WO2017166793A1 - 旋转变压器解码芯片的故障信息处理方法和系统 - Google Patents

旋转变压器解码芯片的故障信息处理方法和系统 Download PDF

Info

Publication number
WO2017166793A1
WO2017166793A1 PCT/CN2016/102945 CN2016102945W WO2017166793A1 WO 2017166793 A1 WO2017166793 A1 WO 2017166793A1 CN 2016102945 W CN2016102945 W CN 2016102945W WO 2017166793 A1 WO2017166793 A1 WO 2017166793A1
Authority
WO
WIPO (PCT)
Prior art keywords
position value
rotor
fault
motor
alarm
Prior art date
Application number
PCT/CN2016/102945
Other languages
English (en)
French (fr)
Inventor
郑易
李玉军
肖胜然
刘荣宏
Original Assignee
北京新能源汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新能源汽车股份有限公司 filed Critical 北京新能源汽车股份有限公司
Priority to US15/774,468 priority Critical patent/US10972021B2/en
Publication of WO2017166793A1 publication Critical patent/WO2017166793A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • the present invention relates to the field of motor control technologies, and in particular, to a method and system for processing fault information of a resolver decoder chip.
  • the resolver is a widely used motor position detecting device, and its output signal is generally two orthogonal sine and cosine signals. By calculating and calculating the two signals, the position value of the motor rotor is obtained.
  • the decoding method includes two major categories: one is software decoding, and the sine and cosine signals output by the resolver are decoded by designing peripheral circuits and corresponding algorithm programs.
  • the disadvantage is that more circuit devices are required, and the risk of decoding failure due to device damage is greater.
  • the use of decoding chips the advantages are easy to use, protection features, the disadvantage is that in the actual use of various protection alarms. If an alarm occurs, the control of the motor is stopped, which affects the reliability of the operation of the motor system.
  • the alarm of the resolver only has a certain influence on the position detection accuracy, and the alarm information can be ignored within the allowable range of accuracy.
  • an object of the present invention is to provide a fault information processing method for a resolver decoder chip, which can delay reporting a fault when the decoder chip issues fault information, and fully considers the operational safety of the motor system. Under the fault, it can operate in fault tolerance and increase the reliability of the operation of the motor system.
  • a second object of the present invention is to provide a fault information processing system for a resolver decoding chip.
  • an embodiment of the first aspect of the present invention provides a fault information processing method for a resolver decoder chip, including the steps of: reading data information transmitted by a decoding chip in a preset period; and determining whether the data information includes Alarm information; if the data information includes alarm information, the rotor position value after the alarm is estimated in real time according to the rotational speed in the data information before the alarm; whether the difference between the current position value of the rotor and the estimated rotor position value is greater than the fault Threshold; if the difference between the rotor current position value and the estimated rotor position value is greater than the fault threshold, the motor is controlled using the estimated rotor position value.
  • the rotor position value and the motor rotation speed of the motor calculated by the decoding chip are read, and then the decoding chip is estimated according to the rotation speed and the rotor position value of the motor system during normal operation.
  • the motor rotor position value at the time of fault alarm and accordingly, according to the relationship between the difference between the motor rotor position value and the estimated motor rotor position value given by the decoding chip and the fault threshold value, the motor is correspondingly controlled, thereby being able to reduce Unnecessary fault alarms improve the reliability of the motor system operation.
  • fault information processing method of the resolver decoding chip of the above embodiment of the present invention may further include the following additional technical features:
  • the method further comprises: determining that a difference between the current position value of the rotor and the estimated rotor position value is greater than a duration of the fault threshold Whether the time reaches the preset time; if the preset time is not reached, the fault alarm is cancelled, and the motor is controlled by the current position value of the rotor transmitted by the decoding chip; and if the preset time is reached, the position detection fault is reported .
  • the alarm position value after the alarm is estimated in real time according to the rotational speed in the data information before the alarm, including: filtering the rotational speed in the data information once every m of the preset period; Rotor position value after alarm
  • the estimation formula is as follows:
  • Y(n) is the nth rotation speed filter value
  • ⁇ (nm) is the rotor position value read by the mth time when the nth rotation speed is filtered
  • j is the time after the alarm is filtered from the nth end rotation speed.
  • the preset number of cycles, T is the preset period.
  • the filtering of the rotation speed in the data information is performed once every m of the preset periods, including: removing x maximum values and x minimum values among m rotation speeds, and calculating remaining
  • the first stage speed filter value, Y(n-1) is the n-1th second stage speed filter value, and ⁇ is the filter coefficient.
  • the method further comprises: if the difference between the current position value of the rotor and the estimated rotor position value is not greater than a fault threshold, controlling the current position value of the rotor transmitted by the decoding chip Motor.
  • the method further comprises: determining whether the j is equal to the m; if the j is equal to the m, filtering the rotation speed in the data information once; If the j is not equal to the m, the number of times the data information transmitted by the decoding chip is read is incremented by one.
  • an embodiment of the second aspect of the present invention provides a fault information processing system for a resolver decoding chip, comprising: a resolver for outputting a quadrature analog signal; and a decoding chip for performing the orthogonal simulation
  • the signal solves the rotor position value and the rotational speed of the motor, and generates an alarm message when the orthogonal analog signal is abnormal;
  • the microprocessor is configured to read the data information transmitted by the decoding chip at a preset period through the serial peripheral interface SPI
  • the data information includes the alarm information
  • the rotor position value after the alarm is estimated in real time according to the rotational speed in the data information before the alarm, and the difference between the current position value of the rotor and the estimated rotor position value is greater than the fault threshold.
  • the motor is controlled using the estimated rotor position value.
  • the rotor position value and the motor rotation speed of the motor are calculated by the decoding chip, and when the decoding chip generates the alarm information, the microprocessor is based on the rotor position and the motor system.
  • the value of the rotational speed during normal operation estimates the rotor position value after the alarm, and according to the relationship between the difference between the motor rotor position value and the estimated motor rotor position value given by the decoding chip and the fault threshold value, the motor is correspondingly Control, thereby reducing unnecessary fault alarms and improving the reliability of the operation of the motor system.
  • fault information processing system of the resolver decoding chip of the above embodiment of the present invention may further have the following additional technical features:
  • the decoding chip is further configured to output a high frequency sinusoidal excitation signal.
  • the system further includes: an excitation signal conditioning circuit for transmitting the high frequency sinusoidal excitation signal to the resolver to cause the rotary transformer to feed back a quadrature analog signal, wherein The quadrature analog signal is a sine signal and a cosine signal; and a feedback signal conditioning circuit is configured to send the quadrature analog signal to the decoding chip.
  • the microprocessor controls the motor with the estimated rotor position value
  • it is further used to: the difference between the current position value of the rotor and the estimated rotor position value is greater than a fault threshold
  • the fault alarm is cancelled, and the motor is controlled by the current position value of the rotor transmitted by the decoding chip; and the difference between the current position value of the rotor and the estimated rotor position value is greater than the duration of the fault threshold.
  • the time reaches the preset time, the report position detection failure.
  • the microprocessor estimates the rotor position value after the alarm according to the rotational speed in the data information before the alarm, which specifically includes: performing the rotation speed in the data information every m of the preset period Primary filtering; estimate the rotor position value after the alarm
  • the rotor position value, j is the preset number of cycles elapsed from the nth end of the speed filter during the alarm, and T is the preset period.
  • the microprocessor is further configured to: when the difference between the current position value of the rotor and the estimated rotor position value is not greater than a fault threshold, use the current position of the rotor transmitted by the decoding chip The value controls the motor.
