WO2017163553A1 - 燃料電池、燃料電池の制御方法、及びコンピュータプログラム - Google Patents

燃料電池、燃料電池の制御方法、及びコンピュータプログラム Download PDF

Info

Publication number
WO2017163553A1
WO2017163553A1 PCT/JP2017/001184 JP2017001184W WO2017163553A1 WO 2017163553 A1 WO2017163553 A1 WO 2017163553A1 JP 2017001184 W JP2017001184 W JP 2017001184W WO 2017163553 A1 WO2017163553 A1 WO 2017163553A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid separator
hydrogen
internal volume
pressure
Prior art date
Application number
PCT/JP2017/001184
Other languages
English (en)
French (fr)
Inventor
深津 佳昭
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2017163553A1 publication Critical patent/WO2017163553A1/ja
Priority to US16/059,628 priority Critical patent/US20180351184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04514Humidity; Ambient humidity; Water content of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell and a fuel cell including a power generation unit that reacts with hydrogen and oxygen to generate power, a drain valve that discharges water discharged from the power generation unit to the outside, and a control unit that controls opening and closing of the drain valve And a computer program for causing a computer to execute drainage control processing.
  • Examples of the battery for obtaining electromotive force by sending hydrogen to the negative electrode include a fuel cell and a nickel / hydrogen battery.
  • a fuel cell is a clean power generator with high power generation efficiency, and can be constructed without being affected by the magnitude of the load, so it can be used in digital home appliances such as personal computers and mobile phones, electric cars, railways, and mobile phones.
  • digital home appliances such as personal computers and mobile phones, electric cars, railways, and mobile phones.
  • Various uses such as base stations and power plants are being studied.
  • the fuel cell includes a stack, a plurality of hydrogen cylinders, a hydrogen circulation path, and a hydrogen supply path.
  • the stack forms a membrane electrode assembly by sandwiching the solid polymer electrolyte membrane between the negative electrode and the anode from both sides, and a pair of separators are arranged on both sides of the membrane electrode assembly to constitute a flat unit cell.
  • a plurality of unit cells are stacked and packaged.
  • One end of the hydrogen supply path is connected to a hydrogen cylinder through a regulator and an on-off valve.
  • Hydrogen is flowed from the hydrogen cylinder through the hydrogen supply path, is sent to the negative electrode side portion in the stack through the portion near the negative electrode of the stack in the hydrogen circulation path, and is passed through the flow path in the portion.
  • Exhaust gas (off-gas) containing unreacted hydrogen flowing through the flow path and discharged from the stack flows through the hydrogen circulation path and is returned to the stack.
  • Hydrogen is supplied to the stack, a fuel gas containing hydrogen is brought into contact with the negative electrode, and an oxidizing gas containing oxygen such as air is brought into contact with the positive electrode, whereby an electrochemical reaction occurs in both electrodes, and an electromotive force is generated.
  • water is produced on the anode side, and this water is back-diffused through the electrolyte membrane to the negative electrode side as water vapor. Water vapor or water condensed due to temperature difference is included in the off-gas.
  • a gas-liquid separator is provided in the hydrogen circulation path to separate the gas and water, the gas is returned to the stack, and the stored water is discharged in a timely manner. I am doing so.
  • Patent Document 1 water generated by power generation is guided and stored in a storage section provided below the hydrogen circulation path, the water level of the storage section is detected by a water level sensor, and the upper limit water level set in advance by the water level is set.
  • An invention of a fuel cell configured to discharge the generated water of the storage part from the lower part when exceeded is disclosed.
  • the present invention has been made in view of such circumstances, suppresses the residual water in the gas-liquid separator when power generation is stopped, prevents freezing, and can perform good drainage during the next power generation, It is an object of the present invention to provide a fuel cell, a fuel cell control method, and a computer program in which deterioration of the function of the fuel cell is prevented.
  • a fuel cell includes a power generation unit that generates electricity by reacting hydrogen and oxygen, a fuel unit that supplies hydrogen to the power generation unit, an on-off valve for supplying the hydrogen, and an exhaust from the power generation unit.
  • a hydrogen circulation path that circulates the generated gas back to the power generation unit, a pressure detector that detects a pressure in the hydrogen circulation path, and a gas-liquid separator that is provided in the hydrogen circulation path and separates water from the gas
  • a drain valve that discharges water from the gas-liquid separator, and a control unit that controls opening and closing of the on-off valve and the drain valve, wherein the control unit includes an internal volume of the hydrogen circulation path, Based on the internal volume of the gas-liquid separator and the pressure detected by the pressure detector, the on-off valve and the drain valve are controlled to perform drainage treatment.
  • the on-off valve is opened to supply hydrogen from the fuel unit to the power generation unit, and the gas exhausted from the power generation unit is circulated back to the power generation unit through a hydrogen circulation path.
  • a control method of a fuel cell in which water is separated from the gas by a gas-liquid separator provided in a hydrogen circulation path and drained by a drain valve the pressure in the hydrogen circulation path is acquired, and the internal volume of the hydrogen circulation path Based on the pressure and the internal volume of the gas-liquid separator, the on-off valve and the drain valve are controlled to open and close to drain.
  • a computer program provides a computer that controls a fuel cell including a hydrogen circulation path for returning and circulating a gas exhausted from a power generation unit, and a gas-liquid separator that separates and drains water from the gas.
  • Obtain the pressure in the hydrogen circuit calculate the number of drains based on the internal volume of the hydrogen circuit, the pressure, and the internal volume of the gas-liquid separator, and supply hydrogen according to the calculated number of times And a process for outputting an opening / closing signal for the opening / closing valve and an opening / closing signal for the drain valve.
  • the gas in the hydrogen circulation path increases due to the pressure difference when the on-off valve is opened and the drain valve is closed, and then the on-off valve is closed and the drain valve is opened to open the hydrogen circuit.
  • the water stored in the gas-liquid separator is pushed out and discharged to suppress the residual water in the gas-liquid separator and freeze. Can be prevented. Therefore, drainage can be performed satisfactorily at the next power generation, and the deterioration of the fuel cell function is prevented.
  • drainage treatment drainage is performed with the open / close valve closed, so that even if the drainage valve breaks down, leakage of more than a prescribed amount of hydrogen is prevented.
  • FIG. 1 is a block diagram showing a fuel cell according to Embodiment 1.
  • FIG. It is a flowchart which shows the procedure of the waste_water
  • FIG. It is a flowchart which shows the procedure of the waste_water
  • FIG. 1 is a block diagram showing a fuel cell 300 according to the first embodiment.
  • the fuel cell 300 includes a battery body 100 and a hydrogen supply unit 200.
  • the battery body 100 is a battery body such as a polymer electrolyte fuel cell.
  • the battery body 100 includes a stack 1, an air flow path 3, an air pump 30, a stack cooling path 4, a cooling pump 40, a first heat exchanger 41, a second heat exchanger 42, a radiator flow path 5, a heat dissipation pump 50, and a radiator.
  • the second heat exchanger 42 includes a heater (not shown).
  • the hydrogen supply unit 200 includes a plurality of MH (Metal Hydride) cylinders 20, an on-off valve 21, and a regulator 22.
  • the MH cylinder 20 is filled with a hydrogen storage alloy. All the MH cylinders 20 are connected to the on-off valve 21, and the on-off valve 21 is connected to a regulator 22. The supply pressure of hydrogen is adjusted by the regulator 22. The reaction when the hydrogen storage alloy in the MH cylinder 20 releases hydrogen is an endothermic reaction.
  • a membrane electrode assembly is formed by sandwiching a solid polymer electrolyte membrane between a negative electrode and an anode from both sides, and a pair of separators are arranged on both sides of the membrane electrode assembly to constitute a flat unit cell.
  • a plurality of unit cells are stacked and packaged.
  • a fuel gas containing hydrogen flowing in from the hydrogen supply unit 200 comes into contact with the negative electrode, and an oxidizing gas containing oxygen such as air flows into and comes into contact with the positive electrode from the air flow path 3 to cause an electrochemical reaction in both electrodes. Electromotive force is generated and water is generated.
  • the hydrogen flow path 7 includes a hydrogen supply path 71, a hydrogen introduction path 72, a hydrogen circuit 73, a first drainage path 74, and a first exhaust path 75.
  • a hydrogen circulation path is constituted by the hydrogen introduction path 72, the hydrogen circuit 73, and the first exhaust path 75.
  • One end of the hydrogen supply path 71 is connected to the regulator 22, and the on-off valves 79 and 80 are connected in series to the other end.
  • One end of the hydrogen introduction path 72 is connected to the on-off valve 80, and the other end is connected to a portion of the hydrogen circuit 73 near the negative electrode of the stack 1.
  • a first pressure sensor 78 and a check valve 81 are provided in the hydrogen introduction path 72.
  • the hydrogen circuit 73 is provided with a hydrogen circulation pump 82 and a gas-liquid separator 83.
  • hydrogen flows through the hydrogen supply path 71 and the hydrogen introduction path 72, flows through the hydrogen circuit 73 by the hydrogen circulation pump 82, and is sent to the negative electrode side portion of the stack 1. , It is configured to flow through the flow path in the portion.
  • Hydrogen, impurities (including impurities originally contained in hydrogen and impurities generated by the reaction), and water flowing through the flow path and discharged from the stack 1 flow through the hydrogen circuit 73 to be gas-liquid. It is sent to the separator 83. In the gas-liquid separator 83, the gas is separated into water containing hydrogen and impurities and water.
  • the first drainage channel 74 is connected to the lower side of the gas-liquid separator 83, and the first drainage channel 74 is provided with drain valves 84 and 85, which are electromagnetic valves, in series.
  • a second drainage channel 76 is connected to the drainage valve 85.
  • the first exhaust passage 75 is provided on the upper side of the gas-liquid separator 83 so as to branch off from the hydrogen circuit 73, and the first exhaust passage 75 has exhaust valves 86 and 87 for discharging the gas. It is provided in series. The gas flows through the second exhaust passage 77 by passing through the exhaust valves 86 and 87 and opening them at a predetermined timing, and is discharged to the outside.
  • the separated gas flows from the gas-liquid separator 83 through the hydrogen circuit 73 to the hydrogen circulation pump 82 and is returned to the stack 1. .
  • the water separated by the gas-liquid separator 83 is stored, and is passed through the first drainage channel 74 and the second drainage channel 76 by energizing and opening the drainage valves 84 and 85 by the drainage control process described later, and the outside. Is discharged.
  • the second pressure sensor 88 is provided below the gas-liquid separator 83.
  • the drain valves 84 and 85 and the exhaust valves 86 and 87, and the first drain path 74 and the first exhaust path 75 may be covered with a heat insulating material.
  • the air flow path 3 is provided with an air pump 30.
