WO2017169465A1 - コンベヤベルト用繊維補強層およびコンベヤベルト - Google Patents

コンベヤベルト用繊維補強層およびコンベヤベルト Download PDF

Info

Publication number
WO2017169465A1
WO2017169465A1 PCT/JP2017/007810 JP2017007810W WO2017169465A1 WO 2017169465 A1 WO2017169465 A1 WO 2017169465A1 JP 2017007810 W JP2017007810 W JP 2017007810W WO 2017169465 A1 WO2017169465 A1 WO 2017169465A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
width direction
fiber
belt
elongation
Prior art date
Application number
PCT/JP2017/007810
Other languages
English (en)
French (fr)
Inventor
奈那 田代
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to AU2017242170A priority Critical patent/AU2017242170A1/en
Priority to CN201780016521.8A priority patent/CN108712991A/zh
Publication of WO2017169465A1 publication Critical patent/WO2017169465A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • B65G15/34Belts or like endless load-carriers made of rubber or plastics with reinforcing layers, e.g. of fabric
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft

Definitions

  • the present invention relates to a fiber reinforced layer for a conveyor belt and a conveyor belt, and more particularly to a fiber reinforced layer for a conveyor belt and a conveyor belt that can improve tear resistance at both ends in the width direction of the conveyor belt.
  • both ends in the belt width direction are bent upwards with respect to the center and used in a trough shape. For this reason, tensile strain is larger at both ends in the belt width direction than at the center, and tearing is likely to occur due to this.
  • Patent Document 1 in order to improve productivity without impairing the buckling resistance of the core body, the warp and weft yarns of the core body of the plain woven structure are made non-twisted and the elongation of the conveyor belt is limited to a specific range. It has been proposed.
  • patent document 2 in order to improve the quality of the core which employ
  • An object of the present invention is to provide a fiber reinforcing layer for a conveyor belt and a conveyor belt capable of improving the tear resistance at both ends in the width direction of the conveyor belt.
  • the fiber reinforcement layer for a conveyor belt according to the present invention is a fiber reinforcement layer for a conveyor belt having a woven structure in which warp yarns extend in the longitudinal direction and weft yarns extend in the width direction.
  • the elongation at both ends in the width direction at 1/10 load of the cutting load in the longitudinal direction is 110% to 200% of the elongation at the center in the width direction.
  • the conveyor belt according to the present invention is characterized in that the fiber reinforcing layer for the conveyor belt is embedded as a core body with the extending direction of the warp yarn as a longitudinal direction of the belt.
  • the elongation with a relatively low tensile load in the longitudinal direction is relatively large at both ends. Therefore, if this fiber reinforcing layer is embedded in the conveyor belt as a core body with the extending direction of the warp yarn as the belt longitudinal direction, the elongation at both ends in the belt width direction becomes relatively large. As a result, even if the conveyor belt is used in a trough shape, the tensile strain at both ends in the belt width direction is relieved, so that the tear resistance at both ends in the belt width direction can be improved.
  • the woven structure may be a 2/2 broken twill structure. This is advantageous for improving the impact resistance of the conveyor belt.
  • the warp yarn at both ends in the width direction is made of, for example, polyamide fiber, and the warp yarn at the center portion in the width direction is made of, for example, polyester fiber. According to this specification, in a state where the conveyor belt is in a trough shape, the elongation at both ends in the belt width direction is relatively easily increased.
  • the core body has a multilayer structure in which a plurality of reinforcing layers are laminated, and the outermost reinforcing layer of the multilayer structure can be a fiber reinforcing layer for the conveyor belt. .
  • the effect by the fiber reinforcement layer of this invention can be acquired efficiently.
  • FIG. 1 is a cross-sectional view illustrating a conveyor belt in which a fiber reinforcing layer for a conveyor belt according to the present invention is embedded.
  • FIG. 2 is a plan view of the conveyor belt of FIG.
  • FIG. 3 is an explanatory view illustrating the fiber reinforcing layer of FIG.
  • FIG. 4 is an explanatory view illustrating a state in which the conveyor belt of FIG. 1 is stretched.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • a conveyor belt fiber reinforcing layer 3 of the present invention (hereinafter referred to as a fiber reinforcing layer 3) is embedded as a core body 2 in the conveyor belt 1 of the present invention.
