WO2017163964A1 - マイクロ波処理装置 - Google Patents
マイクロ波処理装置 Download PDFInfo
- Publication number
- WO2017163964A1 WO2017163964A1 PCT/JP2017/009910 JP2017009910W WO2017163964A1 WO 2017163964 A1 WO2017163964 A1 WO 2017163964A1 JP 2017009910 W JP2017009910 W JP 2017009910W WO 2017163964 A1 WO2017163964 A1 WO 2017163964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oscillation frequency
- periodic structure
- oscillation
- frequency
- power distribution
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/705—Feed lines using microwave tuning
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/707—Feed lines using waveguides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/74—Mode transformers or mode stirrers
Definitions
- the present disclosure relates to a microwave treatment apparatus (Microwave treatment apparatus) including a surface wave transmission line using a periodic structure.
- the periodic structure such as a waveguide provided with a ladder circuit converts a microwave into a surface wave mode (Surface). Propagate in wave mode.
- This conventional technique cannot detect the change in the power distribution of the electromagnetic field caused by the change in the characteristics of the periodic structure according to the shape, type, volume, etc. of the object to be heated. For this reason, the influence of an object to be heated cannot be corrected. As a result, the state of the power distribution of the electromagnetic field in the vicinity of the periodic structure cannot be maintained.
- Patent Document 2 has a moving mechanism for changing the depth of the groove of the periodic structure in the space where the microwave propagates, and controls the power distribution of the electromagnetic field in the vicinity of the periodic structure. To do.
- a microwave processing apparatus includes a heating chamber that accommodates an object to be heated, an oscillation source that oscillates microwaves and has a variable oscillation frequency of the microwave, and is provided in the heating chamber. And a waveguide for guiding the microwave to the heating chamber.
- the microwave processing apparatus is further provided in the waveguide, and detects the electromagnetic wave received by the periodic structure, the detection antenna disposed near the periodic structure, and the periodic structure that propagates the microwave in the surface wave mode. And a control unit configured to control the oscillation source.
- the control unit further recognizes the power distribution of the electromagnetic field in the vicinity of the periodic structure based on the electromagnetic waves detected by the detection unit, and sets the oscillation frequency to at least the first oscillation frequency according to the power distribution of the electromagnetic field,
- the oscillation source is configured to be set to either the first oscillation frequency or a different second oscillation frequency.
- the power distribution of the electromagnetic field in the vicinity of the periodic structure can be controlled by changing the oscillation frequency.
- the oscillation frequency By detecting and correcting a change in the characteristics of the periodic structure due to the influence of the object to be heated, it is possible to maintain a desirable power distribution of the electromagnetic field in the vicinity of the periodic structure.
- desired burns can be applied to the object to be heated having various shapes, types, and volumes.
- FIG. 1 is a schematic cross-sectional view showing the configuration of the microwave processing apparatus according to the first embodiment.
- FIG. 2 is a perspective view showing a configuration in the waveguide of the microwave processing apparatus according to the first embodiment.
- FIG. 3 is a diagram illustrating frequency characteristics of leakage power according to the first embodiment.
- FIG. 4 is a diagram showing the power distribution of the electromagnetic field in the vicinity of the periodic structure according to the first embodiment.
- FIG. 5 is a schematic cross-sectional view showing the configuration of the microwave processing apparatus according to the second embodiment.
- a microwave processing apparatus is provided in a heating chamber that houses an object to be heated, an oscillation source that oscillates microwaves and the oscillation frequency of the microwave is variable, and a heating chamber.
- a mounting table configured to mount an object to be heated and a waveguide for guiding the microwave to the heating chamber are provided.
- the microwave processing apparatus is further provided in the waveguide, and detects the electromagnetic wave received by the periodic structure, the detection antenna disposed near the periodic structure, and the periodic structure that propagates the microwave in the surface wave mode. And a control unit configured to control the oscillation source.
- the control unit further recognizes the power distribution of the electromagnetic field in the vicinity of the periodic structure based on the electromagnetic waves detected by the detection unit, and sets the oscillation frequency to at least the first oscillation frequency according to the power distribution of the electromagnetic field,
- the oscillation source is configured to be set to either the first oscillation frequency or a different second oscillation frequency.
- the control unit controls the oscillation source so as to vary the oscillation frequency, and based on the electromagnetic wave detected by the detection unit.
- the frequency at which the concentration of the power distribution of the electromagnetic field in the vicinity of the periodic structure is maximized is specified, and the specified frequency is set as the first oscillation frequency.
