WO2017159813A1 - 静電式電気機械変換機 - Google Patents

静電式電気機械変換機 Download PDF

Info

Publication number
WO2017159813A1
WO2017159813A1 PCT/JP2017/010757 JP2017010757W WO2017159813A1 WO 2017159813 A1 WO2017159813 A1 WO 2017159813A1 JP 2017010757 W JP2017010757 W JP 2017010757W WO 2017159813 A1 WO2017159813 A1 WO 2017159813A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable substrate
substrate
electrostatic
movable
ground electrode
Prior art date
Application number
PCT/JP2017/010757
Other languages
English (en)
French (fr)
Inventor
山本 泉
Original Assignee
シチズン時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン時計株式会社 filed Critical シチズン時計株式会社
Priority to CN201780017533.2A priority Critical patent/CN108886330A/zh
Priority to US16/084,537 priority patent/US10622917B2/en
Priority to CN202010248751.0A priority patent/CN111313746B/zh
Priority to JP2018506019A priority patent/JP7022683B2/ja
Priority to EP17766808.4A priority patent/EP3432462B1/en
Publication of WO2017159813A1 publication Critical patent/WO2017159813A1/ja
Priority to HK19100720.6A priority patent/HK1258350A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/004Electrostatic motors in which a body is moved along a path due to interaction with an electric field travelling along the path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Definitions

  • the present invention relates to an electrostatic electromechanical converter using an electret material.
  • an electrostatic electromechanical converter such as an electrostatic motor or a power generation device using a charging layer having a property of retaining a charge semipermanently (see, for example, Patent Document 1).
  • This electrostatic electromechanical converter includes a charging layer made of an electret material and a counter electrode facing the charging layer, and in the case of an electrostatic motor, generates a driving force by electrostatic attraction of both, In the case of a power generation device, power is generated by utilizing electrostatic induction that occurs when the overlapping area of the two changes.
  • Such electrostatic electromechanical transducers are relatively small, and are being studied for use in portable electric devices that are worn or carried by people such as watches.
  • FIG. 12 is a cross-sectional view showing a main part of a conventional electrostatic electromechanical transducer 200.
  • the electrostatic electromechanical converter 200 includes a movable substrate 101 composed of a plurality of connecting portions 123, a fixed substrate 103 disposed below the movable substrate 101 in parallel with the movable substrate 101, and each connecting portion 123 of the movable substrate 101.
  • the charging layer 125 is provided on the lower surface, and a plurality of counter electrodes 129A and 129B are arranged on the upper surface of the fixed substrate 103 so as to be opposed to each other.
  • the electrostatic electromechanical transducer 200 When the electrostatic electromechanical transducer 200 is an electrostatic motor, the resultant force of electrostatic attraction acting on each charging layer 125 from each counter electrode 129A, 129B becomes a driving force.
  • the electrostatic electromechanical converter 200 is a power generation device, electric power is simultaneously extracted from the plurality of counter electrodes 129A and 129B by moving the respective charging layers 125 relative to the counter electrodes 129A and 129B. It is.
  • the driving force f of an electrostatic motor using an electret material is proportional to the product of the potential Vt of the charging layer (charging portion) and the applied voltage Vb of the counter electrode. Therefore, if the potential Vt of the charging layer or the applied voltage Vb of the counter electrode is increased, the driving force f can be increased.
  • boosting is necessary to increase the voltage Vb applied to the counter electrode, which involves energy loss.
  • the amount of charge stored in the charged layer must be increased, but this has a limit.
  • the present invention has been made in consideration of such problems, and its purpose is to increase the output without causing a large energy loss and to reduce the frictional force acting on the movable substrate. It is to provide an electro-electromechanical converter.
  • An electrostatic electromechanical converter that converts between electric power and power using electrostatic interaction between a charging unit and a counter electrode, and is constant between the fixed substrate and the fixed substrate
  • a plurality of charging units arranged at intervals in the moving direction of the movable substrate on a surface of the movable substrate facing the fixed substrate and the movable substrate, and a surface of the fixed substrate facing the movable substrate
  • An electrostatic electromechanical converter comprising: a plurality of counter electrodes arranged in a moving direction in the first electrode; and a ground electrode arranged opposite to a surface opposite to the opposite surface of the movable substrate. Is done.
  • the ground electrode preferably covers the entire region on the opposite surface of the movable substrate corresponding to the arrangement positions of the plurality of charging units.
  • the distance between the movable substrate and the fixed substrate is preferably 30 ⁇ m or more and 150 ⁇ m or less.
  • the movable substrate and the fixed substrate are disposed between the top plate and the ground plate, and the ground electrode is formed on the surface of the top plate or the ground plate facing the movable substrate. Also good.
  • the movable substrate and the fixed substrate may be disposed between the top plate and the ground plate, and the top plate or the ground plate may be used as the ground electrode.
  • the movable substrate can be rotated around a rotation axis passing through the center of the movable substrate, and the plurality of charging units and the plurality of counter electrodes are respectively radial about the rotation axis. It is preferable to arrange
  • the electrostatic electromechanical transducer described above applies a voltage whose polarity is switched alternately to the plurality of counter electrodes, and rotates the movable substrate by electrostatic force generated between the plurality of charging units and the plurality of counter electrodes. It is preferable to further include a drive unit and a gear train that is connected to the rotating shaft on the opposite side of the movable substrate across the ground electrode, and rotates together with the movable substrate to transmit the rotational motion of the movable substrate to the outside.
  • the electrostatic electromechanical converter includes a gear train that is connected to the rotating shaft on the opposite side of the movable substrate across the ground electrode and is driven by an external power source to rotate the rotating shaft and the movable substrate. It is preferable to further include a power storage unit that accumulates electric power generated by electrostatic induction between the plurality of charging units and the plurality of counter electrodes according to the rotation of the movable substrate.
  • the output can be increased without causing a large energy loss, and the frictional force acting on the movable substrate can be reduced.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of an electrostatic motor 100.
  • FIG. 2 is a perspective view of a movable substrate 101.