  • the microprocessor in a rotation speed filtering period, is further configured to: when the j is equal to the m, filter the rotation speed in the data information once; When the value is equal to m, the number of times the data information transmitted by the decoding chip is read is incremented by one.
  • FIG. 1 is a flow chart showing a method of processing fault information of a resolver decoder chip according to a first embodiment of the present invention
  • step S103 is a flowchart of step S103 in the method for processing fault information of a resolver decoding chip according to an embodiment of the present invention
  • step S104 is a flowchart of step S104 in the method for processing fault information of a resolver decoding chip according to an embodiment of the present invention
  • FIG. 5, and FIG. 6 are flowcharts showing a method for processing fault information of a resolver decoder chip according to an embodiment of the present invention
  • FIG. 7 is a flow chart of a method for processing fault information of a resolver decoder chip according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing a fault information processing system of a resolver decoding chip according to an embodiment of the present invention.
  • FIG. 9 is a block schematic diagram of a fault information processing system of a resolver decoder chip in accordance with another embodiment of the present invention.
  • the resolver 10 the decoding chip 20, the microprocessor 30, the excitation signal conditioning circuit 40, and the feedback signal conditioning circuit 50.
  • FIG. 1 is a flow chart of a method of processing fault information of a resolver decoder chip in accordance with one embodiment of the present invention.
  • the fault information processing method of the resolver decoding chip includes the following steps:
  • the data information transmitted by the decoding chip includes a rotor position value and a rotational speed of the motor calculated according to the orthogonal analog signal output by the resolver.
  • the quadrature analog signal may be an orthogonal sinusoidal signal and a cosine signal.
  • the decoding chip if the quadrature analog signal output by the resolver is abnormal, the decoding chip generates an alarm message, that is, the data information transmitted by the decoding chip may further include alarm information.
  • the rotor position value after the alarm is estimated in real time according to the rotational speed in the data information before the alarm.
  • step S103 may include:
  • n is a positive integer.
  • step S1031 may include:
  • the x maximum values and the x minimum values of the m rotational speeds are removed, and the average value of the remaining m-2*x rotational speeds is calculated, which is the first-stage filtered value of the rotational speed.
  • n and x are positive integers, and the value of x can be set according to the interference condition of the motor system. It can be understood that m is greater than 2*x.
  • the second-stage filtering of the rotational speed may be performed by the following formula (1) to obtain the second-stage filtered value of the rotational speed:
  • Y(n) is the nth second-order speed filter value
  • X(n) is the nth first-stage speed filter value
  • Y(n-1) is the n-1th second-stage speed filter value
  • is the filter coefficient
  • the rotor position value when the resolver decoder chip gives the alarm information can be estimated by the following formula (2)
  • Y(n) is the nth rotation speed filter value
  • ⁇ (nm) is the rotor position value of the mth reading when the nth rotation speed is filtered
  • j is the nth microprocessor end rotation speed filter when the alarm is alarmed.
  • the number of preset cycles passed, and T is the preset period.
  • the rotor position is estimated for giving an alarm message to the resolver decoder chip.
  • S104 Determine whether a difference between the current position value of the rotor and the estimated rotor position value is greater than a fault threshold.
  • the steps of acquiring the fault threshold are as follows:
  • the maximum acceleration A max can be calculated by the following formula (3):
  • T max is the maximum torque of the motor and J is the moment of inertia of the motor.
  • Tmax is typically the maximum braking torque of the motor, and when mechanical braking is employed, Tmax is the sum of the mechanical braking torque and the motor electromagnetic braking torque.
  • the motor can not operate normally in the case of motor stall and flying, the position detection fault priority is lower than these motor fault conditions. Therefore, when calculating the maximum acceleration A max , the motor stall and the flying condition are not considered.
  • Amax is the maximum acceleration
  • j is the preset number of cycles elapsed from the nth end of the alarm when the alarm is alarmed
  • T is the preset period.
  • the failure threshold ⁇ c can be calculated by the following formula (5):
  • ⁇ c min( ⁇ c1 , ⁇ c2 ) (5)
  • ⁇ c2 is the maximum position error of the rotor of the motor.
  • the maximum position error ⁇ c2 of the rotor of the machine can be determined based on the requirements of the motor system.
  • the motor is controlled using the estimated rotor position value.
  • the processing method of the embodiment of the present invention may further include:
  • the motor is controlled by the current position value of the rotor transmitted by the decoding chip.
  • the current position value of the rotor is the rotor position value in the data information.
  • the processing method of the embodiment of the present invention may further include:
  • S201 Determine whether a difference between a current position value of the rotor and the estimated rotor position value is greater than a duration of the fault threshold reaches a preset time.
  • the rotational speed filter value Y(n) for estimating the rotor position value is constant, and the rotor position value estimated by the above formula (2).
  • the method of the embodiment of the present invention may further include:
  • a filter cycle for filtering the motor speed n+1 times is described as an example.
  • the processing method includes:
  • S402. Determine whether the data information includes alarm information.
  • the rotor position value after the alarm is estimated when the data information transmitted by the decoding chip is read j times, the Yth (n) is the nth rotation speed filter value, and the ⁇ (nm) is the mth read when the nth rotation speed is filtered.
  • the rotor position value is taken, j is the preset number of cycles elapsed after the alarm is filtered from the nth end, and T is the preset period.
  • ⁇ (j) is the rotor position value of the motor transmitted by the decoding chip of the jth reading
  • ⁇ c (j) is a failure threshold value for judging the data information transmitted by the decoding chip of the jth reading.
  • the rotational speed filtering method in the fault information processing method of the resolver decoding chip of the embodiment of the present invention may be, but not limited to, the above-described secondary rotational speed filtering, and may be, but is not limited to, the present invention when performing rotor position value estimation.
  • the estimation method of the above embodiment may be, but not limited to, the above-described secondary rotational speed filtering, and may be, but is not limited to, the present invention when performing rotor position value estimation.
  • the fault information processing method of the resolver decoding chip of the embodiment of the invention first reads the rotor position value and the motor speed of the motor calculated by the decoding chip, and then estimates the decoding chip fault according to the rotational speed and the rotor position value of the motor system during normal operation.
  • the motor rotor position value at the time of alarm, and according to the relationship between the difference between the motor rotor position value and the estimated motor rotor position value and the fault threshold value, the motor is controlled accordingly, thereby reducing
  • the necessary fault alarms improve the reliability of the motor system operation.
  • Figure 8 is a block diagram showing a fault information processing system of a resolver decoder chip according to an embodiment of the present invention.
  • the system includes a resolver 10, a decoding chip 20, and a microprocessor 30.
  • the resolver 10 is used to output a quadrature analog signal.
  • the decoding chip 20 is configured to calculate the rotor position value and the rotational speed of the motor based on the orthogonal analog signal, and generate alarm information when the orthogonal analog signal is abnormal.
  • the microprocessor 30 is configured to read the data information transmitted by the decoding chip by using a SPI (Serial Peripheral Interface) at a preset period.
  • SPI Serial Peripheral Interface
  • the data information includes the alarm information, according to the speed in the data information before the alarm.
  • the rotor position value after the alarm is estimated in real time, and when the difference between the current position value of the rotor and the estimated rotor position value is greater than the fault threshold, the estimated rotor position value is used to control the motor, and the current position value and estimated value of the rotor When the difference between the rotor position values is not greater than the fault threshold, the motor is controlled by the current position value of the rotor transmitted by the decoder chip.