- the control unit is based on the electromagnetic wave detected by the detection unit while controlling the oscillation source so as to vary the oscillation frequency.
- the frequency at which the concentration of the power distribution of the electromagnetic field in the vicinity of the periodic structure is minimized is specified, and the specified frequency is set as the second oscillation frequency.
- the control unit changes the oscillation frequency during heating of the heated object in accordance with the state of the heated object. , Configured to control the oscillation source.
- the control unit sets the frequency between the first oscillation frequency and the second oscillation frequency to the oscillation frequency. Configured.
- FIG. 1 is a schematic cross-sectional view illustrating the configuration of the microwave processing apparatus 100 according to the first embodiment of the present disclosure, particularly the waveguide 6 and the heating chamber 11.
- FIG. 2 is a perspective view showing a configuration in the waveguide 6 provided in the microwave processing apparatus 100.
- the microwave processing apparatus 100 includes an oscillation source 1, an antenna 2, a metal plate 3, a mounting table 4, a periodic structure 5, a waveguide 6, and a heating chamber 11.
- Oscillation source 1 oscillates microwaves.
- the oscillation frequency of the microwave from the oscillation source 1 is variable.
- the control unit 10 is composed of a microcomputer and controls the oscillation source 1 so as to change the oscillation frequency of the microwave.
- the oscillation source 1 may include an oscillator and an amplifier made of a semiconductor element. In the case of the oscillation source 1 including an oscillator and an amplifier, the oscillation frequency can be easily controlled by the control unit 10.
- the waveguide 6 is provided in the vicinity of the mounting table 4 below the heating chamber 11 and extends from the place where the antenna 2 is installed to below the heating chamber 11.
- the metal plate 3 is a plurality of metal plates perpendicular to the inner wall surface of the waveguide 6.
- the periodic structure 5 is configured by periodically arranging a plurality of metal plates in the waveguide 6 at regular intervals.
- the microwave becomes a slow wave in the range where the periodic structure 5 is provided, and propagates above the metal plate 3 in the surface wave mode.
- the power distribution of the electromagnetic field concentrates near the upper side of the metal plate 3.
- the heated object 7 When the heated object 7 is placed on the mounting table 4, the heated object 7 comes close to the periodic structure 5. Since the side of the waveguide 6 that faces the mounting table 4 is open, the heated object 7 is heated from below by the concentration of the electromagnetic field power distribution in the vicinity of the upper side of the metal plate 3.
- FIG. 3 shows leakage power from the periodic structure 5 at an oscillation frequency in a band from 2.4 GHz to 2.5 GHz.
- the horizontal axis represents the oscillation frequency of the oscillation source 1
- the vertical axis represents the leakage power measured at a position away from the periodic structure 5 by a predetermined distance.
- the power distribution of the electromagnetic field is not so concentrated in the vicinity of the periodic structure 5, and the leakage power increases when the microwave diffuses into the space.
- the leakage power is reduced.
- the leakage power changes according to the oscillation frequency of the oscillation source 1.
- the microwave is delayed in the range where the periodic structure 5 is provided by setting an appropriate oscillation frequency, and the upper side of the metal plate 3 in the surface wave mode. To propagate. As a result, the power distribution of the electromagnetic field concentrates near the upper side of the metal plate 3.
- FIG. 4 shows the power distribution of the electromagnetic field in the vicinity of the periodic structure 5.
- the horizontal axis represents electromagnetic field power
- the vertical axis represents the vertical distance (ie, height) from the periodic structure 5.
- the graph indicated by the solid line represents the power distribution of the electromagnetic field due to the 2.41 GHz microwave
- the graph indicated by the dotted line represents the power distribution of the electromagnetic field due to the microwave of 2.46 GHz.
- the electromagnetic field power becomes maximum in the vicinity of the periodic structure 5 and decreases as the distance from the periodic structure 5 increases.
- the electromagnetic field power distribution concentrates more strongly in the vicinity of the periodic structure 5, and abruptly attenuates away from the periodic structure 5.
- the concentration in the vicinity of the periodic structure 5 is weakened, and when it is away from the periodic structure 5, it gradually attenuates and the electromagnetic wave power is distributed over a wide range.
- the oscillation frequency at which the leakage power is minimum in the range of 2.4 GHz to 2.5 GHz is referred to as the first oscillation frequency.
- the oscillation frequency at which the leakage power is maximized is referred to as the second oscillation frequency.
