WO2017163636A1 - 靭性の良好なTi含有フェライト系ステンレス鋼板およびフランジ - Google Patents

靭性の良好なTi含有フェライト系ステンレス鋼板およびフランジ Download PDF

Info

Publication number
WO2017163636A1
WO2017163636A1 PCT/JP2017/004348 JP2017004348W WO2017163636A1 WO 2017163636 A1 WO2017163636 A1 WO 2017163636A1 JP 2017004348 W JP2017004348 W JP 2017004348W WO 2017163636 A1 WO2017163636 A1 WO 2017163636A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
stainless steel
ferritic stainless
flange
Prior art date
Application number
PCT/JP2017/004348
Other languages
English (en)
French (fr)
Inventor
光永 聖二
靖弘 江原
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016059874A external-priority patent/JP6067161B1/ja
Priority claimed from JP2016249063A external-priority patent/JP6230688B2/ja
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to CN201780018427.6A priority Critical patent/CN109072372B/zh
Priority to MX2018009784A priority patent/MX2018009784A/es
Priority to CA3015169A priority patent/CA3015169C/en
Priority to MYPI2018703422A priority patent/MY186193A/en
Priority to EP17769683.8A priority patent/EP3434800A4/en
Priority to KR1020187030797A priority patent/KR102685247B1/ko
Priority to US16/082,302 priority patent/US20190078183A1/en
Priority to RU2018132200A priority patent/RU2728362C2/ru
Publication of WO2017163636A1 publication Critical patent/WO2017163636A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a Ti-containing ferritic stainless steel sheet having good toughness. Moreover, it is related with the flange using the steel plate.
  • the Ti-containing ferritic stainless steel sheet Since the Ti-containing ferritic stainless steel sheet has good properties such as corrosion resistance and heat resistance, demand for automobile exhaust gas path members and the like has been increasing in recent years. However, the Ti-containing ferritic stainless steel sheet has a problem that the toughness tends to decrease. There is a great need for a steel plate having a thickness gauge (for example, a plate thickness of 5.0 to 11.0 mm) for a flange used in an automobile exhaust gas route. The greater the plate thickness, the more easily the effect of reduced toughness.
  • a thickness gauge for example, a plate thickness of 5.0 to 11.0 mm
  • An object of the present invention is to provide a Ti-containing ferritic stainless steel plate having good toughness that can be obtained even when general hot rolling conditions are employed, and a flange using the same.
  • a Ti-containing ferritic stainless steel sheet having good toughness can be realized.
  • a thickness gauge for example, a plate thickness of 5.0 to 11.0 mm
  • the effect of improving the reliability by improving the toughness is large. Since this steel plate can be manufactured without any particular restriction on hot rolling conditions, it also leads to an improvement in productivity of a continuous hot rolling line. Further, when the steel plate is used as a material, a flange for an exhaust gas passage member having excellent toughness can be obtained.
  • the C content (the total amount of C and solute C present as a compound) is limited to 0.030% or less.
  • the content is more preferably 0.020% or less, and may be controlled to 0.015% or less.
  • An excessively low C increases the load on steel making and increases the cost.
  • steel sheets with a C content of 0.003% or more are targeted.
  • Si and Mn are effective as a deoxidizer and have the effect of improving high-temperature oxidation resistance. It is more effective to secure a content of 0.02% or more for Si and 0.10% or more for Mn. When these elements are contained in a large amount, they cause the embrittlement of steel.
  • the Si content is limited to 2.0% or less, and more preferably 1.0% or less.
  • the Mn content is also limited to 2.0% or less, and more preferably 1.0% or less.
  • P and S When P and S are contained in a large amount, it causes a decrease in corrosion resistance.
  • the P content is acceptable up to 0.050% and the S content is acceptable up to 0.040%.
  • An excessively low P and low S increase the load on steel making and become uneconomical.
  • the P content may be adjusted in the range of 0.010 to 0.050%, and the S content in the range of 0.0005 to 0.040%.
  • Cr is important for ensuring corrosion resistance as stainless steel. It is also effective for improving high temperature oxidation resistance. In order to exert these effects, a Cr content of 10.0% or more is necessary. If a large amount of Cr is contained, the steel becomes hard, which may hinder the toughness improvement of the thick gauge hot-rolled steel sheet. Here, steel with a Cr content of 19.0% or less is targeted.
  • N like C, causes a decrease in the toughness of the hot-rolled steel sheet.
  • the N content (the total amount of solute N and N present as a compound) is limited to 0.030% or less.
  • the content is more preferably 0.020% or less, and may be controlled to 0.015% or less.
  • An excessively low N increases the load on steel making and increases the cost.
  • the N content may be adjusted in the range of 0.003% or more.
  • Ti combines with C and N to form Ti carbonitride, thereby suppressing grain boundary segregation of Cr carbonitride and extremely effective in maintaining high corrosion resistance and high temperature oxidation resistance of steel. It is.
  • a ferritic stainless steel having a Ti content equivalent to four times or more the total content of C and N in mass% is targeted.
  • An excessively high Ti content is not preferable because it promotes a decrease in toughness of the hot-rolled steel sheet.
  • the Ti content is limited to 0.80% or less, and more preferably 0.5% or less.
  • carbonitride refers to a compound in which one or more of C and N are bonded to a metal element. In the case of Ti carbonitride, TiC, TiN and Ti (C, N) correspond to this.
  • Al is effective as a deoxidizer. In order to obtain the effect sufficiently, it is effective to add so that the Al content is 0.010% or more. A large amount of Al content causes a decrease in toughness. Al content is limited to 0.20% or less.
