WO2017168479A1 - 回転機械 - Google Patents

回転機械 Download PDF

Info

Publication number
WO2017168479A1
WO2017168479A1 PCT/JP2016/005085 JP2016005085W WO2017168479A1 WO 2017168479 A1 WO2017168479 A1 WO 2017168479A1 JP 2016005085 W JP2016005085 W JP 2016005085W WO 2017168479 A1 WO2017168479 A1 WO 2017168479A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
upper half
diaphragm
forming body
path forming
Prior art date
Application number
PCT/JP2016/005085
Other languages
English (en)
French (fr)
Inventor
横尾 和俊
伸 ▲柳▼沢
栄一 柳沢
中庭 彰宏
大輔 平田
孝典 松枝
Original Assignee
三菱重工コンプレッサ株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社, 三菱重工業株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to EP16896699.2A priority Critical patent/EP3421812B1/en
Priority to JP2018507811A priority patent/JP6634148B2/ja
Priority to US16/077,162 priority patent/US10801505B2/en
Publication of WO2017168479A1 publication Critical patent/WO2017168479A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids

Definitions

  • the present invention relates to a rotating machine, such as a centrifugal compressor, capable of relaxing the temperature distribution in the passenger compartment.
  • the centrifugal compressor sucks in the process gas to be compressed, raises the pressure to a desired pressure, and supplies it to the next step.
  • a centrifugal compressor for a nitric acid plant sucks in a process gas of about 50 ° C., but the process gas is heated to about 200 ° C. as the pressure is increased.
  • thermal deformation occurs due to the temperature difference from the outlet to the bearing in addition to the temperature difference from the inlet to the outlet of the process gas.
  • Patent Document 1 proposes a means for suppressing leakage of high-pressure gas from the dividing surface.
  • a horizontal flange is described.
  • an object of the present invention is to provide a rotary machine, typically a centrifugal compressor, that can reduce the opening of the dividing surface by relaxing the temperature difference generated in the passenger compartment.
  • a rotating machine of the present invention surrounds a rotor having a casing, a rotating shaft that is rotatably supported inside the casing, and a plurality of impellers that are fixed to the outer periphery of the rotating shaft, and the respective impellers.
  • a diaphragm and a gas flow path through which a process gas to be compressed flows and provided corresponding to the impeller are provided.
  • the gas flow path in the present invention is connected to the diffuser flow path into which the process gas flowing out from the impeller in the radial direction and the diffuser flow path, and the flow direction of the process gas is changed from the direction toward the outer side in the radial direction to the radial direction.
  • the curved flow path forming at least one gas flow path among the plurality of gas flow paths is between the diaphragm and the flow path forming body provided between the diaphragm and the vehicle compartment. It is provided in.
  • the casing includes an annular housing groove that is recessed outward in the radial direction corresponding to a region where the flow path forming body is provided, and the flow path forming body has an annular shape. None, preferably fitted in the receiving groove.
  • the position of the flow path forming body is determined based on one or both of the temperature of the process gas and the range where water injection is performed.
  • a curved flow path that forms at least the gas flow path located at the most rear stage among the plurality of gas flow paths is formed between the diaphragm and the flow path forming body.
  • the curved flow path which makes the gas flow path located in all the stages of the range which performs water injection among several gas flow paths is formed between a diaphragm and a flow-path formation body.
  • a curved flow path that forms a gas flow path located in a subsequent stage of the water injection range among the plurality of gas flow paths is formed between the diaphragm and the flow path forming body. Is preferable.
  • the flow path forming body includes flow paths corresponding to a plurality of bent flow paths.
  • the vehicle compartment is a horizontally divided type vehicle compartment having a lower half vehicle compartment and an upper half vehicle compartment
  • a curved flow path provided between the diaphragm and the flow path forming body can be formed.
  • bent flow paths except for the bent flow path provided between the diaphragm and the flow path forming body may be provided between the diaphragm and the vehicle compartment.
  • the passenger compartment is covered with a heat insulating material.
  • the bearing chamber which accommodates a bearing is provided with a heat shield.
  • the flow path forming body that is an internal part bears a curved flow path, so that a region in which the heated process gas or cleaning water does not directly touch the vehicle interior is provided, so that the vehicle compartment is particularly divided. It is possible to avoid a steep temperature difference between the surface and the vicinity thereof. Therefore, according to the rotary machine of the present invention, for example, the centrifugal compressor, it is possible to reduce the thermal deformation of the passenger compartment and reduce the opening of the dividing surface. At the same time, the thermal stress in the passenger compartment can also be relieved, so that plastic deformation based on the thermal stress can be suppressed from occurring in the passenger compartment.
  • the present embodiment relates to a single-shaft multi-stage centrifugal compressor 1 including a plurality of impellers 4.
  • the centrifugal compressor 1 includes a rotor 2, a diaphragm group 5, a seal device 6, and a vehicle compartment assembly 100.
  • the rotor 2 rotates about the axis O.
  • the rotor 2 includes a rotating shaft 3 that forms a rotor body extending along the axis O, and a plurality of impellers 4 that rotate together with the rotating shaft 3.
  • the rotary shaft 3 is connected to a drive source such as a motor and is driven to rotate by this drive source.
  • the rotating shaft 3 has a cylindrical shape centered on the axis O, and extends in the axial direction Da in which the axis O extends.
  • the rotating shaft 3 is rotatably supported at both ends in the axial direction Da by a bearing (not shown) inside the passenger compartment 101.
  • the impeller 4 is fixed to the outer peripheral surface of the rotary shaft 3.
  • the impeller 4 rotates together with the rotating shaft 3 to compress the process gas that is the object to be compressed using centrifugal force.
  • the impeller 4 is provided in a plurality of stages in the axial direction Da with respect to the rotating shaft 3.
  • the impeller 4 is a so-called closed impeller including a disk 4a, a blade 4b, and a cover 4c.
  • the impeller 4 forms a flow path through which process gas flows by the disk 4a, the blade 4b, and the cover 4c.
  • An impeller group is constituted by a plurality of impellers 4 arranged in the same direction along the axial direction Da.
  • the diaphragm group 5 surrounds the rotor 2 from the outside.
  • the diaphragm group 5 includes a plurality of diaphragms 51 arranged in the axial direction Da corresponding to each of the plurality of impellers 4.
  • a plurality of diaphragms 51 are arranged so as to be stacked in the axial direction Da.
  • a space capable of accommodating the impeller 4 is formed inside the radial direction Dr of the rotating shaft 3, which is a direction intersecting the axis O.
  • the diaphragm 51 is housed in the vehicle interior 101 in a state of being connected to each other, thereby forming a flow path through which the process gas flows together with the flow path of the impeller 4.
  • the diaphragm group 5 includes a suction port 52, a suction flow channel 53, a plurality of diffuser flow channels 54, a plurality of bent flow channels 55, a plurality of return flow channels 56, in order from the upstream side where the process gas flows.
  • a discharge channel 57 and a discharge port 58 are formed.
  • the diffuser flow path 54, the curved flow path 55, and the return flow path 56 are connected to constitute a gas flow path in the present invention.
  • the suction port 52 allows the process gas to flow into the suction flow path 53 from the outside.
  • the suction port 52 allows process gas flowing in from the outside of the passenger compartment 101 to be described later to flow into the diaphragm group 5.
  • the suction port 52 is connected to the suction flow channel 53 while gradually decreasing the flow channel area from the outer side in the radial direction Dr toward the inner side in the radial direction Dr.
  • the suction flow path 53 causes the process gas to flow from the outside to the impeller 4 arranged on the most upstream side among the plurality of impellers 4 arranged in the axial direction Da together with the suction port 52.
  • the suction channel 53 extends from the suction port 52 to the inside in the radial direction Dr.
  • the suction channel 53 is connected to an inlet facing the upstream side of the impeller 4 while changing the direction from the radial direction Dr to the downstream side which is the other side of the axial direction Da.
  • the diffuser flow path 54 is connected to an outlet that faces the outer side of the radial direction Dr of the impeller 4.
  • the diffuser flow path 54 extends from the outlet of the impeller 4 toward the outside in the radial direction Dr, and is connected to the curved flow path 55.
  • the curved flow path 55 turns the flow direction of the process gas from the direction toward the outside of the radial direction Dr to the direction toward the inside of the radial direction Dr. That is, the curved flow path 55 is a flow path having a U-shaped longitudinal section as shown in FIG.
  • the curved flow path 55 is formed by the outer peripheral surface of the diaphragm group 5 and the inner peripheral surface of the vehicle interior 101. That is, the curved flow path 55 reaches the vehicle interior 101, and the process gas flowing through the curved flow path 55 touches the vehicle interior 101.