  • FIG. 3 is a diagram illustrating a lower surface of a movable substrate 101, an upper surface of a fixed substrate 103, and a drive circuit 127.
  • 2 is a diagram showing a cross section of a main part of the electrostatic motor 100 and a drive circuit 127.
  • FIG. 5 is a plan view showing an example of the shape of a ground electrode 105.
  • FIG. FIG. 7 is a perspective view of a gear 117 connected to a shaft 107. It is sectional drawing which shows schematic structure of another electrostatic motor 100A.
  • FIG. 2 is a schematic configuration diagram of a power generation device 150.
  • FIG. It is sectional drawing which showed the principal part of the conventional electrostatic electromechanical converter 200.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the electrostatic motor 100.
  • the electrostatic motor 100 includes a movable substrate 101, a fixed substrate 103, a ground electrode 105, a gear 117, a charging layer 125, a driving circuit 127 (see FIGS. 3 and 4), and a counter electrode 129.
  • the electrostatic motor 100 is an example of an electrostatic electromechanical converter, and uses an electrostatic force generated between the charging layer 125 and the counter electrode 129 based on an electric signal input to the drive circuit 127. By rotating the movable substrate 101, power is extracted from the electric power.
  • FIG. 2 is a perspective view of the movable substrate 101.
  • FIG. 3 is a diagram illustrating the lower surface of the movable substrate 101, the upper surface of the fixed substrate 103, and the drive circuit 127.
  • FIG. 4 is a diagram showing a cross section of the main part of the electrostatic motor 100 and the drive circuit 127.
  • FIG. 1 shows a cross section when the electrostatic motor 100 is cut along a vertical plane including the diameter of the disc-shaped movable substrate 101 as indicated by reference numeral I in FIG.
  • FIG. 4 shows a cross-section when the electrostatic motor 100 is cut along the circumferential direction of the movable substrate 101 as indicated by reference numeral IV in FIG.
  • the movable substrate 101 is fixed to a rod-shaped shaft (rotary shaft) 107 at the center thereof, and is configured to be rotatable about the shaft 107.
  • the movable substrate 101 is disposed in parallel to the fixed substrate 103 and can rotate with a fixed distance from the fixed substrate 103. Both ends of the shaft 107 are sandwiched between bearings 109, and the bearings 109 are fixed to the base plate 111 and the top plate 113.
  • the material of the movable substrate 101 may be a dielectric such as alumina or zirconia, a metal such as copper or aluminum, or a semiconductor such as silicon (Si).
  • a dielectric such as alumina or zirconia
  • a metal such as copper or aluminum
  • a semiconductor such as silicon (Si).
  • the movable substrate 101 has a disk shape as a whole as shown in FIG.
  • the movable substrate 101 is provided with a plurality of through-holes 121 arranged radially when viewed from the center position.
  • These through holes 121 have a substantially trapezoidal shape, and two sides on the outer peripheral side and the center side of the through hole 121 are formed in an arc shape along the outer periphery of the movable substrate 101. Due to the presence of the through holes 121, the central portion 101A and the outer peripheral portion 101B of the movable substrate 101 are connected to each other by a plurality of substantially trapezoidal connecting portions 123, and the connecting portions 123 are arranged radially at intervals. Have a different shape.
  • the central portion 101A is a circular region (annular region excluding the portion of the shaft 107) on the center side of the through hole 121 in the movable substrate 101, and the outer peripheral portion 101B penetrates in the movable substrate 101. This is an annular region on the outer peripheral side of the hole 121.
  • the charging layer 125 is an example of a charging unit, and as illustrated in FIG. 3, the charging layer 125 is formed in a film shape on the lower surface of the coupling unit 123 of the movable substrate 101 (the surface facing the fixed substrate 103). That is, the charging layer 125 includes a plurality of substantially trapezoidal partial regions that are spaced apart in the circumferential direction (rotation direction) of the movable substrate 101 and are arranged radially about the shaft 107.
  • the charging layer 125 is made of an electret material containing a fluorine-based resin such as polytetrafluoroethylene (PTFE) or an electret material made of an amorphous fluorine-based resin, and holds a negative charge.
  • PTFE polytetrafluoroethylene
  • the charging layer 125 not only a fluorine resin but also an inorganic material such as SiO 2 may be used.
  • the charged layer 125 is negatively charged, but the charged layer 125 may be made of a positively charged material.
  • the fixed substrate 103 is a drive electrode substrate on which a counter electrode (drive electrode) 129 for driving the movable substrate 101 is disposed, and is made of a known substrate material such as a glass epoxy substrate. As shown in FIG. 3, the fixed substrate 103 has, for example, a disk shape, and is fixed to the upper surface of the ground plate 111 so as to face the lower surface of the movable substrate 101.
  • the counter electrode 129 is divided into two sets of a counter electrode 129 ⁇ / b> A and a counter electrode 129 ⁇ / b> B, each of which includes a plurality of substantially trapezoidal electrodes.
  • the counter electrodes 129 ⁇ / b> A and the counter electrodes 129 ⁇ / b> B are formed radially on the upper surface of the fixed substrate 103 (the surface facing the movable substrate 101) alternately in the circumferential direction and centering on the shaft 107. Therefore, in the electrostatic motor 100, the charging layer 125 provided on the movable substrate 101 and the counter electrode 129 provided on the fixed substrate 103 are arranged to face each other.
  • the counter electrodes 129 ⁇ / b> A and the counter electrodes 129 ⁇ / b> B are formed at equal intervals in the circumferential direction, similarly to the charging layer 125.
  • the widths of the charging layer 125, the counter electrode 129A, and the counter electrode 129B are the same or substantially the same, and the numbers of the charging layer 125, the counter electrode 129A, and the counter electrode 129B are also the same. It is preferable.
  • the drive circuit 127 is an example of a drive unit, and includes a clock 131 and two comparators 133. As shown in FIGS. 3 and 4, the output of the clock 131 is connected to the input of each comparator 133, the output of one comparator 133 is connected to the counter electrode 129A, and the output of the other comparator 133 is connected to the counter electrode 129B. Connected through.