  • An opening / closing valve 31 is provided at the inflow side portion of the air flow path 3 to the stack 1, and an opening / closing valve 32 is provided at the outflow side portion from the stack 1.
  • the air sent from the air pump 30 flows through the air flow path 3 and is introduced into the positive electrode side portion of the stack 1 so as to flow through the flow path of the portion. It is configured.
  • the air flowing through the flow path is discharged from the stack 1 and discharged to the outside through the on-off valve 32.
  • a cooling pump 40 In the stack cooling path 4, a cooling pump 40, an ion exchange resin 43, and a conductivity meter 44 are provided. Cooling water sent from the cooling pump 40 and flowing through the stack cooling path 4 flows through the ion exchange resin 43, and the conductivity is measured by the conductivity meter 44, and then introduced into the stack 1. After flowing through the flow path, the flow is discharged, passed through the first heat exchanger 41 and the second heat exchanger 42, and returned to the cooling pump 40.
  • a radiator pump 50 is provided in the radiator passage 5.
  • the heat-dissipating liquid such as antifreeze liquid sent from the heat-dissipating pump 50 flows through the radiator 51, further flows through the first heat exchanger 41, and then returns to the heat-dissipating pump 50.
  • a fan 52 is provided in the vicinity of the radiator 51.
  • a heating pump 60 is provided in the cylinder heating path 6.
  • the heating liquid sent from the heat pump 60 flows through the flow path in the hydrogen supply unit 200 to heat each MH cylinder 20, and then is discharged from the hydrogen supply unit 200 and flows through the second heat exchanger 42. Thus, it is configured to return to the heating pump 60.
  • hydrogen is released from the hydrogen storage alloy in the MH cylinder 20.
  • An antifreeze can be used as the heating liquid.
  • the stack cooling path 4, the radiator passage 5, the cylinder heating path 6, the first heat exchanger 41, and the second heat exchanger 42 are covered with a heat insulating material.
  • the portion covered with the heat insulating material is represented by a thick line in FIG. With this heat insulating material, heat transfer with the outside can be limited, and the amount of heat can be easily controlled.
  • the control unit 9 includes a CPU (Central Processing Unit) 90 that controls the operation of each component of the control unit 9, and a ROM 91 and a RAM 92 are connected to the CPU 90 via a bus.
  • CPU Central Processing Unit
  • the ROM 91 is a nonvolatile memory such as an EEPROM (Electrically Erasable Programmable ROM), and stores an operation program 91a of the fuel cell 300 and a drainage control program 91b according to the present embodiment.
  • the drainage control program 91b is a portable media recorded in a computer-readable manner such as a CD (Compact Disc) -ROM, a DVD (Digital Versatile Disc) -ROM, a BD (Blu-ray (registered trademark) Disc), a hard disk.
  • the drainage control program 91b may be read from the recording medium and stored in the ROM 91.
  • the drainage control program 91b according to the present invention may be acquired from an external computer (not shown) connected to the communication network and stored in the ROM 91.
  • the RAM 92 is a memory such as a DRAM (Dynamic RAM), an SRAM (Static RAM), and the like.
  • the RAM 92 is operated by the operation program 91a, the drainage control program 91b, and the CPU 90 read out from the ROM 91 when the CPU 91 executes the operation process. Temporarily store various data generated.
  • the control unit 9 is connected to each component of the battery main body 100 and the on-off valve 21 of the hydrogen supply unit 200, and the control unit 9 controls the operation of each component and the on-off valve 21.
  • the controller 9 is connected to the first pressure sensor 78 and the second pressure sensor 88. In FIG. 1, the connection between the control unit 9 and each component is shown only in the part necessary for the description of the present embodiment.
  • the reaction occurring in the stack 1 is an exothermic reaction, and the stack 1 is cooled by the cooling water flowing through the stack cooling path 4.
  • the heat of the cooling water discharged from the stack 1 is conducted to the heat radiating liquid in the first heat exchanger 41, the heat radiating liquid releases heat in the radiator 51, and the heat is released to the outside of the battery body 100 by the fan 52. .
  • the radiator liquid cooled in the radiator 51 is sent to the first heat exchanger 41.
  • the heat of the cooling water flowing through the first heat exchanger 41 and introduced into the second heat exchanger 42 is conducted to the heating liquid in the second heat exchanger 42, and the heating liquid is supplied with hydrogen.
  • Each MH cylinder 20 of the unit 200 is heated to release hydrogen from the hydrogen storage alloy.
  • the cooling water cooled by the second heat exchanger 42 returns to the cooling pump 40 and is sent to the stack 1.
  • the temperature of the cooling water in the stack cooling path 4 becomes the environmental temperature.
  • the MH cylinder 20 is kept at a predetermined temperature. Can be held in.
  • the MH cylinder 20 may be heated by blowing air having heat generated in the stack 1 to the hydrogen supply unit 200.
  • a heater may be provided in the MH cylinder 20 and the MH cylinder 20 may be directly heated by the heater.
  • the CPU 90 of the control unit 9 reads the drainage control program 91b from the ROM 91 after power generation is completed, and executes the drainage control process of the gas-liquid separator 83.
  • the drainage control process will be described.
  • FIG. 2 is a flowchart showing a procedure of drainage control processing by the CPU 90.
  • the initial condition is when the battery main body 100 is generating power, and the on-off valves 21, 79, and 80 are energized on (open), and the drain valves 84 and 85 are energized off (closed). From this state, the CPU 90 stops power generation and starts drainage control processing.
  • the CPU 90 acquires PH from the first pressure sensor 78 (S1), and acquires P0 from the second pressure sensor 88 (S2).
  • PH is the pressure in the hydrogen circulation path
  • P0 is the external pressure.
  • the CPU 90 calculates a set number of discharges (hereinafter referred to as a set number) N (S3).
  • FIG. 3 is a schematic sectional view of the gas-liquid separator 83. Let VD (cc) be the internal volume of the gas-liquid separator 83 when water is filled in the gas-liquid separator 83.
  • the internal volume of the above-mentioned hydrogen circulation path is VH (cc), the pressure in the hydrogen circulation path is PH (kPa), the external pressure is P0 (kPa), and the on-off valves 21, 79, 80 are closed, and the hydrogen circulation path is closed.
  • the set number N is calculated including the internal volume of the first drainage channel 74.
  • water is filled by an amount corresponding to the sum of the VH and the internal volume VC (cc) of the first drainage channel 74, and the set number N is obtained by the following equation. N ⁇ (VD + VC) / VA
  • FIG. 4 is a schematic cross-sectional view of the gas-liquid separator 83.
  • a liquid level sensor 89 is provided at a predetermined position above the gas-liquid separator 83.
  • the liquid level sensor 89 detects the water level in the gas-liquid separator 83.
  • the liquid level sensor 89 is connected to the control unit 9 although not shown in detail.
  • the entire internal volume of the gas-liquid separator 83 is VD
  • the internal volume (first internal volume) of the gas-liquid separator 83 from the upper surface to the liquid level sensor 83 is VD1
  • the liquid level sensor 89 is shown in FIG. 4A, the entire internal volume of the gas-liquid separator 83 is VD, the internal volume (first internal volume) of the gas-liquid separator 83 from the upper surface to the liquid level sensor 83 is VD1, and the liquid level sensor 89.
  • the pressure PH of the hydrogen circulation path corresponds to the pressure of the gas having the sum of the internal volume VH and the first internal volume VD1 of the hydrogen circulation path.
  • the single discharge amount VA is obtained by the following equation.
  • VA ⁇ (PH ⁇ P0) / P0 ⁇ ⁇ (VH + VD1)
  • the set number of times N is obtained by the following equation. N ⁇ VD2 / VA
  • the water is discharged as the volume is increased by VA by opening the hydrogen circulation path.
  • the set number N is calculated including the internal volume of the first drainage channel 74. As described below, the set number N is obtained by dividing the sum of VD2 and VC by the VA obtained by the calculation method 3 described above. N ⁇ (VD2 + VC) / VA
  • the CPU 90 sets the set number of times N obtained in step S3 described above and stores it in the RAM 92 (S4), and resets the number of drains n to “0” (S5).
  • the CPU 90 turns off the on-off valves 21, 79, 80 in order (S6, 7, 8), turns on the drain valves 84, 85 in order (S9, 10), and starts draining.
  • the CPU 90 determines whether PH is larger than P0 (S11). When the CPU 90 determines that PH is greater than P0 (S11: YES), the above determination is repeated. If the CPU 90 determines that PH is not greater than P0 (S11: NO), that is, drainage is not possible, drainage is terminated, and the drainage count n is incremented by "1" (S12).
  • the CPU 90 determines whether the frequency
  • the CPU 90 determines that the number of drains n is not equal to or greater than the set number N (S13: NO)
  • the drain valves 85 and 84 are sequentially turned off (S14, 15), and the on-off valves 80, 79, and 21 are sequentially turned on (S16). , 17, 18)
  • the pressure PH of the hydrogen circulation path is increased to the pressure value obtained in step S1, and the process returns to step S6.
  • PH may be acquired from the pressure sensor 78 and it may be confirmed whether or not PH has increased to the pressure value, and is obtained from the flow rate of hydrogen supplied from the hydrogen supply unit 200 and VH. You may decide to confirm the pressure rise with time.
  • the CPU 90 repeats the above-described drainage treatment until the number of drainage n becomes equal to or greater than the set number of times N. If it is determined in step S13 that n ⁇ N (S13: YES), the drain valves 85 and 84 are sequentially turned off. (S19, S20), and the drainage control process is terminated.
  • the on-off valves 21, 79, 80 are opened and the drain valves 84, 85 are closed, and then the on-off valves 21, 79, 80 are closed, the drain valves 84, 85 are opened, and the hydrogen circulation path is opened. Drainage control process for pushing out and discharging the water stored in the gas-liquid separator 83 based on the increase in gas in the hydrogen circulation path due to the pressure difference when the gas is opened and the internal volume of the gas-liquid separator 83 Therefore, it is possible to prevent freezing by suppressing water remaining in the gas-liquid separator 83.
  • water is discharged by increasing the volume of the gas by one opening from the ratio of the difference between the pressure PH of the hydrogen circulation path and the external pressure P0 to P0 and the internal volume VH of the hydrogen circulation path.
  • the amount VA is calculated, the internal volume VD (or VD + VC) of the gas-liquid separator 83 is divided by VA, and the set number of times (the number of repetitions) N is calculated. Suppressed well. Therefore, drainage can be performed satisfactorily at the next power generation, and the deterioration of the function of the fuel cell 300 is prevented.
  • the second internal volume VD2 which is the difference between the total internal volume VD of the gas-liquid separator 83 and the first internal volume VD1 up to the position.
  • a single water discharge amount VA is calculated from the ratio of the difference between the pressure PH and the external air pressure P0 to P0, and the sum of VH and VD1, Since the set number of times N is calculated by dividing the internal volume VD of the separator 83 by VA, the remaining water in the gas-liquid separator 83 is favorably suppressed.
  • the water in the first drainage channel 74 is discharged in addition to the water in the gas-liquid separator 83. Therefore, the first drainage channel 74 can also be prevented from freezing by suppressing the remaining water.