  • a part of the curved flow path 55 is formed by the outer peripheral surface of the diaphragm group 5 and the inner peripheral surface of the flow path forming body 60.
  • the flow path forming body 60 is provided in the bent flow path 55 in the final stage and the bent flow path 55 just before that.
  • the flow path forming body 60 is used for forming the final stage of both the lower half passenger compartment 200 and the upper half passenger compartment 300 constituting the horizontally divided type passenger compartment 101 and the curved passage 55 just before that. Is involved.
  • the flow path forming body 60 is fitted into an accommodation groove 301 formed in an annular shape on the inner peripheral side of the upper half casing 300 so as to replace a part of the upper half casing 300.
  • This annular shape is a concept including a semi-annular shape.
  • the flow path forming body 60 includes a main body 61 formed in an annular shape, and flow paths 63 and 63 that are recessed from the inner peripheral surface of the main body 61 toward the outer peripheral surface.
  • the flow paths 63, 63 are formed in an annular shape on the inner peripheral surface side of the main body 61, continuing from one end in the circumferential direction to the other end.
  • the flow path forming body 60 is also provided on the lower half vehicle compartment 200 side, but has the same configuration as the flow path forming body 60 provided in the upper half vehicle interior 300. Therefore, the description thereof is omitted.
  • the return flow path 56 allows the process gas flowing through the curved flow path 55 to flow into the impeller 4.
  • the return flow path 56 gradually increases in width while extending toward the inside in the radial direction Dr.
  • the return flow path 56 changes the flow direction of the process gas so as to go downstream in the axial direction Da inside the radial direction Dr of the diaphragm group 5.
  • the sealing device 6 prevents the process gas from leaking from the inside of the passenger compartment 101 to the outside.
  • the sealing device 6 seals the outer peripheral surface of the rotating shaft 3 over the entire circumference.
  • a labyrinth seal is used as the sealing device 6 of the present embodiment.
  • the vehicle compartment assembly 100 accommodates the rotor 2, the diaphragm group 5, and the seal device 6 inside.
  • the vehicle compartment assembly 100 includes a lower half vehicle compartment 200, an upper half vehicle compartment 300, a fixing part 400, a seal housing holder 500, and a seal member 600.
  • the lower half passenger compartment 200 is fixed on the floor surface, for example.
  • a part of the suction port 52 is formed in the lower half passenger compartment 200 so as to open downward in the vertical direction Dv.
  • a part of the discharge port 58 is formed in the lower half casing 200 so as to open downward in the vertical direction Dv.
  • the lower half passenger compartment 200 is combined with the upper half passenger compartment 300 to form the passenger compartment 101.
  • the vehicle interior 101 forms the exterior of the centrifugal compressor 1.
  • the vehicle interior 101 is formed in a cylindrical shape.
  • the vehicle interior 101 is formed such that the central axis coincides with the axis O of the rotation shaft 3.
  • the vehicle interior 101 accommodates the diaphragm group 5 therein.
  • a more specific configuration of the vehicle interior 101 will be described.
  • the lower half vehicle compartment 200 and the upper half vehicle compartment 300 have substantially the same configuration except that the arrangement positions thereof are different.
  • the upper half passenger compartment 300 will be described as an example.
  • the upper half casing 300 has an upper half flange surface 310 and an upper half accommodating recess 350.
  • the upper half flange surface 310 is a horizontal plane that faces downward in the vertical direction Dv.
  • the upper half flange surface 310 is one of division surfaces when the vehicle interior 101 is divided in the vertical direction.
  • a plurality of through holes 402 through which fastening bolts are inserted are formed in the upper half flange surface 310.
  • the through hole 402 penetrates from the upper half flange surface 310 upward in the vertical direction Dv.
  • a plurality of through holes 402 are formed at intervals that do not hinder the fastening bolts adjacent to the upper half flange surface 310.
  • the through hole 402 is formed so as to be aligned with the fixing hole on the lower half compartment 200 side when the upper half compartment 300 is combined with the lower half compartment 200.
  • the upper half flange surface 310 has a first upper half flange surface 311 and a second upper half flange surface 312.
  • the first upper half flange surface 311 is connected to an upper half large-diameter recess 351 described later in the upper half accommodating recess 350.
  • Two first upper half flange surfaces 311 are formed apart in the width direction Dw across the axis O when viewed from above in the vertical direction Dv.
  • the first upper half flange surface 311 is a plane that extends long in the axial direction Da.
  • a flange surface similar to the first upper half flange surface 311 is provided in the lower half casing 200.
  • the second upper half flange surface 312 is connected to an upper half bearing chamber 352 described later in the upper half accommodating recess 350.
  • the second upper half flange surface 312 is formed on both sides of the first upper half flange surface 311 in the axial direction Da.
  • the second upper half flange surface 312 is a plane continuous with the first upper half flange surface 311.
  • the second upper half flange surface 312 is disposed on the inner side in the width direction Dw than the first upper half flange surface 311 when viewed from above in the vertical direction Dv.
  • a flange surface similar to the second upper half flange surface 312 is provided in the lower half casing 200.
  • the upper half accommodating recess 350 is recessed upward from the upper half flange surface 310 in the vertical direction Dv.
  • the upper half accommodating recess 350 is a space covered with the inner surface of the upper half passenger compartment 300 when viewed from below in the vertical direction Dv.
  • a housing space extending around the axis O is formed inside the vehicle interior 101 by a similar recess formed in the lower half vehicle compartment 200 and an upper half housing recess 350.
  • Members such as the diaphragm group 5 and the seal device 6 are arranged in the housing space.
  • the upper half accommodating recess 350 includes an upper half large-diameter recess 351, an upper half bearing chamber 352, and an upper half step surface 353.
  • the upper half large-diameter recess 351 forms a space in which the diaphragm group 5 is accommodated together with the same space in the lower half passenger compartment 200.
  • the upper half large-diameter recess 351 is a space formed around the axis O, which extends in the axial direction Da and is recessed from the first upper half flange surface 311.
  • the upper half large-diameter recess 351 is formed inside the width direction Dw so as to be sandwiched between the two first upper half flange surfaces 311 when viewed from below in the vertical direction Dv.
  • the upper half large-diameter recess 351 has a substantially rectangular shape when viewed from below in the vertical direction Dv.
  • the upper half large-diameter recessed portion 351 forms a part of the curved flow path 55 by the inner surface of the upper half casing 300 facing the inner side in the width direction Dw. However, the region where the flow path forming body 60 is provided is excluded.
  • the upper half bearing chamber 352 is a space in which the sealing device 6 is accommodated.
  • the upper half bearing chamber 352 is adjacent to the upper half large-diameter recess 351 in the axial direction Da and extends in the axial direction Da.
  • the upper half bearing chamber 352 is formed on both sides of the upper half large diameter recess 351 in the axial direction Da so as to sandwich the upper half large diameter recess 351.
  • the upper half bearing chamber 352 is formed to be recessed from the second upper half flange surface 312 and is a space formed around the axis O.
  • the upper half bearing chamber 352 is formed inside the width direction Dw so as to be sandwiched between the two second upper half flange surfaces 312 when viewed from below in the vertical direction Dv.
  • the upper half bearing chamber 352 is formed so as to be smaller in the radial direction Dr than the upper half large-diameter recess 351. That is, the upper half bearing chamber 352 has a rectangular shape smaller than the upper half large-diameter recess 351 when viewed from below in the vertical direction Dv.
  • the upper half step surface 353 is a surface formed between the upper half large-diameter recess 351 and the upper half bearing chamber 352 and extending in the radial direction Dr.
  • the upper half step surface 353 is a part of the surface that forms the upper half large-diameter recess 351.
  • the upper half step surface 353 is directly connected to the upper half flange surface 310, and the upper half step surface 353 on one side in the axial direction Da forms a part of the suction port 52.
  • the upper half step surface 353 on the other side in the axial direction Da forms a part of the discharge port 58.
  • the fixing part 400 fixes the lower half casing 200 and the upper half casing 300 so as to form an accommodation space in a state where the lower half flange face and the upper half flange face 310 (not shown) are in contact with each other.
  • the fixing portion 400 of this embodiment includes a fixing hole formed in the lower half flange surface, a through hole 402 formed in the upper half flange surface 310, and a screw threaded into the fixing hole in a state of being inserted through the through hole 402. And a fastening bolt (not shown).