  • Mo is effective in improving the corrosion resistance and can be added as necessary. In that case, it is more effective to set the Mo content to 0.01% or more. A large amount of Mo may adversely affect toughness.
  • the Mo content needs to be in the range of 0 to 1.50%, and may be managed in the range of 0 to 0.50%.
  • the B is effective in improving the secondary workability and can be added as necessary. In that case, it is more effective to secure a content of 0.0005% or more. However, if the B content exceeds 0.0050%, the formation of Cr 2 B may impair the uniformity of the metal structure, and the workability may decrease.
  • the B content is in the range of 0 to 0.0050%.
  • the extraction residue recovered by the electrolytic extraction method described above is mainly composed of Ti carbonitride.
  • Ti is an element added for the purpose of fixing C and N as described above.
  • N In a Ti-containing ferritic stainless steel sheet, it is generally considered that most of N is present in the steel sheet in a form combined with Ti.
  • the proportion of C present in a solid solution state in the matrix without being bonded to Ti increases.
  • Ti not all of it is usually consumed for the formation of carbonitride, and Ti that does not form carbonitride exists in the steel sheet.
  • the content R (mass%) of the extraction residue recovered by the electrolytic extraction method and the steel contents of C and N are as follows ( It has been found that when the metal structure is adjusted to satisfy the relationship of formula (1), the toughness of the steel sheet with a thickness gauge of 5.0 to 11.0 mm is remarkably improved. In this case, it is possible to avoid unexpected troubles due to toughness reduction, which is a problem when processing through a line in the cold rolling process or when processing a thick gauge steel plate. R> 5.0C + 4.4N ⁇ 0.025 (1)
  • the values of the contents of C and N in steel represented by mass% are substituted for the C and N positions in the formula (1), respectively.
  • the term “5.0C” corresponds to the mass ratio of TiC when it is assumed that all C in the steel is bonded to Ti
  • the term “4.4N” is the N in the steel. This corresponds to the mass ratio of TiN when it is assumed that all are bonded to Ti.
  • the term “ ⁇ 0.025” corresponds to a value obtained by converting the maximum amount of solid solution C + solid solution N allowed to obtain a sufficient toughness improving effect into the amount of Ti carbonitride. However, since N is considered to be bonded to Ti preferentially over C, the term “ ⁇ 0.025” may be regarded as a term that substantially represents an allowable amount of solute C.
  • the Ti-containing ferritic stainless steel sheet in which the amount of dissolved C is reduced so as to satisfy the above formula (1) can be realized by adding a heat treatment process in a specific temperature range to a general stainless steel sheet manufacturing process.
  • a hot-rolled steel sheet is manufactured by a conventional method and subjected to hot-rolled sheet annealing to obtain an annealed steel sheet.
  • the temperature of hot-rolled sheet annealing can be, for example, from 950 ° C. to 1150 ° C., and more preferably from 1000 ° C. to 1150 ° C.
  • the obtained annealed steel sheet is subjected to heat treatment for 60 seconds or more in a temperature range of 750 ° C. or higher and 1000 ° C. or lower.
  • the holding temperature is more preferably 750 ° C. or more and 950 ° C. or less, and may be controlled to 750 ° C. or more and 900 ° C. or less.
  • the holding time can be set within a range of 60 minutes or less, and more preferably within a range of 10 minutes or less. It was found that by introducing this heat treatment, a structure state satisfying the above formula (1) can be obtained.
  • the optimum conditions for the holding temperature and holding time can be grasped by conducting preliminary experiments in advance according to the annealing conditions and chemical composition received before the heat treatment.
  • Example 1 Steel having the chemical composition shown in Table 1 was melted and hot-rolled under the conditions for a normal ferritic stainless steel sheet, and annealed at 1080 ° C. in an annealing pickling line to obtain an annealed steel sheet.
  • a steel plate obtained by heat-treating this annealed steel plate or a steel plate not subjected to heat treatment (the above-mentioned annealed steel plate) was used as a test steel plate.
  • Table 2 shows the heat treatment conditions.
  • a U-notch impact test piece was produced from each test steel sheet, and a Charpy impact test was performed at each temperature in increments of 10 ° C. of 70 ° C. or less in accordance with JIS Z2242: 2005.
  • the direction of impact application by the hammer (that is, the depth direction of the U notch) was a direction perpendicular to the rolling direction and the plate thickness direction.
  • the lowest temperature at which the impact value is 150 J / cm 2 or more in this 10 ° C. test is defined as the DBTT of the test steel sheet.
  • a thickness gauge steel plate of the Ti-containing steel type having the above chemical composition for example, a plate thickness of 5.0 to 11.0 mm
  • this DBTT is 30 ° C. or less, the reliability in terms of toughness is remarkably improved. Can be evaluated. Therefore, when the DBTT was 30 ° C. or less, it was judged as ⁇ (improvement of toughness; passed), and other cases were judged as ⁇ (improvement of toughness; rejected).
  • Comparative examples Nos. 6 to 10 correspond to conventional hot-rolled annealed steel sheets.
  • [A]-[B] in Table 2 is a negative value and does not satisfy the equation (1).
  • a structure satisfying the formula (1) is obtained by performing an appropriate heat treatment. It can be seen that the toughness is remarkably improved as compared with the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