- the oscillation frequency when the oscillation frequency is set to the first oscillation frequency, the power distribution of the electromagnetic field can be concentrated in the vicinity of the periodic structure 5.
- the oscillation frequency when the oscillation frequency is set to the second oscillation frequency, the microwave can be diffused in a space away from the periodic structure 5. As shown in FIG. 3, the leakage power with respect to the oscillation frequency changes continuously.
- the periodic structure 5 is set by setting the first oscillation frequency, the second oscillation frequency, and the frequency between the first oscillation frequency and the second oscillation frequency to the oscillation frequency. It is possible to control the power distribution of the electromagnetic field in the vicinity of.
- the oscillation frequency of the oscillation source 1 can be easily and safely set by an electric signal from the control unit 10. For this reason, it is not necessary to stop the oscillation source 1 in order to change the power distribution of the electromagnetic field. Since a mechanism for setting the oscillation frequency of the oscillation source 1 is unnecessary, the apparatus can be reduced in size.
- FIG. 5 is a schematic cross-sectional view showing the configuration of the microwave processing apparatus 101.
- the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
- the detection antenna 9 is disposed in the heating chamber 11 in the vicinity of the periodic structure 5.
- the detection unit 8 detects the electromagnetic wave received by the detection antenna 9.
- the control unit 10 can recognize the power distribution of the electromagnetic field in the vicinity of the periodic structure 5 according to the electromagnetic wave detected by the detection unit 8.
- the detection antenna 9 may be arranged at a position where it can detect the microwave of the surface wave mode propagating through the periodic structure 5.
- the detection antenna 9 may be arranged at a position where microwaves radiated into the space can be detected.
- the heated object 7 placed on the placing table 4 affects the microwave propagating near the tip of the metal plate 3 and disturbs the propagation in the surface wave mode.
- the influence on the microwave varies depending on the shape, type, volume, temperature, and the like of the article 7 to be heated.
- control unit 10 controls the oscillation source 1 so as to vary the oscillation frequency
- detection unit 8 detects the power distribution of the electromagnetic field in the vicinity of the periodic structure 5.
- the control unit 10 Based on the detected power distribution of the electromagnetic field, the control unit 10 shows the leakage power indicating the state of the power distribution of the electromagnetic field under the condition including the influence of the heated object 7 as shown in the graph of FIG. Get frequency characteristics.
- the controller 10 determines the first and second oscillation frequencies based on the obtained frequency characteristics of the leakage power.
- the microwave processing apparatus 101 can obtain a desired heating performance in which a change in the frequency characteristics of the periodic structure 5 due to the article 7 to be heated is corrected.
- the control unit 10 controls the oscillation source 1 so as to change the oscillation frequency in accordance with the state of the heated object 7 during the heating of the heated object 7. It is possible to change the power distribution of the electromagnetic field in the vicinity of. As a result, the microwave processing apparatus 101 can apply desired burns to the heated object 7 having various shapes, types, and volumes.