  • the microprocessor 30 controls the motor with the estimated rotor position value, it is further configured to: when the difference between the current position value of the rotor and the estimated rotor position value is greater than the fault threshold, the duration does not reach the preset time. , canceling the fault alarm, and controlling the motor by using the current position value of the rotor transmitted by the decoding chip; and reporting the position detection when the difference between the current position value of the rotor and the estimated rotor position value is greater than the duration of the fault threshold reaches a preset time malfunction.
  • the microprocessor 30 estimates the rotor position value after the alarm in real time according to the rotational speed in the data information before the alarm, which specifically includes:
  • the rotation speed in the data information is filtered once every m preset periods.
  • the x maximum values and the x minimum values of the m rotational speeds are removed, and the average values of the remaining m-2*x rotational speeds are calculated to obtain the first-stage filtered values of the rotational speeds, where m and x are A positive integer, and m is greater than 2*x.
  • the second-stage filtering of the rotational speed is performed by the following formula (1) to obtain the second-stage filtered value of the rotational speed:
  • Y(n) is the nth second-order speed filter value
  • X(n) is the nth first-stage speed filter value
  • Y(n-1) is the n-1th second-stage speed filter value
  • is the filter coefficient
  • Y(n) is the nth rotation speed filter value
  • ⁇ (nm) is the rotor position value read by the mth time when the nth rotation speed is filtered
  • j is the time after the alarm is filtered from the nth end rotation speed.
  • the preset number of cycles, T is the preset period.
  • the microprocessor 30 is further configured to calculate the maximum acceleration A max when the motor is in normal operation by the formula (3):
  • T max is the maximum torque of the motor and J is the moment of inertia of the motor.
  • Tmax is typically the maximum braking torque of the motor, and when mechanical braking is employed, Tmax is the sum of the mechanical braking torque and the motor electromagnetic braking torque.
  • the rotor displacement angle ⁇ c1 in the normal running state of the motor is calculated by the formula (4):
  • a max is the maximum acceleration
  • j is the preset number of cycles elapsed after the alarm is filtered from the nth end
  • T is a preset period.
  • ⁇ c min( ⁇ c1 , ⁇ c2 ) (5)
  • ⁇ c2 is the maximum position error of the rotor of the motor.
  • the maximum position error ⁇ c2 of the rotor of the machine can be determined based on the requirements of the motor system.
  • the microprocessor 30 is further configured to: filter the rotational speed in the data information once when j is equal to m; and read when j is not equal to m. The number of times the data information transmitted by the decoding chip is taken is increased by one.
  • the decoder chip 20 is also operative to output a high frequency sinusoidal excitation signal.
  • the above system further includes an excitation signal conditioning circuit 40 and a feedback signal conditioning circuit 50.
  • the excitation signal conditioning circuit 40 is operative to transmit a high frequency sinusoidal excitation signal to the resolver 10 to cause the resolver 10 to feed back the quadrature analog signal.
  • the feedback signal conditioning circuit 50 is for transmitting a quadrature analog signal to the decoding chip 20.
  • the orthogonal analog signals are sinusoidal signals and cosine signals.
  • the speed rotation filtering method used may be, but not limited to, the above-mentioned secondary speed filtering, and is being performed.
  • the estimation method employed may be, but is not limited to, the estimation method of the above embodiment of the present invention.
  • the fault information processing system of the resolver decoder chip of the embodiment of the present invention solves the calculated rotor position value of the motor and the motor speed by decoding the chip, and when the decoder chip generates the alarm information, the microprocessor is based on the rotor position and the motor system is normal.