靭性の良好なTi含有フェライト系ステンレス鋼板を提供する。本発明は、質量%で、C:0.003~0.030%、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.040%以下、Cr:10.0~19.0%、N:0.030%以下、Ti:4(C+N)以上0.80%以下、Al:0.010~0.20%であり、さらに必要に応じてMo:1.50%以下、B:0.0030%以下の1種以上を含有し、残部Feおよび不可避的不純物からなる化学組成を有し、電解抽出法で回収される抽出残渣の鋼中含有量R(質量%)とC、Nの鋼中含有量が下記(1)式の関係を満たすTi含有フェライト系ステンレス鋼板である。R>5.0C+4.4N-0.025 …(1)

Description

靭性の良好なTi含有フェライト系ステンレス鋼板およびフランジ
 本発明は、靭性の良好なTi含有フェライト系ステンレス鋼板に関する。また、その鋼板を用いたフランジに関する。
 Ti含有フェライト系ステンレス鋼板は、耐食性、耐熱性等の特性が良好であることから、近年、自動車排ガス経路部材等への需要が増えている。しかし、Ti含有フェライト系ステンレス鋼板には靭性が低下しやすいという問題がある。自動車排ガス経路に用いるフランジなどでは厚ゲージ(例えば板厚5.0~11.0mm)の鋼板に対するニーズが高い。板厚が大きいほど、靭性低下の影響は顕在化しやすくなる。
 これまで、Ti含有フェライト系ステンレス鋼板の靭性を改善する試みが種々なされてきた。厚ゲージの鋼板素材としては熱延鋼板あるいは熱延焼鈍鋼板を適用することが一般的であるため、従来の靭性改善策は熱間圧延条件に関するものが主流であった(特許文献1~4)。しかし、ステンレス鋼板の大量生産現場では、熱間圧延ラインに種々の鋼種が流れている。Ti含有フェライト系ステンレス鋼板の製造時に、汎用的なフェライト系ステンレス鋼板とは異なる限定的な操業条件を採用することは、全体的な生産性を低下させる要因となる。
特開昭60-228616号公報 特開昭64-56822号公報 特開2012-140688号公報 特開2015-187290号公報
 本発明は、一般的な熱延条件を採用した場合にも得られる、靭性の良好なTi含有フェライト系ステンレス鋼板、およびそれを用いたフランジを提供することを目的とする。
 上記目的は、以下の発明によって達成される。
 [1]質量%で、C:0.003~0.030%、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.040%以下、Cr:10.0~19.0%、N:0.030%以下、Ti:4(C+N)以上0.80%以下、Al:0.010~0.20%、残部Feおよび不可避的不純物からなる化学組成を有し、電解抽出法で回収される抽出残渣の鋼中含有量R(質量%)とC、Nの鋼中含有量が下記(1)式の関係を満たすTi含有フェライト系ステンレス鋼板。
 R>5.0C+4.4N-0.025 …(1)
 ここで、上記Ti含有量の下限および(1)式において、CおよびNの箇所にはそれぞれ質量%で表されるCおよびNの鋼中含有量の値が代入される。
 [2]前記化学組成において、C含有量が0.007~0.030質量%である上記[1]に記載のTi含有フェライト系ステンレス鋼板。
 [3]質量%で、さらにMo:1.50%以下を含有する化学組成を有する上記[1]または[2]に記載のTi含有フェライト系ステンレス鋼板。
 [4]質量%で、さらにB:0.0050%以下を含有する化学組成を有する上記[1]~[3]のいずれかに記載のTi含有フェライト系ステンレス鋼板。
 [5]板厚が5.0~11.0mmである上記[1]~[4]のいずれかに記載のTi含有フェライト系ステンレス鋼板。
 [6]上記[1]~[5]のいずれかに記載のTi含有フェライト系ステンレス鋼板を用いたフランジ。
 [7]前記フランジが排ガス経路用フランジである上記[6]に記載のフランジ。
 [8]前記フランジが自動車排ガス経路用フランジである上記[6]に記載のフランジ。
〔抽出残渣の鋼中含有量Rの求め方〕
 10質量%のアセチルアセトン、1質量%のテトラメチルアンモニウムクロライド、89質量%のメチルアルコールからなる非水系電解液中で、鋼板から採取した質量既知のサンプルに、飽和甘汞基準電極(SCE)に対して-100mV~400mVの電位を付与し、サンプルのマトリックス(金属素地)を全部溶解させたのち、未溶解物を含む液を孔径0.05μmのメンブレンフィルターにてろ過し、フィルターに残った固形分を抽出残渣として回収する。溶解に供した上記サンプルの質量に占める抽出残渣の質量割合をR(質量%)とする。