  • the core body 2 is a member that bears the tension generated in the stretched conveyor belt 1.
  • An upper cover rubber 6 and a lower cover rubber 7 are disposed above and below the core body 2, respectively, and the core body 2, the upper cover rubber 6 and the lower cover rubber 7 are integrated by vulcanization adhesion.
  • the core body 2 is continuous in the belt longitudinal direction, and the dimension in the width direction is slightly smaller than the belt width. Thereby, the width direction both ends of the conveyor belt 1 are ear rubber in which the core body 2 does not exist.
  • the core body 2 has a four-layer structure in which one layer of the fiber reinforcement layer 3 of the present invention and three layers of another fiber reinforcement layer 3a are laminated.
  • the fiber reinforcing layer 3 of the present invention is the outermost reinforcing layer of the core body 2.
  • the number of laminated fiber reinforced layers 3 and 3a constituting the core body 2 is determined by the required performance (rigidity, elongation, etc.) for the conveyor belt 1, and is not limited to the four layers as in this embodiment. Multiple layers can also be used.
  • the fiber reinforcing layer 3 of the present invention has a woven structure in which the warp 4 extends in the longitudinal direction and the weft 5 extends in the width direction.
  • the fiber reinforcing layer 3 is embedded with the extending direction of the warp yarns 4 being the belt longitudinal direction. That is, the longitudinal direction of the warp 4 is the longitudinal direction of the conveyor belt 1, and the longitudinal direction of the weft 5 is the width direction of the conveyor belt 1.
  • the woven structure of the fiber reinforcing layer 3 is a 2/2 broken twill structure.
  • other woven structures such as a plain woven structure may be employed.
  • the elongation E1 at both ends R1 in the width direction at the time of 1/10 load of the longitudinal cutting load of the fiber reinforcing layer 3 is larger than the elongation E2 in the center R2 in the width direction.
  • the elongation E2 is 110% or more and 200% or less.
  • the elongation at the time of 1/10 load of the cutting load in the longitudinal direction of the fiber reinforcing layer 3 is measured, for example, by a test based on a tensile test of a belt of JIS K6322.
  • the center portion R2 in the width direction of the fiber reinforcement layer 3 is, for example, a region of about 50% to 60% of the total width WR of the fiber reinforcement layer 3 with the center CR in the width direction of the fiber reinforcement layer 3 as the center. Since both ends R1 in the width direction are regions other than the center portion R2 in the width direction, they are regions of about 20% to 25% of the total width WR from both ends in the width direction of the fiber reinforcement layer 3, respectively.
  • the overall width WR of the core body 2 (fiber reinforcing layer 3) is slightly smaller than the overall width WB of the conveyor belt 1 and is substantially the same.
  • the width direction center CR and the belt width direction center CB are substantially coincident with each other, the width direction both ends R1 of the fiber reinforcing layer 3 are embedded in the belt width direction both ends Z1 of the conveyor belt 1, and the conveyor belt 1
  • the width direction center portion R2 of the fiber reinforcement layer 3 is embedded in the belt width direction center portion Z2.
  • the material of the warp 4 at each of the end portions R1 in the width direction and the center portion R2 in the width direction In other words, a material having a relatively large elongation is used for both ends R1 in the width direction.
  • the warp yarn 4 at both ends R1 in the width direction is made of polyamide fiber
  • the warp yarn 4 at the center portion R2 in the width direction is made of polyester fiber.
  • a multifilament yarn obtained by twisting a plurality of polyamide fibers can be used for the warp yarns 4 at both ends R1 in the width direction, or a monofilament yarn can be used.
  • a multifilament yarn obtained by twisting a plurality of polyester fibers can be used, or a monofilament yarn can be used.
  • polyamide fibers include nylon 6, nylon 66, and the like.
  • the conveyor belt 1 is used by being stretched between pulleys 8a and 8b as illustrated in FIGS.
  • the belt width direction both ends Z1 are supported at the lower surface by the support roller 9 whose rotation axis is inclined at a predetermined angle a with respect to the horizontal, and the belt width direction central portion Z2 is rotated.
  • the lower surface is supported by a support roller 9 whose axis is horizontal.