  • the drive circuit 127 applies rectangular wave voltages having different phases to the adjacent counter electrode 129A and counter electrode 129B by generating rectangular waves having different phases by the two comparators 133 using the clock 131 as an oscillation source. Thereby, an electrostatic attractive force and a repulsive force are applied to each charged layer 125 by the interaction with the charged layer 125, and a force for operating the movable substrate 101 is generated.
  • the drive circuit 127 applies an alternating voltage whose polarity is alternately switched to the counter electrode 129 and continuously generates an electrostatic force between the charging layer 125 and the counter electrode 129, thereby causing the movable substrate 101 to move.
  • the force applied to the charging layer 125 acts in the horizontal direction in FIG. 1 (hereinafter referred to as “driving force”) in FIG. 1 that rotates the movable substrate 101 around the axis 107 and in the vertical direction in FIG. It is divided into force (hereinafter referred to as “normal force”).
  • the normal force is transmitted to the shaft 107 and generates a frictional force between the shaft 107 and the bearing 109. Therefore, in order to obtain the electrostatic motor 100 with a small loss of driving force and capable of stable operation, it is ideal to increase the driving force and reduce the vertical force.
  • the ground electrode 105 is an electrically grounded electrode, and is disposed between the movable substrate 101 and the top plate 113 on the side opposite to the fixed substrate 103 with the movable substrate 101 interposed therebetween. That is, the ground electrode 105 is disposed to face a surface of the movable substrate 101 opposite to the surface facing the fixed substrate 103. In order to ground the ground electrode 105 outside the electrostatic motor 100, for example, the ground electrode 105 may be disposed so as to penetrate the support column 115 as shown in FIG.
  • FIG. 5A and FIG. 5B are plan views showing examples of the shape of the ground electrode 105. These correspond to a view of the ground electrode 105 viewed from the top plate 113 side, and the ground electrode 105 is assumed to be transparent so that the positional relationship between the movable substrate 101 and the ground electrode 105 can be understood. And are superimposed. As shown in these drawings, the ground electrode 105 may be circular or square. For example, the ground electrode 105 may cover the entire region between the base plate 111 and the top plate 113 sandwiched between the support columns 115 except for the central portion through which the shaft 107 passes. The area of the ground electrode 105 is preferably as large as possible. In particular, the ground electrode 105 preferably covers the whole of the plurality of connecting portions 123 of the movable substrate 101 corresponding to the arrangement positions of the respective charge layers 125.
  • the ground electrode 105 does not necessarily have to cover the entire surface of the movable substrate 101.
  • the central portion 101A and the outer peripheral portion 101B of the movable substrate 101 may not be covered with the ground electrode 105. If the ground electrode 105 covers most of the connecting portion 123, the upper portion of the connecting portion 123 is located above. May not be covered with the ground electrode 105.
  • FIG. 6 is a perspective view of the gear 117 connected to the shaft 107.
  • the gear 117 is fixed to the shaft 107 between the ground electrode 105 and the top plate 113 on the side opposite to the movable substrate 101 with the ground electrode 105 interposed therebetween. Rotate around.
  • the gear 117 is connected to another gear 117 ⁇ / b> A that rotates about another shaft 107 ⁇ / b> A in the electrostatic motor 100.
  • the shaft 107A and the gear 117A are not shown in FIG. 1, and the ground electrode 105 is not shown in FIG.
  • the material of these gears is preferably an insulating material (non-conductive material) such as a resin so as not to cause an electrical failure even if it contacts the movable substrate 101.
  • the gears 117 and 117A are an example of a gear train, and rotate with the movable substrate 101 to transmit the rotational motion of the movable substrate 101 to the outside. In the electrostatic motor 100, the power of the movable substrate 101 is taken out through these gears.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of another electrostatic motor 100A.
  • the electrostatic motor 100A is different from the electrostatic motor 100 in FIG. 1 in that the top plate is the ground electrode 105, but has the same configuration as the electrostatic motor 100 in other points. Not only the configuration of FIG. 1 in which the ground electrode 105 is disposed as an independent member between the top plate 113 and the ground plate 111, but the top plate itself may be used as the ground electrode 105 as shown in FIG.
  • the thickness of the electrostatic motor is reduced accordingly.
  • the same gear 117 as that of the electrostatic motor 100 is fixed to the shaft 107 between the movable substrate 101 and the ground electrode (top plate) 105, and the gear 117 is connected to another gear 117A. You may let them.
  • the ground plate 111 may be grounded to serve as the ground electrode 105.
  • the ground electrode 105 may be separately provided on the surface of the top plate 113 or the ground plate 111 facing the movable substrate 101 without using the top plate 113 or the ground plate 111 itself as the ground electrode 105.
  • the ground electrode 105 may be disposed on the entire surface of the top plate 113 or the ground plate 111, or the ground electrode 105 may be disposed only on a part thereof.
  • FIG. 8 is a graph showing the relationship between the distance d1 (see FIG. 4) between the charging layer 125 and the counter electrode 129 and the driving force Fd.
  • the horizontal axis in FIG. 8 represents the distance d1 (unit ⁇ m), and the vertical axis represents the driving force Fd (unit ⁇ N).
  • a curve a in FIG. 8 shows the driving force of the electrostatic motor 100, and a curve b shows, as a comparative example, an electrostatic motor having the same configuration as the electrostatic electromechanical converter 200 in FIG. Drive force).
  • the curve a corresponds to an electrostatic motor in which the ground electrode 105 is disposed on the opposite side of the fixed substrate 103 with the movable substrate 101 interposed therebetween, and the curve b is an electrostatic motor in which the ground electrode 105 is not disposed.
  • the driving force varies depending on the distance d1 between the charging layer 125 and the counter electrode 129 shown in FIG. 4 and increases as the distance d1 becomes shorter.
  • 100 is larger.