 本発明によれば、靭性の良好なTi含有フェライト系ステンレス鋼板を実現することができる。特に、靭性低下による悪影響が顕在化しやすい厚ゲージ(例えば板厚5.0~11.0mm)の鋼板において、靭性改善による信頼性の向上効果が大きい。この鋼板は、熱間圧延条件に特段の制限を設けることなく製造することができるので、連続熱間圧延ラインの生産性向上にもつながる。また、上記鋼板を素材に用いると靭性に優れる排ガス経路部材用のフランジが得られる。
〔化学組成〕
 本発明では、以下に示す成分元素を含有するフェライト系ステンレス鋼を対象とする。鋼板の化学組成に関する「%」は、特に断らない限り質量%を意味する。
 Cは、鋼を硬質化させ、熱延鋼板の靭性を低下させる要因となる。C含有量(固溶Cと化合物として存在するCのトータル量)は0.030%以下に制限される。0.020%以下とすることがより好ましく、0.015%以下に管理してもよい。過剰な低C化は製鋼への負荷を増大させ、コスト上昇となる。ここでは、C含有量0.003%以上の鋼板を対象とする。
 SiおよびMnは、脱酸剤として有効である他、耐高温酸化性を向上させる作用を有する。Siについては0.02%以上、Mnについては0.10%以上の含有量を確保することがより効果的である。これらの元素は、多量に含有すると鋼の脆化を招く要因となる。Si含有量は2.0%以下に制限され、1.0%以下とすることがより好ましい。Mn含有量も2.0%以下に制限され、1.0%以下とすることがより好ましい。
 PおよびSは、多量に含有すると耐食性低下などの要因となる。P含有量は0.050%まで許容でき、S含有量は0.040%まで許容できる。過剰な低P化、低S化は製鋼への負荷を増大させ不経済となる。通常、P含有量は0.010~0.050%、S含有量は0.0005~0.040%の範囲で調整すればよい。
 Crは、ステンレス鋼としての耐食性を確保するために重要である。耐高温酸化性の向上にも有効である。これらの作用を発揮させるために、10.0%以上のCr含有量が必要である。多量にCrを含有すると鋼が硬質化し、厚ゲージ熱延鋼板の靭性改善に支障をきたす場合がある。ここではCr含有量が19.0%以下の鋼を対象とする。
 Nは、Cと同様、熱延鋼板の靭性を低下させる要因となる。N含有量(固溶Nと化合物として存在するNのトータル量)は0.030%以下に制限される。0.020%以下とすることがより好ましく、0.015%以下に管理してもよい。過剰な低N化は製鋼への負荷を増大させ、コスト上昇となる。通常、N含有量は0.003%以上の範囲で調整すればよい。
 Tiは、C、Nと結合してTi炭窒化物を形成することによって、Cr炭窒化物の粒界偏析を抑制し、鋼の耐食性および耐高温酸化性を高く維持する上で極めて有効な元素である。ここでは上記作用を十分に得るために、質量%において、CとNの合計含有量に対し4倍相当以上のTi含有量を有するフェライト系ステンレス鋼を対象とする。Ti含有量が過大になると、熱延鋼板の靭性低下を助長するので好ましくない。種々検討の結果、Ti含有量は0.80%以下に制限され、0.50%以下の範囲で含有させることがより望ましい。なお、本明細書において「炭窒化物」とは、C、Nの1種以上が金属元素と結合した化合物をいう。Ti炭窒化物の例だと、TiC、TiNおよびTi(C,N)がこれに該当する。
 Alは、脱酸剤として有効である。その作用を十分に得るために、0.010%以上のAl含有量となるように添加することが効果的である。多量のAl含有は靭性低下の要因となる。Al含有量は0.20%以下に制限される。
 Moは、耐食性の向上に有効であり、必要に応じて添加することができる。その場合、0.01%以上のMo含有量とすることがより効果的である。多量のMo含有は靭性に悪影響を及ぼす場合がある。Mo含有量は0~1.50%の範囲とする必要があり、0~0.50%の範囲に管理してもよい。
 Bは、2次加工性向上に有効であり、必要に応じて添加することができる。その場合、0.0005%以上の含有量を確保することがより効果的である。ただし、B含有量が0.0050%を超えるとCrBの生成により金属組織の均一性が損なわれ、加工性が低下する場合がある。B含有量は0~0.0050%の範囲とする。
〔抽出残渣の鋼中含有量〕
 上記の化学組成を有するTi含有フェライト系ステンレス鋼の場合、上掲の電解抽出法で回収される抽出残渣はTi炭窒化物を主体とするものである。Tiは、上述のようにC、Nを固定する目的で添加される元素である。Ti含有フェライト系ステンレス鋼板では通常、Nについては、大部分がTiと結合した形で鋼板中に存在していると考えられる。しかしCについては、Nと比べ、Tiと結合せずにマトリックス中に固溶した状態で存在している割合が多くなる。Tiについても、通常、その全てが炭窒化物の形成に消費されるわけではなく、鋼板中には炭窒化物を形成していないTiが存在している。