  • the tension applied to the core body 2 is relatively greater at the belt width direction both ends Z1 (width direction both ends R1) than the belt width direction center portion Z2 (width direction center portion R2).
  • the tensile strain is larger at the belt width direction both ends Z1 (width direction both ends R1) than at the belt width direction center Z2 (width direction center R2), so that tearing is likely to occur. That is, tearing extending in the belt width direction is likely to occur at both ends Z1 in the belt width direction due to relatively large tensile strain.
  • the fiber reinforcing layer 3 embedded as the core body 2 has an elongation at the time of 1/10 of the longitudinal cutting load of the fiber reinforcing layer 3 at the width direction both ends R1 in the width direction. It is relatively larger than the central portion R2. Therefore, even if the conveyor belt 1 is used in a trough shape, the fiber reinforcing layer 3 extends relatively greatly at the belt width direction both ends Z1 (width direction both ends R1), so that the belt width direction both ends Z1 Tensile strain is relieved. Accordingly, it becomes possible to improve the tear resistance of the belt width direction both ends Z1.
  • the elongation at the time of 1/10 load of the longitudinal cutting load of the fiber reinforcing layer 3 is used because the magnitude of this 1/10 load is the core 2 of the stretched conveyor belt 1. This is because (fiber reinforcing layers 3, 3a) is at a level that is relatively close to the tension that is normally borne.
  • all the reinforcing layers may be the fiber reinforcing layer 3 of the present invention, but only a part of the fiber reinforcing layer of the present invention is used in order to reduce costs. 3 and the rest can be another inexpensive general-purpose reinforcing layer 3a.
  • the outermost peripheral layer is the fiber reinforcing layer 3 of the present invention.
  • the first and second layers from the outermost periphery are used as the fiber reinforcing layer 3 of the present invention.
  • the outermost reinforcing layer has the largest tensile strain. Therefore, when the fiber reinforcing layer 3 of the present invention is used as the outermost reinforcing layer, the above-described effect of the fiber reinforcing layer 3 can be efficiently obtained while minimizing the amount of the fiber reinforcing layer 3 used. .
  • the impact resistance of the conveyor belt 1 can be improved as compared with a plain woven structure or the like.
  • the tearing in the conveyor belt 1 is basically caused by a local stress concentration caused by the loaded article 10, which may cause the conveyor belt 1 to break.
  • the plain weave structure when the stress is concentrated, one warp and one weft intersect each other, so all loads are applied to each one.
  • two warps and wefts each. Since there is a part that is aligned, the impact can be distributed to the two. Therefore, the conveyor belt 1 (particularly the upper cover rubber 6 and the fiber reinforcing layer 3) is hardly damaged.
  • Table 1 Six types (conventional examples, comparative examples 1 and 2 and examples 1 to 3) shown in Table 1 were produced as samples of the fiber reinforced layer for the conveyor belt.
  • the weft yarn of all samples was polyester fiber.
  • the elongation at 1/10 load in Table 1 is the elongation at 1/10 load of the cutting load with respect to the extending direction of the warp yarn of each sample, and the elongation E1 and the width direction at the end in the width direction.
  • the elongation E2 at the center was measured.
  • the width direction both ends dimension / full width in Table 1 is the total value of the width dimensions at both ends in the width direction.
  • the total width (the total value of the width dimensions at both ends in the width direction and the width dimension at the center in the width direction) ) Divided by ().
  • PET means polyester
  • N66 means nylon 66.
  • Creep performance was evaluated by continuously applying a predetermined tensile force to the cut samples of each conveyor belt in the longitudinal direction of the belt and measuring the elongation in the longitudinal direction of the belt after a predetermined time.
  • the result of the conventional belt 1 was evaluated with a reference index of 100. The larger the index value, the smaller the creep elongation and the better.
  • Example Belts 1 to 3 have improved tear resistance at both ends in the belt width direction and the creep performance is equivalent to that of the conventional belt. Moreover, about the impact resistance of the width direction center part, Example belt 1 is equivalent to a prior art belt, and it turns out that Example belts 2 and 3 are improved compared with a prior art example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Belt Conveyors (AREA)
  • Woven Fabrics (AREA)