  • the apparent surface potential V of the charging layer 125 is a value obtained by dividing the charge amount Q of the charging layer 125 by the capacitance C between the charging layer 125 and the ground electrode 105. The longer the distance between the movable substrate 101 and the ground electrode 105, the smaller the distance. For this reason, in the electrostatic motor 100, the apparent surface potential V of the charging layer 125 can be increased as the distance between the movable substrate 101 and the ground electrode 105 is increased to reduce the capacitance C. Therefore, in the electrostatic motor 100, it is considered that the driving force is larger than that of the electrostatic motor 200 by disposing the ground electrode 105 at a position facing the surface of the movable substrate 101 opposite to the charging layer 125.
  • the distance d1 between the charging layer 125 and the counter electrode 129 When considering only the driving force, it is preferable to reduce the distance d1 between the charging layer 125 and the counter electrode 129 to about several tens of ⁇ m.
  • the distance d1 since the driving force is larger than that of the electrostatic motor 200 even if the distance d1 is about 300 ⁇ m, the distance d1 may be in the range of several tens of ⁇ m to 300 ⁇ m. If the distance d1 is increased, the electrostatic motor 100 can be easily assembled.
  • FIG. 9 is a graph showing the relationship between the distance d2 (see FIG. 4) between the movable substrate 101 and the ground electrode 105 in the electrostatic motor 100 and the driving force Fd.
  • the horizontal axis in FIG. 9 represents the distance d2 (unit ⁇ m), and the vertical axis represents the driving force Fd (unit ⁇ N).
  • the driving force increases as the distance d2 between the movable substrate 101 and the ground electrode 105 increases.
  • the distance d2 exceeds 400 ⁇ m, the driving force does not change much even if the distance d2 is increased.
  • the distance d2 between the movable substrate 101 and the ground electrode 105 is preferably 400 ⁇ m or more.
  • Increasing the distance d2 corresponds to increasing the thickness of the electrostatic motor 100, and it is desirable to reduce the distance d2 in applications such as portable electric devices. The thickness is appropriately determined in consideration of the thickness of 100 and the driving force.
  • FIG. 10 is a graph showing the relationship between the distance d1 between the charging layer 125 and the counter electrode 129 and the normal force Fv.
  • the horizontal axis in FIG. 10 represents the distance d1 (unit ⁇ m), and the vertical axis represents the vertical force Fv (unit ⁇ N).
  • a curve c in FIG. 10 indicates the normal force of the electrostatic motor 100, and a curve d indicates the normal force of the electrostatic motor 200 of the comparative example.
  • the sign of the vertical force is negative in the direction toward the counter electrode 129 and positive in the direction away from the counter electrode 129.
  • the vertical force is negative, and an attractive force that pulls the charging layer 125 and the counter electrode 129 together is acting.
  • the absolute value of the vertical force of the electrostatic motor 200 is substantially constant (approximately 1200 ⁇ N) regardless of the distance d1 between the charging layer 125 and the counter electrode 129.
  • the vertical force of the electrostatic motor 100 depends on the distance d1. This is considered to be because an attractive force acts between the movable substrate 101 and the ground electrode 105 in the electrostatic motor 100, and this attractive force cancels out the attractive force acting between the charging layer 125 and the counter electrode 129. It is done.
  • the absolute value of the normal force acting on the electrostatic motor 100 is 800 to 1000 ⁇ N, which is smaller and better than the absolute value of the normal force acting on the electrostatic motor 200.
  • the vertical force becomes zero when the distance d1 is around 120 ⁇ m.
  • the distance d1 between the charging layer 125 and the counter electrode 129 is 30 ⁇ m or more and 300 ⁇ m or less in order to make the driving force larger than that of the electrostatic motor 200.
  • the distance d2 between 101 and the ground electrode 105 is preferably 400 ⁇ m or more.
  • the distance d1 is preferably 30 ⁇ m or more and 150 ⁇ m or less. In consideration of both the driving force and the vertical force, the distance d1 is preferably 30 ⁇ m or more and 150 ⁇ m or less.
  • the ground electrode 105 is disposed at a position facing the surface of the movable substrate 101 where the charging layer 125 is not provided.
  • the driving force is increased, and it is resistant to load fluctuations and disturbances, and the frictional force between the shaft 107 and the bearing 109 is reduced, so that the loss of the driving force is reduced.
  • FIG. 11 is a schematic configuration diagram of the power generation device 150.
  • the power generation device 150 is different from the electrostatic motor 100 in that it has a power storage circuit 151 instead of the drive circuit 127 in FIG. 3, but has the same configuration as the electrostatic motor 100 in other points.
  • 11 shows the lower surface of the movable substrate 101, the upper surface of the fixed substrate 103, and the power storage circuit 151, as in FIG.
  • the overall cross-sectional view of the power generation apparatus 150 is the same as that of FIG. 1 except that the reference numeral 100 changes to the reference numeral 150.
  • the power generation device 150 is an example of an electrostatic electromechanical converter, and rotates the movable substrate 101 using the kinetic energy of the external environment to generate static electricity between the charged layer 125 and the counter electrode 129 by electrostatic induction. Electric power is extracted from power by generating.
  • the gear 117 is fixed to the shaft 107 on the opposite side of the movable substrate 101 with the ground electrode 105 interposed therebetween. It is connected to another gear 117A that rotates about 107A.
  • a rotating weight (not shown) having a weight balance bias is attached to the shaft 107A, and the rotating weight rotates around the shaft 107A by an external power source.
  • the power from the external power source is transmitted to the movable substrate 101 through the gears 117 and 117A.
  • the power generation device 150 When the movable substrate 101 rotates, the overlapping area between the charging layer 125 of the movable substrate 101 and the counter electrodes 129A and 129B increases and decreases, and accordingly, the electric charge drawn to the counter electrodes 129A and 129B by the electric field generated by the charging layer 125. Also increase or decrease. In this way, the power generation device 150 generates power using electrostatic induction by generating an alternating current between the counter electrode 129A and the counter electrode 129B.
  • the power storage circuit 151 includes a rectifier circuit 153 and a secondary battery 155.