 発明者らの研究によれば、Ti含有フェライト系ステンレス鋼板においては、Tiと結合せずに固溶状態で存在しているCが、靭性低下を引き起こす大きな要因となることがわかった。従って、固溶C量を低減させること、すなわちCをできるだけTiと結合させた状態で存在させることが靭性改善には極めて有効である。固溶C量の減少は、Ti炭窒化物の生成量に反映される。ここでは電解抽出法で回収される抽出残渣の鋼中含有量Rをパラメータとして、靭性改善効果の高いTi含有フェライト系ステンレス鋼板を特定する。
 種々検討の結果、上述の化学組成を有するTi含有フェライト系ステンレス鋼において、電解抽出法で回収される抽出残渣の鋼中含有量R(質量%)とC、Nの鋼中含有量が下記(1)式の関係を満たす金属組織に調整されているとき、板厚5.0~11.0mmといった厚ゲージの鋼板の靭性が顕著に改善されることがわかった。この場合、冷延工程でのライン通板時や、厚ゲージ鋼板を素材とする部品への加工に際して問題となる、靭性低下に起因する不測のトラブルが回避できる。
 R>5.0C+4.4N-0.025 …(1)
 ここで、(1)式のCおよびNの箇所にはそれぞれ質量%で表されるCおよびNの鋼中含有量の値が代入される。
 (1)式において、「5.0C」の項は鋼中のCが全てTiと結合したと仮定したときのTiCの質量割合に相当し、「4.4N」の項は鋼中のNが全てTiと結合したと仮定したときのTiNの質量割合に相当する。「-0.025」の項は靭性改善効果を十分に得るうえで許容される固溶C+固溶Nの最大量をTi炭窒化物量に換算したものに相当する。ただし、NはCよりも優先的にTiと結合していると考えられるので、「-0.025」の項は実質的には固溶Cの許容量を表す項であるとみなしてよい。
〔製造方法〕
 上記(1)式を満たすように固溶C量が低減されたTi含有フェライト系ステンレス鋼板は、一般的なステンレス鋼板製造工程に、特定の温度範囲での熱処理工程を加えることによって実現できる。例えば、常法により熱延鋼板を製造し、熱延板焼鈍を施して焼鈍鋼板を得る。熱延板焼鈍の温度は例えば950℃超え1150℃以下とすることができ、1000℃超え1150℃以下とすることがより好ましい。得られた焼鈍鋼板に対して、750℃以上1000℃以下の温度域に60秒以上保持する熱処理を施す。保持温度が750℃未満であるとTiCの生成が進行しにくく、固溶Cの減少が不十分となる。1000℃を超えるとTiCの溶解が進行しやすくなり、固溶Cの低減化は困難となる。保持温度は750℃以上950℃以下とすることがより好ましく、750℃以上900℃以下に管理してもよい。保持時間は60分以内の範囲で設定することができ、10分以下の範囲とすることがより好ましい。この熱処理を導入することで、上記(1)式を満たす組織状態が得られることがわかった。保持温度および保持時間の最適条件は、この熱処理前に受けた焼鈍の条件および化学組成に応じて、予め予備実験を行うことにより把握することができる。
《実施例1》
 表1に示す化学組成の鋼を溶製し、通常のフェライト系ステンレス鋼板用の条件で熱間圧延を行い、焼鈍酸洗ラインにて1080℃の焼鈍を施し、焼鈍鋼板を得た。この焼鈍鋼板に熱処理を施した鋼板、または熱処理を施していない鋼板(上記焼鈍鋼板)を供試鋼板とした。表2中に熱処理の条件を示してある。
Figure JPOXMLDOC01-appb-T000001
 各供試鋼板からサンプルを採取し、上掲の「抽出残渣の鋼中含有量Rの求め方」に従ってRを求めた。
 各供試鋼板からUノッチ衝撃試験片を作製し、JIS Z2242:2005に従い70℃以下の10℃刻みの各温度でシャルピー衝撃試験を行った。ハンマーによる衝撃付与方向(すなわちUノッチの深さ方向)は、圧延方向と板厚方向に垂直な方向とした。各温度での試験数はn=3とし、そのうちの最も低い衝撃値(最も成績の悪い値)を当該供試鋼板のその温度での衝撃値として採用した。本明細書では、この10℃刻みの試験で衝撃値が150J/cm以上となる最も低い温度を当該供試鋼板のDBTTと定義する。上述の化学組成を有するTi含有鋼種の厚ゲージ鋼板(例えば板厚5.0~11.0mm)において、このDBTTが30℃以下であれば、靭性面での信頼性は顕著に改善されていると評価することができる。従って、このDBTTが30℃以下のものを○(靭性改善;合格)、それ以外のものを×(靭性改善;不合格)と判断した。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例であるNo.6~10は従来一般的な熱延焼鈍鋼板に相当する。これらはいずれも表2中の[A]-[B]が負の値であり、(1)式を満たしていない。本発明例のものは、適切な熱処理を施すことにより(1)式を満たす組織状態が得られている。これらはいずれも比較例のものに比べ、靭性が顕著に改善されていることがわかる。

