WO2016129580A1 - 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法 - Google Patents
面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法 Download PDFInfo
- Publication number
- WO2016129580A1 WO2016129580A1 PCT/JP2016/053754 JP2016053754W WO2016129580A1 WO 2016129580 A1 WO2016129580 A1 WO 2016129580A1 JP 2016053754 W JP2016053754 W JP 2016053754W WO 2016129580 A1 WO2016129580 A1 WO 2016129580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- steel sheet
- rolled steel
- ferritic stainless
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention mainly relates to a ferritic stainless hot-rolled steel sheet and a steel strip excellent in surface sealability used for a flange material used in an automobile exhaust system and other pipe joints, and a manufacturing method thereof. is there.
- Ferritic stainless steel is inferior in workability, toughness and high-temperature strength compared to austenitic stainless steel, but it is inexpensive because it does not contain a large amount of Ni, and its thermal expansion is small. It is used favorably for parts materials.
- steel types such as SUH409L, SUS429, SUS430LX, SUS436J1L, SUS436J1L, and SUS444 are used as ferritic stainless steel suitable for these applications. These materials are used by being molded into pipes or the like. Parts processed into these pipes and the like are connected by a flange. A flange part is comprised by the flange member joined to the pipe.
- the steel plate As the flange material (automobile flange material) used for the flange member, the steel plate has been mainly used because it has a large plate thickness and is inferior in corrosion resistance. In recent years, SUH409L, which is the cheapest ferritic stainless steel, has also been used.
- Patent Document 1 also discloses that a ferritic stainless steel plate having excellent corrosion resistance and heat resistance is used for the flange.
- thin cold-rolled steel sheets with a thickness of 3 mm or less may be used with improved rigidity by bending, etc., but thick hot-rolled steel sheets with a thickness of 5 mm or more are punched as they are. Often used.
- An object of the present invention is to provide a ferritic stainless hot-rolled steel sheet and steel strip excellent in surface roughness used for automobile flanges and the like, and methods for producing them.
- the present inventors evaluated the surface sealability of the current flange material.
- the flange 2 as shown in FIG. 1A is made of 12 mm-Ti steel with a thickness of 6 mm, and the flange portion 1 as shown in FIG. 1B is manufactured using the flange 2, and the flange is fastened by flowing air instead of the exhaust gas.
- the amount of gas leakage at the fastening surface of the part 5 was evaluated. As a result, it was found that there is a correlation between the fastening surface surface roughness of the fastening portion 5 and the amount of gas leakage as shown in FIG.
- the arithmetic average roughness Ra defined in JIS B0601 is adopted as an evaluation index, and if the value is about 5 ⁇ m or less, it has been found that it is sufficiently practical. It was. Furthermore, a component system that satisfies the properties required for a material for automobile flanges, such as corrosion resistance and strength, was examined. Furthermore, in order to realize the value of the surface roughness in the manufacturing process, it was found that the hot-rolled sheet can be properly polished and pickled, and the invention was completed.
- the present invention has been completed based on these findings, and means for solving the problems of the present invention, that is, the ferritic stainless steel sheet of the present invention is as follows.
- the hot-rolled steel sheet is a concept including a so-called “cut sheet” and “steel strip”. Therefore, in the following (4) and (9), the steel strip of the hot rolled steel sheet is extracted and limited.
- (1) By mass%, C: 0.03% or less, N: 0.03% or less, Si: 0.01 to 1.0%, Mn: 0.01 to 1.0%, P: 0.04 %: S: 0.01% or less, Cr: 10.0-23.0%, Al: 0.10% or less, Furthermore, Ti: 0.5% or less and Nb: 0.5% or less are contained, and (Ti + Nb) / (C + N) is 8 or more (Ti, Nb, C, N are respective components) Content (mass%)), and the balance consists of Fe and inevitable impurities, A ferritic stainless steel hot-rolled steel sheet for automobile flanges, whose surface roughness is 5 ⁇ m or less with an arithmetic average roughness Ra as an index, and a plate thickness of 5.0 to 15.0 mm
- a ferritic stainless steel hot rolled steel sheet for automobile flanges according to the present invention wherein the Ti content is 0.05% or less.
- a ferritic stainless steel hot-rolled steel sheet for automobile flanges according to the present invention comprising a group.
- ferritic stainless steel hot rolled steel sheet for automobile flanges wherein the hot rolled steel sheet is a hot rolled steel strip.
- polishing is performed before the annealing, and the polishing, annealing, and pickling processes are repeated one or more times.
- Ferritic stainless steel for automobile flanges according to the present invention characterized by polishing after annealing or pickling in the manufacturing process of ferritic stainless steel sheet carried out by melting, casting, hot rolling, annealing, and pickling A method for producing hot-rolled steel sheets.
- the ferritic stainless steel sheet for automobile flange according to the present invention is characterized in that in the manufacturing process of the ferritic stainless steel sheet, the pickling or annealing-pickling process is omitted and the final process is a polishing process. Production method.
- the upper limit is made 0.03%. Moreover, if the viewpoint of corrosion resistance is emphasized, the upper limit is desirably set to 0.015%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.001%. 0.002% is more preferable.
- N 0.03% or less N, like C, deteriorates formability, corrosion resistance, and weldability, so its content is preferably as small as possible. Therefore, the upper limit is made 0.03%. In view of corrosion resistance, the upper limit is preferably 0.02%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001%. 0.002% is more preferable.
- Si 0.01% to 1.0%
- Si is an element useful as a deoxidizer, and is an element that improves high-temperature strength and oxidation resistance.
- the deoxidation effect is improved as the amount of Si is increased, and the effect is manifested at 0.01% or more, so the lower limit is made 0.01%.
- the upper limit is made 1.0%.
- a preferable upper limit is 0.5%.
- Mn 0.01 to 1.0%
- Mn is an element added as a deoxidizer and an element contributing to an increase in high-temperature strength in the middle temperature range. The effect is manifested at 0.01% or more.
- excessive addition forms MnS and lowers the corrosion resistance, so the upper limit is made 1.0%.
- a preferable upper limit is 0.5%.
- P 0.04% or less
- P is an element having a large solid solution strengthening ability.
- the upper limit is set to 0.04%.
- 0.02% or less is preferable.
- the lower limit is preferably made 0.005%.
- the upper limit of the content is preferably small. %.
- the upper limit is 0.0050%.
- the smaller the S content the better the corrosion resistance.
- the lower limit is preferably made 0.0001%.
- a preferred upper limit is 0.0005%.
- Cr 10.0-23.0% Cr is an essential element for ensuring corrosion resistance. In order to form a passive film in the assumed environment, 10.0% or more is necessary, and this is the lower limit. On the other hand, if it exceeds 23.0%, lowering of workability at low temperatures and deterioration of toughness are brought about by the effect of improving corrosion resistance, so 23% is made the upper limit. When Cr is high, the toughness is lowered, so the upper limit is more preferably 18%.
- Al 0.10% or less Al is useful as a deoxidizing element, and the effect is manifested at 0.005% or more. However, excessive addition causes a drop in room temperature ductility, so the upper limit is made 0.10%. When deoxidation is possible with other elements such as Si, Al may not be contained.
- the required amount can be roughly evaluated by (Ti + Nb) / (C + N), and this value may be 8 or more in order to develop excellent intergranular corrosion resistance.
- excessive addition reduces the room temperature workability, so the upper limit of both Ti and Nb is 0.5%.
- the present invention is a thick hot-rolled steel sheet, it is better not to use Ti when importance is attached to toughness. In that case, considering impurities from the raw material, Ti may be 0.05% or less.
- the following elements may be added.
- Mo 1.5% or less Mo may be added as necessary in order to improve corrosion resistance.
- the lower limit is preferably made 0.01%.
- the upper limit is made 1.5%.
- it is 1.1%.
- Cu 0.5% or less
- Cu is an element that improves corrosion resistance. The effect is manifested at 0.05% or more. Preferably it is 0.1% or more.
- the upper limit is made 0.5%. A preferable upper limit is 0.2%.
- Ni 1% or less Ni is an element effective for suppressing the progress of pitting corrosion, and the effect is stably exhibited by addition of 0.05% or more. In addition, it is effective for improving the toughness of the hot-rolled sheet. Therefore, the lower limit is made 0.05%. It is more effective at 0.10% or more. 0.15% or more is more effective. Moreover, since addition of a large amount may cause material hardening by solid solution strengthening, the upper limit is made 1.0%. In consideration of the alloy cost, the upper limit is preferably 0.30%.
- Sn 0.005 to 0.1%
- Sn is an element effective for improving corrosion resistance and high temperature strength.
- the lower limit is made 0.005%.
- the lower limit is 0.01%. More preferably, it is 0.03%.
- the upper limit is made 0.1%.
- V 1% or less
- W 1% or less
- Co 1% or less
- V, W, and Co are elements that improve high-temperature strength, and can be added as necessary.