  • One seal housing holder 500 is provided on each of one side and the other side in the axial direction Da of the passenger compartment 101.
  • the seal device 6 is fixed inside the seal housing holder 500.
  • the seal housing holder 500 has a cylindrical shape with the axis O as the center.
  • the seal housing holder 500 is inserted through the rotary shaft 3 with the seal device 6 fixed inside.
  • the seal housing holder 500 is fixed to the lower half vehicle compartment 200 and the upper half vehicle compartment 300 via a seal member 600.
  • the seal member 600 seals the space between the lower half passenger compartment 200 and the upper half passenger compartment 300 and the seal housing holder 500.
  • the seal member 600 is provided on the outer peripheral surface of the seal housing holder 500.
  • the seal member 600 is in contact with the inner peripheral surface of the upper half bearing chamber 352 and the inner peripheral surface of a similar recess provided in the lower half casing 200.
  • the seal member 600 of this embodiment is an O-ring.
  • Three seal members 600 are arranged apart from the outer peripheral surface of the seal housing holder 500 in the axial direction Da.
  • One seal member 600 is provided at both ends in the axial direction Da with respect to the outer peripheral surface of the seal housing holder 500 and one outside the center in the axial direction Da of the outer peripheral surface of the seal housing holder 500. Yes.
  • the centrifugal compressor 1 As described above, the upper half passenger compartment 300 is placed from above in the vertical direction Dv with the rotor 2 and the diaphragm group 5 placed on the lower half passenger compartment 200. In this state, the fastening bolt is inserted into the through hole 402 of the upper half casing 300 and the tip portion is screwed into the fixing hole on the lower half casing 200 side. As a result, the centrifugal compressor 1 having the vehicle compartment assembly 100 and the rotor 2 disposed inside the vehicle compartment assembly 100 is assembled.
  • the problem of opening the dividing surface is caused by the temperature rise accompanying the pressure increase of the process gas.
  • the centrifugal compressor 1 is for a nitric acid plant
  • the process gas at about 50 ° C. is heated to about 200 ° C. as the pressure increases.
  • a temperature difference occurs between the upstream side and the downstream side of the process gas in the passenger compartment 101, and thermal deformation occurs due to this temperature difference.
  • this temperature difference becomes conspicuous on the rear side where the degree of pressure increase of the process gas is large.
  • wash water may be inject
  • Water Injection Water Injection
  • the bent flow channel 55 in the final stage and the bent flow channel 55 just before it are configured from the outer peripheral surface of the diaphragm 51 on the inner side close to the axis O, and the outer side far from the axis O is the flow channel.
  • the flow path 63 of the forming body 60 is configured. Therefore, the process gas flowing through the bent flow passage 55 or the water-injection washing water does not directly touch the vehicle interior 101 (the lower half vehicle compartment 200 and the upper half vehicle compartment 300). That is, in the lower half casing 200 and the upper half casing 300 around the flow path forming body 60, the temperature rise due to the flow of process gas or the temperature difference due to the water for washing water injection is alleviated. Thereby, it can suppress that a division surface opens. In addition, thermal stress that causes plastic deformation of the passenger compartment 101 can be reduced.
  • the bent flow passage 55 on the rear stage where the temperature of the process gas becomes higher is formed by the diaphragm 51 and the flow passage forming body 60 which are internal parts, but the front stage side than that.
  • the curved flow channel 55 can also be formed by the diaphragm 51 and the flow channel forming body 60, or all the stages from the first stage to the final stage can be formed by the diaphragm 51 and the flow channel forming body 60.
  • As a guideline for determining the position where the curved flow path 55 is formed by the diaphragm 51 and the flow path forming body 60 there are a temperature of the process gas and a range in which water injection is performed.
  • the water injection can be performed in all stages from the first stage to the last stage, or can be performed partially from the first stage to the intermediate stage or from the intermediate stage to the final stage.
  • the curved flow path 55 is formed by the diaphragm 51 and the flow path forming body 60 on the rear stage where the temperature of the process gas becomes high, particularly on the final stage.
  • the curved channel 55 can be formed by the diaphragm 51 and the channel forming body 60 in the above-described range of the water injection, but the range in which the water injection is performed. It is preferable that the curved flow path 55 is formed by the diaphragm 51 and the flow path forming body 60 on the rear stage side, particularly the final stage.
  • the curved flow path 55 is formed by the diaphragm 51 and the flow path forming body 60 in the intermediate stage.
  • the said range is to an intermediate
  • middle stage means that water is drained on the way so that washing water may not flow into the subsequent stage.
  • the wash water may be supplied to the rear stage side from the intermediate stage, and the flow path forming body in consideration of the range in which this wash water is supplied 60 can also be provided.
  • the present invention does not exclude the case where a plurality of flow path forming bodies 60 are provided based on both the guideline for the temperature of the process gas and the range for performing water injection.
  • the casing 101 that is, the upper half casing 300 is provided with an annular housing groove 301 that is recessed outward in the radial direction Dr corresponding to the region where the flow path forming body 60 is provided. Then, the annular flow path forming body 60 is fitted into the accommodation groove 301. Therefore, it is possible to avoid the process gas from directly touching the upper half vehicle compartment 300 in the region while producing the following effects. That is, when the same diameter of the diffuser is required at each stage, the curved flow path 55 can be created on the side of the vehicle compartment 101 at the stage where the flow path forming body 60 is not required, thereby reducing design, processing, and assembly costs. .
  • a curved channel 55 other than the channel forming body 60 is provided between the diaphragm 51 and the vehicle interior 101.
  • this invention includes shortening the dimension of the radial direction of the diaphragm 51, and providing the flow path formation body 60 there, without changing the shape of the compartment 101 side.
  • the length and length of the diffuser flow channel 54 and the return flow channel 56 are shortened, and the compression ratio cannot be achieved. May have an effect.
  • one flow path forming body 60 includes two flow paths 63 and 63 and corresponds to two adjacent curved flow paths 55 and 55. Therefore, compared with providing the two flow path forming bodies corresponding to the two bent flow paths 55, 55, the cost of design, processing, and assembly can be reduced.
  • two are taken as an example, but a single flow path forming body having flow paths corresponding to three or more curved flow paths 55 can also be provided.
  • this invention does not exclude the case where the flow path formation body corresponding to only one curved flow path 55 is provided.
  • the centrifugal compressor 1 of this embodiment is provided with the flow path formation body 60 in both the lower half casing 200 and the upper half casing 300, it can also be provided in only one of them.
  • the present invention can be applied with means for changing the thermal conditions of the passenger compartment 101 to make the temperature distribution close to uniform, reducing thermal deformation, and reducing leakage of process gas from the divided surface. Specifically, it is as follows.
  • the temperature distribution inside the passenger compartment 101 is made closer to uniform, and the flange surface is caused by thermal deformation. Can be prevented.
  • a heat insulating material 65 a fiber type heat insulating material such as glass wool or cellulose fiber, or a foam type heat insulating material such as urethane foam or phenol foam can be used.
  • the upper half bearing chambers 352 and 352 for housing the bearings 69 and 69 include the heat shield 67.
  • the influence of cooling by the bearings 69 and 69 can be limited, the temperature distribution in the passenger compartment 101 can be made to be uniform, and the opening of the dividing surface due to thermal deformation can be prevented.
  • the bearings 69 and 69 are held in a bearing chamber provided in the lower half casing 200.
  • the temperature distribution in the passenger compartment 101 approaches uniformly, the temperature difference between the discharge port 58 and its periphery and the end of the rotating shaft 3 is small, and the amount of thermal deformation is small. Therefore, the opening of the dividing surface can be reduced. Moreover, the thermal stress which arises in the compartment 101 can also be reduced because the temperature difference between the discharge port 58 and its periphery and the rotating shaft 3 in the compartment 101 and the thickness direction of the compartment 101 becomes small.
  • the centrifugal compressor 1 is described as an example of the rotary machine, but the present invention is not limited to this.
  • the rotating machine may be a supercharger or a pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本発明の遠心圧縮機1は、ガス流路として、インペラ4から径方向Drの外側に流出したプロセスガスが流入するディフューザ流路54と、ディフューザ流路54に連なり、プロセスガスの流通方向を径方向の外側から径方向Drの内側に向かう方向へと転向させる曲がり流路55と、曲がり流路55に連なり、曲がり流路55を流通したプロセスガスをインペラ4に流入させるリターン流路56と、を備える。本発明は、複数のガス流路の中の少なくとも一つのガス流路をなす曲がり流路55は、ダイアフラム51と、ダイアフラム51と車室101の間に設けられる流路形成体60と、の間に設けられる。