  • FIG. The fuel cell according to Embodiment 2 has the same configuration as that of the fuel cell 300 according to Embodiment 1 except that the configuration of the gas-liquid separator 83 is different and the wastewater treatment procedure is different.
  • FIG. 5 is a schematic cross-sectional view of the gas-liquid separator 83 of the fuel cell according to the second embodiment.
  • a liquid level sensor 90 is provided near the bottom surface.
  • the liquid level sensor 90 is a sensor that detects the water level in the gas-liquid separator 83, and is connected to the control unit 9.
  • preliminary drainage is performed until the liquid level of the stored water reaches the position of the liquid level sensor 90, and then drainage is performed by obtaining the set number N based on the volume increase based on the pressure difference.
  • the calculation method of the set number N is as follows. (Calculation method 5) As shown in FIG. 5, the entire internal volume of the gas-liquid separator 83 is VD, the internal volume (first internal volume) of the gas-liquid separator 83 from the upper surface to the liquid level sensor 90 is VD1, and the liquid level sensor 90. It is assumed that the internal volume (second internal volume) of the gas-liquid separator 83 from the bottom to the bottom is VD2, and the liquid level sensor 90 is filled with water.
  • the pressure PH of the hydrogen circulation path corresponds to the pressure of the gas having the sum of the internal volume VH and the first internal volume VD1 of the hydrogen circulation path.
  • One discharge amount VA is obtained by the following equation.
  • VA ⁇ (PH ⁇ P0) / P0 ⁇ ⁇ (VH + VD1) Since the internal volume of the gas-liquid separator 83 filled with water is VD2, the set number of times N is obtained by the following equation. N ⁇ VD2 / VA
  • the set number N is calculated including the internal volume of the first drainage channel 74. As described below, the set number N is obtained by dividing the sum of VD2 and VC by the VA obtained by the calculation method 5 described above. N ⁇ (VD2 + VC) / VA
  • FIG. 6 and 7 are flowcharts showing the procedure of drainage control processing by the CPU 90.
  • the initial condition is when the battery main body 100 is generating power, and the on-off valves 21, 79, and 80 are energized on (open), and the drain valves 84 and 85 are energized off (closed). From this state, the CPU 90 stops power generation and starts drainage control processing.
  • the CPU 90 determines whether or not the water level stored in the gas-liquid separator 83 is equal to or lower than the installation position of the liquid level sensor 90 (S31).
  • the drain valves 84 and 85 are sequentially turned on (S32, 33) until the water level reaches the position of the liquid level sensor 90. Preliminary drainage is performed, and the process returns to step S31.
  • the CPU 90 determines that the water level is equal to or lower than the position of the liquid level sensor 90 (S31: YES), and sequentially turns off the drain valves 85 and 84 (S34). , 35).
  • the CPU 90 acquires PH from the first pressure sensor 78 (S36), and acquires P0 from the second pressure sensor 88 (S37).
  • the CPU 90 calculates the set number N as described above (S38).
  • the CPU 90 sets the set number N obtained in step S38 (S39), and resets the number n of drainage to “0” (S40).
  • the CPU 90 turns off the on-off valves 21, 79, 80 in order (S41, 42, 43), turns on the drain valves 84, 85 in order (S44, 45), and starts draining.
  • CPU90 determines whether PH is larger than P0 (S46). When the CPU 90 determines that PH is greater than P0 (S46: YES), the above determination is repeated. If the CPU 90 determines that PH is not greater than P0 (S46: NO), that is, drainage is not possible, drainage is terminated, and the drainage count n is incremented by "1" (S47).
  • the CPU90 determines whether the frequency
  • the CPU 90 repeats the above-described drainage control process until the number of drainage n is equal to or greater than the set number of times N. If it is determined in step S48 that n ⁇ N (S48: YES), the drain valves 85 and 84 are sequentially set. It is turned off (S54, S55), and the drainage control process is terminated.
  • the drainage control process is performed after the preliminary drainage for lowering the liquid level of the stored water to the position of the liquid level sensor 90, so the amount of water to be discharged is accurately determined. Can be sought. And the frequency
  • drain control processing can be reduced.
  • the fuel cell according to the present invention configured as described above includes a power generation unit (stack) that generates power by reacting hydrogen and oxygen, a fuel unit (hydrogen supply unit) that supplies hydrogen to the power generation unit, and the hydrogen
  • An on-off valve for supplying the gas, a hydrogen circulation path for circulating the gas exhausted from the power generation section back to the power generation section, a pressure detector (pressure sensor) for detecting the pressure in the hydrogen circulation path, A gas-liquid separator provided in the hydrogen circulation path for separating water from the gas; a drain valve for discharging water from the gas-liquid separator; and a control unit for controlling opening and closing of the on-off valve and the drain valve;
  • the control unit opens and closes the on-off valve and the drain valve based on the internal volume of the hydrogen circulation path, the internal volume of the gas-liquid separator, and the pressure detected by the pressure detector. Control wastewater treatment (drainage control treatment) And wherein the Ukoto.
  • the water stored in the gas-liquid separator is pushed out and discharged, thereby suppressing the residual water in the gas-liquid separator and freezing. Can be prevented. Therefore, drainage can be performed satisfactorily during the next power generation, and the deterioration of the fuel cell function is prevented. And since drainage is performed with the on-off valve closed, even if the drainage valve breaks down, leakage of more than a specified amount of hydrogen can be prevented.
  • the fuel cell according to the present invention is the above fuel cell, wherein the control unit is configured based on the internal volume of the hydrogen circulation path, the internal volume of the gas-liquid separator, and the pressure detected by the pressure detector. It is characterized in that the number of wastewater treatment (set number of times) is calculated.
  • the number of times of wastewater treatment is calculated by comparing the amount of water discharged by increasing the volume of gas by one opening of the hydrogen circulation path and the internal volume of the gas-liquid separator.
  • the remaining water in the gas-liquid separator can be more effectively suppressed.
  • the fuel cell according to the present invention includes a water level detector that detects a level of water stored in the gas-liquid separator in the fuel cell described above, and the control unit includes an internal volume of the hydrogen circulation path, the gas The number of times of the waste water treatment is calculated based on the total internal volume of the liquid separator, the first internal volume of the gas-liquid separator from the upper surface to the predetermined water level, and the pressure detected by the pressure detector.
  • the gas-liquid separator when water is accumulated up to the position of the water level detector when the power generation is stopped, that is, the gas-liquid separator corresponding to the difference between the total internal volume of the gas-liquid separator and the first internal volume.
  • the internal volume (second internal volume) When the internal volume (second internal volume) is filled with water, the second internal volume is compared with the increase in gas volume due to one opening of the hydrogen circulation path. By calculating, the remaining water in the gas-liquid separator can be more effectively suppressed.
  • the control unit detects a pressure difference between the pressure detected by the pressure detector and an external pressure, and the first internal volume and the internal volume of the hydrogen circulation path.
  • the number of times of the wastewater treatment is calculated by calculating the amount of water discharged once, dividing the difference between the total internal volume and the first internal volume by the amount of water discharged once. Is calculated.
  • the present invention based on the difference between the sum of the first internal volume and the internal volume of the hydrogen circulation path, that is, the volume up to the water level, and the pressure in the gas-liquid separator and the external pressure, It is possible to accurately calculate the amount of water discharged once due to the increase, and to calculate the number of times of wastewater treatment satisfactorily.
  • the fuel cell includes a second pressure detector that detects the external pressure, and the control unit detects the pressure and the external pressure detected by the second pressure detector.
  • the discharge amount is calculated based on a pressure difference from the atmospheric pressure.
  • the discharge amount can be accurately calculated even when the fuel cell is arranged at a place where the external atmospheric pressure is not the standard atmospheric pressure.
  • the fuel cell according to the present invention includes a drain pipe connecting the drain valve and the gas-liquid separator in the fuel cell described above, and the control unit includes the internal volume of the drain pipe and includes the drainage treatment. The number of times is calculated.
  • the number of times of the drainage treatment is calculated including the internal volume of the drainage pipe, it is possible to prevent water from remaining in the drainage pipe and freezing.
  • the water level detector is provided near a bottom surface of the gas-liquid separator, and the control unit detects that the water level detected by the water level detector is a predetermined water level.
  • a preliminary drainage treatment is performed in which the drainage valve is opened until it reaches the point.
  • the drainage treatment is performed after the preliminary drainage for keeping the liquid level of the stored water constant, so that the amount of water to be discharged can be accurately obtained. And the frequency
  • count of wastewater treatment can be reduced.
  • the on-off valve is opened to supply hydrogen from the fuel unit to the power generation unit, and the gas exhausted from the power generation unit is circulated back to the power generation unit through a hydrogen circulation path.
  • a control method of a fuel cell in which water is separated from the gas by a gas-liquid separator provided in a hydrogen circulation path and drained by a drain valve the pressure in the hydrogen circulation path is acquired, and the internal volume of the hydrogen circulation path Based on the pressure and the internal volume of the gas-liquid separator, the on-off valve and the drain valve are controlled to open and close to drain.
  • a computer program provides a computer that controls a fuel cell including a hydrogen circulation path for returning and circulating a gas exhausted from a power generation unit, and a gas-liquid separator that separates and drains water from the gas.
  • Obtain the pressure in the hydrogen circuit calculate the number of drains based on the internal volume of the hydrogen circuit, the pressure, and the internal volume of the gas-liquid separator, and supply hydrogen according to the calculated number of times And a process for outputting an opening / closing signal for the opening / closing valve and an opening / closing signal for the drain valve.
  • the number of times of wastewater treatment is calculated by comparing the amount of water discharged by increasing the volume of gas by one opening of the hydrogen circulation path and the internal volume of the gas-liquid separator.
  • the water in the gas-liquid separator can be discharged well.
  • the water level sensor provided in the gas-liquid separator 83 is not limited to the liquid level sensor, and may be a float sensor or the like.
  • the set number N may be calculated with the second pressure sensor 88 not provided and P0 as 101 kPa.
  • VA may be calculated using a gas equation of state.
  • PH is obtained to calculate VA, and when the total amount of VA reaches a predetermined internal volume or more of the gas-liquid separator 83, drainage control processing is performed. You may end.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