- it is preferably 0.05% or more. More preferably, it is 0.1% or more.
- the upper limit is 1%. Preferably it is 0.5% or less.
- B 0.0001% or more and 0.005% or less B is effective in fixing N, which is harmful to workability, and improving secondary workability, and may be added. The effect is manifested by adding 0.0001% or more. However, to reduce workability, the upper limit is made 0.005%.
- Ga, Zr, Ta, Sb, Mg, and Ca may be added as follows.
- Ga may be added at 0.1% or less for improving corrosion resistance and suppressing hydrogen embrittlement.
- 0.0020% or less is preferable from the viewpoints of manufacturability and cost and from the viewpoints of ductility and toughness. From the viewpoint of sulfide and hydride formation, the lower limit is preferably 0.0002%.
- Zr and Ta are preferably added as necessary because they combine with C and N to contribute to improvement of toughness.
- Zr exceeds 0.50% and Ta exceeds 0.1%.
- Zr is 0.50% and Ta is 0.1%. To do.
- 0.08% or less is desirable.
- the addition amount is 0.01% or more, the above effect is manifested, which is preferable.
- Sb contributes to improvement of corrosion resistance and high-temperature strength, so it is preferable to add Sb as necessary. Addition of more than 0.3% may cause slab cracking during production of steel sheets and low toughness of muffler hangers, so the upper limit is set to 0.3%. Furthermore, considering refining cost and manufacturability, 0.15% or less is desirable. When the addition amount is 0.01% or more, the above effect is manifested, which is preferable.
- Mg is an element that may be added as a deoxidizing element and that contributes to improving the formability by refining the slab structure. Further, the Mg oxide becomes a precipitation site for carbonitrides such as Ti (C, N) and Nb (C, N), and has an effect of finely dispersing and depositing them. However, excessive addition leads to deterioration of weldability and corrosion resistance, so the upper limit was made 0.0030%. Considering the refining cost, 0.0010% or less is desirable. This effect is manifested at 0.0002% or more, and contributes to the improvement of toughness, so the lower limit is preferably 0.0002%. 0.0003% or more is more desirable.
- Ca may be added for desulfurization; however, addition of over 0.0030% produces coarse CaS and deteriorates toughness and corrosion resistance, so the upper limit was made 0.0030%. Furthermore, considering refining cost and manufacturability, 0.0020% or less is desirable. Since this effect is manifested at 0.0001% or more, the lower limit is preferably made 0.0001%. 0.0003% or more is more desirable.
- the elements of the present invention can be contained within a range that does not impair the effects of the present invention. It is preferable to reduce as much as possible Zn, Bi, Pb, Se, H, etc. as well as the aforementioned P and S, which are general impurity elements. On the other hand, the content ratio of these elements is controlled to the extent that the problem of the present invention is solved, and if necessary, Zn ⁇ 100 ppm, Bi ⁇ 100 ppm, Pb ⁇ 100 ppm, Se ⁇ 100 ppm, H ⁇ 100 ppm. Contains one or more. “Ppm” is based on mass.
- the ferritic stainless steel hot-rolled steel sheet of the present invention is used for automobile flanges, it needs to be excellent in surface roughness.
- a flange is used to connect pipe members such as an exhaust system. Connect the flanges together to make the flange part.
- a fastening material such as a gasket may be used, but a gasket is often not used.
- the face seal between the flanges is important. Therefore, until now, the surface seal part of the flange has been finished by surface grinding.
- this method requires a grinding cost.
- the hot rolled steel sheet As the index, the arithmetic surface roughness Ra defined in JIS B 0601 was adopted, and it was found that the value was 5 ⁇ m or less. Therefore, the upper limit of Ra of the hot-rolled steel sheet is 5 ⁇ m. The smaller this value is, the smoother it is, and 3 ⁇ m or less is preferable for further improving the surface sealing property.
- the hot-rolled steel sheet of the present invention has a thickness of 5 mm to 15 mm. If it is less than 5 mm, it is too thin to have sufficient rigidity and sufficient surface sealability cannot be maintained, and if it exceeds 15 mm, it becomes too heavy and becomes unsuitable as a flange material. From the relationship of surface sealing properties, 6 mm or more is more preferable. From the relationship of weight, 10 mm or less is more preferable.
- the amount of torque for tightening the bolt for fastening varies depending on the plate thickness, so plate thickness accuracy is important.
- the tolerance range is preferably 10% or less. More preferably, it is 5% or less.
- the ferritic stainless steel of the present invention is a hot-rolled steel sheet, and becomes a product through processes of melting, casting, hot-rolling, annealing, and pickling.
- it is often manufactured in the form of a so-called steel strip that is very long in the rolling direction, and is wound and stored and moved in a coiled form.
- the plate thickness is 10 mm or more, the plate is often rolled, cut, stored and moved.
- Hot rolling is not particularly defined, but the slab heating temperature is preferably 1150 ° C to 1250 ° C.
- the hot rolling finishing temperature is preferably 850 ° C. or higher.
- the slab heating temperature is preferably 1150 ° C to 1250 ° C.
- the hot rolling finishing temperature is preferably 850 ° C. or higher.
- the alloy addition amount is large, if the cooling is insufficient, the variation in toughness of the hot-rolled sheet increases, but in that case, it is preferable to rapidly cool to 450 ° C. or less. This stabilizes the toughness of the hot-rolled sheet.
- the cooling end temperature is most preferably 400 ° C. or higher and 450 ° C. or lower.
- the annealing temperature is preferably 900 to 1100 ° C.
- the temperature is lower than 900 ° C., recrystallization is difficult, and when the temperature exceeds 1100 ° C., crystal grains tend to be coarse, which is not preferable.
- the temperature exceeds 1100 ° C., crystal grains tend to be coarse, which is not preferable.
- the cooling rate from 800 degreeC to 450 degreeC shall be 5 degrees C / sec or more.
- it is 10 ° C./sec or more.
- the effect is saturated at 20 ° C./sec or more. Thereby, the dispersion
- the grinding amount of one steel plate is preferably 10 ⁇ m or more and 100 ⁇ m or less. If it is less than 10 ⁇ m, there is a high possibility that wrinkles will not be removed, and if it exceeds 100 ⁇ m, there is a high possibility that the roughness will not be sufficiently good.
- grinding it is preferable to perform grinding before annealing, and to perform annealing and pickling after grinding because the tendency of the roughness to be improved than after grinding is seen.
- grinding may be performed in any process as long as the surface roughness of the present invention can be realized.
- Equipment for grinding is not particularly defined, but what is usually used can be used. Generally, a grinding belt is used.
- the polishing count can be appropriately selected in view of the situation after manufacture, but # 80 or more is preferable. This is because if it is less than # 80, there is a high possibility that the surface roughness is too high to be achieved. Moreover, since it will take time for grinding
- the annealing temperature after the second time is preferably lower than the first time.
- the roughness of the present invention can be realized, there is no problem even if the product is ground. Further, there is no problem even if the pickling step is omitted and the grinding step is the final step, and furthermore, the annealing and pickling step is omitted and the final step is not problematic. That is, as long as the roughness of the present invention can be realized, the grinding process can be performed any number of times in the manufacturing process. Of course, if the roughness of the present invention can be realized without grinding, there is no problem even if grinding is omitted.
- the ferritic stainless steel hot-rolled steel sheet of the present invention can be particularly suitably used as a ferritic stainless steel sheet for automobile flanges.
- the flange member composed of the ferritic stainless steel hot-rolled steel sheet of the present invention can be particularly suitably used for an automobile flange.
- the flange member of the present invention is joined to a pipe which is an exhaust system member of an automobile to form a flange.
- the flange excellent in surface sealing property can be comprised.
- steels having the components shown in Table 1-1 and Table 1-2 were melted to cast an ingot, heated to 1150 to 1250 ° C., and the finishing temperature was set to a range of 850 to 950 ° C.
- Hot rolled to about 6 mm to obtain a hot rolled steel sheet (hot rolled steel strip).
- the hot-rolled steel sheet was cooled to 400 to 450 ° C. by air-water cooling. Thereafter, the coil (steel strip) was divided, and one was ground by about 30 ⁇ m on both sides using a grinding belt.
- the coil was A, and the coil that was not ground was B. Thereafter, it was annealed at 1000 to 1100 ° C. and cooled to room temperature.
- the average cooling rate in the range of 800 to 450 ° C. was set to 10 ° C./s or more.
- the hot-rolled annealed plate (hot-rolled steel plate) was pickled.
- Nb and Ti content of Table 1 that whose content is less than 0.01% means that the element is not positively added and means inevitable impurities. Numerical values that fall outside the scope of the present invention are underlined. The same applies to Tables 2-1, 2-2, and 3 below.
- a Charpy impact test was performed on the hot-rolled annealed sheet thus obtained at 0 ° C. according to JIS Z 2242.