Claims (8)

  1.  質量%で、C:0.003~0.030%、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.040%以下、Cr:10.0~19.0%、N:0.030%以下、Ti:4(C+N)以上0.80%以下、Al:0.010~0.20%、残部Feおよび不可避的不純物からなる化学組成を有し、電解抽出法で回収される抽出残渣の鋼中含有量R(質量%)とC、Nの鋼中含有量が下記(1)式の関係を満たすTi含有フェライト系ステンレス鋼板。
     R>5.0C+4.4N-0.025 …(1)
     ここで、上記Ti含有量の下限および(1)式において、CおよびNの箇所にはそれぞれ質量%で表されるCおよびNの鋼中含有量の値が代入される。
  2.  前記化学組成において、C含有量が0.007~0.030質量%である請求項1に記載のTi含有フェライト系ステンレス鋼板。
  3.  質量%で、さらにMo:1.50%以下を含有する化学組成を有する請求項1に記載のTi含有フェライト系ステンレス鋼板。
  4.  質量%で、さらにB:0.0050%以下を含有する化学組成を有する請求項1に記載のTi含有フェライト系ステンレス鋼板。
  5.  板厚が5.0~11.0mmである請求項1に記載のTi含有フェライト系ステンレス鋼板。
  6.  請求項1~5のいずれか1項に記載のTi含有フェライト系ステンレス鋼板を用いたフランジ。
  7.  前記フランジが排ガス経路用フランジである請求項6に記載のフランジ。
  8.  前記フランジが自動車排ガス経路用フランジである請求項6に記載のフランジ。
PCT/JP2017/004348 2016-03-24 2017-02-07 靭性の良好なTi含有フェライト系ステンレス鋼板およびフランジ WO2017163636A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201780018427.6A CN109072372B (zh) 2016-03-24 2017-02-07 韧性良好的含有Ti的铁素体系不锈钢板和法兰
MX2018009784A MX2018009784A (es) 2016-03-24 2017-02-07 Lamina de acero inoxidable ferritico que contiene ti que tiene buena dureza, y reborde.
CA3015169A CA3015169C (en) 2016-03-24 2017-02-07 Ti-containing ferritic stainless steel sheet having good toughness, and flange
MYPI2018703422A MY186193A (en) 2016-03-24 2017-02-07 Ti-containing ferritic stainless steel sheet having good toughness, and flange
EP17769683.8A EP3434800A4 (en) 2016-03-24 2017-02-07 FERRITIC STAINLESS STEEL SHEET CONTAINING IT HAVING GOOD TENACITY, AND FLANGE
KR1020187030797A KR102685247B1 (ko) 2016-03-24 2017-02-07 인성이 양호한 Ti 함유 페라이트계 스테인리스 강판 및 플랜지
US16/082,302 US20190078183A1 (en) 2016-03-24 2017-02-07 Ti-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING GOOD TOUGHNESS, AND FLANGE
RU2018132200A RU2728362C2 (ru) 2016-03-24 2017-02-07 ЛИСТ ИЗ СОДЕРЖАЩЕЙ Ti ФЕРРИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ, ИМЕЮЩЕЙ ХОРОШУЮ УДАРНУЮ ВЯЗКОСТЬ, А ТАКЖЕ ФЛАНЕЦ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016059874A JP6067161B1 (ja) 2016-03-24 2016-03-24 靭性の良好なTi含有フェライト系ステンレス鋼板
JP2016-059874 2016-03-24
JP2016249063A JP6230688B2 (ja) 2016-12-22 2016-12-22 フランジ
JP2016-249063 2016-12-22

