。
<耐水性>
 各フィン材を100mm×100mmに切断して供試板を作製し、供試板の重量W0を測定した。次いで、供試板を水温20℃、流速5L/時間の流水中に24時間浸漬させた(これを浸漬試験という)。その後、供試板を乾燥させ、供試板の重量W1を測定した。溶出率E(%)は、下記の式(α)によって算出される。その結果を表2に示す。なお、溶出率が1%未満であった場合は、表中に「<1」と示した。
  E=100×(W0-W)/W0 ・・・(α)
<意匠性>
 意匠性の評価は、親水性着色皮膜の色差を測定することにより行った。まず、各フィン材を50mm×100mmに切断して供試板を作製した。次いで、コニカミノルタ株式会社製の色差計「CR-200」を用いて、光源をLab表示系に設定し、親水性着色皮膜の表面の色調を測定した。なお、色差(L,a,b)が、Lが75以上かつ85以下であり、a又はbが±5.0を超える上の場合を「良」と判定した。また、Lが60以上かつ95以下であり、かつa又はbが±2.0を超かつ±5.0以下の場合を「可」と判定した。また、Lが60未満あるいは95超、またはa及びbがともに±2.0以下の場合を「不良」と判定した。その結果を表2に示す。
<耐退色性>
 まず、各フィン材を50mm×100mmに切断して供試板を作製した。次いで、コニカミノルタ株式会社製の色差計「CR-200」を用いて、光源をLab表示系に設定し、親水性着色皮膜の表面の色調を測定した(操作A)。次に、温度25℃、流速5L/時間の流水中に供試板を24時間浸漬し、十分に乾燥させた後、親水性着色皮膜の表面の色調を測定した(操作B)。操作Aと操作Bとの色調差(ΔL,Δa,Δb)を算出することにより、耐退色性を評価した。色調差(ΔL,Δa,Δb)について、ΔLが±2.5以下、かつΔa及びΔbが±1.0以下の場合を「良」と判定した。また、ΔLが±2.5を超えかつ±5.0以下の場合、又はΔa及びΔbが±1.0を超かつ±2.0以下の場合を「可」と判定した。また、ΔLが±5.0を超える場合、又はΔa及びΔbが±2.0を超える場合を「不良」と判定した。その結果を表2に示す。
<顔料分散性>
 各試料の組成の親水性着色皮膜(表1参照)を形成するため塗料をそれぞれガラス瓶容器(具体的には、ガラススクリュー管)中で、温度60℃の条件で72時間静置した。静置後の各塗料の沈殿状態を目視にて評価した。容器の底に顔料の沈殿(具体的には、色つきの沈殿物)が認められない場合を「良」と判定し、顔料の沈殿が認められた場合を「不良」と判定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 表1及び表2より知られるように、実施例にかかるフィン材(試料E1~18)は、親水性、意匠性、及び耐退色性に優れることを確認した。
 試料E2と試料R1との比較より、試料E2の方が耐退色性に優れることがわかった。この結果より、耐退色性を高めるためには、アクリル変性エポキシ樹脂の含有量は樹脂成分100質量部に対して45質量部以上であることが好ましいことがわかる。
 また、試料E1と試料R2との比較より、試料E1の方が親水性に優れることがわかった。この結果より、親水性を十分に高めるためには、アクリル変性エポキシ樹脂の含有量は樹脂成分100質量部に対して65質量部以下であることが好ましいことがわかる。試料R2においては、アクリル変性エポキシ樹脂とフッ素重合体の親水基との架橋反応が促進されたことにより、親水性が低下したと考えられる。また、上述の試料E2と試料R1との比較結果も踏まえると、アクリル変性エポキシ樹脂の含有量に対するパーフルオロアルキル基含有アルコール樹脂の含有量の比は、質量比(パーフルオロアルキル基含有アルコール樹脂/アクリル変性エポキシ樹脂)で、5/14~11/8の範囲が好ましく、7/12~9/10がより好ましい。
 試料E2および試料R3との比較より、E2の方が耐退色性に優れることがわかった。この結果より、耐退色性を向上させるためには、メラミン樹脂の含有量は樹脂成分100質量部に対して2質量部以上であることが好ましいことがわかる。メラミン樹脂の含有量が少ない試料R3においては、十分な塗膜硬度が得られず、顔料が水溶出しやすくなるおそれがある。
 試料E1、試料E4、試料E6と、試料R5、試料R7、試料R9との比較より、試料E1、試料E4、試料E6の方が色彩に富むことがわかった。この結果より、皮膜中での顔料の含有量は1mg/m2以上が好ましく、10mg/m2以上がより好ましい。