  • the value of the rotational speed during operation estimates the rotor position value after the alarm, and accordingly controls the motor according to the relationship between the difference between the motor rotor position value and the estimated motor rotor position value and the fault threshold value given by the decoder chip.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of “plurality” is at least two, for example two , three, etc., unless otherwise specifically defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种旋转变压器解码芯片的故障信息处理方法和系统,其中,处理方法包括以下步骤:以预设周期读取解码芯片传输的数据信息(S101);解码芯片发出报警信息后根据报警前数据信息中的转速实时估算报警后的转子位置值(S103);在转子当前位置值与估算的转子位置值之间的差值大于故障阈值时,采用估算的转子位置值控制电机(S105)。本处理方法能够在解码芯片发出故障信息时,延时上报故障,且在充分考虑到电机系统运行安全性的前提下,能够容错运行,增加了电机系统运行的可靠性。

Description

旋转变压器解码芯片的故障信息处理方法和系统 技术领域
本发明涉及电机控制技术领域,尤其涉及一种旋转变压器解码芯片的故障信息处理方法和系统。
背景技术
目前,旋转变压器是应用较为广泛的电机位置检测器件,其输出信号一般是两路正交的正余弦信号,通过对这两路信号进行解码计算,获得电机转子的位置值。解码方式包括两大类:一是软件解码,通过设计外围电路和相应算法程序对旋转变压器输出的正余弦信号解码,缺点是所需电路器件较多,因器件损坏带来的解码失败风险较大;二是采用解码芯片,优点是使用方便,保护功能多,缺点是在实际使用中经常出现各种保护报警。而如果出现报警,则就会停止对电机的控制,影响电机系统运行的可靠性。
另外,在多数时候,旋转变压器的报警仅对位置检测精度有一定影响,而在精度允许范围内,是可以忽略报警信息的。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的一个目的在于提出一种旋转变压器解码芯片的故障信息处理方法,该方法能够在解码芯片发出故障信息时,延时上报故障,且在充分考虑到电机系统运行安全性的前提下,能够容错运行,增加了电机系统运行的可靠性。
本发明的第二个目的在于提出一种旋转变压器解码芯片的故障信息处理系统。
为达到上述目的,本发明第一方面的实施例提出一种旋转变压器解码芯片的故障信息处理方法,包括以下步骤:以预设周期读取解码芯片传输的数据信息;判断所述数据信息是否包括报警信息;如果所述数据信息包括报警信息,则根据报警前的数据信息中的转速实时估算报警后的转子位置值;判断转子当前位置值与估算的转子位置值之间的差值是否大于故障阈值;如果转子当前位置值与估算的转子位置值之间的差值大于所述故障阈值,则采用估算的转子位置值控制所述电机。
根据本发明实施例的旋转变压器解码芯片的故障信息处理方法,首先读取解码芯片解算出的电机的转子位置值和电机转速,再根据电机系统正常工作时的转速和转子位置值估算出解码芯片故障报警时电机转子位置值,进而根据解码芯片给出的电机转子位置值和估算出的电机转子位置值之间的差值与故障阈值的关系,对电机进行相应的控制,由此,能够减少不必要的故障报警,提高了电机系统运行的可靠性。
另外,本发明上述实施例的旋转变压器解码芯片的故障信息处理方法还可以包括如下附加技术特征:
根据本发明的一个实施例,在所述采用估算的转子位置值控制所述电机后,所述方法还包括:判断转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间是否达到预设时间;如果没有达到所述预设时间,则撤销故障报警,并采用解码芯片传输的转子当前位置值控制所述电机;以及如果达到所述预设时间,则上报位置检测故障。
根据本发明的一个实施例,所述根据报警前的数据信息中的转速实时估算报警后的转子位置值,包括:每m个所述预设周期,对数据信息中的转速进行一次滤波;估算报警后的转子位置值
Figure PCTCN2016102945-appb-000001
估算公式如下:
Figure PCTCN2016102945-appb-000002
其中,Y(n)为第n次的转速滤波值,Θ(nm)为第n次转速滤波时第m次读取的转子位置值,j为报警时距第n次结束转速滤波所经过的预设周期次数,T为预设周期。
根据本发明的一个实施例,所述每m个所述预设周期,对所述数据信息中的转速进行一次滤波,包括:去掉m个转速中x个最大值和x个最小值,计算剩下的m-2*x个转速的平均值,以得到转速的第一级滤波值,其中,m、x为正整数,且m大于2*x;通过公式Y(n)=αX(n)+Y(n-1)对转速进行第二级滤波,以得到转速的第二级滤波值,其中,Y(n)为第n次第二级转速滤波值,X(n)为第n次第一级转速滤波值,Y(n-1)为第n-1次第二级转速滤波值,α为滤波系数。
根据本发明的一个实施例,所述方法还包括:计算所述电机正常运行时的最大加速度A max,其中,所述最大加速度A max计算公式为
Figure PCTCN2016102945-appb-000003
如下,其中,T max为所述电机的最大转矩,J为所述电机的转动惯量;在所述数据信息包括故障信息时,计算所述电机正常运行状态下的转子位移角度θc1,其中,所述转子位移角度计算公式为θc1=0.5*Amax*[(m-j)*T]2,其中,j为报警时距第n次结束转速滤波所经过的预设周期次数;计算故障阈值θc,其中,所述故障阈值θc的计算公式为θc=min(θc1c2),其中,θc2为电机转子的最大位置误差。
根据本发明的一个实施例,所述方法还包括:如果转子当前位置值与估算的转子位置值之间的差值不大于故障阈值,则采用所述解码芯片传输的转子当前位置值控制所述电机。
根据本发明的一个实施例,在一个滤波周期内,所述方法还包括:判断所述j是否等于所述m;如果所述j等于所述m,则对数据信息中的转速进行一次滤波;如果所述j不等于所述m,则读取所述解码芯片传输的数据信息的次数加1。
为达到上述目的,本发明第二方面的实施例提出一种旋转变压器解码芯片的故障信息处理系统,包括:旋转变压器,用于输出正交模拟信号;解码芯片,用于根据所述正交模拟信号解算出电机的转子位置值和转速,以及在所述正交模拟信号异常时产生报警信息;微处理器,用于通过串行外设接口SPI以预设周期读取解码芯片传输的数据信息,在所述数据信息包括报警信息时,根据报警前的数据信息中的转速实时估算报警后的转子位置值,并在转子当前位置值与估算的转子位置值之间的差值是大于故障阈值时,采用估算的转子位置值控制所述电机。
根据本发明实施例的旋转变压器解码芯片的故障信息处理系统,通过解码芯片解算出的电机的转子位置值和电机转速,并在解码芯片产生报警信息时,通过微处理器根据转子位置和电机系统正常工作时的转速值估算出报警后的转子位置值,进而根据解码芯片给出的电机转子位置值和估算出的电机转子位置值之间的差值与故障阈值的关系,对电机进行相应的控制,由此,能够减少不必要的故障报警,提高了电机系统运行的可靠性。
另外,本发明上述实施例的旋转变压器解码芯片的故障信息处理系统还可以具有如下附加技术特征:
根据本发明的一个实施例,所述解码芯片,还用于输出高频正弦激励信号。
根据本发明的一个实施例,所述系统还包括:激励信号调理电路,用于将所述高频正弦激励信号发送给所述旋转变压器,以使所述旋转变压器反馈正交模拟信号,其中,所述正交模拟信号为正弦信号和余弦信号;反馈信号调理电路,用于将所述正交模拟信号发送给所述解码芯片。
根据本发明的一个实施例,在所述微处理器采用估算的转子位置值控制所述电机后,还用于:在转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间没有达到预设时间时,撤销故障报警,并采用解码芯片传输的转子当前位置值控制所述电机;以及在转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间达到所述预设时间时,上报位置检测故障。
根据本发明的一个实施例,所述微处理器根据报警前的数据信息中的转速实时估算报警后的转子位置值,具体包括:每m个所述预设周期,对数据信息中的转速进行一次滤波;估算报警后的转子位置值
Figure PCTCN2016102945-appb-000004
估算公式为θc1=0.5*Amax*[(m-j)*T]2,其中,Y(n)为第n次的转速滤波值,Θ(nm)为第n次转速滤波时第m次读取的转子位置值,j为报警时距第n次结束转速滤波所经过的预设周期次数,T为预设周期。
根据本发明的一个实施例,所述每m个所述周期T,对所述数据信息中的转速进行一次滤波,包括:去掉m个转速中x个最大值和x个最小值,计算剩下的m-2*x个转速的平均值,以得到转速的第一级滤波值,其中,m、x为正整数,且m大于2*x;通过公式Y(n)=αX(n)+Y(n-1)对转速进行第二级滤波,以得到转速的第二级滤波值,其中,Y(n)为第n次第二级转速滤波值,X(n)为第n次第一级转速滤波值,Y(n-1)为第n-1次第二级转速滤波值,α为滤波系数。