Abstract

コンベヤベルトの幅方向両端部の耐引き裂き性を向上させることができるコンベヤベルト用繊維補強層およびコンベヤベルトを提供する。縦糸4が長手方向に延在し、横糸5が幅方向に延在する織構造の繊維補強層3の長手方向の切断荷重の1/10荷重時の幅方向両端部R1での伸度を、幅方向中央部R2での伸度の110%以上200%以下にして、この繊維補強層3を縦糸4の延在方向をベルト長手方向にして心体2としてコンベヤベルト1に埋設する。

Description

コンベヤベルト用繊維補強層およびコンベヤベルト
 本発明は、コンベヤベルト用繊維補強層およびコンベヤベルトに関し、さらに詳しくは、コンベヤベルトの幅方向両端部の耐引き裂き性を向上させることができるコンベヤベルト用繊維補強層およびコンベヤベルトに関するものである。
 コンベヤベルトの搬送側では、ベルト幅方向両端部を中央部に対して上側に屈曲させてトラフ状にして使用される。そのため、ベルト幅方向両端部では中央部よりも引っ張り歪みが大きくなり、これに起因して引き裂きが生じ易い。
 コンベヤベルトには、張設した際の張力を負担する心体が埋設されているが、これら心体を工夫した様々なコンベヤベルトが提案されている(例えば、特許文献1、2)。特許文献1では、心体の耐挫屈性を損なうことなく生産性を向上させるために、平織構造の心体の縦糸および横糸を無撚り化するとともに、コンベヤベルトの伸びを特定範囲に限定することが提案されている。特許文献2では、横糸としてポリエステル繊維を採用した心体の品質を向上させるために、横糸の繊度および撚り数を特定範囲に限定することが提案されている。
 しかし、これら提案されている心体は、ベルト幅方向両端部に生じる引き裂きに注目したものではないため、コンベヤベルトがトラフ状になった状態では、ベルト幅方向両端部の引っ張り歪みが相対的に高くなる。それ故、ベルト幅方向両端部の耐引き裂き性を向上させることはできない。
日本国特開2009-274798号公報 日本国特開2014-201853号公報
 本発明の目的は、コンベヤベルトの幅方向両端部の耐引き裂き性を向上させることができるコンベヤベルト用繊維補強層およびコンベヤベルトを提供することにある。
 上記目的を達成するため本発明のコンベヤベルト用繊維補強層は、縦糸が長手方向に延在し、横糸が幅方向に延在する織構造のコンベヤベルト用繊維補強層において、前記繊維補強層の長手方向の切断荷重の1/10荷重時の幅方向両端部での伸度が、幅方向中央部での伸度の110%以上200%以下であることを特徴とする。
 本発明のコンベヤベルトは、上記のコンベヤベルト用繊維補強層が、前記縦糸の延在方向をベルト長手方向にして心体として埋設されていることを特徴とする。
 本発明によれば、繊維補強層の幅方向では、長手方向への比較的低い引っ張り荷重での伸びが、両端部において相対的に大きくなっている。そのため、この繊維補強層をその縦糸の延在方向をベルト長手方向にして心体としてコンベヤベルトに埋設すれば、ベルト幅方向両端部の伸びが相対的に大きくなる。これにより、コンベヤベルトがトラフ状で使用されても、ベルト幅方向両端部の引っ張り歪みが緩和されるので、ベルト幅方向両端部の耐引き裂き性を向上させることが可能になる。
 ここで、前記織構造を2/2破れ綾織構造にするとよい。これにより、コンベヤベルトの耐衝撃性を向上させるには有利になる。
 前記幅方向両端部における前記縦糸が例えばポリアミド繊維からなり、前記幅方向中央部における前記縦糸が例えばポリエステル繊維からなる仕様にする。この仕様によれば、コンベヤベルトがトラフ状になった状態において、ベルト幅方向両端部の伸びを相対的に大きくし易くなる。
 本発明のコンベヤベルトでは、前記心体が複数の補強層を積層した複層構造であり、この複層構造の最外周の補強層が前記コンベヤベルト用繊維補強層である仕様にすることもできる。この仕様により、本発明の繊維補強層による効果を効率的に得ることができる。
図1は本発明のコンベヤベルト用繊維補強層を埋設したコンベヤベルトを例示する横断面図である。 図2は図1のコンベヤベルトの平面図である。 図3は図1の繊維補強層を拡大して平面視で例示する説明図である。 図4は図1のコンベヤベルトを張設した状態を例示する説明図である。 図5は図4のA-A断面図である。
 以下、本発明のコンベヤベルト用繊維補強層およびコンベヤベルトを図に示した実施形態に基づいて説明する。
 図1、図2に例示する本発明のコンベヤベルト1には、本発明のコンベヤベルト用繊維補強層3(以下、繊維補強層3という)が心体2として埋設されている。心体2は、張設されたコンベヤベルト1に生じる張力を負担する部材である。心体2の上下にはそれぞれ、上カバーゴム6、下カバーゴム7が配置されていて、心体2、上カバーゴム6および下カバーゴム7は加硫接着によって一体化している。心体2はベルト長手方向に連続していて、幅方向寸法はベルト幅よりも若干小さくなっている。これにより、コンベヤベルト1の幅方向両端は、心体2が存在していない耳ゴムになっている。