 試料E3、試料E5、試料E7と、試料R6、試料R8、試料R10との比較より、試料E3、試料E5、試料E7の方が耐退色性に優れることがわかった。この結果より、皮膜中での顔料量は80mg/m2以下であることが好ましく、50mg/m2以下であることがより好ましい。
 試料E1および試料R11の比較より、試料E1の方が親水性に優れることがわかった。これは、試料R11のように、顔料に使用する分散剤がポリアクリル酸系樹脂の場合には、皮膜表面にポリアクリル酸系樹脂がブリードアウトし易くなり、その結果、親水性を低下させるおそれがあるためであると考えられる。また、試料E1と試料E20との比較により、試料E1の方が製造時の顔料分散性に優れることがわかる。これは、試料E20のように、顔料に使用する分散剤がアニオン型界面活性剤の場合には、塗料中で顔料が沈殿しやすくなるためであり、この場合には、塗料の管理や取り扱いが困難になったり、生産性が悪くなるおそれがある。このような観点から、顔料に使用する分散剤は、カチオン型あるいはノニオン型界面活性剤の方が好ましい。
 以上のように、アクリル変性エポキシ樹脂、メラミン樹脂、パーフルオロアルキル基含有アルコール樹脂、および顔料からなり、皮膜中の顔料存在量が1~80mg/m2に指定された親水性皮膜を有する熱交換器用フィン材(試料E1~試料E20)は、親水性、意匠性、及び耐退色性に優れている。さらに、試料E1~試料E20のフィン材においては、親水性着色皮膜が、珪酸のアルカリ金属塩やアルミナ等の硬度の高い無機系化合物を必ずしも含む必要がない。そのため、例えば成形時に金型摩耗を起こしたり、フィン材にクラックが発生したりすることを防止できる。すなわち、フィン材の成形性の低下を防止できる。また、試料E1~試料E20のフィン材においては、親水性着色皮膜は、一度の塗装工程にて得ることが可能であり、例えば2種類以上の塗料を重ね塗りして親水層と着色層とを分けて形成する必要がない。
(変形例)
 本例は、親水性着色皮膜と耐食性皮膜とからなる塗膜を有する熱交換器用フィン材の例である。図2に例示されるように、本例のフィン材1は、塗膜3として、親水性着色皮膜31と耐食性皮膜32とを有し、最外層が親水性着色皮膜31からなる。その他の構成は実施例1と同様である。すなわち、本例のフィン材1は、基板2と、基板2上に形成された化成皮膜4と、化成皮膜4上に形成された耐食性皮膜32と、耐食性皮膜32上に形成された親水性着色皮膜31とを有する。このように耐食性皮膜32を形成することにより、フィン材の耐食性をより高めることができる。
(実施例2)
 本例は、実施例1のフィン材からなるフィンを備えた熱交換器の例である。図3に例示されるように、熱交換器7は、クロスフィンチューブ型であり、フィン材1からなる多数の板状のフィン8と、これらを貫通する伝熱用の金属管9とを有する。各フィン8は、所定の間隔を明けて平行に配置されている。フィン8の幅は例えば25.4mm、高さは例えば290mm、フィン8の積層ピッチは例えば1.4mm、熱交換器1の全体の幅は例えば300mmである。フィン8の高さ方向が基板の圧延平行方向である。フィン8の幅における金属管9を2列とし、フィン8の高さにおける金属管9の段数を14段とした。なお、図3においては、図面作成の便宜のため、金属管9の数を省略している。また、金属管9は、内面にらせん溝を有する銅管である。金属管の寸法は、外径:7.0mm、底肉厚:0.45mm、フィン高さ:0.20mm、フィン頂角:15.0°、らせん角:10.0°である。
 熱交換器7は、次のようにし作製した。まず、フィン材1からなるフィン8に、金属管8を挿通して固定するための高さ1~4mmのフィンカラー部を有する組み付け孔(図示略)をプレス加工により形成した。フィン8を積層した後に、組み付け孔の内部に、別途作製した金属管7を挿通させた。金属管9としては、転造加工等によって内面に溝加工を施すと共に、定尺切断・ヘアピン曲げ加工を施した銅管を用いた。次に、金属管9の一端から拡管プラグを挿入し、金属管9の外径を広げることにより、金属管9をフィン8に固着させた。拡管プラグを抜いた後、Uベント管を金属管9にろう付け接合することにより、熱交換器7を得た。
 フィン材1として、実施例1における試料E1~E20を用いることにより、熱交換器7は、フィン8が親水性、意匠性、及び耐退色性に優れる。また、フィン材1の親水性着色皮膜31は、珪酸のアルカリ金属塩やアルミナ等の硬度の高い無機系化合物を必ずしも含まない。そのため、例えば熱交換器7の製造時におけるフィン材1の成形時に金型摩耗を起こしたり、フィン材1にクラックが発生したりすることを防止できる。