- the test piece in a present Example is a subsize test piece with the thickness of a hot-rolled annealing board having a 2 mmV notch, and the heat energy in each example is obtained by dividing the absorbed energy by the cross-sectional area (unit cm 2 ).
- the toughness of the annealed annealed plates was compared and evaluated.
- the evaluation standard of toughness was an impact value at 0 ° C., 10 J / cm 2 or more was good (A), and the others were “X”.
- the surface roughness was measured.
- the arithmetic surface roughness Ra specified in JIS B 0601 was used as an index. Ten locations were selected at random from the steel sheet, the roughness Ra was measured, and the average value was used as an index.
- a 80 mm square plate is taken as the flange 2 shown in FIG. 1A, and four ⁇ 5 mm bolt holes 6 and ⁇ 40 mm holes 7 are opened, and ⁇ 40 mm and 100 mm length ferritic stainless steel.
- a steel pipe 3 was welded to the flange 2 by TIG welding, and a flange portion 1 as shown in FIG. 1B was assembled using M5 bolts 4.
- An air flow 8 was flowed at a flow rate of 50 L / min, and a liquid leak detection liquid was applied to the fastening portion 5 between the flanges to confirm the presence or absence of a leak.
- the surface sealability was good (A), and the others were “X”. As a result, it became clear that there was no leakage when the roughness Ra was 5 ⁇ m or less, and the roughness Ra was 5 ⁇ m or less.
- Table 2-1 and Table 2-2 summarize the results.
- the roughness and surface sealability of a hot-rolled annealed steel plate (hot-rolled steel plate) having a component composition to which the present invention was applied were good. Moreover, toughness and corrosion resistance were also good.
- roughness and surface sealing property were not favorable, or Charpy impact value or corrosion resistance was unacceptable. Thereby, it turns out that the ferritic stainless steel plate in a comparative example is inferior as an automobile flange use.
- the steel No. in Table 1-1 was used. 3 and steel no. Steel having the component composition shown in FIG. 10 was melted and cast into a slab. This slab was heated to 1200 ° C. and then hot-rolled to a plate thickness of 8 mm with a finishing temperature in the range of 850 to 950 ° C. to obtain a hot-rolled steel plate.
- the hot-rolled steel sheet was cooled to 380 to 560 ° C. by air-water cooling and then wound into a coil. As shown in Table 3, hot-rolled coils (hot-rolled steel strips) were manufactured under several cooling conditions.
- the hot-rolled coil was divided, and both surfaces of the hot-rolled coil were ground using a grinding belt while changing the grinding thickness as shown in “Grinding amount” in Table 3.
- # 80 to # 600 were appropriately selected according to the grinding amount.
- the hot rolled coil was annealed at 1000 to 1100 ° C. and cooled to room temperature.
- the average cooling rate in the range of 800 to 450 ° C. was set to 10 ° C./s or more.
- the hot-rolled annealed plate was pickled to obtain a product plate.
- annealing temperature was decreased from 0 ° C. to 20 ° C. from the first time.
- the grinding amount was not changed from the first time.
- the number of repetitions is shown in “Polishing-annealing-pickling process (times)” in Table 3.
- the pickling step was omitted or the annealing-pickling step was omitted, and the final grinding step was performed.
- a Charpy impact test was performed on the hot-rolled annealed sheet thus obtained at 0 ° C. according to JIS Z 2242.
- the test piece in a present Example is a subsize test piece with the thickness of a hot-rolled annealing board, and by dividing an absorbed energy by a cross-sectional area (unit cm ⁇ 2 >), the hot-rolled annealing board in each Example is obtained. Toughness was compared and evaluated.
- the evaluation criteria of toughness are impact values at 0 ° C., 10 J / cm 2 or more is good (A), 7 J / cm 2 or more and less than 10 J / cm 2 is “B”, and the others are “X”. It was.
- Example 1 The same surface sealability evaluation test as in Example 1 was performed. When there was no leak, the surface sealability was good (A), and the others were “X”. Furthermore, the surface roughness was measured. The arithmetic surface roughness Ra specified in JIS B 0601 was used as an index. The measuring method is the same as in Example 1. Further, as in Example 1, Ra was 5 ⁇ m or less as acceptable.
- the stainless hot-rolled steel sheet and steel strip of the present invention can be used as an automobile flange material as it is without surface grinding due to its excellent surface smoothness. Therefore, it is excellent in parts manufacturability such as a good material yield. That is, by applying the material to which the present invention is applied, particularly to an exhaust flange member of an automobile or a motorcycle, a long-life component can be manufactured at low cost, and the social contribution can be increased.