 この実施形態では、心体2は、本発明の繊維補強層3が1層と、別の繊維補強層3aの3層とが積層された4層構造になっている。本発明の繊維補強層3は、心体2の最外周の補強層になっている。心体2を構成する繊維補強層3、3aの積層数はコンベヤベルト1に対する要求性能(剛性、伸び等)により決定され、この実施形態のような4層に限定されず、単層或いはその他の複数層にすることもできる。
 本発明の繊維補強層3は、図3に例示するように、縦糸4が長手方向に延在し、横糸5が幅方向に延在する織構造になっている。繊維補強層3は、縦糸4の延在方向をベルト長手方向にして埋設される。即ち、縦糸4の長手方向がコンベヤベルト1の長手方向になり、横糸5の長手方向がコンベヤベルト1の幅方向になる。
 この実施形態では、繊維補強層3の織構造は2/2破れ綾織構造になっている。その他に、繊維補強層3の織構造としては、平織構造などの他の織構造を採用することもできる。
 繊維補強層3は、繊維補強層3の長手方向の切断荷重の1/10荷重時の幅方向両端部R1での伸度E1が、幅方向中央部R2の伸度E2に比して大きくなっていて、この伸度E2の110%以上200%以下になっている。繊維補強層3の長手方向の切断荷重の1/10荷重時の伸度は、例えば、JIS K6322のベルトの引張試験に準拠した試験によって測定する。
 繊維補強層3の幅方向中央部R2とは、例えば、繊維補強層3の幅方向中心CRを中心にした繊維補強層3の全幅WRの50%~60%程度の領域である。幅方向両端部R1は、幅方向中央部R2以外の領域なので、繊維補強層3の幅方向両端からそれぞれ全幅WRの20%~25%程度の領域になる。心体2(繊維補強層3)の全幅WRは、コンベヤベルト1の全幅WBよりも若干小さい程度であり概ね同じである。そして、幅方向中心CRとベルト幅方向中心CBとは概ね一致した位置となるので、コンベヤベルト1のベルト幅方向両端部Z1に繊維補強層3の幅方向両端部R1が埋設され、コンベヤベルト1のベルト幅方向中央部Z2に繊維補強層3の幅方向中央部R2が埋設されることになる。
 幅方向両端部R1での伸度E1を幅方向中央部R2の伸度E2に対して相対的に大きくするには、例えば、幅方向両端部R1、幅方向中央部R2それぞれにおける縦糸4の材質を変えて、幅方向両端部R1には相対的に伸びの大きな材質を用いる。具体的には、幅方向両端部R1における縦糸4をポリアミド繊維で構成し、幅方向中央部R2における縦糸4をポリエステル繊維で構成する。幅方向両端部R1における縦糸4には複数本のポリアミド繊維を撚ったマルチフィラメントヤーンを用いることも、モノフィラメントヤーンを用いることもできる。幅方向中央部R2における縦糸4には、複数本のポリエステル繊維を撚ったマルチフィラメントヤーンを用いることもモノフィラメントヤーンを用いることもできる。ポリアミド繊維としては、ナイロン6、ナイロン66等を例示できる。
 コンベヤベルト1は、図4、図5例示するようにプーリ8a、8bの間に張設されて使用される。そして、搬送物10を載せて運ぶ搬送側では、ベルト幅方向両端部Z1は回転軸が水平に対して所定角度aで傾斜した支持ローラ9により下面を支持され、ベルト幅方向中央部Z2は回転軸が水平な支持ローラ9により下面を支持される。これにより、ベルト幅方向両端部Z1(幅方向両端部R1)は、ベルト幅方向中央部Z2(幅方向中央部R2)に対して上側に屈曲して、コンベヤベルト1はトラフ状になって使用される。
 そのため、心体2が負担する張力は、ベルト幅方向中央部Z2(幅方向中央部R2)よりもベルト幅方向両端部Z1(幅方向両端部R1)において相対的に大きくなる。これに伴い、ベルト幅方向両端部Z1(幅方向両端部R1)ではベルト幅方向中央部Z2(幅方向中央部R2)よりも引っ張り歪みが大きくなるため、引き裂きが生じ易くなる。即ち、ベルト幅方向両端部Z1には、相対的に大きな引張り歪みに起因してベルト幅方向に延びる引き裂きが発生し易くなる。
 ところが、本発明では、心体2として埋設している繊維補強層3は、この繊維補強層3の長手方向の切断荷重の1/10荷重時の伸度が、幅方向両端部R1では幅方向中央部R2に比して相対的に大きくなっている。そのため、コンベヤベルト1がトラフ状になって使用されても、ベルト幅方向両端部Z1(幅方向両端部R1)において繊維補強層3が相対的に大きく伸びることで、ベルト幅方向両端部Z1の引っ張り歪みが緩和される。これに伴い、ベルト幅方向両端部Z1の耐引き裂き性を向上させることが可能になる。ここで、維補強層3の長手方向の切断荷重の1/10荷重時の伸度を用いているのは、この1/10荷重の大きさが、張設されたコンベヤベルト1の心体2(繊維補強層3、3a)が通常時に負担する張力と比較的近似したレベルであるためである。