Description

回転機械
 本発明は、車室の温度分布を緩和できる回転機械、例えば遠心圧縮機に関する。
 遠心圧縮機は、圧縮対象であるプロセスガスを吸込み、これを所望する圧力まで昇圧してから次工程に供給する。例えば、硝酸プラント用の遠心圧縮機は、50℃程度のプロセスガスを吸い込むが、昇圧に伴ってプロセスガスは200℃程度まで昇温される。
 その際、分割された二つの車室のフランジをボルト締結している遠心圧縮機では、プロセスガスの入口から出口にかけての温度差に加えて、出口から軸受にかけての温度差によって熱変形が生じる。そうすると、二つの分割された車室の分割面が開口し、プロセスガスが車室外へ流出するおそれがある。
 また、遠心圧縮機では、機内を洗浄するために運転中に洗浄水を注入することがあり、このウォータインジェクション(Water Injection)により供給される洗浄水によって車室が急速に冷却され、車室内の温度分布が非定常的に変化する。そうすると、車室の肉厚方向に急峻な温度差が生じ、その温度差によって分割面の周囲に、口開きの原因となる熱変形が生じる。
 特許文献1は、分割面からの高圧ガスの漏洩を抑制する手段を提案している。特許文献1には、胴体部(10a)に沿った直線部(2a)と、曲面部(10b)に沿った曲線部(2b)と、頂部(10c)の近傍となる頂部近傍部(2c)と、を有する水平フランジが記載されている。そして、特許文献1には、水平フランジの曲線部(2b)の曲線部ボルト間隔(L2)を、直線部(2a)の直線部ボルト間隔(L1)および頂部近傍部(2c)の頂部ボルト間隔(L3)よりも広くすることが開示されている。特許文献1によれば、頂部近傍部(2c)における面圧減少量を小さくすることができ、頂部近傍部(2c)の開口を抑制できる。
特開2013-249771号公報
 ところが、特許文献1は、遠心圧縮機に生じる温度差に基づく分割面からのプロセスガスの漏洩について、配慮がなされていない。
 以上より、本発明は、車室に生じる温度差を緩和することにより、分割面の開口を軽減できる回転機械、典型的には遠心圧縮機を提供することを目的とする。
 本発明の回転機械は、車室と、車室の内部に回転可能に支持される回転軸と、回転軸の外周に固定される複数段のインペラと、を有するロータと、それぞれのインペラを囲うダイアフラムと、圧縮対象であるプロセスガスが流通し、インペラに対応して設けられるガス流路と、を備える。
 本発明におけるガス流路は、インペラから径方向の外側に流出したプロセスガスが流入するディフューザ流路と、ディフューザ流路に連なり、プロセスガスの流通方向を径方向の外側に向う方向から径方向の内側に向かう方向へと転向させる曲がり流路と、曲がり流路に連なり、曲がり流路を流通したプロセスガスをインペラに流入させるリターン流路と、を備える。
 そして、本発明の回転機械は、複数のガス流路の中の少なくとも一つのガス流路をなす曲がり流路が、ダイアフラムと、ダイアフラムと車室の間に設けられる流路形成体と、の間に設けられることを特徴とする。
 本発明の回転機械において、車室は、流路形成体が設けられる領域に対応して、径方向の外側に窪む円環状の収容溝を備え、流路形成体は、円環状の形態をなし、収容溝に嵌合される、ことが好ましい。
 本発明の回転機械において、流路形成体は、プロセスガスの温度及びウォータインジェクションを行う範囲の何れか一方又は双方に基づいて、位置が決められる、ことが好ましい。
 本発明の回転機械において、複数のガス流路の中の、少なくとも最も後段に位置するガス流路をなす曲がり流路が、ダイアフラムと流路形成体の間に形成される、ことが好ましい。
 また、複数のガス流路の中の、ウォータインジェクションを行う範囲の全段に位置するガス流路をなす曲がり流路が、ダイアフラムと流路形成体の間に形成される、ことが好ましい。
 さらに、本発明の回転機械において、複数のガス流路の中の、ウォータインジェクションを行う範囲の後段に位置するガス流路をなす曲がり流路が、ダイアフラムと流路形成体の間に形成される、ことが好ましい。
 本発明の回転機械において、流路形成体は、複数の曲がり流路に対応する流路を備える、ことが好ましい。
 本発明の回転機械において、車室が、下半車室と上半車室を備える水平分割型の車室である場合に、下半車室、及び、上半車室の一方又は双方に、ダイアフラムと流路形成体との間に設けられる曲がり流路を形成できる。
 本発明の回転機械において、ダイアフラムと流路形成体との間に設けられる曲がり流路を除く、他の曲がり流路は、ダイアフラムと車室の間に設けられる、ことがある。
 本発明の回転機械において、車室は、断熱材で覆われる、ことが好ましい。
 また、車室は、回転軸を支持する一対の軸受を備える場合に、軸受を収容する軸受チャンバが遮熱体を備える、ことが好ましい。
 本発明によれば、内部品である流路形成体が曲がり流路を担うことで、昇温したプロセスガス又は洗浄水が直接は車室に触れない領域を設けることにより、車室の特に分割面及びその近傍に急峻な温度差が生じるのを回避できる。したがって、本発明の回転機械、例えば遠心圧縮機によれば、車室の熱変形を低減して、分割面の開口を軽減できる。これと同時に、車室の熱応力も緩和できるので、熱応力に基づく塑性変形が車室に生ずるのを抑えることができる。
本発明の実施形態に係る遠心圧縮機の概略構成を示す縦断面図である。 本発明の実施形態における上半車室を軸に近い位置で破断して示す図である。 本発明の他の実施形態における上半車室を鉛直方向の下方から見た図である。
 以下、本発明の回転機械の一実施形態に係る遠心圧縮機1について図1から図3を参照して説明する。
 図1に示すように、本実施形態は、複数のインペラ4を備える一軸多段式の遠心圧縮機1に関するものである。遠心圧縮機1は、車室101の後段側の一部を内部品である流路形成体60で代替し、この流路形成体60が曲がり流路55を担うことにより、車室101に生ずる温度差を緩和するところに特徴がある。
 遠心圧縮機1は、ロータ2と、ダイアフラム群5と、シール装置6と、車室組立体100と、を備えている。
 ロータ2は、軸線Oを中心として回転する。ロータ2は、軸線Oに沿って延びているロータ本体をなす回転軸3と、回転軸3とともに回転する複数段のインペラ4と、を有している。
 回転軸3には、モータ等の駆動源が連結されており、この駆動源によって回転駆動される。回転軸3は、軸線Oを中心とする円柱状をなしており、軸線Oの延びる軸線方向Daに延在している。回転軸3は、車室101の内部で図示を省略する軸受によって軸線方向Daの両端が回転可能に支持されている。
 インペラ4は、回転軸3の外周面に固定されている。インペラ4は、回転軸3とともに回転することによって遠心力を利用して圧縮対象であるプロセスガスを圧縮する。インペラ4は、回転軸3に対して軸線方向Daに複数段設けられている。インペラ4は、ディスク4aと、ブレード4bと、カバー4cとを備えた、いわゆるクローズ型のインペラである。インペラ4は、ディスク4a、ブレード4b及びカバー4cによって内部にプロセスガスが流通する流路を形成している。軸線方向Daに沿って同じ方向を向いて配列された複数のインペラ4によってインペラ群が構成されている。