Claims (11)

  1.  アルミニウムからなる基板と、
     該基板上に形成された1層又は2層以上の皮膜からなる塗膜と、を有する熱交換器用フィン材であって、
     上記塗膜は、最表面に親水性着色皮膜を有し、
     該親水性着色皮膜は、アクリル変性エポキシ樹脂(A)、メラミン樹脂(B)、パーフルオロアルキル基含有アルコール樹脂(C)、及び顔料(D)を含有し、
     上記親水性着色皮膜中の顔料(D)の含有量が1~80mg/m2であり、
     上記親水性着色皮膜の水接触角が20°以下であり、
     上記熱交換器用フィン材を流速5L/時間の流水に24時間浸漬する浸漬試験後における上記親水性着色皮膜の流水への溶出率が1質量%以下である、熱交換器用フィン材。
  2.  上記浸漬試験後の上記親水性着色皮膜の退色度が、Lab表色系において(ΔL,Δa,Δb)=(±2.5,±1.0,±1.0)である、請求項1に記載の熱交換器用フィン材。
  3.  上記親水性着色皮膜は、該親水性着色皮膜中の樹脂成分100質量部に対して上記アクリル変性エポキシ樹脂(A)を45~65質量部含有する、請求項1又は2に記載の熱交換器用フィン材。
  4.  上記親水性着色皮膜は、該親水性着色皮膜中の樹脂成分100質量部に対して上記メラミン樹脂(B)を2~13質量部含有する、請求項1~3のいずれか1項に記載の熱交換器用フィン材。
  5.  上記親水性着色皮膜は、上記アクリル変性エポキシ樹脂(A)の含有量に対する上記メラミン樹脂(B)の含有量の比が質量比で0.03~0.25である、請求項1~4のいずれか1項に記載の熱交換器用フィン材。
  6.  上記親水性着色皮膜は、該親水性着色皮膜中の樹脂成分100質量部に対して上記パーフルオロアルキル基含有アルコール樹脂(C)を30~50質量部含有する、請求項1~5のいずれか1項に記載の熱交換器用フィン材。
  7.  上記親水性着色皮膜は、上記アクリル変性エポキシ樹脂(A)の含有量に対する上記パーフルオロアルキル基含有アルコール樹脂(C)の含有量の比が質量比で5/14~11/8である、請求項1~6のいずれか1項に記載の熱交換器用フィン材。
  8.  上記親水性着色皮膜は、上記メラミン樹脂(B)の含有量に対する上記パーフルオロアルキル基含有アルコール樹脂(C)の含有量の比が質量比で3/1~10/1である、請求項1~7のいずれか1項に記載の熱交換器用フィン材。
  9.  前記親水性着色皮膜が、さらに抗菌剤及び防かび剤の少なくとも一方を含有する、請求項1~8のいずれか1項に記載の熱交換器用フィン材。
  10.  上記塗膜は、上記親水性着色皮膜と上記基板との間に、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、エステル系樹脂からなる群より選ばれる少なくとも1種の樹脂を含有する耐食性皮膜を有する、請求項1~9のいずれか1項に記載の熱交換器用フィン材。
  11.  請求項1~10のいずれか1項に記載の熱交換器用フィン材からなるフィンを備えた、熱交換器。
PCT/JP2017/012153 2016-03-31 2017-03-24 熱交換器用フィン材及び熱交換器 WO2017170271A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780016477.0A CN108885070A (zh) 2016-03-31 2017-03-24 热交换器用翅片材料以及热交换器
MX2018011494A MX2018011494A (es) 2016-03-31 2017-03-24 Material de aleta para intercambiador de calor, e intercambiador de calor.
EP17774808.4A EP3438593A4 (en) 2016-03-31 2017-03-24 FIN MATERIAL FOR HEAT EXCHANGER, AND HEAT EXCHANGER
US16/077,217 US20190032972A1 (en) 2016-03-31 2017-03-24 Fin material for heat exchanger, and heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071529A JP2017180991A (ja) 2016-03-31 2016-03-31 熱交換器用フィン材及び熱交換器
JP2016-071529 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170271A1 true WO2017170271A1 (ja) 2017-10-05