根据本发明的一个实施例,所述微处理器,还用于:计算所述电机正常运行时的最大加速度A max,其中,所述最大加速度A max计算公式为
Figure PCTCN2016102945-appb-000005
其中,T max为所述电机的最大转矩,J为所述电机的转动惯量;在所述数据信息包括故障信息时,计算所述电机正常运行状态下的转子位移角度θc1,其中,所述转子位移角度计算公式为θc1=0.5*A max*[(m-j)*T]2,其中,j为报警时距第n次结束转速滤波所经过的预设周期次数;计算故障阈值θc,其中,所述故障阈值θc的计算公式为θc=min(θc1c2),其中,θc2为电机转子的最大位置误差。
根据本发明的一个实施例,所述微处理器,还用于:在转子当前位置值与估算的转子位置值之间的差值不大于故障阈值时,采用所述解码芯片传输的转子当前位置值控制所述电机。
根据本发明的一个实施例,在一个转速滤波周期内,所述微处理器,还用于:在所述j等于所述m时,对数据信息中的转速进行一次滤波;在所述j不等于所述m时,将读取所述解码芯片传输的数据信息的次数加1。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明第一个实施例的旋转变压器解码芯片的故障信息处理方法的流程图;
图2是根据本发明一个实施例的旋转变压器解码芯片的故障信息处理方法中步骤S103的流程图;
图3是根据本发明一个实施例的旋转变压器解码芯片的故障信息处理方法中步骤S104的流程图;
图4、图5、图6是根据本发明实施例的旋转变压器解码芯片的故障信息处理方法的流程图;
图7是根据本发明一个具体实施例的旋转变压器解码芯片的故障信息处理方法的流程图;
图8是根据本发明一个实施例的旋转变压器解码芯片的故障信息处理系统的方框示意图;
图9是根据本发明另一个实施例的旋转变压器解码芯片的故障信息处理系统的方框示意图。
附图标记:
旋转变压器10、解码芯片20、微处理器30、激励信号调理电路40和反馈信号调理电路50。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的旋转变压器解码芯片的故障信息处理方法和系统。
图1是根据本发明一个实施例的旋转变压器解码芯片的故障信息处理方法的流程图。
如图1所示,该旋转变压器解码芯片的故障信息处理方法包括以下步骤:
S101,以预设周期读取解码芯片传输的数据信息。
其中,解码芯片传输的数据信息包括根据旋转变压器输出的正交模拟信号解算出的电机的转子位置值和转速。
在本发明的一个实施例中,上述正交模拟信号可以是正交的正弦信号和余弦信号。
S102,判断数据信息是否包括报警信息。
在本发明的一个实施例中,如果旋转变压器输出的正交模拟信号异常,则解码芯片产生报警信息,即解码芯片传输的数据信息还可以包括报警信息。
S103,如果数据信息包括报警信息,则根据报警前的数据信息中的转速实时估算报警后的转子位置值。
在本发明的一个实施例中,如图2所示,步骤S103可以包括:
S1031,每m个预设周期,对数据信息中的转速进行一次滤波。
其中,m为正整数。
在本发明的一个实施例中,步骤S1031可以包括:
S10311,对转速进行第一级滤波。
具体地,去掉m个转速中x个最大值和x个最小值,计算剩下的m-2*x个转速的平均值,该平均值即为转速的第一级滤波值。
其中,m、x为正整数,x的取值可以根据电机系统的受干扰情况设置。可以理解的是,m大于2*x。
S10312,对转速进行第二级滤波。
具体地,可以通过如下公式(1)对转速进行第二级滤波,以得到转速的第二级滤波值:
Y(n)=αX(n)+Y(n-1)       (1)
其中,Y(n)为第n次第二级转速滤波值,X(n)为第n次第一级转速滤波值,Y(n-1)为第n-1次第二级转速滤波值,α为滤波系数。
S1032,估算报警后的转子位置值
Figure PCTCN2016102945-appb-000006
具体地,可通过下式(2)估算当旋转变压器解码芯片给出报警信息时的转子位置值
Figure PCTCN2016102945-appb-000007
Figure PCTCN2016102945-appb-000008
其中,Y(n)为第n次的转速滤波值,Θ(nm)为第n次转速滤波时第m次读取的转子位置值,j为报警时距第n次微处理器结束转速滤波所经过的预设周期次数,T为预设周期。
可以理解的是,
Figure PCTCN2016102945-appb-000009
为当旋转变压器解码芯片给出报警信息时估算转子位置。
S104,判断转子当前位置值与估算的转子位置值之间的差值是否大于故障阈值。
在本发明的一个实施例中,如图3所示,故障阈值的获取步骤如下:
S1041,计算电机正常运行时的最大加速度A max。
具体地,可以通过如下公式(3)计算最大加速度A max:
Figure PCTCN2016102945-appb-000010
其中,T max为电机的最大转矩,J为电机的转动惯量。
在本发明的一个实施例中,T max一般为电机的最大制动转矩,当采用机械制动时,T max为机械制动转矩与电机电磁制动转矩之和。
需要说明的是,由于在电机堵转和飞车的情况下,电机不能正常运行,位置检测故障优先级要比这些电机故障工况低。因此,在计算最大加速度A max时,不考虑电机堵转和飞车情况。
S1042,在数据信息包括故障信息时,计算电机正常运行状态下的转子位移角度θc1
其中,可以通过如下公式(4)计算转子位移角度θc1
θc1=0.5*A max*[(m-j)*T]2          (4)
其中,Amax为最大加速度,j为报警时距第n次结束转速滤波所经过的预设周期次数,T为预设周期。
S1043,计算故障阈值θc
具体地,可以通过如下公式(5)计算故障阈值θc
θc=min(θc1c2)          (5)
其中,θc2为电机转子的最大位置误差。
在本发明的一个实施例中,电机转子的最大位置误差θc2可以根据电机系统的需求确定。
S105,如果转子当前位置值与估算的转子位置值之间的差值大于故障阈值,则采用估算的转子位置值控制电机。
在本发明的一个实施例中,如图4所示,本发明实施例的处理方法还可以包括:
S106,如果转子当前位置值与估算的转子位置值之间的差值不大于故障阈值,则采用解码芯片传输的转子当前位置值控制电机。
具体而言,对于在第n+1个转速滤波周期内第j次读取解码芯片传输的数据信息,转子当前位置值为该数据信息中的转子位置值。
进一步地,如图5所示,在采用估算的转子位置值控制电机后,本发明实施例的处理方法还可以包括:
S201,判断转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间是否达到预设时间。
S202,如果没有达到预设时间,则撤销故障报警,并采用解码芯片传输的转子当前位置值控制电机。
S203,如果达到预设时间,则上报位置检测故障。
需要说明的是,在采用估算的转子位置值控制电机的过程中,用于估算转子位置值的转速滤波值Y(n)是不变的,通过上述公式(2)估算的转子位置值。
在本发明的一个实施例中,如图6所示,在一个转速滤波周期内,本发明实施例的方法还可以包括:
S301,判断j是否等于m。
S302,如果j等于m,则对数据信息中的转速进行一次滤波。
S303,如果j不等于m,则读取解码芯片传输的数据信息的次数加1。
为方便理解本发明实施例的旋转变压器解码芯片的故障信息处理方法,以对电机转速n+1次转速滤波的一个滤波周期为例进行说明。
具体而言,如图7所示,该处理方法包括:
S401,以预设周期T读取解码芯片传输的数据信息。
S402,判断该数据信息是否包括报警信息。
S403,如果该数据信息包括报警信息,则通过式
Figure PCTCN2016102945-appb-000011
实时估算电机转子位置值。
其中,
Figure PCTCN2016102945-appb-000012
为j次读取解码芯片传输的数据信息时估算的报警后的转子位置值,第Y(n)为第n次的转速滤波值,Θ(nm)为第n次转速滤波时第m次读取的转子位置值,j为报警时距第n次结束转速滤波所经过的预设周期次数,T为预设周期。
S404,通过式
Figure PCTCN2016102945-appb-000013
进行故障与值判断。
其中,θ(j)为第j次读取的解码芯片传输的电机的转子位置值,θc(j)用于对第j次读取的解码芯片传输的数据信息进行判断的故障阈值。
S405,如果式
Figure PCTCN2016102945-appb-000014
为真,则以
Figure PCTCN2016102945-appb-000015
控制电机。
S406,判断式
Figure PCTCN2016102945-appb-000016
持续为真的时间是否达到预设时间。
S407,如果是,则上报位置检测故障。
S408,如果式
Figure PCTCN2016102945-appb-000017
为假,则撤销故障报警,并以θ(j)控制电机。
S409,如果该数据信息不包括报警信息,则判断读取解码芯片的次数j是否等于进行转速滤波的次数m。
S410,如果j=m,则对本滤波周期内读取的数据信息中的转速进行一次滤波,以得到本滤波周期的转速滤波值Y(n+1)。
S411,如果j<m,则继续读取解码芯片传输的数据信息。
需要说明的是,本发明实施例的旋转变压器解码芯片的故障信息处理方法中的转速滤波方法可以但不限于上述的二级转速滤波,以及在进行转子位置值估算时,可以但不限于本发明上述实施例的估算方法。
本发明实施例的旋转变压器解码芯片的故障信息处理方法,首先读取解码芯片解算出的电机的转子位置值和电机转速,再根据电机系统正常工作时的转速和转子位置值估算出解码芯片故障报警时电机转子位置值,进而根据解码芯片给出的电机转子位置值和估算出的电机转子位置值之间的差值与故障阈值的关系,对电机进行相应的控制,由此,能够减少不必要的故障报警,提高了电机系统运行的可靠性。