 繊維補強層3の幅方向両端部R1での伸度E1が、幅方向中央部R2での伸度E2の110%未満では、幅方向中央部R2に対する幅方向両端部R1の相対的な伸びが過小であり、ベルト幅方向両端部Z1の耐引き裂き性を向上させるには不十分になる。一方、方向両端部R1での伸度E1が、幅方向中央部R2での伸度E2の200%超では、ベルト幅方向両端部Z1が過剰に変形してコンベヤベルト1としての機能が低下する。
 心体2が複数の補強層を積層した積層構造の場合、すべての補強層を本発明の繊維補強層3にしてもよいが、コストを抑えるために、一部だけを本発明の繊維補強層3にして、残りは安価な汎用の別の補強層3aにすることもできる。例えば、この実施形態のように、最外周の1層のみを本発明の繊維補強層3にする。或いは、最外周から1層目および2層目のみを本発明の繊維補強層3にする。
 積層構造の心体2において、コンベヤベルト1がトラフ状になった場合に、最も引張り歪みが大きくなるのは、最外周の補強層である。それ故、最外周の補強層として本発明の繊維補強層3を用いると、繊維補強層3の使用量を最小限にしながらも、上述した繊維補強層3よる効果を効率的に得ることができる。
 また、繊維補強層3の織構造を2/2破れ綾織構造にすると、平織構造等に比してコンベヤベルト1の耐衝撃性を向上させることができる。コンベヤベルト1における引き裂きは、基本的に、投入される搬送物10によって生じる局所的な応力集中に起因し、これによりコンベヤベルト1が破損に至ることもある。平織構造では応力集中した場合、縦糸と横糸が1本ずつ交差している為、それぞれの1本に全ての負荷がかかるが、2/2破れ綾織構造であれば、縦糸と横糸がそれぞれ2本引き揃えられている部分がある為、その2本に衝撃を分散させることができる。したがって、コンベヤベルト1(特に上カバーゴム6および繊維補強層3)が損傷し難くなる。
 コンベヤベルト1に投入される搬送物10によって直接的に衝撃を受けるのは上カバーゴム6である。したがって、積層構造の心体2では、最外周の補強層として2/2破れ綾織構造の繊維補強層3を用いると、繊維補強層3の使用量を最小限にしながらも、上述した2/2破れ綾織構造よる効果を効果的に得ることができる。
 コンベヤベルト用繊維補強層のサンプルとして表1に示す6種類(従来例、比較例1、2、実施例1~3)を製造した。すべてのサンプルの横糸はポリエステル繊維にした。表1中の1/10荷重時の伸度とは、それぞれのサンプルの縦糸の延在方向に対する切断荷重の1/10荷重時の伸度であり、幅方向端部における伸度E1および幅方向中央部における伸度E2を測定した。表1中の幅方向両端部寸法/全幅とは、幅方向両端部の幅寸法の合計値を、全幅(幅方向両端部の幅寸法の合計値と幅方向中央部の幅寸法との合計値)で除した比率(%)である。表1中のPETはポリエステル、N66はナイロン66を意味する。
 それぞれのサンプルを用いて表1に示すコンベヤベルト6種類(従来例ベルト、比較例ベルト1、2、実施例ベルト1~3)を製造した。それぞれのコンベヤベルトには繊維補強層を4層埋設し、最外周の1層の繊維補強層のみを異ならせた。これらコンベヤベルトに対して下記の3つの性能を測定し、その結果は表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
 [幅方向両端部の耐引き裂き性]
 それぞれのコンベヤベルトのカットサンプルを用いて、コンベヤベルトの幅方向端部でのベルト幅方向に対する耐引き裂き性を評価した。この評価測定は、所定の引き裂きが生じるまでに要するエネルギーを算出し、算出したエネルギーの大きさを指数で示した。引き裂き抵抗力の測定は、JIS L1096に準拠した方法で行った。従来例ベルト1の結果を基準の指数100にして評価した。指数の数値が大きい程、耐引き裂き性に優れていることを意味する。
 [幅方向中央部の耐衝撃性]
 それぞれのコンベヤベルトのカットサンプルを用いて、コンベヤベルトの幅方向中央部における耐衝撃性を評価した。この評価測定は、下端が尖った所定重量の重りを水平に張設したコンベヤベルトの上カバーゴムの上に落下させて、重りがコンベヤベルトを厚さ方向に貫通した際の落下高さを測定した。従来例ベルト1の結果を基準の指数100にして評価した。数値の数値が大きい程、耐衝撃性に優れていることを意味する。
[クリープ性]
 それぞれのコンベヤベルトのカットサンプルに、ベルト長手方向に所定の引張り力を負荷し続けて、所定時間後のベルト長手方向の伸びを測定してクリープ性能を評価した。従来例ベルト1の結果を基準の指数100にして評価した。指数の数値が大きい程、クリープによる伸びが小さくて優れていることを意味する。
 表1の結果から実施例ベルト1~3は従来例ベルトに比して、ベルト幅方向両端部の耐引き裂き性が向上し、クリープ性能は同等であることが分かる。また、幅方向中央部の耐衝撃性については、実施例ベルト1は従来例ベルトと同等であり、実施例ベルト2、3は従来例に比して向上していることが分かる。
1 コンベヤベルト
2 心体
3 繊維補強層
3a 他の繊維補強層
4 縦糸
5 横糸
6 上カバーゴム
7 下カバーゴム
8a、8b プーリ
9 支持ローラ
10 搬送物