  • the power storage circuit 151 is an example of a power storage unit, and stores power generated by electrostatic induction between the charging layer 125 and the counter electrodes 129A and 129B according to the rotation of the movable substrate 101.
  • the counter electrodes 129 ⁇ / b> A and 129 ⁇ / b> B of the power generation device 150 are each connected to a rectifier circuit 153 via electric wiring, and the rectifier circuit 153 is connected to the secondary battery 155.
  • the rectifier circuit 153 is a bridge-type circuit having four diodes, and rectifies the current generated between the counter electrode 129A and the counter electrode 129B.
  • the secondary battery 155 is a chargeable / dischargeable battery such as a lithium secondary battery, accumulates electric power generated by the power generation device 150, and supplies the electric power to a circuit to be driven (not shown).
  • the apparent surface potential V of the charging layer 125 is increased by disposing the ground electrode 105 at a position facing the surface of the movable substrate 101 where the charging layer 125 is not provided. Will increase. Further, the power generation device 150 also has an effect of reducing the frictional force between the shaft 107 and the bearing 109, similarly to the electrostatic motor 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)

Abstract

帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う静電式電気機械変換機の出力を増大させるとともに、可動基板に作用する摩擦力を軽減する。静電式電気機械変換機は、固定基板と、固定基板との間で一定の距離を保って移動可能な可動基板と、可動基板の固定基板との対向面において可動基板の移動方向に間隔を空けて配置された複数の帯電部と、固定基板の可動基板との対向面において移動方向に配置された複数の対向電極と、可動基板の対向面とは反対側の面に対向して配置された接地電極とを有する。

Description

静電式電気機械変換機
 本発明は、エレクトレット材料を利用した静電式電気機械変換機に関する。
 半永久的に電荷を保持する性質を持つ帯電層を利用した静電モータや発電装置などの静電式電気機械変換機がある(例えば特許文献1を参照)。この静電式電気機械変換機は、エレクトレット材料により構成された帯電層、及びこれと対向する対向電極を備えており、静電モータの場合には両者の静電引力によって駆動力を発生させ、発電装置の場合には両者の重なり面積が変化することによって生じる静電誘導を利用して発電する。このような静電式電気機械変換機は比較的小型であり、例えば腕時計のように人が身につけたり持ち運んだりする携帯型の電気機器への採用が検討されている。
 図12は、従来の静電式電気機械変換機200の主要部を示す断面図である。静電式電気機械変換機200は、複数の連結部123で構成される可動基板101と、その下方に可動基板101に平行に配置された固定基板103と、可動基板101の各連結部123の下面に設けられた帯電層125と、これに対向して固定基板103の上面に互いに間隔を空けて配置された複数の対向電極129A,129Bとを有する。静電式電気機械変換機200が静電モータの場合には、各対向電極129A,129Bから各帯電層125に働く静電引力の合力が駆動力となる。また、静電式電気機械変換機200が発電装置の場合には、各帯電層125を各対向電極129A,129Bに対して相対運動させることによって、複数の対向電極129A,129Bから同時に電力が取り出される。
特開2005-341675号公報(第1頁、図2)
 エレクトレット材料を用いた静電モータの駆動力fは、帯電層(帯電部)の電位Vtと対向電極の印加電圧Vbとの積に比例することが知られている。従って、帯電層の電位Vt又は対向電極の印加電圧Vbを増大させれば、駆動力fを増大させることができる。しかしながら、対向電極の印加電圧Vbを増大させるには昇圧が必要であり、エネルギー損失を伴う。また、帯電層の電位Vtを増大させるには帯電層に蓄える電荷量を増加させなければならないが、それには限界がある。
 また、帯電層と対向電極との間には可動基板の面に垂直に引力が作用するため、この引力が大きいほど可動基板を支える軸と軸受けとの間の摩擦力が大きくなり、可動基板の動きを妨げてしまう。この点は、エレクトレット材料を用いた発電装置の場合でも同様である。
 本発明はこのような課題を考慮してなされたものであって、その目的は、大きなエネルギー損失を生じることなく出力を増大させるとともに、可動基板に作用する摩擦力を軽減することが可能な静電式電気機械変換機を提供することにある。
 帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う静電式電気機械変換機であって、固定基板と、固定基板との間で一定の距離を保って移動可能な可動基板と、可動基板の固定基板との対向面において可動基板の移動方向に間隔を空けて配置された複数の帯電部と、固定基板の可動基板との対向面において移動方向に配置された複数の対向電極と、可動基板の対向面とは反対側の面に対向して配置された接地電極とを有することを特徴とする静電式電気機械変換機が提供される。