图8是本发明一个实施例的旋转变压器解码芯片的故障信息处理系统的方框示意图。
如图8所示,该系统包括:旋转变压器10、解码芯片20、微处理器30。
其中,旋转变压器10用于输出正交模拟信号。
解码芯片20用于根据正交模拟信号解算出电机的转子位置值和转速,以及在正交模拟信号异常时产生报警信息。
微处理器30用于通过SPI(Serial Peripheral Interface,串行外设接口)以预设周期读取解码芯片传输的数据信息,在该数据信息包括报警信息时,根据报警前的数据信息中的转速实时估算报警后的转子位置值,并在转子当前位置值与估算的转子位置值之间的差值是大于故障阈值时,采用估算的转子位置值控制电机,以及在转子当前位置值与估算的转子位置值之间的差值不大于故障阈值时,采用解码芯片传输的转子当前位置值控制电机。
进一步地,在微处理器30采用估算的转子位置值控制电机后,还用于:在转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间没有达到预设时间时,撤销故障报警,并采用解码芯片传输的转子当前位置值控制电机;以及在转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间达到预设时间时,上报位置检测故障。
在本发明的一个实施例中,微处理器30根据报警前的数据信息中的转速实时估算报警后的转子位置值,具体包括:
每m个预设周期,对数据信息中的转速进行一次滤波。
具体而言,去掉m个转速中x个最大值和x个最小值,计算剩下的m-2*x个转速的平均值,以得到转速的第一级滤波值,其中,m、x为正整数,且m大于2*x。并通过如下公式(1)对转速进行第二级滤波,以得到转速的第二级滤波值:
Y(n)=αX(n)+Y(n-1)       (1)
其中,Y(n)为第n次第二级转速滤波值,X(n)为第n次第一级转速滤波值,Y(n-1)为第n-1次第二级转速滤波值,α为滤波系数。
通过式(1)估算报警后的转子位置值
Figure PCTCN2016102945-appb-000018
Figure PCTCN2016102945-appb-000019
其中,Y(n)为第n次的转速滤波值,Θ(nm)为第n次转速滤波时第m次读取的转子位置值,j为报警时距第n次结束转速滤波所经过的预设周期次数,T为预设周期。
可以理解的是,
Figure PCTCN2016102945-appb-000020
为当旋转变压器解码芯片给出报警信息时估算的报警后的转子位置值。
在本发明的一个实施例中,微处理器30还用于通过式(3)计算电机正常运行时的最大加速度A max:
Figure PCTCN2016102945-appb-000021
其中,T max为电机的最大转矩,J为电机的转动惯量。
在本发明的一个实施例中,T max一般为电机的最大制动转矩,当采用机械制动时,T max为机械制动转矩与电机电磁制动转矩之和。
需要说明的是,由于在电机堵转和飞车的情况下,电机不能正常运行,位置检测故障优先级要比这些电机故障工况低。因此,在计算最大加速度A max时,不考虑电机堵转和 飞车情况。
在数据信息包括故障信息时,通过式(4)计算电机正常运行状态下的转子位移角度θc1
θc1=0.5*A max*[(m-j)*T]2         (4)
其中,A max为最大加速度,j为报警时距第n次结束转速滤波所经过的预设周期次数,T为预设周期。
通过式(5)计算故障阈值θc
θc=min(θc1c2)          (5)
其中,θc2为电机转子的最大位置误差。
在本发明的一个实施例中,电机转子的最大位置误差θc2可以根据电机系统的需求确定。
在本发明的一个实施例中,在一个转速滤波周期内,微处理器30还用于:在j等于m时,对数据信息中的转速进行一次滤波;以及在j不等于m时,将读取解码芯片传输的数据信息的次数加1。
在本发明的一个实施例中,解码芯片20还用于输出高频正弦激励信号。
进一步地,如图9所示,上述系统还包括:激励信号调理电路40和反馈信号调理电路50。
具体地,激励信号调理电路40用于将高频正弦激励信号发送给旋转变压器10,以使旋转变压器10反馈正交模拟信号。反馈信号调理电路50用于将正交模拟信号发送给解码芯片20。
其中,正交模拟信号为正弦信号和余弦信号。
需要说明的是,本发明实施例的旋转变压器解码芯片的故障信息处理系统中的微处理器30在进行转速滤波时,采用的转速滤波方法可以但不限于上述的二级转速滤波,以及在进行转子位置值估算时,采用的估算方法可以但不限于本发明上述实施例的估算方法。
本发明实施例的旋转变压器解码芯片的故障信息处理系统,通过解码芯片解算出的电机的转子位置值和电机转速,并在解码芯片产生报警信息时,通过微处理器根据转子位置和电机系统正常工作时的转速值估算出报警后的转子位置值,进而根据解码芯片给出的电机转子位置值和估算出的电机转子位置值之间的差值与故障阈值的关系,对电机进行相应的控制,由此,能够减少不必要的故障报警,提高了电机系统运行的可靠性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两 个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种旋转变压器解码芯片的故障信息处理方法,其特征在于,包括以下步骤:
    以预设周期读取解码芯片传输的数据信息;
    判断所述数据信息是否包括报警信息;
    如果所述数据信息包括报警信息,则根据报警前数据信息中的转速实时估算报警后的转子位置值;
    判断转子当前位置值与估算的转子位置值之间的差值是否大于故障阈值;
    如果转子当前位置值与估算的转子位置值之间的差值大于所述故障阈值,则采用估算的转子位置值控制所述电机。
  2. 如权利要求1所述的旋转变压器解码芯片的故障信息处理方法,其特征在于,在所述采用估算的转子位置值控制所述电机后,还包括:
    判断转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间是否达到预设时间;
    如果没有达到所述预设时间,则撤销故障报警,并采用解码芯片传输的转子当前位置值控制所述电机;以及
    如果达到所述预设时间,则上报位置检测故障。
  3. 如权利要求1所述的旋转变压器解码芯片的故障信息处理方法,其特征在于,所述根据报警前的数据信息中的转速实时估算报警后的转子位置值,包括:
    每m个所述预设周期,对数据信息中的转速进行一次滤波;
    估算报警后的转子位置值
    Figure PCTCN2016102945-appb-100001
    估算公式如下:
    Figure PCTCN2016102945-appb-100002
    其中,Y(n)为第n次的转速滤波值,Θ(nm)为第n次转速滤波时第m次读取的转子位置值,j为报警时距第n次结束转速滤波所经过的预设周期次数,T为预设周期。
  4. 如权利要求3所述的旋转变压器解码芯片的故障信息处理方法,其特征在于,所述每m个所述预设周期,对所述数据信息中的转速进行一次滤波,包括:
    去掉m个转速中x个最大值和x个最小值,计算剩下的m-2*x个转速的平均值,以得到转速的第一级滤波值,其中,m、x为正整数,且m大于2*x;
    通过如下公式对转速进行第二级滤波,以得到转速的第二级滤波值:
    Y(n)=αX(n)+Y(n-1)
    其中,Y(n)为第n次第二级转速滤波值,X(n)为第n次第一级转速滤波值,Y(n-1)为第n-1次第二级转速滤波值,α为滤波系数。
  5. 如权利要求3所述的旋转变压器解码芯片的故障信息处理方法,其特征在于,还包括:
    计算所述电机正常运行时的最大加速度A max,其中,所述最大加速度A max计算公式 如下:
    Figure PCTCN2016102945-appb-100003
    其中,T max为所述电机的最大转矩,J为所述电机的转动惯量;
    在所述数据信息包括故障信息时,计算所述电机正常运行状态下的转子位移角度θc1,其中,所述转子位移角度计算公式如下:
    θc1=0.5*A max*[(m-j)*T]2
    其中,j为报警时距第n次结束转速滤波所经过的预设周期次数;
    计算故障阈值θc,其中,所述故障阈值θc的计算公式如下:
    θc=min(θc1c2),
    其中,θc2为电机转子的最大位置误差。
  6. 如权利要求1所述的旋转变压器解码芯片的故障信息处理方法,其特征在于,还包括:
    如果转子当前位置值与估算的转子位置值之间的差值不大于所述故障阈值,则采用所述解码芯片传输的转子当前位置值控制所述电机。
  7. 如权利要求5所述的旋转变压器解码芯片的故障信息处理方法,其特征在于,在一个转速滤波周期内,还包括:
    判断所述j是否等于所述m;
    如果所述j等于所述m,则对数据信息中的转速进行一次滤波;
    如果所述j不等于所述m,则读取所述解码芯片传输的数据信息的次数加1。
  8. 一种旋转变压器解码芯片的故障信息处理系统,其特征在于,包括:
    旋转变压器,用于输出正交模拟信号;
    解码芯片,用于根据所述正交模拟信号解算出电机的转子位置值和转速,以及在所述正交模拟信号异常时产生报警信息;
    微处理器,用于通过串行外设接口SPI以预设周期读取解码芯片传输的数据信息,在所述数据信息包括报警信息时,根据报警前的数据信息中的转速实时估算报警后的转子位置值,并在转子当前位置值与估算的转子位置值之间的差值是大于故障阈值时,采用估算的转子位置值控制所述电机。
  9. 如权利要求8所述的旋转变压器解码芯片的故障信息处理系统,其特征在于,所述解码芯片,还用于输出高频正弦激励信号。
  10. 如权利要求9所述的旋转变压器解码芯片的故障信息处理系统,其特征在于,还包括:
    激励信号调理电路,用于将所述高频正弦激励信号发送给所述旋转变压器,以使所述旋转变压器反馈正交模拟信号,其中,所述正交模拟信号为正弦信号和余弦信号;