Claims (5)

  1.  縦糸が長手方向に延在し、横糸が幅方向に延在する織構造のコンベヤベルト用繊維補強層において、
     前記繊維補強層の長手方向の切断荷重の1/10荷重時の幅方向両端部での伸度が、幅方向中央部での伸度の110%以上200%以下であることを特徴とするコンベヤベルト用繊維補強層。
  2.  前記織構造が2/2破れ綾織構造である請求項1に記載のコンベヤベルト用繊維補強層。
  3.  前記幅方向両端部における前記縦糸がポリアミド繊維からなり、前記幅方向中央部における前記縦糸がポリエステル繊維からなる請求項1または2に記載のコンベヤベルト用繊維補強層。
  4.  請求項1~3のいずれかに記載のコンベヤベルト用繊維補強層が、前記縦糸の延在方向をベルト長手方向にして心体として埋設されているコンベヤベルト。
  5.  前記心体が複数の補強層を積層した複層構造であり、この複層構造の最外周の補強層が前記コンベヤベルト用繊維補強層である請求項4に記載のコンベヤベルト。
PCT/JP2017/007810 2016-03-31 2017-02-28 コンベヤベルト用繊維補強層およびコンベヤベルト WO2017169465A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2017242170A AU2017242170A1 (en) 2016-03-31 2017-02-28 Fiber-reinforced layer for conveyor belt, and conveyor belt
CN201780016521.8A CN108712991A (zh) 2016-03-31 2017-02-28 传动带用纤维增强层及传动带

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071333 2016-03-31
JP2016071333A JP6724489B2 (ja) 2016-03-31 2016-03-31 コンベヤベルト用繊維補強層およびコンベヤベルト

Publications (1)

Publication Number Publication Date
WO2017169465A1 true WO2017169465A1 (ja) 2017-10-05

Family

ID=59964114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007810 WO2017169465A1 (ja) 2016-03-31 2017-02-28 コンベヤベルト用繊維補強層およびコンベヤベルト

Country Status (4)

Country Link
JP (1) JP6724489B2 (ja)
CN (1) CN108712991A (ja)
AU (1) AU2017242170A1 (ja)
WO (1) WO2017169465A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203497A (ja) * 2017-06-07 2018-12-27 アンビック株式会社 低伸縮生地

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502916A (ja) * 1987-12-18 1991-07-04 ティングスコグ,レナート ベルト・コンベアおよびそのコンベア・ベルト
JPH04133611U (ja) * 1991-05-31 1992-12-11 石川島播磨重工業株式会社 急傾斜・垂直コンベア用ベルト
JP2004026385A (ja) * 2002-06-25 2004-01-29 Yokohama Rubber Co Ltd:The コンベヤべルトの構造
JP2012035981A (ja) * 2010-08-09 2012-02-23 Bridgestone Corp コンベヤベルト
EP2829495A1 (en) * 2013-07-23 2015-01-28 Habasit AG Abrasion-resistant belt