 上記の静電式電気機械変換機では、接地電極は、複数の帯電部の配置位置に対応する可動基板の反対側の面上の領域全体を覆っていることが好ましい。
 上記の静電式電気機械変換機では、可動基板と固定基板との距離は、30μm以上かつ150μm以下であることが好ましい。
 上記の静電式電気機械変換機では、可動基板と固定基板とは、天板と地板との間に配置され、接地電極は、天板又は地板の可動基板との対向面に形成されていてもよい。あるいは、可動基板と固定基板とは、天板と地板との間に配置され、天板又は地板を接地電極としてもよい。
 上記の静電式電気機械変換機では、可動基板は、可動基板の中心を通る回転軸の周りに回転可能であり、複数の帯電部と複数の対向電極とは、それぞれ回転軸を中心として放射状に配置されていることが好ましい。
 上記の静電式電気機械変換機は、極性が交互に切り替わる電圧を複数の対向電極に印加して、複数の帯電部と複数の対向電極との間で発生する静電気力により可動基板を回転させる駆動部と、接地電極を挟んで可動基板とは反対側において回転軸に連結され、可動基板とともに回転して可動基板の回転運動を外部に伝達する歯車列とをさらに有することが好ましい。
 あるいは、上記の静電式電気機械変換機は、接地電極を挟んで可動基板とは反対側において回転軸に連結され、外部の動力源により駆動されて回転軸及び可動基板を回転させる歯車列と、可動基板の回転に応じて複数の帯電部と複数の対向電極との間の静電誘導により発生した電力を蓄積する蓄電部とをさらに有することが好ましい。
 上記の静電式電気機械変換機によれば、大きなエネルギー損失を生じることなく出力を増大させることができ、可動基板に作用する摩擦力を軽減することが可能となる。
静電モータ100の概略構成を示す断面図である。 可動基板101の斜視図である。 可動基板101の下面、固定基板103の上面及び駆動回路127を示す図である。 静電モータ100の主要部の断面及び駆動回路127を示す図である。 接地電極105の形状の例を示す平面図である。 軸107に連結された歯車117の斜視図である。 別の静電モータ100Aの概略構成を示す断面図である。 帯電層125と対向電極129との距離d1と駆動力Fdとの関係を示すグラフである。 静電モータ100における可動基板101と接地電極105との距離d2と駆動力Fdとの関係を示すグラフである。 帯電層125と対向電極129との距離d1と垂直力Fvとの関係を示すグラフである。 発電装置150の概略構成図である。 従来の静電式電気機械変換機200の主要部を示した断面図である。
 以下、静電式電気機械変換機について、図面を参照しながら詳細に説明する。ただし、本発明は図面又は以下に記載される実施形態には限定されないことを理解されたい。
 図1は、静電モータ100の概略構成を示す断面図である。静電モータ100は、可動基板101、固定基板103、接地電極105、歯車117、帯電層125、駆動回路127(図3及び図4を参照)、及び対向電極129を有する。静電モータ100は、静電式電気機械変換機の一例であり、駆動回路127に入力された電気信号をもとに、帯電層125と対向電極129との間で発生する静電気力を利用して可動基板101を回転させることにより、電力から動力を取り出す。
 図2は、可動基板101の斜視図である。図3は、可動基板101の下面、固定基板103の上面及び駆動回路127を示す図である。図4は、静電モータ100の主要部の断面及び駆動回路127を示す図である。図1は、図2に符号Iで示すように円盤型の可動基板101の直径を含む鉛直面で静電モータ100を切断したときの断面を示す。図4は、図2に符号IVで示すように可動基板101の円周方向に沿って静電モータ100を切断したときの断面を示す。
 図2に示すように、可動基板101は、その中心部分で棒状の軸(回転軸)107に固定されており、軸107を中心として回転自在に構成されている。図1に示すように、可動基板101は、固定基板103に平行に配置されており、固定基板103との間で一定の距離を保って回転可能である。軸107の両端は軸受109によって挟持されており、軸受109は地板111及び天板113に固定されている。地板111と天板113との間には支柱115があり、両者の間隔は支柱115により一定に維持されている。
 可動基板101の材料は、アルミナ、ジルコニアなどの誘電体であってもよいし、銅、アルミニウムなどの金属であってもよいし、また、シリコン(Si)などの半導体であってもよい。軸107又は軸受109に絶縁体を用いたり、軸受109を天板113及び地板111に固定する際に絶縁性の接着層を介したりすることにより、可動基板101は、他の部材から電気的に絶縁される。
 可動基板101は、図2に示すように、全体として円盤型の形状をしている。可動基板101には、その中心位置から見て放射状に並ぶ複数の貫通孔121が設けられている。これらの貫通孔121は、略台形の形状であり、貫通孔121の外周側及び中心側の2辺は、可動基板101の外周に沿って弧状に形成されている。貫通孔121があることで、可動基板101は、中心部101Aと外周部101Bとが略台形状の複数の連結部123によって連結され、かつ各連結部123が互いに間隔を空けて放射状に配置された形状を有する。ここで、中心部101Aは、可動基板101のうちで貫通孔121よりも中心側の円形領域(軸107の部分を除く円環領域)であり、外周部101Bは、可動基板101のうちで貫通孔121よりも外周側の円環領域である。
 帯電層125は、帯電部の一例であり、図3に示すように、可動基板101の連結部123の下面(固定基板103との対向面)に膜状に形成されている。即ち、帯電層125は、可動基板101の円周方向(回転方向)に間隔を空けかつ軸107を中心として放射状に配置された略台形状の複数の部分領域で構成される。帯電層125は、例えばポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂を含んだエレクトレット材料や、アモルファスフッ素系樹脂によるエレクトレット材料により構成され、負の電荷を保持している。帯電層125のエレクトレット材料としては、フッ素系樹脂だけではなくSiOなどの無機材料を用いてもよい。ここでは帯電層125は負に帯電しているものとするが、帯電層125は正に帯電する材料で構成されてもよい。
 固定基板103は、可動基板101を駆動するための対向電極(駆動電極)129が配置された駆動電極基板であり、例えばガラスエポキシ基板などの周知の基板材料で構成される。図3に示すように、固定基板103は、例えば円盤型の形状を有し、可動基板101の下面に対向して地板111の上面に固定されている。