 ダイアフラム群5は、ロータ2を外部から囲っている。ダイアフラム群5は、複数段のインペラ4のそれぞれに対応して軸線方向Daに配列された複数のダイアフラム51によって構成されている。ダイアフラム51は、軸線方向Daに積層されるように複数並んでいる。ダイアフラム51は、軸線Oと交差する方向である回転軸3の径方向Drの内側にインペラ4を収容可能な空間が形成されている。ダイアフラム51は、相互に接続された状態で車室101内に収容されることで、インペラ4の流路とともにプロセスガスを流通させる流路を形成している。
 ここで、具体的に、ダイアフラム51によって形成される流路について、軸線方向Daの一方側である上流側から順に説明する。本実施形態では、ダイアフラム群5は、プロセスガスが流通する上流側から順に、吸込口52、吸込流路53、複数のディフューザ流路54、複数の曲がり流路55、複数のリターン流路56、吐出流路57及び吐出口58を形成している。ディフューザ流路54、曲がり流路55及びリターン流路56が連なり、本発明におけるガス流路を構成する。
 吸込口52は、外部から吸込流路53にプロセスガスを流入させる。吸込口52は、後述する車室101の外部から流入してきたプロセスガスをダイアフラム群5の内部に流入させる。吸込口52は、径方向Drの外側から径方向Drの内側に向かって流路面積を徐々に減少させながら、吸込流路53に接続されている。
 吸込流路53は、吸込口52とともに、軸線方向Daに複数並ぶインペラ4のうち最も上流側に配置されたインペラ4へ、外部からプロセスガスを流入させる。吸込流路53は、吸込口52から径方向Drの内側に延びている。吸込流路53は、その向きを径方向Drから軸線方向Daの他方側である下流側に変化させつつ、インペラ4の上流側を向く入口に接続されている。
 ディフューザ流路54は、インペラ4から径方向Drの外側に流出したプロセスガスが流入する。つまり、ガス流路は、インペラ4に対応して設けられる。ディフューザ流路54は、インペラ4の径方向Drの外側を向く出口に接続されている。ディフューザ流路54は、インペラ4の出口から径方向Drの外側に向かって延びて、曲がり流路55に接続されている。
 曲がり流路55は、プロセスガスの流通方向を径方向Drの外側に向かう方向から径方向Drの内側に向かう方向へと転向させる。つまり、曲がり流路55は、図1に示すように、U字状の縦断面をなす流路となっている。曲がり流路55は、ダイアフラム群5の外周面と車室101の内周面とによって形成されている。つまり、曲がり流路55は、車室101に到達しており、曲がり流路55を流通するプロセスガスは車室101に触れる。
 ただし、本実施形態の遠心圧縮機1は、図1及び図2に示すように、一部の曲がり流路55が、ダイアフラム群5の外周面と流路形成体60の内周面とによって形成されている。
 流路形成体60が設けられるのは、最終段の曲がり流路55とその一つ手前の曲がり流路55である。本実施形態では、水平分割型の車室101を構成する下半車室200と上半車室300の両方の最終段及びその一つ手前の曲がり流路55の形成に流路形成体60が関与している。
 流路形成体60は、上半車室300の一部を代替するように、上半車室300の内周側に円環状に形成される収容溝301に嵌合される。なお、この円環状は、半円環状を含む概念である。
 流路形成体60は、円環状に形成される本体61と、本体61の内周面から外周面に向けて窪む流路63,63と、を備えている。流路63,63は、本体61の内周面の側に、周方向の一端から他端に連なって円環状に形成される。
 また、流路形成体60は、図1に示すように、下半車室200の側にも設けられているが、上半車室300に設けられる流路形成体60と同じ構成を備えているので、その説明を省略する。
 リターン流路56は、曲がり流路55を流通したプロセスガスをインペラ4に流入させる。リターン流路56は、径方向Drの内側に向かって延びながら、その流路幅が徐々に拡がっている。リターン流路56は、ダイアフラム群5の径方向Drの内側で軸線方向Daの下流側に向かうようにプロセスガスの流通方向を変化させている。
 シール装置6は、プロセスガスが車室101の内部から外部に漏れることを抑える。シール装置6は、回転軸3の外周面を全周にわたってシールしている。本実施形態のシール装置6は、例えば、ラビリンスシールが用いられる。
 車室組立体100は、図1及び図2に示すように、ロータ2、ダイアフラム群5及びシール装置6を内部に収容している。車室組立体100は、下半車室200と、上半車室300と、固定部400と、シールハウジングホルダ500と、シール部材600とを備えている。
 下半車室200は、例えば床面上に固定されている。下半車室200には、鉛直方向Dvの下方を向いて開口するように吸込口52の一部が形成されている。下半車室200には、鉛直方向Dvの下方を向いて開口するように吐出口58の一部が形成されている。下半車室200は、上半車室300と組み合わされることで、車室101を形成している。
 車室101は、遠心圧縮機1の外装を形成している。車室101は、円筒状に形成されている。車室101は、中心軸が回転軸3の軸線Oに一致して形成されている。車室101は、ダイアフラム群5を内部に収容している。
 以下、車室101についてより具体的な構成を説明するが、下半車室200と上半車室300は配置される位置が異なることを除けば、ほぼ同様の構成を備えているので、以下では上半車室300を例にして説明する。
 上半車室300は、図2に示すように、上半フランジ面310と、上半収容凹部350とを有する。
 上半フランジ面310は、鉛直方向Dvの下方を向く水平面である。上半フランジ面310は、車室101が上下方向に分割される際の分割面の一つである。上半フランジ面310には、締結ボルトが挿通される貫通孔402が複数形成されている。貫通孔402は、上半フランジ面310から鉛直方向Dvの上方に貫通している。貫通孔402は、上半フランジ面310に隣り合う締結ボルト同士の締結を阻害しない程度の間隔を空けて複数形成されている。貫通孔402は、上半車室300が下半車室200と組み合わされた場合に、下半車室200の側の固定孔と位置が合うように形成されている。上半フランジ面310は、第一上半フランジ面311と、第二上半フランジ面312とを有する。
 第一上半フランジ面311は、上半収容凹部350の中で、後述する上半大径凹部351と繋がっている。第一上半フランジ面311は、鉛直方向Dvの上方から見た場合に、軸線Oを挟んで、幅方向Dwに離れて二つ形成されている。第一上半フランジ面311は、軸線方向Daに長く延びる平面である。第一上半フランジ面311と同様のフランジ面が下半車室200に設けられている。