発電停止時に気液分離器内の水の残留を抑制して凍結を防止し、次回の発電時に排水を良好に行うことができ、燃料電池の機能低下が防止されている燃料電池、燃料電池の制御方法、及びコンピュータプログラムを提供する。 燃料電池(300)は、スタック(1)と、水素供給部(200)と、水素供給のための開閉弁(21,79,80)と、スタック(1)から排気されるガスをスタック(1)へ戻して循環させる水素循環路(72,73,75)と、水素循環路内の圧力を検出する第1圧力センサ(78)と、前記ガスから水を分離する気液分離器(83)と、気液分離器(83)から水を排出する排水弁(84,85)と、開閉弁及び排水弁の開閉を制御する制御部(9)とを備える。 制御部(9)は水素循環路の内容積、気液分離器(83)の内容積、及び第1圧力センサ(78)により検出した前記圧力に基づき、開閉弁及び排水弁の開閉を制御して排水制御処理を行う。

Description

燃料電池、燃料電池の制御方法、及びコンピュータプログラム
 本発明は、水素及び酸素を反応させて発電する発電部と、発電部から排出される水を外部へ排出する排水弁と、排水弁の開閉を制御する制御部とを備える燃料電池、燃料電池の制御方法、及びコンピュータに排水制御処理を実行させるためのコンピュータプログラムに関する。
 負極に水素を送って起電力を得る電池として、燃料電池、ニッケル・水素電池等が挙げられる。
 燃料電池は発電効率が高く、クリーンな発電装置であり、負荷の大小に影響されず、コジェネレーションシステムを構築できるため、パーソナルコンピュータ,携帯電話機等のデジタル家電製品、電気自動車、鉄道、携帯電話の基地局、発電所等の種々の用途が検討されている。
 燃料電池は、スタックと、複数の水素ボンベと、水素循環路と、水素供給路とを有する。
 スタックは、固体高分子電解質膜を負極と陽極とで両側から挟んで膜電極接合体を形成し、この膜電極接合体の両側に一対のセパレータを配置して平板状の単位セルを構成し、この単位セルを複数積層してパッケージ化したものである。
 水素供給路の一端部はレギュレータ及び開閉弁を介し水素ボンベに接続されている。水素は、水素ボンベから水素供給路を通流されて、水素循環路のスタックの負極寄りの部分を経て、スタック内の負極側部分へ送出され、該部分内の通流路を通流される。該通流路内を通流し、スタックから排出された未反応水素を含む排気ガス(オフガス)は、水素循環路を通流して、スタックに戻される。
 スタックに水素が供給され、負極に水素を含む燃料ガスが接触し、正極に空気等の酸素を含む酸化ガスが接触することにより両電極で電気化学反応が生じて、起電力が発生する。反応時に陽極側で水が生成され、この水は水蒸気として負極側に電解質膜を介して逆拡散する。水蒸気、又は温度差により結露した水はオフガスに含まれる。
 上述したようにオフガス中に水分が含まれているので、水素循環路に気液分離器を設けてガスと水とを分離しており、ガスはスタックへ戻し、貯留した水は適時、排出するようにしている。
 燃料電池の発電が停止した場合、気液分離器には水が溜まっているが、氷点下の環境においては水が凍結する。このため、次回の発電時に排水することができなくなる。これにより、燃料電池が、水が溢れて水素循環路を塞ぐフラッディング状態となり、機能が低下する。
 従って、燃料電池の発電停止時に、気液分離器内に水が残存することを防止して、凍結を防止する必要がある。
 特許文献1には、発電により生成された水を、水素循環路の下方に設けた貯留部に導いて貯留し、貯留部の水位を水位センサにより検出し、該水位が予め設定した上限水位を超えたとき、貯留部の生成水を下部から排出するように構成された燃料電池の発明が開示されている。
特開2002-313403号公報
 特許文献1に係る燃料電池のように水位センサにより水位を監視して排水する場合、水位が水位センサにより検出される位置にあるときには、排水することができるが、水位が水位センサにより検出されない位置にある場合、気液分離器内に貯留された全部の水を排出することはできない。気液分離器内に水が残留していた場合、上述したように氷点下の環境で凍結することになる。
 本発明は、斯かる事情に鑑みてなされたものであり、発電停止時に気液分離器内の水の残留を抑制して凍結を防止し、次回の発電時に排水を良好に行うことができ、燃料電池の機能低下が防止されている燃料電池、燃料電池の制御方法、及びコンピュータプログラムを提供することを目的とする。
 本発明に係る燃料電池は、水素及び酸素を反応させて発電する発電部と、該発電部に水素を供給する燃料部と、前記水素の供給のための開閉弁と、前記発電部から排気されるガスを前記発電部へ戻して循環させる水素循環路と、該水素循環路内の圧力を検出する圧力検出器と、前記水素循環路に設けられ、前記ガスから水を分離する気液分離器と、該気液分離器から水を排出する排水弁と、前記開閉弁及び前記排水弁の開閉を制御する制御部とを備える燃料電池において、前記制御部は、前記水素循環路の内容積、前記気液分離器の内容積、及び前記圧力検出器により検出した前記圧力に基づき、前記開閉弁及び前記排水弁の開閉を制御して排水処理を行うことを特徴とする。
 本発明に係る燃料電池の制御方法は、開閉弁を開いて燃料部から発電部へ水素を供給し、該発電部から排気されるガスを水素循環路により前記発電部へ戻して循環させ、前記水素循環路に設けられた気液分離器により前記ガスから水を分離して排水弁により排水する燃料電池の制御方法において、前記水素循環路内の圧力を取得し、前記水素循環路の内容積、前記圧力、及び前記気液分離器の内容積に基づいて、前記開閉弁及び前記排水弁の開閉を制御して排水することを特徴とする。
 本発明に係るコンピュータプログラムは、発電部から排気されるガスを戻して循環させる水素循環路、及び前記ガスから水を分離して排水する気液分離器を備える燃料電池を制御するコンピュータに、前記水素循環路内の圧力を取得し、前記水素循環路の内容積、前記圧力、及び前記気液分離器の内容積に基づいて、排水の回数を算出し、算出した回数に応じて、水素供給のための開閉弁に対する開閉信号、及び排水弁に対する開閉信号を出力する処理を実行させることを特徴とする。
 本発明によれば、前記開閉弁を開き、排水弁を閉じている状態から、開閉弁を閉じ、排水弁を開いて水素循環路を開放したときの圧力差による水素循環路内の気体の増加量、及び気液分離器の内容積に基づいて、気液分離器内に貯留された水を押し出して排出する排水処理を行うことにより、気液分離器内の水の残留を抑制して凍結を防止することができる。従って、次回の発電時に排水を良好に行うことができ、燃料電池の機能低下が防止される。
 そして、前記排水処理では、開閉弁を閉じた状態で排水を行うので、万一、排水弁が故障した場合においても、規定量以上の水素の漏出が防止される。
実施の形態1に係る燃料電池を示すブロック図である。 CPUによる排水制御処理の手順を示すフローチャートである。 気液分離器の模式的断面図である。 気液分離器の模式的断面図である。 実施の形態2に係る気液分離器の模式的断面図である。 CPUによる排水制御処理の手順を示すフローチャートである。 CPUによる排水制御処理の手順を示すフローチャートである。
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
実施の形態1.
 図1は、実施の形態1に係る燃料電池300を示すブロック図である。
 燃料電池300は、電池本体100と水素供給部200とを備える。電池本体100は例えば固体高分子形燃料電池(polymer electrolyte fuel cell)等の電池本体である。
 電池本体100は、スタック1、空気流路3、エアポンプ30、スタック冷却路4、冷却ポンプ40、第1熱交換器41、第2熱交換器42、ラジエータ通流路5、放熱ポンプ50、ラジエータ51、ファン52、ボンベ加熱路6、加熱ポンプ60、水素通流路7、第1圧力センサ78、開閉弁79,80、水素循環ポンプ82、気液分離器83、排水弁84,85、排気弁86,87、第2圧力センサ88、及び制御部9を備える。第2熱交換器42はヒータ(不図示)を備える。
 水素供給部200は、複数のMH(Metal Hydride)ボンベ20と、開閉弁21と、レギュレータ22とを備える。MHボンベ20は水素吸蔵合金を充填してなる。開閉弁21には全てのMHボンベ20が接続されており、開閉弁21はレギュレータ22に接続されている。レギュレータ22により水素の供給圧力が調整される。MHボンベ20内の水素吸蔵合金が水素を放出する際の反応は吸熱反応である。
 スタック1は、固体高分子電解質膜を負極と陽極とで両側から挟んで膜電極接合体を形成し、この膜電極接合体の両側に一対のセパレータを配置して平板状の単位セルを構成し、この単位セルを複数積層してパッケージ化したものである。
 負極に、水素供給部200から流入した水素を含む燃料ガスが接触し、正極に空気等の酸素を含む酸化ガスが空気流路3から流入して接触することにより両電極で電気化学反応が生じて起電力が発生し、水が生じる。