 対向電極129は、図3及び図4に示すように、対向電極129Aと対向電極129Bの2組に分けられ、これらはそれぞれ略台形状の複数の電極で構成される。対向電極129Aと対向電極129Bは、固定基板103の上面(可動基板101との対向面)において、円周方向に交互に、かつ軸107を中心とする放射状に形成されている。従って、静電モータ100では、可動基板101に設けられた帯電層125と、固定基板103に設けられた対向電極129とが対向するように配置されている。対向電極129A同士及び対向電極129B同士は、帯電層125と同様に、円周方向に間隔を空けて形成され、かつ等間隔に配置されている。軸107を中心とする同一円周上では、帯電層125、対向電極129A及び対向電極129Bの幅は同じか略同じであり、帯電層125、対向電極129A及び対向電極129Bの個数も同じであることが好ましい。
 駆動回路127は、駆動部の一例であり、クロック131及び2つのコンパレータ133を有する。図3及び図4に示すように、クロック131の出力は各コンパレータ133の入力に、一方のコンパレータ133の出力は対向電極129Aに、他方のコンパレータ133の出力は対向電極129Bに、それぞれ電気配線を介して接続されている。駆動回路127は、クロック131を発振源として、2つのコンパレータ133によって互いに位相の異なる矩形波を生成することで、隣り合う対向電極129A及び対向電極129Bにそれぞれ位相が異なる矩形波電圧を印加する。これにより、帯電層125との相互作用によって各帯電層125に静電引力及び斥力が加わって、可動基板101を動作させる力が発生する。
 駆動回路127は、このように極性が交互に切り替わる交番電圧を対向電極129に印加して、帯電層125と対向電極129との間で静電気力を連続的に発生させることにより、可動基板101を回転させる。帯電層125に加わる力は、可動基板101を軸107の周りに回転させる図1の水平方向の力(以下、「駆動力」という)と、可動基板101に対して図1の鉛直方向に働く力(以下、「垂直力」という)に分けられる。垂直力は、軸107に伝わり、軸107と軸受109との間の摩擦力を発生させる。従って、駆動力の損失が少なく、安定した動作が可能な静電モータ100を得るには、駆動力を大きくするとともに、垂直力を小さくすることが理想的である。
 接地電極105は、電気的に接地された電極であり、可動基板101を挟んで固定基板103とは反対側において、可動基板101と天板113との間に配置されている。即ち、接地電極105は、可動基板101の固定基板103との対向面とは反対側の面に対向して配置されている。接地電極105を静電モータ100の外部で接地させるためには、例えば、図1に示すように、支柱115を貫通するように接地電極105を配置するとよい。
 図5(A)及び図5(B)は、接地電極105の形状の例を示す平面図である。これらは接地電極105を天板113側から見た図に相当し、可動基板101と接地電極105との位置関係がわかるように、接地電極105が透明であるとして、可動基板101と接地電極105とを重ねて示している。これらの図に示すように、接地電極105は、円形でも4角でもよい。例えば、接地電極105は、軸107が通る中心部分を除いて、支柱115により挟まれた地板111と天板113との間の領域全体を覆っていてもよい。接地電極105の面積はなるべく大きい方が好ましく、特に、接地電極105は、各帯電層125の配置位置に対応する可動基板101の複数の連結部123の全体を覆っていることが好ましい。
 ただし、接地電極105は、必ずしも可動基板101の全面を覆っていなくてもよい。例えば、可動基板101の中心部101Aと外周部101Bは接地電極105により覆われていなくてもよいし、接地電極105が連結部123の大半を覆っているならば、連結部123の一部分の上方は接地電極105により覆われていなくてもよい。
 図6は、軸107に連結された歯車117の斜視図である。図1及び図6に示すように、歯車117は、接地電極105を挟んで可動基板101とは反対側において、接地電極105と天板113との間で軸107に固定されており、軸107を中心として回転する。また、歯車117は、静電モータ100内の別の軸107Aを中心として回転する別の歯車117Aと連結している。ただし、図1では軸107Aと歯車117Aの図示を、図6では接地電極105の図示を、それぞれ省略している。これらの歯車の材料は、仮に可動基板101と接触したとしても電気的な不具合が生じないように、樹脂などの絶縁材料(非導電性材料)であることが好ましい。歯車117,117Aは、歯車列の一例であり、可動基板101とともに回転して、可動基板101の回転運動を外部に伝達する。静電モータ100では、これらの歯車を介して、可動基板101の動力が取り出される。
 図7は、別の静電モータ100Aの概略構成を示す断面図である。静電モータ100Aは、天板が接地電極105になっている点が図1の静電モータ100とは異なるが、その他の点では静電モータ100と同じ構成を有する。天板113と地板111との間に独立した部材として接地電極105を配置した図1の構成に限らず、図7に示すように天板自体を接地電極105としてもよい。静電モータ100Aでは、天板と可動基板101との間に接地電極105を設ける空間を確保する必要がないため、その分、静電モータの厚みが薄くなる。なお、静電モータ100Aでは、可動基板101と接地電極(天板)105の間において、静電モータ100のものと同じ歯車117を軸107に固定し、その歯車117を別の歯車117Aに連結させてもよい。
 あるいは、固定基板103と可動基板101の配置位置を逆にして天板側に固定基板103を配置した場合は、地板111自体を接地させて接地電極105としてもよい。また、天板113又は地板111自体を接地電極105としなくても、天板113又は地板111における可動基板101との対向面に別途、接地電極105を設けてもよい。この場合、例えば、天板113又は地板111の全面に接地電極105を配置してもよいし、それらの一部分のみに接地電極105を配置してもよい。
 図8は、帯電層125と対向電極129との距離d1(図4を参照)と駆動力Fdとの関係を示すグラフである。図8の横軸は距離d1(単位μm)を表し、縦軸は駆動力Fd(単位μN)を表す。図8の曲線aは静電モータ100の駆動力を示し、曲線bは、比較例として、図12の静電式電気機械変換機200と同じ構成を有する静電モータ(以下、静電モータ200という)の駆動力を示す。すなわち、曲線aは、可動基板101を挟んで固定基板103とは反対側に接地電極105が配置されている静電モータに対応し、曲線bはこの接地電極105が配置されていない静電モータに対応する。
 図8に示すように、駆動力は、図4に示す帯電層125と対向電極129との距離d1によって変化し、距離d1が短くなるほど大きくなるが、静電モータ200と比較して静電モータ100の方が大きい。静電モータ100では、帯電層125の見かけ上の表面電位Vは、帯電層125の電荷量Qを帯電層125と接地電極105との間の容量Cで除した値となり、その容量Cは、可動基板101と接地電極105との距離が長いほど小さくなる。このため、静電モータ100では、可動基板101と接地電極105との距離を長くして容量Cを小さくするほど、帯電層125の見かけ上の表面電位Vを大きくすることができる。従って、静電モータ100では、可動基板101の帯電層125とは反対側の面と対向する位置に接地電極105を配置することによって、静電モータ200と比べて駆動力が大きくなると考えられる。