Family

ID=59965664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012153 WO2017170271A1 (ja) 2016-03-31 2017-03-24 熱交換器用フィン材及び熱交換器

Country Status (6)

Country Link
US (1) US20190032972A1 (ja)
EP (1) EP3438593A4 (ja)
JP (1) JP2017180991A (ja)
CN (1) CN108885070A (ja)
MX (1) MX2018011494A (ja)
WO (1) WO2017170271A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209487B2 (ja) * 2017-11-24 2023-01-20 Maアルミニウム株式会社 ろう付け処理後の親水性に優れるアルミニウムフィン及び熱交換器とその製造方法
WO2019102915A1 (ja) * 2017-11-24 2019-05-31 三菱アルミニウム株式会社 ろう付け処理後の親水性に優れるアルミニウムフィン及び熱交換器とその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322292A (ja) * 1993-03-18 1994-11-22 Nippon Paint Co Ltd 親水化処理用ポリマー組成物
JP2003231977A (ja) 2002-02-08 2003-08-19 Kobe Steel Ltd 熱交換器フィン用アルミニウム又はアルミニウム合金材及び熱交換器用フィン
JP2006321965A (ja) 2005-02-02 2006-11-30 Furukawa Sky Kk 親水性塗料組成物、アルミニウム塗装板及びプレコートアルミニウムフィン材
JP2006348238A (ja) * 2005-06-20 2006-12-28 Furukawa Sky Kk 親水性被覆のための下地被覆用樹脂組成物及びアルミニウム合金塗装板
JP2009214001A (ja) 2008-03-10 2009-09-24 Mitsubishi Alum Co Ltd 着色親水性被膜及びこれを用いたフィン材
JP2011002146A (ja) * 2009-06-18 2011-01-06 Panasonic Corp 熱交換器とこれを用いた空気調和装置または衣類洗濯乾燥機
WO2012157325A1 (ja) * 2011-05-17 2012-11-22 関西ペイント株式会社 熱交換器フィンの着霜抑制用の水系塗料組成物、着霜抑制用皮膜の形成方法、及び着霜抑制用皮膜を有する熱交換器フィン
JP2012237477A (ja) * 2011-05-10 2012-12-06 Nippon Light Metal Co Ltd アルミニウム又はアルミニウム合金からなる熱交換器
JP2013190178A (ja) * 2012-03-14 2013-09-26 Kobe Steel Ltd アルミニウム製フィン材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554544B2 (ja) * 2009-11-10 2014-07-23 関西ペイント株式会社 熱交換器フィン材用の着霜抑制処理組成物
JP5600081B2 (ja) * 2011-05-10 2014-10-01 日本軽金属株式会社 熱交換器用プレコートフィン材及び熱交換器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322292A (ja) * 1993-03-18 1994-11-22 Nippon Paint Co Ltd 親水化処理用ポリマー組成物
JP2003231977A (ja) 2002-02-08 2003-08-19 Kobe Steel Ltd 熱交換器フィン用アルミニウム又はアルミニウム合金材及び熱交換器用フィン
JP2006321965A (ja) 2005-02-02 2006-11-30 Furukawa Sky Kk 親水性塗料組成物、アルミニウム塗装板及びプレコートアルミニウムフィン材
JP2006348238A (ja) * 2005-06-20 2006-12-28 Furukawa Sky Kk 親水性被覆のための下地被覆用樹脂組成物及びアルミニウム合金塗装板
JP2009214001A (ja) 2008-03-10 2009-09-24 Mitsubishi Alum Co Ltd 着色親水性被膜及びこれを用いたフィン材
JP2011002146A (ja) * 2009-06-18 2011-01-06 Panasonic Corp 熱交換器とこれを用いた空気調和装置または衣類洗濯乾燥機
JP2012237477A (ja) * 2011-05-10 2012-12-06 Nippon Light Metal Co Ltd アルミニウム又はアルミニウム合金からなる熱交換器
WO2012157325A1 (ja) * 2011-05-17 2012-11-22 関西ペイント株式会社 熱交換器フィンの着霜抑制用の水系塗料組成物、着霜抑制用皮膜の形成方法、及び着霜抑制用皮膜を有する熱交換器フィン
JP2013190178A (ja) * 2012-03-14 2013-09-26 Kobe Steel Ltd アルミニウム製フィン材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438593A4