 水素通流路7は、水素供給路71、水素導入路72、水素回路73、第1排水路74、及び第1排気路75からなる。水素導入路72、水素回路73、及び第1排気路75により水素循環路が構成される。水素供給路71は、一端部がレギュレータ22に接続され、他端部に開閉弁79,80が直列に接続されている。水素導入路72は、一端部が開閉弁80に接続され、他端部は水素回路73の、スタック1の負極寄りの部分に接続されている。水素導入路72には、第1圧力センサ78と、逆止弁81とが設けられている。
 水素回路73には水素循環ポンプ82及び気液分離器83が設けられている。開閉弁21,79,80を開いたとき、水素は水素供給路71及び水素導入路72を通流し、水素循環ポンプ82により、水素回路73を通流して、スタック1の負極側部分へ送出され、該部分内の通流路を通流されるように構成されている。該通流路内を通流し、スタック1から排出された、水素、不純物(当初から水素に含有された不純物と反応により生じた不純物とを含む)及び水分は水素回路73を通流し、気液分離器83へ送られる。
 気液分離器83において、水素及び不純物を含むガスと、水とに分離される。
 第1排水路74は気液分離器83の下側に接続されており、第1排水路74には電磁弁である排水弁84,85が直列に設けられている。排水弁85には第2排水路76が接続されている。
 第1排気路75は、気液分離器83の上側で水素回路73から分岐して延びるように設けられており、第1排気路75には前記ガスを排出するための排気弁86,87が直列に設けられている。前記ガスは、所定のタイミングで排気弁86,87に通電して開放することにより第2排気路77を通流し、外部へ排出される。
 気液分離器83において、分離された前記ガスは排気弁86,87を閉じているとき、気液分離器83から水素回路73を通流して水素循環ポンプ82へ送られ、スタック1へ戻される。
 気液分離器83で分離された水は貯留され、後述する排水制御処理により排水弁84,85に通電して開放することで第1排水路74及び第2排水路76を通流され、外部へ排出される。
 気液分離器83の下方には、前記第2圧力センサ88が設けられている。
 排水弁84,85及び排気弁86,87、並びに第1排水路74及び第1排気路75は断熱材により覆うことにしてもよい。
 空気流路3にはエアポンプ30が設けられている。そして、空気流路3のスタック1への流入側部分には開閉弁31が、スタック1からの流出側部分には開閉弁32が設けられている。開閉弁31、開閉弁32を開いたとき、エアポンプ30から送出された空気は空気流路3を通流してスタック1の正極側部分へ導入され、該部分の通流路を通流されるように構成されている。該通流路内を通流した空気は、スタック1から排出され、開閉弁32を通って外部へ排出される。
 スタック冷却路4には、冷却ポンプ40、イオン交換樹脂43、及び導電率計44が設けられている。冷却ポンプ40から送出され、スタック冷却路4を通流する冷却水はイオン交換樹脂43内を通流し、導電率計44により導電率を測定された後、スタック1へ導入され、スタック1内の通流路を通流した後、排出されて、第1熱交換器41及び第2熱交換器42を通流し、冷却ポンプ40へ戻るように構成されている。
 ラジエータ通流路5には、放熱ポンプ50が設けられている。放熱ポンプ50から送出された、例えば不凍液等の放熱液は、ラジエータ51を通流し、さらに第1熱交換器41を通流した後、放熱ポンプ50へ戻るように構成されている。ラジエータ51に近接してファン52が設けられている。
 ボンベ加熱路6には、加熱ポンプ60が設けられている。加熱ポンプ60から送出された加熱液は、水素供給部200内の通流路を通流して各MHボンベ20を加熱した後、水素供給部200から排出され、第2熱交換器42を通流して、加熱ポンプ60へ戻るように構成されている。加熱により、MHボンベ20内の水素吸蔵合金から水素が放出される。加熱液として不凍液が挙げられる。
 スタック冷却路4、ラジエータ通流路5、ボンベ加熱路6、第1熱交換器41、及び第2熱交換器42は断熱材により覆われている。該断熱材により覆われた部分は、図1において太線で表している。該断熱材により、外部との熱移動を制限でき、熱量を制御しやすい。
 制御部9は、制御部9の各構成部の動作を制御するCPU(Central Processing Unit)90を備え、CPU90には、バスを介して、ROM91、及びRAM92が接続されている。
 ROM91は、EEPROM(Electrically Erasable Programmable ROM)等の不揮発性メモリであり、燃料電池300の運転プログラム91aと、本実施の形態に係る排水制御プログラム91bを記憶している。
 また、排水制御プログラム91bは、コンピュータ読み取り可能に記録された可搬式メディアであるCD(Compact Disc)-ROM、DVD(Digital Versatile Disc)-ROM、BD(Blu-ray(登録商標) Disc)、ハードディスクドライブ又はソリッドステートドライブ等の記録媒体に記録されており、CPU90が記録媒体から、排水制御プログラム91bを読み出し、ROM91に記憶させてもよい。
 さらに、通信網に接続されている図示しない外部コンピュータから本発明に係る排水制御プログラム91bを取得し、ROM91に記憶させることにしてもよい。
 RAM92は、DRAM(Dynamic RAM)、SRAM(Static RAM)等のメモリであり、CPU91の演算処理を実行する際にROM91から読み出された運転プログラム91a、排水制御プログラム91b、及びCPU90の演算処理によって生ずる各種データを一時記憶する。
 制御部9は電池本体100の各構成部、及び水素供給部200の開閉弁21に接続されており、制御部9は各構成部及び開閉弁21の動作を制御する。また、制御部9には、前記第1圧力センサ78、第2圧力センサ88が接続されている。なお、図1において、制御部9と各構成部との接続は、本実施の形態の説明において必要な部分のみ示している。
 スタック1で生じる反応は発熱反応であり、スタック1はスタック冷却路4内を通流する冷却水により冷却される。スタック1から排出された冷却水の熱は、第1熱交換器41において放熱液に伝導され、放熱液はラジエータ51において熱を放出し、熱はファン52により電池本体100の外部へ放出される。ラジエータ51において冷却された放熱液は第1熱交換器41へ送られる。
 スタック冷却路4において、第1熱交換器41を通流し、第2熱交換器42へ導入された冷却水の熱は、第2熱交換器42において加熱液へ伝導され、加熱液は水素供給部200の各MHボンベ20を加熱し、水素吸蔵合金から水素を放出させる。
 第2熱交換器42で冷却された冷却水は冷却ポンプ40へ戻り、スタック1へ送られる。
 そして、発電を行っていない場合、スタック冷却路4の冷却水の温度は環境温度となるが、第2熱交換器42の前記ヒータにより加熱液を加温することにより、MHボンベ20を所定温度に保持することができる。
 なお、ボンベ加熱路6を有さずに、スタック1で生じた熱を有する空気を水素供給部200へ送風して、MHボンベ20を加温することにしてもよい。また、MHボンベ20にヒータを設けておき、MHボンベ20を直接ヒータで加温することにしてもよい。
 本実施の形態においては、制御部9のCPU90は発電の終了後、ROM91から排水制御プログラム91bを読み出して、気液分離器83の排水制御処理を実行する。
 以下、この排水制御処理について説明する。
 図2は、CPU90による排水制御処理の手順を示すフローチャートである。
 初期条件は電池本体100において発電を行っている場合であり、開閉弁21,79,80が通電オン(開)であり、排水弁84,85が通電オフ(閉)の状態である。
 この状態からCPU90は発電を停止し、排水制御処理を開始する。
 まず、CPU90は第1圧力センサ78からPHを取得し(S1)、第2圧力センサ88からP0を取得する(S2)。ここで、PHは水素循環路内の圧力であり、P0は外気圧である。
 CPU90は、排出の設定回数(以下、設定回数という)Nを算出する(S3)。
 以下、設定回数Nの算出方法について説明する。算出方法として、4通りの方法(算出方法1~4)がある。このうち、いずれか1つの算出方法を用いて設定回数Nを求めればよい。詳しくは後述するが、算出方法2,4は、水素循環路の内容積に第1排水路74の内容積を含めて、設定回数Nを算出するものである。また、算出方法3,4を用いる場合には、気液分離器83に液面センサ89を設ける構成にする必要がある。
(算出方法1)
 図3は、気液分離器83の模式的断面図である。
 気液分離器83内で、水が満たされているときの、気液分離器83の内容積をVD(cc)とする。
 上述の水素循環路の内容積をVH(cc)、水素循環路内の圧力をPH(kPa)、外気圧をP0(kPa)、開閉弁21,79,80を閉じた状態で水素循環路内の圧力がPHからP0になったときのガスの体積の増加分(押し出される水の1回の排出量)をVA(cc)とすると、