- the microwave processing apparatus can be applied to a heating apparatus using dielectric heating, such as a microwave oven or a garbage disposal machine.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Abstract
Description
図1は、本開示の実施の形態1に係るマイクロ波処理装置100の、特に導波管6および加熱室11の構成を示す概略断面図である。図2は、マイクロ波処理装置100に設けられた導波管6内の構成を示す透視斜視図である。
以下、本開示の実施の形態2に係るマイクロ波処理装置101について説明する。
2 アンテナ
3 金属製板
4 載置台
5 周期構造体
6 導波管
7 被加熱物
8 検知部
9 検知アンテナ
10 制御部
11 加熱室
100,101 マイクロ波処理装置
Claims (5)
- 被加熱物を収容する加熱室と、
マイクロ波を発振し、前記マイクロ波の発振周波数が可変である発振源と、
前記加熱室内に設けられ、前記被加熱物を載置するように構成された載置台と、
前記マイクロ波を前記加熱室に導く導波管と、
前記導波管内に設けられ、マイクロ波を表面波モードで伝播させる周期構造体と、
前記周期構造体の近傍に配置された検知アンテナと、
前記検知アンテナにより受信された電磁波を検知する検知部と、
前記発振源を制御するとともに、前記検知部により検知された前記電磁波に基づいて前記周期構造体の近傍における電磁界の電力分布を認識し、前記電磁界の前記電力分布に応じて、前記発振周波数を少なくとも第1の発振周波数と、前記第1の発振周波数と異なる第2の発振周波数とのいずれかに設定するように前記発振源を制御するように構成された制御部と、
を備えたマイクロ波処理装置。 - 前記制御部が、前記発振周波数を変動させるように前記発振源を制御しながら、前記検知部により検知された前記電磁波に基づいて、前記周期構造体の近傍における電磁界の電力分布の集中が最大となる周波数を特定し、前記特定された周波数を前記第1の発振周波数に設定するように構成された請求項1に記載のマイクロ波処理装置。
- 前記制御部が、前記発振周波数を変動させるように前記発振源を制御しながら、前記検知部により検知された前記電磁波に基づいて、前記周期構造体の近傍における電磁界の電力分布の集中が最小となる周波数を特定し、前記特定された周波数を前記第2の発振周波数に設定するように構成された請求項1に記載のマイクロ波処理装置。
- 前記制御部が、前記被加熱物の状態に応じて、前記被加熱物の加熱中に前記発振周波数を変更するように、前記発振源を制御するように構成された請求項1に記載のマイクロ波処理装置。
- 前記制御部が、前記第1の発振周波数と前記第2の発振周波数との間の周波数を前記発振周波数に設定するように構成された請求項1に記載のマイクロ波処理装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780017063.XA CN108781487B (zh) | 2016-03-23 | 2017-03-13 | 微波处理装置 |
JP2018507235A JPWO2017163964A1 (ja) | 2016-03-23 | 2017-03-13 | マイクロ波処理装置 |
EP17770007.7A EP3435738B1 (en) | 2016-03-23 | 2017-03-13 | Microwave treatment apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-057956 | 2016-03-23 | ||
JP2016057956 | 2016-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017163964A1 true WO2017163964A1 (ja) | 2017-09-28 |
Family
ID=59899419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009910 WO2017163964A1 (ja) | 2016-03-23 | 2017-03-13 | マイクロ波処理装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3435738B1 (ja) |
JP (1) | JPWO2017163964A1 (ja) |
CN (1) | CN108781487B (ja) |
WO (1) | WO2017163964A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019187457A1 (ja) * | 2018-03-26 | 2019-10-03 | パナソニックIpマネジメント株式会社 | マイクロ波加熱装置 |
WO2019194098A1 (ja) * | 2018-04-06 | 2019-10-10 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
JP2019185965A (ja) * | 2018-04-06 | 2019-10-24 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
JP2019185964A (ja) * | 2018-04-06 | 2019-10-24 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
JP2020167011A (ja) * | 2019-03-29 | 2020-10-08 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109315028B (zh) * | 2016-06-30 | 2021-07-02 | 松下知识产权经营株式会社 | 高频加热装置 |
CN111432514A (zh) * | 2020-03-23 | 2020-07-17 | 成都赛纳微波科技有限公司 | 一种模块化周期加载微波加热设备 |
CN114245506B (zh) * | 2021-12-10 | 2024-08-20 | 广东美的厨房电器制造有限公司 | 烹饪设备 |
CN114269035B (zh) * | 2021-12-10 | 2024-08-09 | 广东美的厨房电器制造有限公司 | 烹饪设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157110A1 (ja) * | 2008-06-25 | 2009-12-30 | パナソニック株式会社 | マイクロ波加熱装置 |
WO2011004561A1 (ja) * | 2009-07-10 | 2011-01-13 | パナソニック株式会社 | マイクロ波加熱装置およびマイクロ波加熱制御方法 |
JP2015162273A (ja) * | 2014-02-26 | 2015-09-07 | パナソニック株式会社 | マイクロ波処理装置 |
JP2015220189A (ja) * | 2014-05-21 | 2015-12-07 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1063681A (en) * | 1975-04-30 | 1979-10-02 | Shigeru Kusunoki | Microwave heating apparatus with movable waveguide and support |