- the present invention is very useful industrially.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
質量%で、C:0.03%以下、N:0.03%以下、Si:0.01~1.0%、Mn:0.01~1.0%、P:0.04%以下、S:0.01%以下、Cr:10.0~23.0%、Al:0.10%以下を含有し、さらに、Ti:0.5%以下およびNb:0.5%以下を1種または2種含有し、かつ、(Ti+Nb)/(C+N)が8以上(Ti、Nb、C、Nはそれぞれの成分含有量(質量%))であり、残部がFe及び不可避的不純物からなり、その表面粗さが算術平均粗さRaを指標として、5μm以下であり、板厚5.0~15.0mmであることを特徴とする自動車フランジ用フェライト系ステンレス熱延鋼板および熱延鋼帯。
Description
本発明は、主として、自動車の排気系その他の配管の接合部に使用されるフランジ材料に使用される、面シール性に優れたフェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法に関するものである。
フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて加工性、靭性及び高温強度では劣るものの、多量のNiを含有していないため廉価であり、また熱膨張が小さいため、近年では、自動車排気系部品材料などに好まれて使用されている。一般には、SUH409L、SUS429、SUS430LX、SUS436J1L、SUS436J1L、SUS444等の鋼種が、これらの用途に適するフェライト系ステンレス鋼として用いられている。これらの材料は、パイプ等に成形されて使用されている。これらのパイプ等に加工された部品同士は、フランジによって接続する。フランジ部は、パイプに接合したフランジ部材によって構成される。フランジ部材に用いるフランジ材料(自動車フランジ材料)には、板厚が厚いこともあり、耐食性に劣る普通鋼が主に使用されてきた。近年では、最も安価なフェライト系ステンレス鋼であるSUH409Lも使われている。
しかし、車体重量の軽量化や寿命延長等のニーズから、自動車フランジ材料においても耐食性に優れた材料が要求されるところとなり、SUH409L又はさらに耐食性に優れたフェライト系ステンレス鋼の使用が始まっている。また、排気系に使用する場合、高温での強度が高ければ、板厚を薄く設計できる効果もあり、その点でもフェライト系ステンレス鋼は普通鋼より有利である。
特許文献1にも耐食性・耐熱性に優れたフェライト系ステンレス鋼板がフランジ用に使用されていることが開示されている。
自動車フランジ材料用としては、板厚3mm以下の薄手の冷延鋼板を曲げ加工等で剛性を向上させて使用する場合もあるが、板厚5mm以上の厚手の熱延鋼板を打ち抜き加工程度でそのまま使用する場合も多い。
特に、そのまま使用する場合、フランジ面での表面粗さが粗い場合、排気ガスが漏れ出すことがある。フランジ締結部の接合面から排気ガスが漏れ出さない、いわゆるフランジ部材の面シール性が良好であることが重要な特性となる。部品加工においてフランジ部材表面を研削することにより面シール性を向上させることが通常実施されているが、加工コストが増大する要因となっていた。そのため、研削しないで使用できる面シール性に優れた自動車フランジ用フェライト系熱延鋼板が望まれていた。
背景技術に記載のフェライト系ステンレス鋼板では、部品加工で研削により面シール性を向上させることが通常実施されているが、加工コストが増大する要因となっており、研削しないで使用できる表面粗さに優れたフェライト系熱延鋼板が望まれていた。本発明の目的は、自動車フランジなどに用いられる、表面粗さに優れたフェライト系ステンレス熱延鋼板および鋼帯並びにそれらの製造方法を提供することにある。
本発明者等は、現行フランジ材の面シール性を評価した。6mm厚の12Cr-Ti鋼を素材として図1Aに示すようなフランジ2とし、フランジ2を用いて図1Bに示すようなフランジ部1を作製し、排気ガスの代わりに空気を流して、フランジ締結部5の締結面でのガス漏れ量を評価した。その結果、図2に示すように締結部5の締結面表面粗さとガス漏れ量に相関があることが分かった。つまり、排気ガスが漏れないようにするためには、JIS B0601で規定される算術平均粗さRaを評価指標として採用し、その値が5μm程度以下であれば、十分に実用に耐えることを見出した。さらに、耐食性、強度等を自動車フランジ用材料として必要な特性を満たす成分系を検討した。さらに、その表面粗さの値を製造プロセスで実現するために、熱延板の研磨-酸洗を適切に行うことにより可能であることを見出し、発明を完成させた。
本発明は、これらの知見に基づいて完成に到ったものであり、本発明の課題を解決する手段、すなわち、本発明のフェライト系ステンレス鋼板は以下の通りである。
なお、本発明において、熱延鋼板とは、いわゆる「切り板」と「鋼帯」を包含した概念である。そこで、下記(4)(9)においては、熱延鋼板のうちの鋼帯を抽出して限定することとした。
(1)質量%で、C:0.03%以下、N:0.03%以下、Si:0.01~1.0%、Mn:0.01~1.0%、P:0.04%以下、S:0.01%以下、Cr:10.0~23.0%、Al:0.10%以下を含有し、
さらに、Ti:0.5%以下およびNb:0.5%以下を1種または2種含有し、かつ、(Ti+Nb)/(C+N)が8以上(Ti、Nb、C、Nはそれぞれの成分含有量(質量%))であり、残部がFe及び不可避的不純物からなり、
その表面粗さが算術平均粗さRaを指標として、5μm以下であり、板厚5.0~15.0mmであることを特徴とする自動車フランジ用フェライト系ステンレス熱延鋼板。
(2)Ti含有量を0.05%以下とすることを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板。
(3)さらに、質量%で、
Mo:1.5%以下、Cu:0.5%以下、Ni:1%以下のいずれか1種または2種以上からなる第1群、
Sn:0.005~0.1%からなる第2群、
V:1%以下、W:1%以下、Co:1%以下、B:0.0001%以上、0.005%以下、Ga:0.10%以下、Zr:0.50%以下、Ta:0.1%以下、Sb:0.30%以下、Mg:0.0030%以下、Ca:0.0030%以下のいずれか1種または2種以上からなる第3群のうち、少なくともいずれかの群を含有することを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板。
(4)前記熱延鋼板が熱延鋼帯であることを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板。
(5)本発明のフェライト系ステンレス熱延鋼板から構成されるフランジ部材。
(6)溶解・鋳造-熱延-焼鈍-酸洗と実施されるフェライト系ステンレス熱延鋼板の製造工程において、前記焼鈍前に研磨を行い、前記研磨-焼鈍-酸洗工程を1回以上繰り返すことを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
(7)溶解・鋳造-熱延-焼鈍-酸洗と実施されるフェライト系ステンレス鋼板の製造工程において、焼鈍後または酸洗後に研磨を行うことを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
(8)前記フェライト系ステンレス鋼板の製造工程において、酸洗または焼鈍-酸洗工程を省略し、最終工程が研磨工程であることを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
(9)前記熱延鋼板が熱延鋼帯であることを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
(1)質量%で、C:0.03%以下、N:0.03%以下、Si:0.01~1.0%、Mn:0.01~1.0%、P:0.04%以下、S:0.01%以下、Cr:10.0~23.0%、Al:0.10%以下を含有し、
さらに、Ti:0.5%以下およびNb:0.5%以下を1種または2種含有し、かつ、(Ti+Nb)/(C+N)が8以上(Ti、Nb、C、Nはそれぞれの成分含有量(質量%))であり、残部がFe及び不可避的不純物からなり、
その表面粗さが算術平均粗さRaを指標として、5μm以下であり、板厚5.0~15.0mmであることを特徴とする自動車フランジ用フェライト系ステンレス熱延鋼板。
(2)Ti含有量を0.05%以下とすることを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板。
(3)さらに、質量%で、
Mo:1.5%以下、Cu:0.5%以下、Ni:1%以下のいずれか1種または2種以上からなる第1群、
Sn:0.005~0.1%からなる第2群、
V:1%以下、W:1%以下、Co:1%以下、B:0.0001%以上、0.005%以下、Ga:0.10%以下、Zr:0.50%以下、Ta:0.1%以下、Sb:0.30%以下、Mg:0.0030%以下、Ca:0.0030%以下のいずれか1種または2種以上からなる第3群のうち、少なくともいずれかの群を含有することを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板。
(4)前記熱延鋼板が熱延鋼帯であることを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板。
(5)本発明のフェライト系ステンレス熱延鋼板から構成されるフランジ部材。
(6)溶解・鋳造-熱延-焼鈍-酸洗と実施されるフェライト系ステンレス熱延鋼板の製造工程において、前記焼鈍前に研磨を行い、前記研磨-焼鈍-酸洗工程を1回以上繰り返すことを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
(7)溶解・鋳造-熱延-焼鈍-酸洗と実施されるフェライト系ステンレス鋼板の製造工程において、焼鈍後または酸洗後に研磨を行うことを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
(8)前記フェライト系ステンレス鋼板の製造工程において、酸洗または焼鈍-酸洗工程を省略し、最終工程が研磨工程であることを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