 PH×VH=P0×(VH+VA)
 従って、VA={(PH-P0)/P0}×VH
 VA分、気液分離器83内のガスの体積が増加し、気液分離器83内に貯留されていた水が押し出されて排出される。
 VD分、水が貯留されているので、必要とされる、排出の設定回数Nは以下の式により求められる。
 N≧VD/VA
(算出方法2)
 算出方法2においては、第1排水路74の内容積を含めて、設定回数Nを算出する。
 ここでは、上記VHと第1排水路74の内容積VC(cc)との和に相当する分、水が満たされていると考え、以下の式により設定回数Nを求める。
 N≧(VD+VC)/VA
(算出方法3)
 図4は、気液分離器83の模式的断面図である。気液分離器83の上部の所定の位置に液面センサ89が設けられている。液面センサ89は、気液分離器83内の水の水位を検出する。液面センサ89は、詳しく図示しないが、制御部9に接続されている。
 図4Aに示すように、気液分離器83の全体内容積をVD、上面から液面センサ83までの部分の気液分離器83の内容積(第1内容積)をVD1、液面センサ89から底面までの気液分離器83の内容積(第2内容積)をVD2とし(即ち、VD=VD1+VD2)、水は液面センサ89まで満たされているとする。
 水素循環路の圧力PHは、水素循環路の内容積VHと第1内容積VD1との和の体積のガスの圧力に相当する。
 従って、1回の排出量VAは以下の式により求められる。
 VA={(PH-P0)/P0}×(VH+VD1)
 水が満たされている気液分離器83の内容積はVD2であるので、設定回数Nは、以下の式により求められる。
 N≧VD2/VA
 図4Bに示すように、水素循環路の開放により、体積がVA分増加した分、水が排出される。
(算出方法4)
 算出方法4においては、第1排水路74の内容積を含めて、設定回数Nを算出する。
 下記の通り、上述の算出方法3で求めたVAで、VD2とVCとの和を除することにより、設定回数Nが求められる。
 N≧(VD2+VC)/VA
 CPU90は、上述のステップS3で求めた設定回数Nを設定してRAM92に記憶させ(S4)、排水の回数nを「0」にリセットする(S5)。
 CPU90は開閉弁21,79,80を順にオフし(S6,7,8)、排水弁84,85を順にオンし(S9,10)、排水を開始する。
 CPU90は、PHがP0より大きいか否かを判定する(S11)。CPU90はPHがP0より大きいと判定した場合(S11:YES)、上述の判定を繰り返す。
 CPU90はPHがP0より大きくないと判定した場合(S11:NO)、即ち排水ができなくなるので、排水を終了し、排水の回数nを「1」、インクリメントする(S12)。
 CPU90は、排水の回数nが設定回数N以上であるか否かを判定する(S13)。排水の回数nが設定回数N以上でない場合、上述の排水処理を繰り返す必要がある。
 CPU90は排水の回数nが設定回数N以上でないと判定した場合(S13:NO)、排水弁85,84を順にオフし(S14,15)、開閉弁80,79,21を順にオンし(S16,17,18)、水素循環路の圧力PHをステップS1で取得した圧力値まで上げて、処理をステップS6へ戻す。ここで、圧力センサ78からPHを取得して、PHが前記圧力値まで上昇したか否かを確認することにしてもよく、水素供給部200から供給される水素の流量とVHとにより求められる時間により圧力の上昇を確認することにしてもよい。
 CPU90は、排水の回数nが設定回数N以上になるまで、上述の排水処理を繰り返し、ステップS13で、n≧Nであると判定した場合(S13:YES)、排水弁85,84を順にオフし(S19,S20)、排水制御処理を終了する。
 本実施の形態においては、開閉弁21,79,80を開き、排水弁84,85を閉じている状態から、開閉弁21,79,80を閉じ、排水弁84,85を開いて水素循環路を開放したときの圧力差による水素循環路内の気体の増加量、及び気液分離器83の内容積に基づいて、気液分離器83内に貯留された水を押し出して排出する排水制御処理を繰り返すので、気液分離器83内の水の残留を抑制して凍結を防止することができる。
 具体的には、水素循環路の圧力PHと外気圧P0との差のP0に対する比、及び水素循環路の内容積VHから、1回の開放により気体の体積が増加して水が排出される量VAを算出し、気液分離器83の内容積VD(又はVD+VC)をVAで除して、設定回数(繰り返しの回数)Nを算出するので、気液分離器83内の水の残存は良好に抑制される。
 従って、次回の発電時に排水を良好に行うことができ、燃料電池300の機能低下が防止されている。
 発電の停止時に液面センサ89の位置まで水が溜まっている場合に、即ち気液分離器83の全体内容積VDと前記位置までの第1内容積VD1との差である第2内容積VD2が水で満たされている場合(図4A)、圧力PHと外気圧P0との差のP0に対する比、及びVHとVD1との和から、1回の水の排出量VAを算出し、気液分離器83の内容積VDをVAで除して、設定回数Nを算出するので、気液分離器83内の水の残存が良好に抑制される。
 また、上述した算出方法2又は算出方法4を用いて設定回数Nを算出し、排水制御処理を実行すれば、気液分離器83内の水に加えて第1排水路74内の水も排出できるので、第1排水路74についても水の残留を抑制して凍結を防止することができる。
 また、本実施の形態においては、開閉弁21,79,80を閉じた状態で排水を行うので、万一、排水弁84,85が故障した場合においても、規定量以上の水素の漏出を防止することができる。
実施の形態2.
 実施の形態2に係る燃料電池は、気液分離器83の構成が異なり、排水の処理手順が異なること以外は、実施の形態1に係る燃料電池300と同様の構成を有する。
 図5は、実施の形態2に係る燃料電池の気液分離器83の模式的断面図である。
 発電停止後に、貯留された水の液面が液面センサ89より下側に位置する場合、排出すべき水の量を正確に求めることが困難である。
 実施の形態2に係る気液分離器83においては、上面寄りに設けられた液面センサ89に加えて、底面寄りに液面センサ90が設けられている。液面センサ90も、液面センサ89と同様に、気液分離器83内の水の水位を検出するセンサであり、制御部9に接続されている。
 実施の形態2においては、貯留水の液面が液面センサ90の位置に到達するまで予備排水を行った後、上述の圧力差に基づく体積増加分により設定回数Nを求めて排水を行う。
 設定回数Nの算出方法は、以下の通りである。
(算出方法5)
 図5に示すように、気液分離器83の全体内容積をVD、上面から液面センサ90までの部分の気液分離器83の内容積(第1内容積)をVD1、液面センサ90から底面までの気液分離器83の内容積(第2内容積)をVD2とし、水は液面センサ90まで満たされているとする。
 水素循環路の圧力PHは、水素循環路の内容積VHと第1内容積VD1との和の体積のガスの圧力に相当する。
 1回の排出量VAは以下の式により求められる。
 VA={(PH-P0)/P0}×(VH+VD1)
 水が満たされている気液分離器83の内容積はVD2であるので、設定回数Nは、以下の式により求められる。
 N≧VD2/VA
(算出方法6)
 算出方法6においては、第1排水路74の内容積を含めて、設定回数Nを算出する。
 下記の通り、上述の算出方法5で求めたVAで、VD2とVCとの和を除することにより、設定回数Nが求められる。
 N≧(VD2+VC)/VA
 図6及び図7は、CPU90による排水制御処理の手順を示すフローチャートである。
 初期条件は電池本体100において発電を行っている場合であり、開閉弁21,79,80が通電オン(開)であり、排水弁84,85が通電オフ(閉)の状態である。
 この状態からCPU90は発電を停止し、排水制御処理を開始する。
 まず、CPU90は、気液分離器83に貯留されている水の水位が液面センサ90の設置の位置以下であるか否かを判定する(S31)。
 CPU90は、水位が液面センサ90の位置以下でないと判定した場合(S31:NO)、排水弁84,85を順にオンし(S32,33)、水位が液面センサ90の位置に到達するまで予備排水を行い、処理をステップS31へ戻す。
 予備排水により、水位が液面センサ90の位置に到達すると、CPU90は、水位が液面センサ90の位置以下であると判定し(S31:YES)、排水弁85,84を順にオフする(S34,35)。
 CPU90は第1圧力センサ78からPHを取得し(S36)、第2圧力センサ88からP0を取得する(S37)。
 CPU90は、上述のようにして設定回数Nを算出する(S38)。
 CPU90は、ステップS38で求めた設定回数Nを設定し(S39)、排水の回数nを「0」にリセットする(S40)。
 CPU90は開閉弁21,79,80を順にオフし(S41,42,43)、排水弁84,85を順にオンし(S44,45)、排水を開始する。