    反馈信号调理电路,用于将所述正交模拟信号发送给所述解码芯片。
  11. 如权利要求8所述的旋转变压器解码芯片的故障信息处理系统,其特征在于,在 所述微处理器采用估算的转子位置值控制所述电机后,还用于:
    在转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间没有达到预设时间时,撤销故障报警,并采用解码芯片传输的转子当前位置值控制所述电机;以及
    在转子当前位置值与估算的转子位置值之间的差值大于故障阈值的持续时间达到所述预设时间时,上报位置检测故障。
  12. 如权利要求8所述的旋转变压器解码芯片的故障信息处理系统,其特征在于,所述微处理器根据报警前的数据信息中的转速估算报警后的转子位置值,具体包括:
    每m个所述预设周期,对数据信息中的转速进行一次滤波;
    估算报警后的转子位置值
    Figure PCTCN2016102945-appb-100004
    估算公式如下:
    Figure PCTCN2016102945-appb-100005
    其中,Y(n)为第n次的转速滤波值,Θ(nm)为第n次转速滤波时第m次读取的转子位置值,j为报警时距第n次结束转速滤波所经过的预设周期次数,T为预设周期。
  13. 如权利要求12所述的旋转变压器解码芯片的故障信息处理字体,其特征在于,所述每m个所述周期T,对所述数据信息中的转速进行一次滤波,包括:
    去掉m个转速中x个最大值和x个最小值,计算剩下的m-2*x个转速的平均值,以得到转速的第一级滤波值,其中,m、x为正整数,且m大于2*x;
    通过如下公式对转速进行第二级滤波,以得到转速的第二级滤波值:
    Y(n)=αX(n)+Y(n-1)
    其中,Y(n)为第n次第二级转速滤波值,X(n)为第n次第一级转速滤波值,Y(n-1)为第n-1次第二级转速滤波值,α为滤波系数。
  14. 如权利要求12所述的旋转变压器解码芯片的故障信息处理系统,其特征在于,所述微处理器,还用于:
    计算所述电机正常运行时的最大加速度A max,其中,所述最大加速度A max计算公式如下:
    Figure PCTCN2016102945-appb-100006
    其中,T max为所述电机的最大转矩,J为所述电机的转动惯量;
    在所述数据信息包括故障信息时,计算所述电机正常运行状态下的转子位移角度θc1,其中,所述转子位移角度计算公式如下:
    θc1=0.5*A max*[(m-j)*T]2
    其中,j为报警时距第n次结束转速滤波所经过的预设周期次数;
    计算故障阈值θc,其中,所述故障阈值θc的计算公式如下:
    θc=min(θc1c2),
    其中,θc2为电机转子的最大位置误差。
  15. 如权利要求8所述的旋转变压器解码芯片的故障信息处理系统,其特征在于,所述微处理器,还用于:
    在转子当前位置值与估算的转子位置值之间的差值不大于故障阈值时,采用所述解码芯片传输的转子当前位置值控制所述电机。
  16. 如权利要求12所述的旋转变压器解码芯片的故障信息处理系统,其特征在于,在一个转速滤波周期内,所述微处理器,还用于:
    在所述j等于所述m时,对数据信息中的转速进行一次滤波;
    在所述j不等于所述m时,将读取所述解码芯片传输的数据信息的次数加1。
PCT/CN2016/102945 2016-04-01 2016-10-21 旋转变压器解码芯片的故障信息处理方法和系统 WO2017166793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/774,468 US10972021B2 (en) 2016-04-01 2016-10-21 Method and system for processing fault information of decoding chip in rotary transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610203719.4A CN105763128B (zh) 2016-04-01 2016-04-01 旋转变压器解码芯片的故障信息处理方法和系统
CN201610203719.4 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017166793A1 true WO2017166793A1 (zh) 2017-10-05

Family

ID=56347134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102945 WO2017166793A1 (zh) 2016-04-01 2016-10-21 旋转变压器解码芯片的故障信息处理方法和系统

Country Status (3)

Country Link
US (1) US10972021B2 (zh)
CN (1) CN105763128B (zh)
WO (1) WO2017166793A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111665765A (zh) * 2020-06-29 2020-09-15 湖南工业大学 一种基于dsp的旋转变压器解码系统
CN113824382A (zh) * 2021-10-09 2021-12-21 陕西航空电气有限责任公司 一种基于航空三级式电机起动/发电控制系统的转子位置故障识别与补偿方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763128B (zh) * 2016-04-01 2018-09-11 北京新能源汽车股份有限公司 旋转变压器解码芯片的故障信息处理方法和系统
CN106788057B (zh) * 2016-12-21 2019-01-11 合肥工业大学 Pmsm驱动系统的旋转变压器自适应容错控制系统及其方法
CN106841988B (zh) * 2017-01-26 2019-05-31 西安应用光学研究所 一种旋变解码芯片故障检测仪及检测方法
CN106602942B (zh) * 2017-02-27 2019-02-12 北京新能源汽车股份有限公司 电机位置检测回路的故障处理方法、装置、电机及汽车
CN107124130B (zh) * 2017-04-06 2019-11-22 苏州伟创电气设备技术有限公司 一种旋转变压器位置故障信息判断及故障处理方法
CN107453669B (zh) * 2017-08-30 2020-06-12 北京新能源汽车股份有限公司 电机转子位置检测方法、装置及电动汽车
CN108063572B (zh) * 2017-12-01 2020-03-03 浙江零跑科技有限公司 一种车用永磁电机位置传感器失效控制方法
CN108599664B (zh) * 2018-05-30 2021-01-08 阳光电源股份有限公司 一种旋转变压器的电机转子位置获取方法及系统
CN108964561A (zh) * 2018-07-31 2018-12-07 河南森源重工有限公司 一种双三相电机驱动系统及双三相电机的控制方法
CN109708567B (zh) * 2018-11-16 2021-01-08 陕西航空电气有限责任公司 一种旋转变压器的故障检测方法
CN109579676B (zh) * 2018-11-26 2020-12-25 南京长峰航天电子科技有限公司 一种基于双通道旋转变压器相位失锁的位置解码方法及系统
CN111245304B (zh) * 2018-11-29 2021-08-20 安徽美芝精密制造有限公司 补偿方法、补偿装置、电机和存储介质
CN109884437A (zh) * 2019-03-25 2019-06-14 阳光电源股份有限公司 一种旋转变压器系统故障检测方法和装置及控制器
CN110061672A (zh) * 2019-04-24 2019-07-26 重庆长安新能源汽车科技有限公司 车用电驱动系统旋转变压器故障行进方法、系统及装置
CN110417318B (zh) * 2019-06-25 2021-09-10 苏州伟创电气科技股份有限公司 交流永磁同步电机的保护方法及装置
CN111181469A (zh) * 2020-01-08 2020-05-19 中国船舶重工集团公司第七二四研究所 伺服驱动器位置反馈异常跳变多周期联合检测处理方法
CN113359026A (zh) * 2020-03-06 2021-09-07 比亚迪股份有限公司 电机参数诊断装置及系统
CN113359025A (zh) * 2020-03-06 2021-09-07 比亚迪股份有限公司 电机参数诊断装置及电机参数诊断系统
CN112511061A (zh) * 2020-09-16 2021-03-16 北京理工华创电动车技术有限公司 一种转子位置传感器故障检测及容错控制方法及系统
CN112286164B (zh) * 2020-12-31 2021-03-16 苏州汇川技术有限公司 变频器的控制方法、装置及计算机可读存储介质
CN113511216A (zh) * 2021-07-23 2021-10-19 东风越野车有限公司 车用发电机传动轴断轴故障检测方法及设备
CN113884878A (zh) * 2021-09-27 2022-01-04 中汽创智科技有限公司 一种故障确定方法、装置、电子设备及存储介质
CN113804223B (zh) * 2021-10-20 2023-09-26 苏州汇川联合动力系统股份有限公司 提高旋变软件解码可靠性的方法、装置及存储介质