(9)前記熱延鋼板が熱延鋼帯であることを特徴とする本発明の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
本発明によると、面シール性に優れた自動車フランジ用フェライト系ステンレス鋼熱延鋼板および鋼帯が提供可能となる。
以下、本発明の実施の形態について説明する。
<成分>
まず、本実施形態のステンレス熱延鋼板の鋼組成を限定した理由について説明する。なお、組成についての%の表記は、特に断りのない場合は、質量%を意味する。
まず、本実施形態のステンレス熱延鋼板の鋼組成を限定した理由について説明する。なお、組成についての%の表記は、特に断りのない場合は、質量%を意味する。
C:0.03%以下
Cは、成形性、耐食性、溶接性を劣化させるため、その含有量は少ないほど好ましい。したがって、上限を0.03%とする。また、耐食性の観点を重視すると、上限を0.015%とすることが望ましい。但し、過度の低減は精錬コストの増加をもたらすので下限は0.001%が好ましい。0.002%がより好ましい。
Cは、成形性、耐食性、溶接性を劣化させるため、その含有量は少ないほど好ましい。したがって、上限を0.03%とする。また、耐食性の観点を重視すると、上限を0.015%とすることが望ましい。但し、過度の低減は精錬コストの増加をもたらすので下限は0.001%が好ましい。0.002%がより好ましい。
N:0.03%以下
Nは、Cと同様に成形性、耐食性、溶接性を劣化させるため、その含有量は少ないほど好ましい。したがって、上限を0.03%とする。耐食性の観点を重視すると、上限を0.02%とすることが望ましい。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.001%とする。0.002%がより好ましい。
Nは、Cと同様に成形性、耐食性、溶接性を劣化させるため、その含有量は少ないほど好ましい。したがって、上限を0.03%とする。耐食性の観点を重視すると、上限を0.02%とすることが望ましい。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.001%とする。0.002%がより好ましい。
Si:0.01%~1.0%
Siは、脱酸剤としても有用な元素であるとともに、高温強度や耐酸化性を改善させる元素である。脱酸効果は、Si量の増加とともに向上し、その効果は0.01%以上で発現するため、下限を0.01%とする。しかし、Siは鋼板を硬くするため、上限を1.0%とする。好ましい上限は、0.5%である。
Siは、脱酸剤としても有用な元素であるとともに、高温強度や耐酸化性を改善させる元素である。脱酸効果は、Si量の増加とともに向上し、その効果は0.01%以上で発現するため、下限を0.01%とする。しかし、Siは鋼板を硬くするため、上限を1.0%とする。好ましい上限は、0.5%である。
Mn:0.01~1.0%
Mnは、脱酸剤として添加される元素であるとともに、中温域での高温強度上昇に寄与する元素である。0.01%以上でその効果を発現する。一方、過度な添加は、MnSを形成して耐食性を低下させるため、上限を1.0%とする。好ましい上限は0.5%である。
Mnは、脱酸剤として添加される元素であるとともに、中温域での高温強度上昇に寄与する元素である。0.01%以上でその効果を発現する。一方、過度な添加は、MnSを形成して耐食性を低下させるため、上限を1.0%とする。好ましい上限は0.5%である。
P:0.04%以下
Pは、固溶強化能の大きな元素であるが、耐食性に対して有害な元素であるため、可能な限り少ないほうが好ましく、上限を0.04%とする。より優れた耐食性が必要な場合は、0.02%以下が好ましい。しかし、過度の低減は脱りん負荷が増大し、製造コストが増加するため、その下限を0.005%とするのが好ましい。
Pは、固溶強化能の大きな元素であるが、耐食性に対して有害な元素であるため、可能な限り少ないほうが好ましく、上限を0.04%とする。より優れた耐食性が必要な場合は、0.02%以下が好ましい。しかし、過度の低減は脱りん負荷が増大し、製造コストが増加するため、その下限を0.005%とするのが好ましい。
S:0.01%以下
Sは、硫化物系介在物を形成し、鋼材の一般的な耐食性(全面腐食や孔食)を劣化させるため、その含有量の上限は少ないほうが好ましく、0.01%とする。好ましくは上限は0.0050%である。また、Sの含有量は少ないほど耐食性は良好となるが、低S化には脱硫負荷が増大し、製造コストが増大するので、その下限を0.0001%とするのが好ましい。なお、好ましい上限は0.0005%である。
Sは、硫化物系介在物を形成し、鋼材の一般的な耐食性(全面腐食や孔食)を劣化させるため、その含有量の上限は少ないほうが好ましく、0.01%とする。好ましくは上限は0.0050%である。また、Sの含有量は少ないほど耐食性は良好となるが、低S化には脱硫負荷が増大し、製造コストが増大するので、その下限を0.0001%とするのが好ましい。なお、好ましい上限は0.0005%である。
Cr:10.0~23.0%
Crは、耐食性確保のために必須な元素である。想定される環境で不動態皮膜を形成するためには、10.0%以上必要であり、これを下限とする。一方で、23.0%を超えると、耐食性の向上効果より、低温での加工性の低下や靭性の劣化をもたらすため、23%を上限とする。Crが高い場合は靭性が低下するため、より好ましくは18%を上限とする。
Crは、耐食性確保のために必須な元素である。想定される環境で不動態皮膜を形成するためには、10.0%以上必要であり、これを下限とする。一方で、23.0%を超えると、耐食性の向上効果より、低温での加工性の低下や靭性の劣化をもたらすため、23%を上限とする。Crが高い場合は靭性が低下するため、より好ましくは18%を上限とする。
Al:0.10%以下
Alは脱酸元素として有用であり、その効果は、0.005%以上で発現する。しかし、過度の添加は、常温延性の低下を招くため、その上限を0.10%とする。Si等他の元素で脱酸できる場合、Alは含有しなくてもよい。
Alは脱酸元素として有用であり、その効果は、0.005%以上で発現する。しかし、過度の添加は、常温延性の低下を招くため、その上限を0.10%とする。Si等他の元素で脱酸できる場合、Alは含有しなくてもよい。
Ti:0.5%以下およびNb:0.5%以下を1種または2種含有し、
かつ、(Ti+Nb)/(C+N)が8以上(Ti、Nb、C、Nはそれぞれの成分含有量(質量%))
本発明は自動車用フランジ材料として使用されることから、溶接は必須である。したがって、溶接部の耐食性とくに、耐粒界腐食性に優れる必要がある。そのため、溶接部の耐食性を低下させるCr系炭窒化物の形成を抑制するために、C,Nを炭窒化物として固定できるNbおよびTiの1種または2種の添加を必須とする。その必要量は、大凡、(Ti+Nb)/(C+N)で評価でき、優れた耐粒界腐食性を発現するためには、この値が8以上であれば良い。しかし、過度の添加は、常温加工性を低下させるため、Ti、Nbともに、その上限を0.5%とする。
かつ、(Ti+Nb)/(C+N)が8以上(Ti、Nb、C、Nはそれぞれの成分含有量(質量%))
本発明は自動車用フランジ材料として使用されることから、溶接は必須である。したがって、溶接部の耐食性とくに、耐粒界腐食性に優れる必要がある。そのため、溶接部の耐食性を低下させるCr系炭窒化物の形成を抑制するために、C,Nを炭窒化物として固定できるNbおよびTiの1種または2種の添加を必須とする。その必要量は、大凡、(Ti+Nb)/(C+N)で評価でき、優れた耐粒界腐食性を発現するためには、この値が8以上であれば良い。しかし、過度の添加は、常温加工性を低下させるため、Ti、Nbともに、その上限を0.5%とする。
さらに、本発明は厚手の熱延鋼板であるため、靭性を重視する場合は、Tiを使用しない方が良い。その場合、原料からの不純物を考慮し、Tiは0.05%以下であれば良い。
さらに、耐食性を向上させるために、以下の元素を添加しても良い。
Mo:1.5%以下
Moは、耐食性を向上させるために必要に応じて添加すれば良く、これらの効果を発揮させるため、下限を0.01%とすることが好ましい。好ましくは0.10%であり、さらに好ましくは0.5%である。一方、過度の添加は加工性を低下させるため、上限を1.5%とする。好ましくは1.1%である。
Moは、耐食性を向上させるために必要に応じて添加すれば良く、これらの効果を発揮させるため、下限を0.01%とすることが好ましい。好ましくは0.10%であり、さらに好ましくは0.5%である。一方、過度の添加は加工性を低下させるため、上限を1.5%とする。好ましくは1.1%である。
Cu:0.5%以下
Cuは、耐食性を向上させる元素である。その効果は、0.05%以上で発現する。好ましくは0.1%以上である。一方、過度な添加は、熱延加熱時に異常酸化を生じ表面疵の原因ともなる上、靭性も低下させるため、上限を0.5%とする。好ましい上限は0.2%である。
Cuは、耐食性を向上させる元素である。その効果は、0.05%以上で発現する。好ましくは0.1%以上である。一方、過度な添加は、熱延加熱時に異常酸化を生じ表面疵の原因ともなる上、靭性も低下させるため、上限を0.5%とする。好ましい上限は0.2%である。
Ni:1%以下
Niは、孔食の進展抑制に有効な元素であり、その効果は0.05%以上の添加で安定して発揮される。併せて、熱延板の靱性向上に有効である。したがって、下限を0.05%とする。0.10%以上でより効果的である。0.15%以上がさらに有効である。また、多量の添加は、固溶強化による材質硬化を招くおそれがあるため、その上限を1.0%とする。なお、合金コストを考慮すると上限は0.30%が望ましい。
Niは、孔食の進展抑制に有効な元素であり、その効果は0.05%以上の添加で安定して発揮される。併せて、熱延板の靱性向上に有効である。したがって、下限を0.05%とする。0.10%以上でより効果的である。0.15%以上がさらに有効である。また、多量の添加は、固溶強化による材質硬化を招くおそれがあるため、その上限を1.0%とする。なお、合金コストを考慮すると上限は0.30%が望ましい。
Sn:0.005~0.1%
Snは、耐食性や高温強度の向上に有効な元素である。また、常温の機械的特性を大きく劣化させない効果もある。耐食性への効果は0.005%以上で発現するため、下限は0.005%とする。好ましくは下限を0.01%とする。更に好ましくは0.03%である。一方、過度に添加すると製造性や溶接性が著しく劣化するため、上限を0.1%とする。
Snは、耐食性や高温強度の向上に有効な元素である。また、常温の機械的特性を大きく劣化させない効果もある。耐食性への効果は0.005%以上で発現するため、下限は0.005%とする。好ましくは下限を0.01%とする。更に好ましくは0.03%である。一方、過度に添加すると製造性や溶接性が著しく劣化するため、上限を0.1%とする。