Also Published As

Publication number Publication date
JP2017180991A (ja) 2017-10-05
MX2018011494A (es) 2019-02-20
EP3438593A4 (en) 2019-12-25
EP3438593A1 (en) 2019-02-06
US20190032972A1 (en) 2019-01-31
CN108885070A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP4274228B2 (ja) 放熱性に優れた塗膜及びその形成方法
TW201109396A (en) Excellent corrosion-resistant coating composition
WO2017170271A1 (ja) 熱交換器用フィン材及び熱交換器
JP4667978B2 (ja) アルミニウム塗装板及びプレコートアルミニウムフィン材
WO2014157587A1 (ja) プレコートアルミニウム板材、アルミニウム板材および車載led照明用ヒートシンク
CN104169674A (zh) 热交换器用铝翅片材
TW202003918A (zh) 表面處理鋼板
JP4769112B2 (ja) アルミニウム塗装材及びこれを用いた熱交換器用アルミニウムフィン材
JP4969341B2 (ja) 金属塗装材及びその製造方法
WO2010110261A1 (ja) 熱交換器用アルミニウムフィン材
JP5113638B2 (ja) メタリック調艶消し意匠塗装金属板の塗装方法
JP3383914B2 (ja) 熱交換器用アルミニウムフィン材
CN101925414B (zh) 弯曲加工性优良的涂装钢材
KR102081372B1 (ko) 내식성이 우수한 도장강판 및 그 제조방법
JP2008164238A (ja) 熱交換器用アルミニウムフィン材及びそれを用いた熱交換器
JP5753698B2 (ja) 熱交換器用アルミニウムフィン及び熱交換器
JP2017155973A (ja) 熱交換器用フィン材及び熱交換器
JP5506566B2 (ja) 熱交換器用アルミニウムフィン及び熱交換器
JP2008087242A (ja) フッ素樹脂塗装鋼板
KR102299498B1 (ko) 열교환기 튜브용 코팅 조성물 및 이를 이용한 열교환기용 튜브의 코팅 방법
WO2022215374A1 (ja) アルミニウム製フィン材
JP2006348238A (ja) 親水性被覆のための下地被覆用樹脂組成物及びアルミニウム合金塗装板
JP4496744B2 (ja) プレート素材及びその製造方法
TWI547367B (zh) 預塗覆金屬板
JP3694853B2 (ja) 熱交換器用プレコートフィン材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011494

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774808

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774808

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774808

Country of ref document: EP

Kind code of ref document: A1