 第二上半フランジ面312は、上半収容凹部350うち、後述する上半軸受チャンバ352と繋がっている。第二上半フランジ面312は、第一上半フランジ面311の軸線方向Daの両側に形成されている。第二上半フランジ面312は、第一上半フランジ面311と連続する平面である。第二上半フランジ面312は、鉛直方向Dvの上方から見た場合に、第一上半フランジ面311よりも幅方向Dwの内側に配置されている。第二上半フランジ面312と同様のフランジ面が下半車室200に設けられている。
 上半収容凹部350は、上半フランジ面310から鉛直方向Dvの上方に凹んでいる。上半収容凹部350は、鉛直方向Dvの下方から見た場合に、上半車室300の内面に覆われた空間である。そして、下半車室200に形成される同様の凹部と上半収容凹部350とによって軸線Oを中心として延びている収容空間が車室101の内部に形成されている。この収容空間には、ダイアフラム群5やシール装置6等の部材が配置される。上半収容凹部350は、上半大径凹部351と、上半軸受チャンバ352と、上半段差面353と、を有する。
 上半大径凹部351は、下半車室200の同様の空間ととともに、ダイアフラム群5が収容される空間を形成する。上半大径凹部351は、軸線方向Daに延びているとともに、第一上半フランジ面311から凹んで形成される、軸線Oを中心に形成された空間である。上半大径凹部351は、鉛直方向Dvの下方から見た場合に、二つの第一上半フランジ面311に挟まれるように幅方向Dwの内側に形成されている。上半大径凹部351は、鉛直方向Dvの下方から見た場合に、略矩形状をなしている。上半大径凹部351は、幅方向Dwの内側を向く上半車室300の内面によって曲がり流路55の一部を形成している。ただし、流路形成体60が設けられる領域は除かれる。
 上半軸受チャンバ352は、シール装置6が収容される空間である。上半軸受チャンバ352は、上半大径凹部351と軸線方向Daに隣接し、軸線方向Daに延びている。上半軸受チャンバ352は、上半大径凹部351を挟み込むように、上半大径凹部351の軸線方向Daの両側にそれぞれ形成されている。上半軸受チャンバ352は、第二上半フランジ面312から凹んで形成されており、軸線Oを中心に形成された空間である。上半軸受チャンバ352は、鉛直方向Dvの下方から見た場合に、二つの第二上半フランジ面312に挟まるように幅方向Dwの内側に形成されている。上半軸受チャンバ352は、上半大径凹部351よりも径方向Drの大きさが小さくなるように形成されている。つまり、上半軸受チャンバ352は、鉛直方向Dvの下方から見た場合に、上半大径凹部351よりも小さな矩形状をなしている。
 上半段差面353は、上半大径凹部351及び上半軸受チャンバ352との間に形成されて径方向Drに広がる面である。上半段差面353は、上半大径凹部351を形成する面の一部である。上半段差面353は、上半フランジ面310と直接繋がっており、軸線方向Daの一方側の上半段差面353は、吸込口52の一部を形成している。軸線方向Daの他方側の上半段差面353は、吐出口58の一部を形成している。
 固定部400は、図示を省略する下半フランジ面と上半フランジ面310とを当接させた状態で、収容空間を形成するように下半車室200と上半車室300とを固定する。本実施形態の固定部400は、下半フランジ面に形成されている固定孔と、上半フランジ面310に形成されている貫通孔402と、貫通孔402に挿通された状態で固定孔に螺合される図示を省略する締結ボルトとを有する。
 シールハウジングホルダ500は、車室101の軸線方向Daの一方側と他方側とにそれぞれ一つずつ設けられている。シールハウジングホルダ500は、内部にシール装置6が固定されている。シールハウジングホルダ500は、軸線Oを中心とする円筒状をなしている。シールハウジングホルダ500は、シール装置6を内部に固定した状態で、回転軸3が挿通される。シールハウジングホルダ500は、シール部材600介して下半車室200及び上半車室300に固定されている。
 シール部材600は、下半車室200及び上半車室300とシールハウジングホルダ500との間をシールしている。シール部材600は、シールハウジングホルダ500の外周面に設けられている。シール部材600は、上半軸受チャンバ352の内周面と下半車室200に設けられる同様の凹部の内周面に接触している。本実施形態のシール部材600は、Oリングである。シール部材600は、シールハウジングホルダ500の外周面に対して軸線方向Daに離間して三つ配置されている。シール部材600は、シールハウジングホルダ500の外周面に対して、軸線方向Daの両端部に一つずつと、シールハウジングホルダ500の外周面の軸線方向Daの中央よりも外側に一つ設けられている。
 上記のような遠心圧縮機1では、下半車室200にロータ2やダイアフラム群5を載せた状態で、鉛直方向Dvの上方から上半車室300が載せられる。この状態で、締結ボルトを上半車室300の貫通孔402に挿通させて、先端部分を下半車室200の側の固定孔にねじ込む。これにより、車室組立体100と、車室組立体100の内部に配置されるロータ2とを有する遠心圧縮機1が組み立てられる。
[効 果]
 以下、本実施形態の遠心圧縮機1により得られる効果を説明する。
 遠心圧縮機1が運転されることで、高圧のプロセスガスが流通して、ダイアフラム群5等が配置されている空間に大きな圧力が生じる。このように大きな圧力が生じることで、下半車室200及び上半車室300の間の分割面からプロセスガスが漏れるおそれがある。
 また、圧力の問題だけでなく、プロセスガスの昇圧に伴う昇温によっても、分割面が開口する問題が生じる。例えば、遠心圧縮機1が硝酸プラント用のものであれば、50℃程度のプロセスガスが昇圧に伴って200℃程度まで昇温される。したがって、車室101には、プロセスガスの上流側と下流側との間で温度差が生じ、この温度差によって熱変形が生じる。特に、この温度差はプロセスガスの昇圧の程度が大きい後段側で顕著になる。
 また、遠心圧縮機1の内部を洗浄するために運転中に洗浄水を注入することがあるが、このウォータインジェクション(Water Injection)により供給される洗浄水によって、車室101が急速に冷却され、車室101内の温度分布が非定常的に変化する。そうすると、車室101の肉厚方向で急峻な温度差が生じ、その温度差によっても分割面及びその周囲で、開口の原因となる熱変形が生じる。特に、プロセスガスの昇圧の程度が大きい後段側で顕著になる。
 ところが、遠心圧縮機1は、最終段の曲がり流路55とその一つ手前の曲がり流路55は、軸線Oに近い内側がダイアフラム51の外周面から構成され、軸線Oから遠い外側が流路形成体60の流路63から構成される。したがって、これらの曲がり流路55を流通するプロセスガス、又は、ウォータインジェクションの洗浄水は、車室101(下半車室200,上半車室300)に直接は触れることがない。つまり、流路形成体60の周囲の下半車室200及び上半車室300は、プロセスガスが流れることによる温度上昇又はウォータインジェクションの洗浄水による温度差が緩和される。これにより、分割面が開口するのを抑えることができる。また、車室101の塑性変形の原因となる熱応力も緩和することができる。