さらに、以下の元素を添加しても良い。
V:1%以下、W:1%以下、Co:1%以下
V、W、Coは、高温強度を向上させる元素であり、必要に応じて添加することができる。本発明では好ましくは、0.05%以上とする。さらに好ましくは0.1%以上である。しかし、過度の添加は、常温延性の低下を招くため、1%を上限とする。好ましくは0.5%以下である。
V、W、Coは、高温強度を向上させる元素であり、必要に応じて添加することができる。本発明では好ましくは、0.05%以上とする。さらに好ましくは0.1%以上である。しかし、過度の添加は、常温延性の低下を招くため、1%を上限とする。好ましくは0.5%以下である。
B:0.0001%以上、0.005%以下
Bは、加工性に有害なNの固定や、二次加工性改善に有効であり、添加しても良い。0.0001%以上の添加でその効果を発現する。しかし、加工性を低下させるため、その上限を0.005%とする。
Bは、加工性に有害なNの固定や、二次加工性改善に有効であり、添加しても良い。0.0001%以上の添加でその効果を発現する。しかし、加工性を低下させるため、その上限を0.005%とする。
さらに、Ga、Zr、Ta、Sb、Mg、Caを下記の通り添加しても良い。
Gaは、耐食性向上や水素脆化抑制のため、0.1%以下で添加してもよい。さらに、製造性やコストの観点ならびに、延性や靭性の観点から0.0020%以下が好ましい。硫化物や水素化物形成の観点から下限は0.0002%とすると好ましい。
Gaは、耐食性向上や水素脆化抑制のため、0.1%以下で添加してもよい。さらに、製造性やコストの観点ならびに、延性や靭性の観点から0.0020%以下が好ましい。硫化物や水素化物形成の観点から下限は0.0002%とすると好ましい。
Zr、Taは、CやNと結合して靭性の向上に寄与するため必要に応じて添加するのが好ましい。但し,Zrは0.50%超、Taは0.1%超の添加によりコスト増になる他,製造性を著しく劣化させるため,上限をZrは0.50%、Taは0.1%とする。更に,精錬コストや製造性を考慮すると、0.08%以下が望ましい。添加量を0.01%以上とすると上記効果が顕在化するので好ましい。
Sbは、耐食性と高温強度の向上に寄与するため,必要に応じて添加するのが好ましい。0.3%超の添加により鋼板製造時のスラブ割れやマフラーハンガーの低靭化が生じる場合があるため上限を0.3%とする.更に,精錬コストや製造性を考慮すると、0.15%以下が望ましい。添加量を0.01%以上とすると上記効果が顕在化するので好ましい。
Mgは、脱酸元素として添加させる場合がある他、スラブの組織を微細化させ、成形性向上に寄与する元素である。また、Mg酸化物はTi(C,N)やNb(C,N)等の炭窒化物の析出サイトになり、これらを微細分散析出させる効果がある。但し、過度な添加は、溶接性や耐食性の劣化につながるため、上限を0.0030%とした。精錬コストを考慮すると、0.0010%以下が望ましい。この作用は0.0002%以上で発現し、靭性向上に寄与するため下限を0.0002%とすると好ましい。0.0003%以上がより望ましい。
Caは、脱硫のために添加される場合があり、しかしながら、0.0030%超の添加により粗大なCaSが生成し、靭性や耐食性を劣化させるため、上限を0.0030%とした。更に,精錬コストや製造性を考慮すると、0.0020%以下が望ましい。この効果は0.0001%以上で発現することから下限を0.0001%とするのが好ましい。0.0003%以上がより望ましい。
以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることができる。一般的な不純物元素である前述のP、Sを始め、Zn、Bi、Pb、Se、H等は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Zn≦100ppm、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、の1種以上を含有する。なお、「ppm」は質量基準である。
<表面粗度>
本発明のフェライト系ステンレス熱延鋼板は、自動車フランジ用に使用されるため、表面粗さに優れている必要がある。排気系等のパイプ部材同士を接続するためにフランジが使用される。フランジ同士を合わせて接続し、フランジ部とする。フランジ部からのガス漏れを防止するためには、ガスケット等の締結材を使用する場合もあるが、ガスケットを使用しない場合も多い。ガスケットを使用しない場合、フランジ同士の面シール性が重要である。そのため、これまではフランジの面シール部を表面研削で仕上げていた。しかし、この方法では研削コストがかかる。したがって、熱延鋼板の表面ままで使用可能とするためには、熱延鋼板段階で表面を平滑にする必要がある。その指標として、JIS B 0601に規定される算術的表面粗さRaを採用し、その値が5μm以下であれば十分であることを見出した。そのため、熱延鋼板のRaの上限を5μmとする。この値は小さいほど、平滑であり、より面シール性を向上させるには、3μm以下が好ましい。
本発明のフェライト系ステンレス熱延鋼板は、自動車フランジ用に使用されるため、表面粗さに優れている必要がある。排気系等のパイプ部材同士を接続するためにフランジが使用される。フランジ同士を合わせて接続し、フランジ部とする。フランジ部からのガス漏れを防止するためには、ガスケット等の締結材を使用する場合もあるが、ガスケットを使用しない場合も多い。ガスケットを使用しない場合、フランジ同士の面シール性が重要である。そのため、これまではフランジの面シール部を表面研削で仕上げていた。しかし、この方法では研削コストがかかる。したがって、熱延鋼板の表面ままで使用可能とするためには、熱延鋼板段階で表面を平滑にする必要がある。その指標として、JIS B 0601に規定される算術的表面粗さRaを採用し、その値が5μm以下であれば十分であることを見出した。そのため、熱延鋼板のRaの上限を5μmとする。この値は小さいほど、平滑であり、より面シール性を向上させるには、3μm以下が好ましい。
<板厚>
また、本発明の熱延鋼板は、その板厚を5mm以上15mm以下とする。5mm未満では、薄すぎて剛性不十分で十分な面シール性を保てず、15mmを超えると、重くなりすぎ、フランジ材として不適当になるためである。面シール性の関係から、6mm以上がより好ましい。重さの関係から、10mm以下がより好ましい。
また、本発明の熱延鋼板は、その板厚を5mm以上15mm以下とする。5mm未満では、薄すぎて剛性不十分で十分な面シール性を保てず、15mmを超えると、重くなりすぎ、フランジ材として不適当になるためである。面シール性の関係から、6mm以上がより好ましい。重さの関係から、10mm以下がより好ましい。
また、熱延鋼板の表面ままでフランジとして使用する場合、締結するためにボルトを締めるトルク量が板厚により変動するため、板厚精度が重要である。その公差の範囲は10%以下が好ましい。より好ましくは、5%以下である。
<製造方法>
本発明のフェライト系ステンレス鋼は、熱延鋼板であり、溶解・鋳造・熱延・焼鈍・酸洗の工程を経て製品となる。設備に特段の制限はなく、常法の製造設備を使用できる。通常、圧延方向に非常に長い、いわゆる、鋼帯の形態で製造される場合が多く、巻かれて、コイル状の形で保管・移動される。しかし、板厚が10mm以上ある場合は、板状に圧延し、切断して、保管・移動することが多い。
本発明のフェライト系ステンレス鋼は、熱延鋼板であり、溶解・鋳造・熱延・焼鈍・酸洗の工程を経て製品となる。設備に特段の制限はなく、常法の製造設備を使用できる。通常、圧延方向に非常に長い、いわゆる、鋼帯の形態で製造される場合が多く、巻かれて、コイル状の形で保管・移動される。しかし、板厚が10mm以上ある場合は、板状に圧延し、切断して、保管・移動することが多い。
熱延は、特に規定しないが、スラブ加熱温度は、1150℃から1250℃が好ましい。また、熱延仕上げ温度は、850℃以上が好ましい。さらには、熱延後、気水冷却等で、冷却する。合金添加量が多い場合、冷却が不十分であると熱延板の靭性のばらつきが大きくなるが、その場合、450℃以下まで急冷することが好ましい。これにより熱延板の靭性が安定化する。しかし、冷却終了温度を低下させるほど、コイルの巻き取りが不安定になり疵が出やすくなるため、冷却終了温度は400℃以上450℃以下とすることがもっとも好ましい。
焼鈍工程では、焼鈍温度は、900~1100℃が好ましい。900℃未満では再結晶しにくく、1100℃を超えると、結晶粒が粗大になりやすく、好ましくないためである。Tiを含まない場合は、1000℃以上が好ましい。この範囲内でCr量等により微調整すると良い。また、焼鈍後の冷却速度については、475脆性による靭性低下を抑制するため、800℃から450℃までの冷却速度が5℃/sec以上とする。好ましくは、10℃/sec以上である。20℃/sec以上では効果が飽和する。これにより、製造による靭性のばらつきを低減できる。
本発明の熱延鋼板の表面粗さを達成するためには、溶解・鋳造・熱延・焼鈍・酸洗の工程において、焼鈍前に鋼板をわずかに研磨することが重要である。これにより、微細な疵等が除去され、酸洗後に平滑な表面を得ることができる。1回の鋼板の研削量は、10μm以上100μm以下が好ましい。10μm未満だと疵が取り切れない可能性が高く、100μm超であると粗さが十分に良好とならない可能性が高くなるためである。焼鈍前に研削を行い、研削後に焼鈍、酸洗を行うと、研削後よりも粗さが改善する傾向が見られるので好ましい。もちろん、本発明の表面粗度を実現できれば、研削はどの工程で行っても良い。
研削する設備は特に定めないが、通常、使用されるものは使用可能である、一般的には研削ベルトが用いられる。その研磨の番手は、製造後の状況を見て、適宜選択可能であるが、#80以上が好ましい。#80未満であると粗すぎて、表面の粗さを達成できない可能性が高いからである。また、細かくなると研磨に時間が掛かり過ぎることから、#600以下が好ましい。
粗さが十分に達成されない場合は、これら研削-熱処理―酸洗は繰り返しても良い。この場合、2回目以降の焼鈍温度は1回目より低いことが望ましい。
また、本発明の粗さが実現できていれば、研削まま製品としても問題ない。さらには、酸洗工程を省略して研削工程を最終工程としても問題なく、さらには、焼鈍-酸洗工程を省略し、最終工程を研削工程としても問題ない。つまり、本発明の粗さが実現できていれば、研削工程は、製造工程中のどこに何回おいても問題はない。もちろん、研削をしないで本発明の粗さが実現できている場合は、研削を省略しても問題ない。
本発明のフェライト系ステンレス熱延鋼板は、自動車フランジ用のフェライト系ステンレス鋼板として、特に好適に用いることができる。