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599239A (ja) * 1982-07-05 1984-01-18 三ツ星ベルト株式会社 ベルト用織物
SE8701107L (sv) * 1986-03-27 1987-09-28 Cable Belt Ltd Transportband och sett att framstella sadana
JP2005206962A (ja) * 2004-01-21 2005-08-04 Yokohama Rubber Co Ltd:The ゴム補強用すだれ織物
US7789221B2 (en) * 2008-09-26 2010-09-07 Laitram, L.L.C. Living-hinge conveyor belt
CN105177795B (zh) * 2009-07-02 2019-05-14 盖茨公司 改善的用于齿动力传动带的织物和带
CN201458239U (zh) * 2009-09-03 2010-05-12 单尉峰 一种环形带
JP4912509B1 (ja) * 2011-03-05 2012-04-11 三和テクノ株式会社 織物からなる高速搬送ベルトおよびその装置
US9315325B2 (en) * 2012-05-17 2016-04-19 Joy Mm Delaware, Inc. Belt for a conveyor system
CN202897352U (zh) * 2012-10-29 2013-04-24 中德(扬州)输送工程技术有限公司 一种管状带式输送机用输送带
JP2014201853A (ja) * 2013-04-05 2014-10-27 横浜ゴム株式会社 コンベヤベルト用繊維補強層
CN203624359U (zh) * 2013-12-03 2014-06-04 山东威普斯橡胶股份有限公司 方钢条整体带芯输送带
CN204211014U (zh) * 2014-10-23 2015-03-18 艾艾精密工业输送系统(上海)股份有限公司 一种减少边侧毛羽量产生的输送带
CN204549161U (zh) * 2015-03-31 2015-08-12 浙江三维橡胶制品股份有限公司 一种管状输送带

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502916A (ja) * 1987-12-18 1991-07-04 ティングスコグ,レナート ベルト・コンベアおよびそのコンベア・ベルト
JPH04133611U (ja) * 1991-05-31 1992-12-11 石川島播磨重工業株式会社 急傾斜・垂直コンベア用ベルト
JP2004026385A (ja) * 2002-06-25 2004-01-29 Yokohama Rubber Co Ltd:The コンベヤべルトの構造
JP2012035981A (ja) * 2010-08-09 2012-02-23 Bridgestone Corp コンベヤベルト
EP2829495A1 (en) * 2013-07-23 2015-01-28 Habasit AG Abrasion-resistant belt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203497A (ja) * 2017-06-07 2018-12-27 アンビック株式会社 低伸縮生地

Also Published As

Publication number Publication date
CN108712991A (zh) 2018-10-26
JP6724489B2 (ja) 2020-07-15
JP2017179668A (ja) 2017-10-05
AU2017242170A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
AU593070B2 (en) Reinforced composite structure
EP2890571B1 (en) A tire reinforcement material
RU2721108C2 (ru) Армирующий корд слоя брекера
US7759266B2 (en) Dual crimped warp fabric for conveyor belt applications
EP2909048B1 (en) A tire cord fabric
NL8202410A (nl) Versterkingsstructuur voor een elastomeer voorwerp.
US9387727B2 (en) Hybrid steel-textile reinforcement ply for radial tires
EP4008816A1 (en) Fabric structure for a tire
JP5790637B2 (ja) 空気式防舷材
WO2017169465A1 (ja) コンベヤベルト用繊維補強層およびコンベヤベルト
WO2014163134A1 (ja) コンベヤベルト用繊維補強層
JP5169465B2 (ja) コンベヤベルト
EP3619052B1 (en) Reinforcement strip for a cap ply of a pneumatic tire
US11021346B2 (en) Woven webbing combining edge and body weave design features for improved overall durability in lifting and restraint applications
WO2014126543A1 (en) A hybrid cord
US5061557A (en) Reinforced composite structure
WO2017022338A1 (ja) コンベヤベルト
JP7059523B2 (ja) コンベヤベルトの接合方法
JP5504580B2 (ja) コンベヤベルト
EP4000960A1 (en) Fabric layer and tire comprising such a fabric layer
WO2024062669A1 (ja) コンベヤベルトおよびその製造方法
EP3659821B1 (en) Tire reinforcement
WO2024096824A1 (en) Tire cord fabric
JPWO2003016181A1 (ja) 布補強コンベヤベルト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017242170

Country of ref document: AU

Date of ref document: 20170228

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774010

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774010

Country of ref document: EP

Kind code of ref document: A1