 本実施形態の遠心圧縮機1は、プロセスガスの温度が高くなる後段側の曲がり流路55を、内部品であるダイアフラム51と流路形成体60で形成しているが、それよりも前段側の曲がり流路55についてもダイアフラム51と流路形成体60で形成することもできるし、初段から最終段の全段をダイアフラム51と流路形成体60で形成することもできる。曲がり流路55をダイアフラム51と流路形成体60で形成する位置を決める指針として、プロセスガスの温度と、ウォータインジェクションを行う範囲と、がある。ウォータインジェクションは、初段から最終段の全段に行うことができるし、また、初段から中間段まであるいは中間段から最終段までのように部分的に行うこともできる。
 ここで、プロセスガスの温度を指針とする場合について言えば、プロセスガスの温度が高くなる後段側、特に最終段に、ダイアフラム51と流路形成体60で曲がり流路55を形成するのが好ましい。
 また、ウォータインジェクションを行う範囲を指針とする場合について言えば、上述したウォータインジェクションを行う範囲でダイアフラム51と流路形成体60で曲がり流路55を形成することができるが、ウォータインジェクションを行う範囲の後段側、特に最終段に、ダイアフラム51と流路形成体60で曲がり流路55を形成するのが好ましい。例えば、ウォータインジェクションを行う範囲が初段から中間段までの場合には、当該中間段に、ダイアフラム51と流路形成体60で曲がり流路55を形成するということである。なお、当該範囲が中間段まで、とは、それ以降の段に洗浄水が流れないように、途中で水を抜くということである。また、ウォータインジェクションを行う範囲を初段から中間段としても、結果として、中間段より後段側に洗浄水が供給されることがあり、この洗浄水が供給される範囲を考慮して流路形成体60を設けることもできる。
 本発明は、プロセスガスの温度及びウォータインジェクションを行う範囲の双方の指針に基づいて、複数の流路形成体60が設けられる場合を排除しない。
 また、本実施形態は、車室101、つまり上半車室300には、流路形成体60が設けられる領域に対応して、径方向Drの外側に窪む円環状の収容溝301が備えられ、円環状の流路形成体60が収容溝301に嵌合される。したがって、以下の効果を奏しつつ、当該領域において、プロセスガスが上半車室300に直接触れるのを避けることができる。つまり、各段で同程度のディフューザ径が必要となるとき、流路形成体60が不要な段では車室101の側で曲がり流路55を作成できるので、設計・加工・組立コストが低減できる。また、ダイアフラム51の側の形状を変更して流路形成体60を設ける場合には、流路の形状や寸法を変更する必要が出てしまい、流体力学的性能に影響を与える場合があるが、本実施形態によればそのような影響を受けることがない。本実施形態の場合、流路形成体60が担う以外の他の曲がり流路55は、ダイアフラム51と車室101の間に設けられる。
 なお、本発明は、車室101の側の形状を変更することなく、ダイアフラム51の径方向の寸法を短くして、そこに流路形成体60を設けることを包含する。ところが、この場合には、ディフューザ流路54及びリターン流路56の流路の長さが短くなり圧縮比を稼げないなど、流路の形状・寸法に制約が出てしまい、流体力学的性能に影響を与えることがある。
 また、本実施形態は、一つの流路形成体60が二つの流路63,63を備え、隣接する二つの曲がり流路55,55に対応している。したがって、二つの曲がり流路55,55のそれぞれに対応する二つの流路形成体を設けるのに比べて、設計・加工・組立てによるコストが低減できる。ここでは、二つを例にしているが、三つ以上の複数の曲がり流路55に対応する流路を備える一つの流路形成体にすることもできる。なお、本発明は、一つの曲がり流路55だけに対応する流路形成体を設ける場合を排除しない。
 また、本実施形態の遠心圧縮機1は、下半車室200と上半車室300の双方に流路形成体60を設けているが、いずれか一方だけに設けることもできる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 本発明は、車室101の熱条件を変更して温度分布を一様に近づけ、熱変形を低減し分割面からのプロセスガスが漏れるのを軽減する手段を適用できる。具体的には、以下の通りである。
 はじめに、図3に示すように、車室101(上半車室300)の外周面を断熱材65で覆うことにより、車室101の内部の温度分布を一様に近づけ、熱変形によるフランジ面の開口を防止することもできる。断熱材65としては、グラスウール、セルロースファイバーなどの繊維系断熱材、ウレタンフォーム、フェノールフォームなどの発砲系断熱材を用いることができる。
 また、図3に示すように、回転軸3を支持する一対の軸受69,69を備える場合に、軸受69,69を収容する上半軸受けチャンバ352,352が遮熱体67を備えることで、軸受69,69による冷却の影響を制限し、車室101内の温度分布を一様に近づけ、熱変形による分割面の開口を防止することもできる。なお、図3には上半軸受けチャンバ352,352しか記載されていないが、軸受69,69は、下半車室200に設けられる軸受チャンバにて保持される。
 以上の構成を備えることにより、車室101内の温度分布が一様に近づき、吐出口58及びその周囲と回転軸3の端部との間の温度差が小さく、かつ、熱変形量が小さくなるので、分割面の開口を軽減できる。また、車室101内で、吐出口58及びその周囲と回転軸3との間や車室101の肉厚方向の温度差が小さくなることで、車室101に生じる熱応力も低減できる。
 また、本実施形態では、回転機械として遠心圧縮機1を例に挙げて説明したが、これに限定されるものではない。例えば、回転機械は、過給機やポンプであってもよい。
1    遠心圧縮機
2     ロータ
3     回転軸
4     インペラ
4a   ディスク
4b   ブレード
4c   カバー
5     ダイアフラム群
6     シール装置
51   ダイアフラム
52   吸込口
53   吸込流路
54   ディフューザ流路
55   曲がり流路
56   リターン流路
57   吐出流路
58   吐出口
60   流路形成体
61   本体
63   流路
65   断熱材
67   遮熱体
69  軸受
100  車室組立体
101 車室
200 下半車室
300 上半車室
301 収容溝
310 上半フランジ面
311 第一上半フランジ面
312 第二上半フランジ面
350 上半収容凹部
351 上半大径凹部
352 上半軸受チャンバ
353 上半段差面
400 固定部
402 貫通孔
500 シールハウジングホルダ
600 シール部材