本発明のフェライト系ステンレス熱延鋼板から構成されるフランジ部材は、自動車フランジ用として特に好適に用いることができる。自動車の排気系部材であるパイプに本発明のフランジ部材を接合してフランジとする。これにより、面シール性に優れたフランジを構成することができる。
以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。
本実施例では、表1-1、表1-2の成分の鋼を溶製してインゴットを鋳造し、1150~1250℃に加熱後、仕上げ温度を850~950℃の範囲内として、板厚約6mmまで熱間圧延し、熱延鋼板(熱延鋼帯)とした。熱延鋼板は気水冷却により、400~450℃まで冷却した。その後、コイル(鋼帯)を分割し、研削ベルトを用いて、1つは両面約30μm程度研削し、そのコイルをAとし、研削しないコイルをBとした。その後、1000~1100℃で焼鈍し、常温まで冷却した。この時、800~450℃の範囲の平均冷却速度を10℃/s以上とした。続いて、熱延焼鈍板(熱延鋼板)を酸洗した。なお、表1のNb、Ti含有量について、含有量が0.01%未満のものは、当該元素を積極的に添加しておらず不可避的不純物を意味している。本発明範囲から外れる数値にアンダーラインを付している。下記表2-1、表2-2、表3も同様である。
このようにして得られた、熱延焼鈍板に対して、0℃でシャルピー衝撃試験をJIS Z 2242に準拠して行った。尚、本実施例における試験片は、2mmVノッチを持つ熱延焼鈍板の板厚ままのサブサイズ試験片であり、吸収エネルギーを断面積(単位cm2)で割ることにより、各実施例における熱延焼鈍板の靭性を比較し評価した。なお、靭性の評価基準は、0℃での衝撃値で、10J/cm2以上を良好(A)とし、それ以外を「X」とした。
また、耐食性評価して、塩水噴霧試験(SST)を行い、4hで発銹なきことを合格(A)とし、それ以外を「X」とした。
さらには、表面粗さを測定した。JIS B 0601に規定される算術的表面粗さRaを指標とした。鋼板からランダムに10か所を選び、粗さRaを測定し、その平均値を指標とした。
この製品板(熱延鋼板)から、図1Aに示すフランジ2として80mm角の板を採取し、φ5mmのボルト穴6を4個とφ40mmの穴7を開け、φ40mm、100mm長さのフェライト系ステンレス鋼パイプ3をTIG溶接によりフランジ2に溶接し、さらに、M5のボルト4を用いて、図1Bに示すようなフランジ部1を組み立てた。空気流8を流量50L/minで流し、フランジ同士の締結部5に液状のリーク検出液をかけて、リーク有無を確認した。リークがない場合は面シール性良好(A)とし、それ以外を「X」とした。その結果、粗さRaが5μm以下であるとリークがなくなることが明らかとなり、粗さRaが5μm以下を合格とした。
表2-1、表2-2に結果のまとめを示す。本発明を適用した成分組成の鋼の熱延焼鈍板(熱延鋼板)の粗さおよび面シール性は良好であった。また、靭性および耐食性も良好であった。一方、本発明から外れる比較例では、粗さおよび面シール性が良好でないか、シャルピー衝撃値または、耐食性が不合格であった。これにより、比較例におけるフェライト系ステンレス鋼板が自動車フランジ用途として劣ることが分かる。
本実施例では、まず、表1-1の鋼No.3および鋼No.10に示す成分組成の鋼を溶製してスラブに鋳造した。このスラブを1200℃に加熱後、仕上げ温度を850~950℃の範囲内として、板厚8mmまで熱間圧延し、熱延鋼板とした。なお、熱延鋼板は気水冷却により、380~560℃まで冷却した後、コイル状に巻き取った。表3に示すようにいくつかの冷却条件で熱延コイル(熱延鋼帯)を製造した。
その後、熱延コイルを分割し、研削ベルトを用いて、表3の「研削量」に示すように、研削する厚みを変えて熱延コイル両面を研削した。この時、研削量に応じて、#80~#600を適宜選択した。
その後、熱延コイルを1000~1100℃で焼鈍し、常温まで冷却した。この時、800~450℃の範囲の平均冷却速度を10℃/s以上とした。続いて、熱延焼鈍板を酸洗し、製品板とした。
その後、熱延コイルを1000~1100℃で焼鈍し、常温まで冷却した。この時、800~450℃の範囲の平均冷却速度を10℃/s以上とした。続いて、熱延焼鈍板を酸洗し、製品板とした。
一部の実施例については、この後、繰り返して、研削、焼鈍、酸洗を行い、製品板とした。なお、焼鈍温度は、1回目より0℃から20℃低下させた。研削量は1回目と変更しなかった。繰り返しの回数を表3の「研磨-焼鈍-酸洗プロセス(回)」に示す。
さらに、別の一部の実施例については、酸洗工程省略または焼鈍-酸洗工程省略し、最終工程の研削工程とした。
このようにして得られた、熱延焼鈍板に対して、0℃でシャルピー衝撃試験をJIS Z 2242に準拠して行った。尚、本実施例における試験片は、熱延焼鈍板の板厚ままのサブサイズ試験片であり、吸収エネルギーを断面積(単位cm2)で割ることにより、各実施例における熱延焼鈍板の靭性を比較し評価した。なお、靭性の評価基準は、0℃での衝撃値で、10J/cm2以上を良好(A)とし、7J/cm2以上10J/cm2未満を「B」とし、それ以外を「X」とした。
また、耐食性評価して、塩水噴霧試験(SST)を行い、4hで発銹なきことを自動車フランジ用として合格(A)とし、それ以外を「X」とした。
実施例1と同様の面シール性評価試験を行い、リークがない場合は面シール性良好(A)とし、それ以外を「X」とした。さらには、表面粗さを測定した。JIS B 0601に規定される算術的表面粗さRaを指標とした。測定方法は実施例1と同様である。また、実施例1と同様にRaが5μm以下を合格とした。
表3から明らかなように、本発明を適用した成分組成の鋼の熱延焼鈍板の粗さおよび面シール性は良好であった。また、靭性も良好であった。一方、本発明から外れる比較例では、粗さおよび面シール性が良好でなかった。よって、比較例におけるフェライト系ステンレス鋼板が自動車フランジ用途として劣ることが分かる。
なお、比較例3-1および10-1は、冷却速度が低すぎるため、コイル巻き取りが不安定となり、疵が増えたことにより、熱延板の表面粗さは大きかったが、発明例3-2、3-3および10-2により、研削-焼鈍―酸洗を繰り返すことにより表面粗さが小さくなり、良好となることが示された。
以上の説明から明らかなように、本発明のステンレス熱延鋼板および鋼帯によれば、その優れた表面平滑性により、表面研削なしに表面ままで自動車フランジ材料として使用できる。そのため、材料歩留まりが良い等、部品製造性に優れる。つまり、本発明を適用した材料を、特に自動車、二輪車の排気系フランジ部材に適用することにより、寿命の長い部品を低コストで製造することができ、社会的寄与度を高めることができる。
即ち、本発明は産業上、非常に有益である。
1 フランジ部
2 フランジ
3 パイプ
4 ボルト
5 締結部
6 ボルト穴
7 穴
8 空気流
2 フランジ
3 パイプ
4 ボルト
5 締結部
6 ボルト穴
7 穴
8 空気流
Claims (9)
- 質量%で、
C:0.03%以下、
N:0.03%以下、
Si:0.01~1.0%、
Mn:0.01~1.0%、
P:0.04%以下、
S:0.01%以下、
Cr:10.0~23.0%、
Al:0.10%以下を含有し、
さらに、
Ti:0.5%以下および
Nb:0.5%以下を1種または2種含有し、
かつ、(Ti+Nb)/(C+N)が8以上(Ti、Nb、C、Nはそれぞれの成分含有量(質量%))であり、残部がFe及び不可避的不純物からなり、
その表面粗さが算術平均粗さRaを指標として、5μm以下であり、板厚5.0~15.0mmであることを特徴とする自動車フランジ用フェライト系ステンレス熱延鋼板。 - 質量%で、
Ti含有量を0.05%以下とすることを特徴とする請求項1記載の自動車フランジ用フェライト系ステンレス熱延鋼板。 - さらに、質量%で、
Mo:1.5%以下、Cu:0.5%以下、Ni:1%以下のいずれか1種または2種以上からなる第1群、
Sn:0.005~0.1%からなる第2群、
V:1%以下、W:1%以下、Co:1%以下、B:0.0001%以上、0.005%以下、Ga:0.10%以下、Zr:0.50%以下、Ta:0.1%以下、Sb:0.30%以下、Mg:0.0030%以下、Ca:0.0030%以下のいずれか1種または2種以上からなる第3群のうち、少なくともいずれかの群を含有することを特徴とする請求項1または請求項2に記載の自動車フランジ用フェライト系ステンレス熱延鋼板。 - 前記熱延鋼板が熱延鋼帯であることを特徴とする請求項1~請求項3のいずれか1項に記載の自動車フランジ用フェライト系ステンレス熱延鋼板。
- 前記請求項1~請求項3のいずれか1項に記載のフェライト系ステンレス熱延鋼板から構成されるフランジ部材。
- 溶解・鋳造-熱延-焼鈍-酸洗と実施されるフェライト系ステンレス熱延鋼板の製造工程において、前記焼鈍前に研磨を行い、前記研磨-焼鈍-酸洗工程を1回以上繰り返すことを特徴とする請求項1~請求項3のいずれか1項に記載の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
- 溶解・鋳造-熱延-焼鈍-酸洗と実施されるフェライト系ステンレス鋼板の製造工程において、焼鈍後または酸洗後に研削を行うことを特徴とする請求項1~請求項3のいずれか1項に記載の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
- 前記フェライト系ステンレス鋼板の製造工程において、酸洗または焼鈍-酸洗工程を省略し、最終工程が研削工程であることを特徴とする請求項6または請求項7に記載の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
- 前記熱延鋼板が熱延鋼帯であることを特徴とする請求項6~請求項8のいずれか1項に記載の自動車フランジ用フェライト系ステンレス熱延鋼板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016574803A JP6434059B2 (ja) | 2015-02-10 | 2016-02-09 | 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015023997 | 2015-02-10 | ||
JP2015-023997 | 2015-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129580A1 true WO2016129580A1 (ja) | 2016-08-18 |
Family
ID=56614698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053754 WO2016129580A1 (ja) | 2015-02-10 | 2016-02-09 | 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6434059B2 (ja) |