 CPU90は、PHがP0より大きいか否かを判定する(S46)。CPU90はPHがP0より大きいと判定した場合(S46:YES)、上述の判定を繰り返す。
 CPU90はPHがP0より大きくないと判定した場合(S46:NO)、即ち排水ができなくなるので、排水を終了し、排水の回数nを「1」、インクリメントする(S47)。
 CPU90は、排水の回数nが設定回数N以上であるか否かを判定する(S48)。
 CPU90は排水の回数nが設定回数N以上でないと判定した場合(S48:NO)、排水弁85,84を順にオフし(S49,50)、開閉弁80,79,21を順にオンし(S16,17,18)、水素循環路の圧力PHをステップS1で取得した圧力値まで上げて、処理をステップS41へ戻す。
 CPU90は、排水の回数nが設定回数N以上になるまで、上述の排水制御処理を繰り返し、ステップS48において、n≧Nであると判定した場合(S48:YES)、排水弁85,84を順にオフし(S54,S55)、排水制御処理を終了する。
 本実施の形態においては、発電停止後に、貯留された水の液面を液面センサ90の位置まで下げる予備排水を行った上で排水制御処理を行うので、排出すべき水の量を正確に求めることができる。そして、排水制御処理の回数を減じることができる。
 以上のように構成された本発明に係る燃料電池は、水素及び酸素を反応させて発電する発電部(スタック)と、該発電部に水素を供給する燃料部(水素供給部)と、前記水素の供給のための開閉弁と、前記発電部から排気されるガスを前記発電部へ戻して循環させる水素循環路と、該水素循環路内の圧力を検出する圧力検出器(圧力センサ)と、前記水素循環路に設けられ、前記ガスから水を分離する気液分離器と、該気液分離器から水を排出する排水弁と、前記開閉弁及び前記排水弁の開閉を制御する制御部とを備える燃料電池において、前記制御部は、前記水素循環路の内容積、前記気液分離器の内容積、及び前記圧力検出器により検出した前記圧力に基づき、前記開閉弁及び前記排水弁の開閉を制御して排水処理(排水制御処理)を行うことを特徴とする。
 本発明においては、前記開閉弁を開き、排水弁を閉じている状態から、開閉弁を閉じ、排水弁を開いて水素循環路を開放したときの圧力差による水素循環路内の気体の増加量、及び気液分離器の内容積に基づいて、気液分離器内に貯留された水を押し出して排出する排水処理を行うことにより、気液分離器内の水の残留を抑制して凍結を防止することができる。従って、次回の発電時に排水を良好に行うことができ、燃料電池の機能低下が防止されている。そして、開閉弁を閉じた状態で排水を行うので、万一、排水弁が故障した場合においても、規定量以上の水素の漏出を防止することができる。
 本発明に係る燃料電池は、上述の燃料電池において、前記制御部は、前記水素循環路の内容積、前記気液分離器の内容積、及び前記圧力検出器により検出した前記圧力に基づき、前記排水処理の回数(設定回数)を算出することを特徴とする。
 本発明においては、水素循環路の1回の開放により、気体の体積が増加して水が排出される量と、気液分離器の内容積とを比較して排水処理の回数を算出することにより、気液分離器内の水の残存をより良好に抑制することができる。
 本発明に係る燃料電池は、上述の燃料電池において、前記気液分離器内に貯留する水の水位を検知する水位検知器を備え、前記制御部は、前記水素循環路の内容積、前記気液分離器の全体内容積、上面から前記所定水位までの前記気液分離器の第1内容積、及び前記圧力検出器により検出した前記圧力に基づき、前記排水処理の回数を算出することを特徴とする。
 本発明においては、発電の停止時に水位検知器の位置まで水が溜まっている場合に、即ち、気液分離器の全体内容積と前記第1内容積との差に相当する気液分離器の内容積(第2内容積)が水で満たされている場合に、第2内容積と、水素循環路の1回の開放による気体の体積の増加分とを比較して、排出処理の回数を算出することにより、気液分離器内の水の残存をより良好に抑制することができる。
 本発明に係る燃料電池は、上述の燃料電池において、前記制御部は、前記圧力検出器により検出した前記圧力と外気圧との圧力差、及び前記第1内容積と前記水素循環路の内容積との和に基づいて、1回の水の排出量を算出し、前記全体内容積と前記第1内容積との差を前記1回の水の排出量で除して、前記排水処理の回数を算出することを特徴とする。
 本発明においては、第1内容積と前記水素循環路の内容積との和、即ち水の液面までの体積と、気液分離器内の圧力と外気圧との差に基づいて、体積の増加による、1回の水の排出量を正確に算出し、良好に排水処理の回数を算出することができる。
 本発明に係る燃料電池は、上述の燃料電池において、前記外気圧を検出する第2の圧力検出器を備え、前記制御部は、前記圧力と、前記第2の圧力検出器により検出した前記外気圧との圧力差に基づいて、前記排出量を算出することを特徴とする。
 本発明においては、第2の圧力検出器を備えるので、外気圧が標準気圧でない場所に燃料電池が配置されている場合においても、正確に排出量を算出することができる。
 本発明に係る燃料電池は、上述の燃料電池において、前記排水弁と前記気液分離器とを接続する排水管を備え、前記制御部は、前記排水管の内容積も含めて、前記排水処理の回数を算出することを特徴とする。
 本発明においては、排水管の内容積も含めて、前記排水処理の回数を算出するので、排水管内に水が残留して凍結することを防止することができる。
 本発明に係る燃料電池は、上述の燃料電池において、前記水位検知器は、前記気液分離器の底面寄りに設けてあり、前記制御部は、前記水位検知器により検知した前記水位が所定水位に到達するまで前記排水弁を開放する予備排水処理を行うことを特徴とする。
 本発明においては、発電停止後に、貯留された水の液面を一定にする予備排水を行った上で排水処理を行うので、排出すべき水の量を正確に求めることができる。そして、排水処理の回数を減じることができる。
 本発明に係る燃料電池の制御方法は、開閉弁を開いて燃料部から発電部へ水素を供給し、該発電部から排気されるガスを水素循環路により前記発電部へ戻して循環させ、前記水素循環路に設けられた気液分離器により前記ガスから水を分離して排水弁により排水する燃料電池の制御方法において、前記水素循環路内の圧力を取得し、前記水素循環路の内容積、前記圧力、及び前記気液分離器の内容積に基づいて、前記開閉弁及び前記排水弁の開閉を制御して排水することを特徴とする。
 本発明においては、前記開閉弁を開き、排水弁を閉じている状態から、開閉弁を閉じ、排水弁を開いて水素循環路を開放したときの圧力差による水素循環路内の気体の増加量、及び気液分離器の内容積に基づいて、気液分離器内に貯留された水を押し出して排出する排水処理を行うことにより、気液分離器内の水の残留を抑制して凍結を防止することができる。
 本発明に係るコンピュータプログラムは、発電部から排気されるガスを戻して循環させる水素循環路、及び前記ガスから水を分離して排水する気液分離器を備える燃料電池を制御するコンピュータに、前記水素循環路内の圧力を取得し、前記水素循環路の内容積、前記圧力、及び前記気液分離器の内容積に基づいて、排水の回数を算出し、算出した回数に応じて、水素供給のための開閉弁に対する開閉信号、及び排水弁に対する開閉信号を出力する処理を実行させることを特徴とする。
 本発明においては、水素循環路の1回の開放により、気体の体積が増加して水が排出される量と、気液分離器の内容積とを比較して排水処理の回数を算出することにより、気液分離器内の水を良好に排出することができる。
 本発明は上述した実施の形態1及び2の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
 例えば気液分離器83に設ける水位センサは液面センサに限定されるものではなく、フロートセンサ等であってもよい。
 また、燃料電池300を配置する場所の外気圧が標準気圧であるとしてよい場合は、第2圧力センサ88を設けず、P0を101kPaとして、設定回数Nを算出してもよい。
 また、温度が変化する場合、気体の状態方程式を用いて、VAを算出してもよい。
 また、設定回数Nを求めず、排水を行う都度、PHを取得してVAを算出し、VAの合計量が気液分離器83の所定の内容積以上に到達した場合に、排水制御処理を終了してもよい。
 1 スタック
 3 空気流路
 4 スタック冷却路
 41 第1熱交換器
 42 第2熱交換器
 5 ラジエータ通流路
 6 ボンベ加熱路
 7 水素通流路
 71 水素供給路
 72 水素導入路
 73 水素回路
 74 第1排水路
 75 第1排気路
 78 第1圧力センサ
 82 水素循環ポンプ
 84、85 排水弁
 86、87 排気弁
 88 第2圧力センサ
 89、90 液面センサ
 9 制御部
 20 MHボンベ
 30 エアポンプ
 90 CPU
 100 電池本体
 200 水素供給部
 300 燃料電池