JPS5824398Y2 (ja) * | 1980-06-19 | 1983-05-25 | 松下電器産業株式会社 | 高周波加熱装置 |
JPH04371724A (ja) * | 1991-06-19 | 1992-12-24 | Matsushita Electric Ind Co Ltd | 高周波加熱装置 |
JPH06260275A (ja) * | 1993-03-03 | 1994-09-16 | Matsushita Electric Ind Co Ltd | 高周波加熱装置 |
JP2015162272A (ja) * | 2014-02-26 | 2015-09-07 | パナソニック株式会社 | マイクロ波処理装置 |
-
2017
- 2017-03-13 WO PCT/JP2017/009910 patent/WO2017163964A1/ja active Application Filing
- 2017-03-13 JP JP2018507235A patent/JPWO2017163964A1/ja active Pending
- 2017-03-13 CN CN201780017063.XA patent/CN108781487B/zh active Active
- 2017-03-13 EP EP17770007.7A patent/EP3435738B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157110A1 (ja) * | 2008-06-25 | 2009-12-30 | パナソニック株式会社 | マイクロ波加熱装置 |
WO2011004561A1 (ja) * | 2009-07-10 | 2011-01-13 | パナソニック株式会社 | マイクロ波加熱装置およびマイクロ波加熱制御方法 |
JP2015162273A (ja) * | 2014-02-26 | 2015-09-07 | パナソニック株式会社 | マイクロ波処理装置 |
JP2015220189A (ja) * | 2014-05-21 | 2015-12-07 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019187457A1 (ja) * | 2018-03-26 | 2019-10-03 | パナソニックIpマネジメント株式会社 | マイクロ波加熱装置 |
JPWO2019187457A1 (ja) * | 2018-03-26 | 2021-03-11 | パナソニックIpマネジメント株式会社 | マイクロ波加熱装置 |
JP7203329B2 (ja) | 2018-03-26 | 2023-01-13 | パナソニックIpマネジメント株式会社 | マイクロ波加熱装置 |
WO2019194098A1 (ja) * | 2018-04-06 | 2019-10-10 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
JP2019185965A (ja) * | 2018-04-06 | 2019-10-24 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
JP2019185964A (ja) * | 2018-04-06 | 2019-10-24 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
CN111066375A (zh) * | 2018-04-06 | 2020-04-24 | 松下知识产权经营株式会社 | 高频加热装置 |
CN111066375B (zh) * | 2018-04-06 | 2022-03-04 | 松下知识产权经营株式会社 | 高频加热装置 |
JP7113209B2 (ja) | 2018-04-06 | 2022-08-05 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
JP2020167011A (ja) * | 2019-03-29 | 2020-10-08 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
JP7285413B2 (ja) | 2019-03-29 | 2023-06-02 | パナソニックIpマネジメント株式会社 | 高周波加熱装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3435738A4 (en) | 2019-04-03 |
JPWO2017163964A1 (ja) | 2019-01-31 |
EP3435738A1 (en) | 2019-01-30 |
EP3435738B1 (en) | 2020-02-12 |
CN108781487A (zh) | 2018-11-09 |
CN108781487B (zh) | 2021-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017163964A1 (ja) | マイクロ波処理装置 | |
WO2015129233A1 (ja) | マイクロ波処理装置 | |
US10912165B2 (en) | Microwave heating device | |
US10939512B2 (en) | Microwave heating apparatus | |
KR102188673B1 (ko) | 주파수 변환이 가능한 마이크로파 가열장치 | |
WO2018168194A1 (ja) | マイクロ波加熱装置、及び、マイクロ波加熱装置の制御方法 | |
JP6248697B2 (ja) | マイクロ波処理装置 | |
JP6361049B2 (ja) | マイクロ波監視装置、マイクロ波加熱装置、および、マイクロ波監視方法 | |
JP2998521B2 (ja) | 高周波加熱装置 | |
JPH06260276A (ja) | 高周波加熱装置 | |
JP6486423B2 (ja) | マイクロ波監視装置、マイクロ波加熱装置、および、マイクロ波監視方法 | |
KR102294147B1 (ko) | 마이크로파 조정 방법 | |
JP2008226510A (ja) | マイクロ波加熱装置 | |
JP3051139B2 (ja) | 高周波加熱装置 | |
EP4395461A1 (en) | Rf energy radiation device | |
JP3912409B2 (ja) | マイクロ波キャビティ | |
JP6204871B2 (ja) | マイクロ波監視装置、マイクロ波加熱装置、および、マイクロ波監視方法 | |
JP5234353B2 (ja) | マイクロ波電力制御装置 | |
JPH0566019A (ja) | 高周波加熱装置 | |
KR0160421B1 (ko) | 전자렌지의 균등가열제어장치 및 방법 | |
JP2004007248A (ja) | 電気長可変器 | |
JPS583173B2 (ja) | 高周波加熱装置 | |
JP2000113975A (ja) | 高周波加熱装置 | |
JPS58210419A (ja) | センサ−付電子レンジ | |
JPH088055A (ja) | マイクロ波加熱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018507235 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017770007 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017770007 Country of ref document: EP Effective date: 20181023 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17770007 Country of ref document: EP Kind code of ref document: A1 |