WO (1) | WO2016129580A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017172036A (ja) * | 2016-12-22 | 2017-09-28 | 日新製鋼株式会社 | フランジ |
WO2017163636A1 (ja) * | 2016-03-24 | 2017-09-28 | 日新製鋼株式会社 | 靭性の良好なTi含有フェライト系ステンレス鋼板およびフランジ |
WO2018099213A1 (zh) * | 2016-11-29 | 2018-06-07 | 比亚迪股份有限公司 | 连接组件及其制造方法、座椅和车辆 |
CN110337503A (zh) * | 2017-02-28 | 2019-10-15 | 日本制铁株式会社 | 铁素体系不锈钢板、热轧卷材以及汽车排气系统法兰构件 |
EP3591084A4 (en) * | 2017-02-28 | 2020-01-15 | Nippon Steel Corporation | FERRITIC STAINLESS STEEL SHEET, HOT COIL AND FLANGE ELEMENT FOR A VEHICLE EXHAUST SYSTEM |
JP2020100866A (ja) * | 2018-12-21 | 2020-07-02 | 日鉄ステンレス株式会社 | 耐水素脆性と耐低温脆性に優れたCr系ステンレス鋼 |
JP2020164901A (ja) * | 2019-03-28 | 2020-10-08 | 日鉄ステンレス株式会社 | ディスクローター用フェライト系ステンレス鋼およびブレーキ用ディスクローター |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002239604A (ja) * | 2001-02-15 | 2002-08-27 | Kawasaki Steel Corp | ステンレス冷延鋼板の製造方法 |
JP2004330394A (ja) * | 2003-05-12 | 2004-11-25 | Nisshin Steel Co Ltd | ステンレス鋼製品およびステンレス鋼の表面研磨方法 |
JP2012140687A (ja) * | 2011-01-05 | 2012-07-26 | Nisshin Steel Co Ltd | Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法 |
WO2014157576A1 (ja) * | 2013-03-27 | 2014-10-02 | 新日鐵住金ステンレス株式会社 | フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯 |
JP2015190025A (ja) * | 2014-03-28 | 2015-11-02 | 新日鐵住金ステンレス株式会社 | 靭性に優れたフェライト系ステンレス熱延鋼板および鋼帯 |
-
2016
- 2016-02-09 JP JP2016574803A patent/JP6434059B2/ja active Active
- 2016-02-09 WO PCT/JP2016/053754 patent/WO2016129580A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002239604A (ja) * | 2001-02-15 | 2002-08-27 | Kawasaki Steel Corp | ステンレス冷延鋼板の製造方法 |
JP2004330394A (ja) * | 2003-05-12 | 2004-11-25 | Nisshin Steel Co Ltd | ステンレス鋼製品およびステンレス鋼の表面研磨方法 |
JP2012140687A (ja) * | 2011-01-05 | 2012-07-26 | Nisshin Steel Co Ltd | Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法 |
WO2014157576A1 (ja) * | 2013-03-27 | 2014-10-02 | 新日鐵住金ステンレス株式会社 | フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯 |
JP2015190025A (ja) * | 2014-03-28 | 2015-11-02 | 新日鐵住金ステンレス株式会社 | 靭性に優れたフェライト系ステンレス熱延鋼板および鋼帯 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017163636A1 (ja) * | 2016-03-24 | 2017-09-28 | 日新製鋼株式会社 | 靭性の良好なTi含有フェライト系ステンレス鋼板およびフランジ |
WO2018099213A1 (zh) * | 2016-11-29 | 2018-06-07 | 比亚迪股份有限公司 | 连接组件及其制造方法、座椅和车辆 |
JP2017172036A (ja) * | 2016-12-22 | 2017-09-28 | 日新製鋼株式会社 | フランジ |
CN110337503A (zh) * | 2017-02-28 | 2019-10-15 | 日本制铁株式会社 | 铁素体系不锈钢板、热轧卷材以及汽车排气系统法兰构件 |
EP3591084A4 (en) * | 2017-02-28 | 2020-01-15 | Nippon Steel Corporation | FERRITIC STAINLESS STEEL SHEET, HOT COIL AND FLANGE ELEMENT FOR A VEHICLE EXHAUST SYSTEM |
EP3591083A4 (en) * | 2017-02-28 | 2020-07-22 | Nippon Steel Corporation | FERRITIC STAINLESS STEEL SHEET, HOT COIL AND FLANGE ELEMENT FOR MOTOR VEHICLE EXHAUST SYSTEM |
US11111570B2 (en) | 2017-02-28 | 2021-09-07 | Nippon Steel Corporation | Ferritic stainless steel sheet, hot coil, and automobile exhaust flange member |
CN110337503B (zh) * | 2017-02-28 | 2022-07-12 | 日本制铁株式会社 | 铁素体系不锈钢板、热轧卷材以及汽车排气系统法兰构件 |
JP2020100866A (ja) * | 2018-12-21 | 2020-07-02 | 日鉄ステンレス株式会社 | 耐水素脆性と耐低温脆性に優れたCr系ステンレス鋼 |
JP2020164901A (ja) * | 2019-03-28 | 2020-10-08 | 日鉄ステンレス株式会社 | ディスクローター用フェライト系ステンレス鋼およびブレーキ用ディスクローター |
JP7325206B2 (ja) | 2019-03-28 | 2023-08-14 | 日鉄ステンレス株式会社 | ディスクローター用フェライト系ステンレス鋼およびブレーキ用ディスクローター |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016129580A1 (ja) | 2017-11-24 |
JP6434059B2 (ja) | 2018-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6434059B2 (ja) | 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法 | |
JP6190873B2 (ja) | 耐熱オーステナイト系ステンレス鋼板 | |
JP6607268B2 (ja) | フェライト系ステンレス鋼 | |
JP5885884B2 (ja) | フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯 | |
TWI531665B (zh) | 耐氧化性優異之肥粒鐵系不鏽鋼 | |
JP4396676B2 (ja) | 耐食性に優れたフェライト系ステンレス鋼板およびその製造方法 | |
WO2014069543A1 (ja) | 耐熱性に優れたフェライト系ステンレス鋼板 | |
JP2010248620A (ja) | 耐熱性と加工性に優れたフェライト系ステンレス鋼板 | |
WO2014136866A1 (ja) | 耐熱性に優れたフェライト系ステンレス鋼板 | |
WO2019189871A1 (ja) | 二相ステンレスクラッド鋼板およびその製造方法 | |
JP6112273B1 (ja) | フェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法 | |
WO2012036313A1 (ja) | 耐酸化性に優れた耐熱フェライト系ステンレス鋼板 | |
WO2015118855A1 (ja) | フェライト系ステンレス熱延焼鈍鋼板、その製造方法およびフェライト系ステンレス冷延焼鈍鋼板 | |
RU2578618C1 (ru) | Способ производства полос из низколегированной свариваемой стали | |
JP2015190025A (ja) | 靭性に優れたフェライト系ステンレス熱延鋼板および鋼帯 | |
JP4185425B2 (ja) | 成形性と高温強度・耐高温酸化性・低温靱性とを同時改善したフェライト系鋼板 | |
JP5937861B2 (ja) | 溶接性に優れた耐熱フェライト系ステンレス鋼板 | |
TWI645051B (zh) | 肥粒鐵系不鏽鋼 | |
JP6547927B1 (ja) | フェライト系ステンレス鋼 | |
JP4940844B2 (ja) | 高温強度および靱性に優れたCr含有鋼管の製造方法、およびCr含有鋼管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16749224 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2016574803 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16749224 Country of ref document: EP Kind code of ref document: A1 |