Claims (11)

  1.  車室と、
     前記車室の内部に回転可能に支持される回転軸と、前記回転軸の外周に固定される複数段のインペラと、を有するロータと、
     それぞれの前記インペラを囲うダイアフラムと、
     圧縮対象であるプロセスガスが流通し、前記インペラに対応して設けられるガス流路と、を備え、
     前記ガス流路は、
     前記インペラから径方向の外側に流出したプロセスガスが流入するディフューザ流路と、
     前記ディフューザ流路に連なり、前記プロセスガスの流通方向を前記径方向の外側に向う方向から前記径方向の内側に向かう方向へと転向させる曲がり流路と、
     前記曲がり流路に連なり、前記曲がり流路を流通した前記プロセスガスを前記インペラに流入させるリターン流路と、を備え、
     複数の前記ガス流路の中の少なくとも一つの前記ガス流路をなす前記曲がり流路は、
     前記ダイアフラムと、前記ダイアフラムと前記車室の間に設けられる流路形成体と、の間に設けられる、
    ことを特徴とする回転機械。
  2.  前記車室は、
     前記流路形成体が設けられる領域に対応して、前記径方向の外側に窪む円環状の収容溝を備え、
     前記流路形成体は、
     円環状の形態をなし、前記収容溝に嵌合される、
    請求項1に記載の回転機械。
  3.  前記流路形成体は、
    前記プロセスガスの温度及びウォータインジェクションを行う範囲の何れか一方又は双方に基づいて、位置が決められる、
    請求項1又は請求項2に記載の回転機械。
  4.  複数の前記ガス流路の中の、少なくとも最も後段に位置する前記ガス流路をなす前記曲がり流路が、
     前記ダイアフラムと前記流路形成体の間に形成される、
    請求項3に記載の回転機械。
  5.  複数の前記ガス流路の中の、前記ウォータインジェクションを行う範囲の全段に位置する前記ガス流路をなす前記曲がり流路が、
     前記ダイアフラムと前記流路形成体の間に形成される、
    請求項3に記載の回転機械。
  6.  複数の前記ガス流路の中の、前記ウォータインジェクションを行う範囲の後段に位置する前記ガス流路をなす前記曲がり流路が、
     前記ダイアフラムと前記流路形成体の間に形成される、
    請求項3に記載の回転機械。
  7.  前記流路形成体は、
     複数の前記曲がり流路に対応する流路を備える、
     請求項1~請求項6のいずれか一項に記載の回転機械。
  8.  前記車室は、
     下半車室と上半車室を備える水平分割型の車室であり、
     前記下半車室、及び、前記上半車室の一方又は双方に、
     前記ダイアフラムと前記流路形成体との間に設けられる前記曲がり流路が形成される、
     請求項1~請求項7のいずれか一項に記載の回転機械。
  9.  前記ダイアフラムと前記流路形成体との間に設けられる前記曲がり流路を除く、他の前記曲がり流路は、
     前記ダイアフラムと前記車室の間に設けられる、
    請求項1~請求項8のいずれか一項に記載の回転機械。
  10.  前記車室は、断熱材で覆われる、
    請求項1~請求項9のいずれか一項に記載の回転機械。
  11.  前記車室は、
     前記回転軸を支持する一対の軸受を備え、
     前記軸受を収容する軸受チャンバが遮熱体を備える、
    請求項1~請求項10のいずれか一項に記載の回転機械。
PCT/JP2016/005085 2016-03-28 2016-12-08 回転機械 WO2017168479A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16896699.2A EP3421812B1 (en) 2016-03-28 2016-12-08 Rotary centrifugal compressor machine
JP2018507811A JP6634148B2 (ja) 2016-03-28 2016-12-08 回転機械
US16/077,162 US10801505B2 (en) 2016-03-28 2016-12-08 Rotary machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-063780 2016-03-28
JP2016063780 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017168479A1 true WO2017168479A1 (ja) 2017-10-05

Family

ID=59962723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005085 WO2017168479A1 (ja) 2016-03-28 2016-12-08 回転機械

Country Status (4)

Country Link
US (1) US10801505B2 (ja)
EP (1) EP3421812B1 (ja)
JP (1) JP6634148B2 (ja)
WO (1) WO2017168479A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975728B2 (en) 2017-03-29 2021-04-13 Mitsubishi Heavy Industries Compressor Corporation Fluid device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203997A (ja) * 1985-08-05 1987-09-08 Kazuo Kuroiwa 遠心圧縮機
JPH0176598U (ja) * 1987-11-10 1989-05-24
JPH08338397A (ja) * 1995-06-14 1996-12-24 Hitachi Ltd 一軸多段遠心圧縮機の羽根車洗浄装置
JPH094599A (ja) * 1995-06-22 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機のケーシング構造
JPH11270499A (ja) * 1998-03-23 1999-10-05 Mitsubishi Heavy Ind Ltd 圧縮機
JP2001254697A (ja) * 2000-03-09 2001-09-21 Hitachi Ltd 流体圧縮機械
JP2007032297A (ja) * 2005-07-22 2007-02-08 Hitachi Ltd ガスタービン設備
JP2012002169A (ja) * 2010-06-18 2012-01-05 Ihi Corp 極低温回転機械

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2604257A (en) * 1948-10-28 1952-07-22 Worthington Pump & Mach Corp Tempering means for shielding the bearings of centrifugal compressors
IT946916B (it) * 1971-07-13 1973-05-21 Carrier Corp Compressore centrifugo a due sezio ni a piu stadi
SE387720B (sv) * 1974-12-30 1976-09-13 Stal Laval Turbin Ab Tvettapparat for tvastegskompressor
JPS57206800A (en) * 1981-06-15 1982-12-18 Hitachi Ltd Single shaft multi-stage centrifugal compressor
US4571151A (en) * 1983-08-26 1986-02-18 General Electric Company Liquid injection control in multi-stage compressor
US4579509A (en) * 1983-09-22 1986-04-01 Dresser Industries, Inc. Diffuser construction for a centrifugal compressor
US4770606A (en) 1985-08-05 1988-09-13 Kazuo Kuroiwa Centrifugal compressor
JP2005351185A (ja) * 2004-06-11 2005-12-22 Hitachi Industries Co Ltd 流体圧縮機のケ−シング
US7871239B2 (en) * 2006-02-03 2011-01-18 Dresser-Rand Company Multi-segment compressor casing assembly
JP5988290B2 (ja) 2012-05-31 2016-09-07 株式会社日立製作所 ケーシング、およびケーシングを備えるターボ機械および圧縮機
ITFI20130118A1 (it) * 2013-05-21 2014-11-22 Nuovo Pignone Srl "compressor with a thermal shield and methods of operation"
US9303688B2 (en) * 2013-07-02 2016-04-05 Dresser-Rand Company Thermal barrier coating for bearing journal surfaces of rotary shafts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203997A (ja) * 1985-08-05 1987-09-08 Kazuo Kuroiwa 遠心圧縮機
JPH0176598U (ja) * 1987-11-10 1989-05-24
JPH08338397A (ja) * 1995-06-14 1996-12-24 Hitachi Ltd 一軸多段遠心圧縮機の羽根車洗浄装置
JPH094599A (ja) * 1995-06-22 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機のケーシング構造
JPH11270499A (ja) * 1998-03-23 1999-10-05 Mitsubishi Heavy Ind Ltd 圧縮機
JP2001254697A (ja) * 2000-03-09 2001-09-21 Hitachi Ltd 流体圧縮機械
JP2007032297A (ja) * 2005-07-22 2007-02-08 Hitachi Ltd ガスタービン設備
JP2012002169A (ja) * 2010-06-18 2012-01-05 Ihi Corp 極低温回転機械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975728B2 (en) 2017-03-29 2021-04-13 Mitsubishi Heavy Industries Compressor Corporation Fluid device

Also Published As

Publication number Publication date
JPWO2017168479A1 (ja) 2018-11-15
EP3421812A4 (en) 2019-03-06
JP6634148B2 (ja) 2020-01-22
US20190048877A1 (en) 2019-02-14
US10801505B2 (en) 2020-10-13
EP3421812B1 (en) 2020-04-15
EP3421812A1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
RU2607200C2 (ru) Система для обеспечения герметичности между полостью для масла и прилегающим наружным пространством и турбомашина, оснащенная такой системой герметичности
KR20070095749A (ko) 개선된 팁 간극 원심 압축기 임펠러
EP3141759B1 (en) Turbo pump
US20190226486A1 (en) Electric compressor
WO2017168479A1 (ja) 回転機械
WO2016051835A1 (ja) 遠心圧縮機
US11346364B2 (en) Multistage centrifugal fluid machine
KR20170047450A (ko) 터보 압축기
JP6655712B2 (ja) 回転機械
US9261099B2 (en) Vacuum pump
JP2014206132A (ja) 多段遠心流体機械
JP2018096303A (ja) 回転機械
US10539151B2 (en) Centrifugal compressor casing and centrifugal compressor
WO2016024409A1 (ja) 遠心回転機械
JP6589225B2 (ja) シール装置及び回転機械
CN204783801U (zh) 一种高速电机的离心压缩机的轴向止推轴承结构
JP6521277B2 (ja) 車室組み立て体及び回転機械
KR102281117B1 (ko) 터보 압축기
JP2022067667A (ja) 電動圧縮機
JP6004947B2 (ja) 蒸気タービン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507811

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2016896699

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016896699

Country of ref document: EP

Effective date: 20180925

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896699

Country of ref document: EP

Kind code of ref document: A1