Publications (1)

Publication Number Publication Date
WO2017163636A1 true WO2017163636A1 (ja) 2017-09-28

Family

ID=59901073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004348 WO2017163636A1 (ja) 2016-03-24 2017-02-07 靭性の良好なTi含有フェライト系ステンレス鋼板およびフランジ

Country Status (9)

Country Link
US (1) US20190078183A1 (ja)
EP (1) EP3434800A4 (ja)
CN (1) CN109072372B (ja)
CA (1) CA3015169C (ja)
MX (1) MX2018009784A (ja)
MY (1) MY186193A (ja)
RU (1) RU2728362C2 (ja)
TW (1) TWI715739B (ja)
WO (1) WO2017163636A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699312A4 (en) * 2017-12-14 2020-08-26 Posco FERRITE-BASED STAINLESS STEEL WITH EXCELLENT IMPACT TENACITY, AND ITS PRODUCTION PROCESS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224342A (ja) * 2006-02-22 2007-09-06 Nippon Steel & Sumikin Stainless Steel Corp 加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼板およびその製造方法とプレス成形方法
JP2010070799A (ja) * 2008-09-18 2010-04-02 Jfe Steel Corp スピニング加工性に優れるTi添加フェライト系ステンレス鋼板及びその製造方法
JP2012140687A (ja) * 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法
WO2016129580A1 (ja) * 2015-02-10 2016-08-18 新日鐵住金ステンレス株式会社 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2675957B2 (ja) * 1992-02-25 1997-11-12 川崎製鉄株式会社 耐候性、耐銹性に優れた高Cr,P添加フェライト系ステンレス鋼
JPH09194937A (ja) * 1996-01-19 1997-07-29 Nippon Steel Corp 加工性に優れた高純フェライト系ステンレス熱延鋼帯の製造方法
JPH09287021A (ja) * 1996-04-19 1997-11-04 Nippon Steel Corp 加工性に優れた高純フェライト系ステンレス熱延鋼帯の製造方法
JPH09287060A (ja) * 1996-04-19 1997-11-04 Nippon Steel Corp 加工性に優れた高純フェライト系ステンレス熱延鋼帯の製造方法
JPH10183307A (ja) * 1996-10-22 1998-07-14 Nippon Steel Corp 耐リジング性に優れた高純度フェライト系ステンレス薄鋼板およびその製造方法
JPH10298658A (ja) * 1997-04-18 1998-11-10 Nippon Steel Corp 耐リジング性に優れた高純度フェライト系ステンレス薄鋼板の製造方法
JP4341861B2 (ja) * 1999-04-30 2009-10-14 日新製鋼株式会社 熱疲労特性および高温酸化性に優れたFe−Cr−Alフェライト系ステンレス鋼の製造方法
JP3504655B2 (ja) * 2001-12-06 2004-03-08 新日本製鐵株式会社 プレス成形性と作業性に優れたフェライト系ステンレス鋼板およびその製造方法
US7494551B2 (en) * 2002-06-17 2009-02-24 Jfe Steel Corporation Ferritic stainless steel plate with Ti and method for production thereof
EP1867748A1 (fr) * 2006-06-16 2007-12-19 Industeel Creusot Acier inoxydable duplex
JP5196807B2 (ja) * 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5178157B2 (ja) * 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
US8440029B2 (en) * 2009-07-30 2013-05-14 Jfe Steel Corporation Stainless steel having good conductivity and ductility for use in fuel cell and method for producing the same
JP5609571B2 (ja) * 2010-11-11 2014-10-22 Jfeスチール株式会社 耐酸化性に優れたフェライト系ステンレス鋼
EP2910659B1 (en) * 2012-10-22 2017-12-27 JFE Steel Corporation Ferrite stainless steel and manufacturing method therefor
JP6172935B2 (ja) * 2012-12-27 2017-08-02 キヤノン株式会社 画像処理装置、画像処理方法及び画像処理プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224342A (ja) * 2006-02-22 2007-09-06 Nippon Steel & Sumikin Stainless Steel Corp 加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼板およびその製造方法とプレス成形方法
JP2010070799A (ja) * 2008-09-18 2010-04-02 Jfe Steel Corp スピニング加工性に優れるTi添加フェライト系ステンレス鋼板及びその製造方法
JP2012140687A (ja) * 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法
WO2016129580A1 (ja) * 2015-02-10 2016-08-18 新日鐵住金ステンレス株式会社 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434800A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699312A4 (en) * 2017-12-14 2020-08-26 Posco FERRITE-BASED STAINLESS STEEL WITH EXCELLENT IMPACT TENACITY, AND ITS PRODUCTION PROCESS
US11718887B2 (en) 2017-12-14 2023-08-08 Posco Co., Ltd Ferrite-based stainless steel having excellent impact toughness, and method for producing same