CN114865976A (zh) * 2022-05-25 2022-08-05 陕西航空电气有限责任公司 基于ad2s1210的航空永磁电机转子位置角冗余控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197555A (zh) * 2006-12-05 2008-06-11 比亚迪股份有限公司 电动汽车电机控制方法及其转子位置检测容错处理方法
US20120062157A1 (en) * 2010-09-09 2012-03-15 Hiroyuki Ota Brushless motor control device and brushless motor system
CN103532451A (zh) * 2013-10-31 2014-01-22 重庆长安汽车股份有限公司 一种旋转变压器位置信号故障诊断方法
CN105763128A (zh) * 2016-04-01 2016-07-13 北京新能源汽车股份有限公司 旋转变压器解码芯片的故障信息处理方法和系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164187A (ja) * 2001-11-22 2003-06-06 Tamagawa Seiki Co Ltd モータ制御におけるセンサシステム
US7755317B2 (en) * 2006-12-05 2010-07-13 Byd Company Limited Methods for electric vehicle motor control and rotor position detection fault-tolerant processing
US7755310B2 (en) * 2007-09-11 2010-07-13 Gm Global Technology Operations, Inc. Method and apparatus for electric motor torque monitoring
US8185342B2 (en) * 2009-08-14 2012-05-22 GM Global Technology Operations LLC Estimating rotor angular position and velocity and verifying accuracy of position sensor outputs
US8198841B2 (en) * 2009-08-19 2012-06-12 GM Global Technology Operations LLC Method and circuit for processing a resolver fault
US8269445B2 (en) * 2009-10-20 2012-09-18 GM Global Technology Operations LLC Limp home operational mode for an electric vehicle
US8575879B2 (en) * 2011-08-19 2013-11-05 GM Global Technology Operations LLC Methods, systems and apparatus for controlling a multi-phase inverter
KR101683925B1 (ko) * 2011-12-08 2016-12-07 현대자동차주식회사 친환경 차량의 레졸버 비정상 출력 보상 방법
CN103684171A (zh) * 2013-11-26 2014-03-26 深圳市星辰激光技术有限公司 交流电机速度控制方法及系统
TWI506942B (zh) * 2013-12-31 2015-11-01 Hon Hai Prec Ind Co Ltd 馬達控制系統及方法
CN104767450B (zh) * 2014-01-03 2017-12-01 鸿富锦精密工业(深圳)有限公司 马达控制系统及方法
KR101646346B1 (ko) * 2014-09-23 2016-08-05 현대자동차주식회사 모터 제어 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197555A (zh) * 2006-12-05 2008-06-11 比亚迪股份有限公司 电动汽车电机控制方法及其转子位置检测容错处理方法
US20120062157A1 (en) * 2010-09-09 2012-03-15 Hiroyuki Ota Brushless motor control device and brushless motor system
CN103532451A (zh) * 2013-10-31 2014-01-22 重庆长安汽车股份有限公司 一种旋转变压器位置信号故障诊断方法
CN105763128A (zh) * 2016-04-01 2016-07-13 北京新能源汽车股份有限公司 旋转变压器解码芯片的故障信息处理方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111665765A (zh) * 2020-06-29 2020-09-15 湖南工业大学 一种基于dsp的旋转变压器解码系统
CN111665765B (zh) * 2020-06-29 2023-06-13 湖南工业大学 一种基于dsp的旋转变压器解码系统
CN113824382A (zh) * 2021-10-09 2021-12-21 陕西航空电气有限责任公司 一种基于航空三级式电机起动/发电控制系统的转子位置故障识别与补偿方法

Also Published As

Publication number Publication date
CN105763128B (zh) 2018-09-11
US10972021B2 (en) 2021-04-06
CN105763128A (zh) 2016-07-13
US20200259433A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
WO2017166793A1 (zh) 旋转变压器解码芯片的故障信息处理方法和系统
US10902109B2 (en) Misuse detection method, misuse detection electronic control unit, and misuse detection system
KR102030397B1 (ko) 네트워크 감시 장치
US7755317B2 (en) Methods for electric vehicle motor control and rotor position detection fault-tolerant processing
WO2019074000A1 (ja) 車両用制御装置
TWI493819B (zh) 電路異常檢測裝置
JP5890465B2 (ja) モータの動力線断線、またはモータ用電力変換装置のパワー素子異常を検出するモータ制御装置
JP2007118701A (ja) 異常検出処理装置および異常検出処理方法
CN107947649B (zh) 电机转子位置修正方法、装置及设备、存储介质
JP5867605B2 (ja) 故障診断システム、故障診断装置及び故障診断方法
US20180217646A1 (en) Liquid cooling systems for heat generating electronic devices that report coolant temperature via a tachometer signal
WO2018079360A1 (ja) 電池制御装置、電池パック、及び電池システム
US8400087B2 (en) Method and arrangement for determining rotation speed of a motor
CN109657329B (zh) 基于改进自适应粒子滤波的传感器故障和结构损伤识别方法
JP7115442B2 (ja) 判定装置、判定システム、プログラム及び判定方法
KR20200110530A (ko) 전기자동차 고장 진단 장치 및 방법
JP5920230B2 (ja) 不正接続検出方法及び不正接続検出システム
CN105136394B (zh) 快速处理锅炉风机振动故障的方法及装置
US20220194396A1 (en) Information collection device, information collection system, information collection method, and storage medium storing program
JP2009147555A (ja) 車載用電子制御ユニットの故障予測システム
WO2013117816A1 (en) Detection of misbehavior of a damper element
JP2003302421A (ja) 回転数センサの診断装置
CN112865667A (zh) 用于驱动器安全系统的电机速度估计
JP2002314556A (ja) 車両制御システム
US20240210474A1 (en) System and Method for Obtaining an Estimated Output Power of an Electric Motor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896563

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896563

Country of ref document: EP

Kind code of ref document: A1