Claims (9)

  1.  水素及び酸素を反応させて発電する発電部と、該発電部に水素を供給する燃料部と、前記水素の供給のための開閉弁と、前記発電部から排気されるガスを前記発電部へ戻して循環させる水素循環路と、該水素循環路内の圧力を検出する圧力検出器と、前記水素循環路に設けられ、前記ガスから水を分離する気液分離器と、該気液分離器から水を排出する排水弁と、前記開閉弁及び前記排水弁の開閉を制御する制御部とを備える燃料電池において、
     前記制御部は、
     前記水素循環路の内容積、前記気液分離器の内容積、及び前記圧力検出器により検出した前記圧力に基づき、前記開閉弁及び前記排水弁の開閉を制御して排水処理を行う
     ことを特徴とする燃料電池。
  2.  前記制御部は、
     前記水素循環路の内容積、前記気液分離器の内容積、及び前記圧力検出器により検出した前記圧力に基づき、前記排水処理の回数を算出することを特徴とする請求項1に記載の燃料電池。
  3.  前記気液分離器内に貯留する水の水位を検知する水位検知器を備え、
     前記制御部は、
     前記水素循環路の内容積、前記気液分離器の全体内容積、上面から前記所定水位までの前記気液分離器の第1内容積、及び前記圧力検出器により検出した前記圧力に基づき、前記排水処理の回数を算出することを特徴とする請求項2に記載の燃料電池。
  4.  前記制御部は、
     前記圧力検出器により検出した前記圧力と外気圧との圧力差、及び前記第1内容積と前記水素循環路の内容積との和に基づいて、1回の水の排出量を算出し、
     前記全体内容積と前記第1内容積との差を前記1回の水の排出量で除して、前記排水処理の回数を算出することを特徴とする請求項3に記載の燃料電池。
  5.  前記外気圧を検出する第2の圧力検出器を備え、
     前記制御部は、
     前記圧力と、前記第2の圧力検出器により検出した前記外気圧との圧力差に基づいて、前記排出量を算出することを特徴とする請求項4に記載の燃料電池。
  6.  前記排水弁と前記気液分離器とを接続する排水管を備え、
     前記制御部は、
     前記排水管の内容積も含めて、前記排水処理の回数を算出することを特徴とする請求項2から5までのいずれか1項に記載の燃料電池。
  7.  前記水位検知器は、前記気液分離器の底面寄りに設けてあり、
     前記制御部は、
     前記水位検知器により検知した前記水位が所定水位に到達するまで前記排水弁を開放する予備排水処理を行う
     ことを特徴とする請求項3から6までのいずれか1項に記載の燃料電池。
  8.  開閉弁を開いて燃料部から発電部へ水素を供給し、該発電部から排気されるガスを水素循環路により前記発電部へ戻して循環させ、前記水素循環路に設けられた気液分離器により前記ガスから水を分離して排水弁により排水する燃料電池の制御方法において、
     前記水素循環路内の圧力を取得し、
     前記水素循環路の内容積、前記圧力、及び前記気液分離器の内容積に基づいて、前記開閉弁及び前記排水弁の開閉を制御して排水する
     ことを特徴とする燃料電池の制御方法。
  9.  発電部から排気されるガスを戻して循環させる水素循環路、及び前記ガスから水を分離して排水する気液分離器を備える燃料電池を制御するコンピュータに、
     前記水素循環路内の圧力を取得し、
     前記水素循環路の内容積、前記圧力、及び前記気液分離器の内容積に基づいて、排水の回数を算出し、
     算出した回数に応じて、水素供給のための開閉弁に対する開閉信号、及び排水弁に対する開閉信号を出力する
     処理を実行させることを特徴とするコンピュータプログラム。
PCT/JP2017/001184 2016-03-25 2017-01-16 燃料電池、燃料電池の制御方法、及びコンピュータプログラム WO2017163553A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/059,628 US20180351184A1 (en) 2016-03-25 2018-08-09 Fuel cell, control method for fuel cell, and computer readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016062300A JP6597444B2 (ja) 2016-03-25 2016-03-25 燃料電池、燃料電池の制御方法、及びコンピュータプログラム
JP2016-062300 2016-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/059,628 Continuation US20180351184A1 (en) 2016-03-25 2018-08-09 Fuel cell, control method for fuel cell, and computer readable recording medium

Publications (1)

Publication Number Publication Date
WO2017163553A1 true WO2017163553A1 (ja) 2017-09-28

Family

ID=59901041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001184 WO2017163553A1 (ja) 2016-03-25 2017-01-16 燃料電池、燃料電池の制御方法、及びコンピュータプログラム

Country Status (3)

Country Link
US (1) US20180351184A1 (ja)
JP (1) JP6597444B2 (ja)
WO (1) WO2017163553A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873183A (zh) * 2017-12-04 2019-06-11 中国科学院大连化学物理研究所 一种直接液体燃料电池发电装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703868A (zh) * 2017-10-11 2018-02-16 湖北工业大学 分体式高容量全自动控制的可调控制氢系统
JP7299829B2 (ja) * 2019-12-10 2023-06-28 愛三工業株式会社 燃料電池システム
JP7243645B2 (ja) 2020-01-16 2023-03-22 トヨタ自動車株式会社 燃料電池システム及び車両
CN114243058B (zh) * 2021-11-08 2023-07-18 东风汽车集团股份有限公司 燃料电池系统及其气液分离装置、控制方法和控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313403A (ja) * 2001-04-09 2002-10-25 Honda Motor Co Ltd 燃料電池システムの生成水排出方法
JP2006139957A (ja) * 2004-11-10 2006-06-01 Honda Motor Co Ltd 気液分離器および燃料電池システム
JP2006286482A (ja) * 2005-04-01 2006-10-19 Nissan Motor Co Ltd 燃料電池システム
JP2010282821A (ja) * 2009-06-04 2010-12-16 Toyota Motor Corp 燃料電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158434A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 燃料電池システム
JP5412780B2 (ja) * 2008-09-26 2014-02-12 日産自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
JP2010123427A (ja) * 2008-11-20 2010-06-03 Nissan Motor Co Ltd 燃料電池システム
JP5554611B2 (ja) * 2010-03-31 2014-07-23 ダイハツ工業株式会社 燃料電池システム
JP2012204330A (ja) * 2011-03-28 2012-10-22 Toshiba Fuel Cell Power Systems Corp 燃料電池発電装置及びその停止方法
US9991531B2 (en) * 2014-11-14 2018-06-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313403A (ja) * 2001-04-09 2002-10-25 Honda Motor Co Ltd 燃料電池システムの生成水排出方法
JP2006139957A (ja) * 2004-11-10 2006-06-01 Honda Motor Co Ltd 気液分離器および燃料電池システム
JP2006286482A (ja) * 2005-04-01 2006-10-19 Nissan Motor Co Ltd 燃料電池システム
JP2010282821A (ja) * 2009-06-04 2010-12-16 Toyota Motor Corp 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873183A (zh) * 2017-12-04 2019-06-11 中国科学院大连化学物理研究所 一种直接液体燃料电池发电装置

Also Published As

Publication number Publication date
US20180351184A1 (en) 2018-12-06
JP6597444B2 (ja) 2019-10-30
JP2017174753A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2017163553A1 (ja) 燃料電池、燃料電池の制御方法、及びコンピュータプログラム
US6893758B2 (en) Fuel cell system and method of stopping the system
JP7041538B2 (ja) 燃料電池システム
JP5106867B2 (ja) 燃料電池システム
US20180198139A1 (en) Fuel cell, control method and computer readable recording medium
JP4618294B2 (ja) 燃料電池システム
JP6565758B2 (ja) 燃料電池、燃料電池の制御方法、及びコンピュータプログラム
JP2008130350A (ja) 燃料電池
JP2017157273A (ja) 燃料電池システムの発電停止方法
JP2006120342A (ja) 燃料電池システム
JP2009104966A (ja) 燃料電池システム
JP2020123496A (ja) 燃料電池システム
JP2007066833A (ja) 燃料電池発電システム
US11362353B2 (en) Fuel cell, control method for fuel cell, and computer readable recording medium
JP2010027217A (ja) 燃料電池システム
JP2006286486A (ja) 燃料電池ユニット
JP2018085184A (ja) 燃料電池
WO2017154310A1 (ja) 燃料電池、燃料電池の制御方法、及びコンピュータプログラム
JP2006286484A (ja) 燃料電池システム
JP5288200B2 (ja) 燃料電池システム及びその制御方法
JP2008135331A (ja) 燃料電池システム、および、燃料電池システムの制御方法
JP2000357527A (ja) 燃料電池システム
JP5103708B2 (ja) 燃料電池システム
KR101553443B1 (ko) 카트리지를 구비하는 연료전지 시스템용 냉각수 탱크
JP4814508B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769600

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769600

Country of ref document: EP

Kind code of ref document: A1