Also Published As

Publication number Publication date
MX2018009784A (es) 2018-09-10
EP3434800A1 (en) 2019-01-30
TW201802263A (zh) 2018-01-16
KR20180125563A (ko) 2018-11-23
RU2018132200A (ru) 2020-04-24
CA3015169A1 (en) 2017-09-28
RU2018132200A3 (ja) 2020-05-26
RU2728362C2 (ru) 2020-07-29
EP3434800A4 (en) 2019-11-13
US20190078183A1 (en) 2019-03-14
MY186193A (en) 2021-06-30
CA3015169C (en) 2024-02-20
CN109072372B (zh) 2021-02-12
CN109072372A (zh) 2018-12-21
TWI715739B (zh) 2021-01-11

Similar Documents

Publication Publication Date Title
JP6792951B2 (ja) オゾン含有水用二相ステンレス鋼
JP6137434B1 (ja) オーステナイト系ステンレス鋼
WO2017135240A1 (ja) Nb含有フェライト系ステンレス熱延鋼板及びその製造方法、並びにNb含有フェライト系ステンレス冷延鋼板及びその製造方法
JP2007239094A (ja) 耐酸腐食鋼
WO2017056619A1 (ja) オーステナイト系ステンレス鋼及びオーステナイト系ステンレス鋼の製造方法
WO2018104984A1 (ja) 高Mn鋼板およびその製造方法
CN111989417A (zh) 双相不锈钢复合钢板及其制造方法
CN111433382B (zh) 具有优异的抗高温氧化性的铁素体不锈钢及其制造方法
JPWO2019189708A1 (ja) 二相ステンレスクラッド鋼板及びその製造方法
CN111918979B (zh) 双相不锈钢包层钢板和其制造方法
JP5677819B2 (ja) 耐酸化性に優れたフェライト系ステンレス鋼板
TW201430147A (zh) 肥粒鐵不鏽鋼
EP3437790B1 (en) Welded structural member
TW201343933A (zh) 具有成本效益之肥粒鐵不鏽鋼
JP6067161B1 (ja) 靭性の良好なTi含有フェライト系ステンレス鋼板
EP3686306B1 (en) Steel plate and method for manufacturing same
WO2017163636A1 (ja) 靭性の良好なTi含有フェライト系ステンレス鋼板およびフランジ
JP6230688B2 (ja) フランジ
JP2012201960A (ja) 耐酸性良好な二相ステンレス鋼
KR102497359B1 (ko) 강판 및 그 제조 방법
KR102685247B1 (ko) 인성이 양호한 Ti 함유 페라이트계 스테인리스 강판 및 플랜지
JP6678217B2 (ja) ステンレス鋼
JP2011149041A (ja) 接触電気抵抗の低い通電部品用ステンレス鋼およびその製造方法
JP2017088977A (ja) フェライト系ステンレス鋼
JP6172077B2 (ja) 耐粒界腐食特性に優れたNi合金クラッド鋼の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009784

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 3015169

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030797

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017769683

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769683

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769683

Country of ref document: EP

Kind code of ref document: A1