 駆動力のみを考慮した場合は、帯電層125と対向電極129との距離d1を数十μm程度に狭くすることが好ましい。ただし、静電モータ100では、距離d1が300μm程度でも静電モータ200よりも駆動力が大きくなるため、距離d1は数十μmから300μm程度の範囲内でもよい。距離d1を大きくすれば、静電モータ100の組立を容易に行うことができる。
 図9は、静電モータ100における可動基板101と接地電極105との距離d2(図4を参照)と駆動力Fdとの関係を示すグラフである。図9の横軸は距離d2(単位μm)を表し、縦軸は駆動力Fd(単位μN)を表す。図9に示すように、駆動力は、可動基板101と接地電極105との距離d2が長くなるほど増加するが、距離d2が400μmを超えると、距離d2を長くしてもあまり変わらなくなる。図9のグラフから、可動基板101と接地電極105との距離d2は、400μm以上が好適であることがわかる。距離d2を増加させることは静電モータ100の厚みが増加することに相当し、携帯型の電気機器などの用途では距離d2を小さくすることが望ましいため、距離d2の大きさは、静電モータ100の厚みや駆動力を考慮して適宜決定される。
 図10は、帯電層125と対向電極129との距離d1と垂直力Fvとの関係を示すグラフである。図10の横軸は距離d1(単位μm)を表し、縦軸は垂直力Fv(単位μN)を表す。図10の曲線cは静電モータ100の垂直力を示し、曲線dは、比較例の静電モータ200の垂直力を示す。垂直力の符号は、対向電極129に向かう方向を負とし、対向電極129から離れる方向を正とする。
 図10に示すように、静電モータ200では、垂直力は負であり、帯電層125と対向電極129とを互いに引き寄せる引力が作用している。静電モータ200の垂直力の絶対値は、帯電層125と対向電極129との距離d1によらず略一定の大きさ(およそ1200μN)である。これに対し、静電モータ100の垂直力は、距離d1に依存している。これは、静電モータ100では可動基板101と接地電極105との間に引力が作用するので、この引力が帯電層125と対向電極129との間に作用する引力と相殺するためであると考えられる。距離d1が30μm~150μmの範囲では、静電モータ100に作用する垂直力の絶対値は、800~1000μNであり、静電モータ200に作用する垂直力の絶対値よりも小さく良好である。また、静電モータ100では、距離d1が120μm付近で垂直力がゼロになる。
 図8~図10で示したグラフの結果から、静電モータ200よりも駆動力を大きくするためには、帯電層125と対向電極129との距離d1が30μm以上かつ300μm以下であり、可動基板101と接地電極105との距離d2が400μm以上であることが好ましい。また、静電モータ200よりも垂直力を低減させるためには、距離d1が30μm以上かつ150μm以下であることが好ましい。駆動力及び垂直力の両方を考慮した場合は、距離d1は30μm以上かつ150μm以下であることが好ましい。
 以上説明したように、静電モータ100では、可動基板101の帯電層125を設けていない面と対向する位置に接地電極105が配置される。これによって、静電モータ100では、駆動力が大きくなり、負荷変動や外乱に強くなるとともに、軸107と軸受109との間の摩擦力が軽減されて、駆動力の損失が少なくなる。
 図11は、発電装置150の概略構成図である。発電装置150は、図3の駆動回路127に代えて蓄電回路151を有する点が静電モータ100とは異なるが、その他の点では静電モータ100と同じ構成を有する。図11では、図3と同様に、可動基板101の下面、固定基板103の上面及び蓄電回路151を示している。発電装置150の全体の断面図は、符号100が符号150に変わる点を除いて、図1のものと同じである。発電装置150は、静電式電気機械変換機の一例であり、外部環境の運動エネルギーを用いて可動基板101を回転させて、帯電層125と対向電極129との間で静電誘導により静電気を発生させることで、動力から電力を取り出す。
 発電装置150でも、図6に示した静電モータ100の場合と同様に、接地電極105を挟んで可動基板101とは反対側において軸107に歯車117が固定され、歯車117は、別の軸107Aを中心として回転する別の歯車117Aと連結している。発電装置150では、例えば、重量バランスの偏りを有する図示しない回転錘が軸107Aに取り付けられ、その回転錘が外部の動力源により軸107Aの周りを回転する。これにより、回転錘の回転運動が歯車117Aを介して歯車117に伝達されるので、軸107及び可動基板101を回転させることができる。発電装置150では、歯車117,117Aを介して、外部の動力源による動力が可動基板101に伝達される。
 可動基板101が回転すると、可動基板101の帯電層125と対向電極129A,129Bとの間の重なり面積が増減し、それに伴って、帯電層125が作る電界により対向電極129A,129Bに引き寄せられる電荷も増減する。発電装置150は、このようにして、対向電極129Aと対向電極129Bの間に交流電流を発生させることにより、静電誘導を利用した発電を行う。
 蓄電回路151は、整流回路153および二次電池155を有する。蓄電回路151は、蓄電部の一例であり、可動基板101の回転に応じて帯電層125と対向電極129A,129Bとの間の静電誘導により発生した電力を蓄積する。発電装置150の対向電極129A,129Bは、それぞれ電気配線を介して整流回路153に接続されており、整流回路153は二次電池155に接続されている。整流回路153は、4個のダイオードを有するブリッジ式の回路であり、対向電極129Aと対向電極129Bの間で生成された電流を整流する。二次電池155は、リチウム二次電池などの充放電可能な電池であり、発電装置150によって発電された電力を蓄積し、図示しない駆動対象の回路にその電力を供給する。
 発電装置150でも、可動基板101の帯電層125を設けていない面と対向する位置に接地電極105を配置することによって、帯電層125の見かけ上の表面電位Vが高くなるため、その分発電量が多くなる。また、発電装置150でも、静電モータ100と同様に、軸107と軸受109との間の摩擦力が軽減される効果がある。
 上記では回転型の静電モータと発電装置について記載したが、可動基板を挟んで固定基板と対向する位置に接地電極を設けることが重要であって、可動基板が直線方向に往復運動する静電モータと発電装置でも同様な効果が得られることは明らかである。

Claims (8)

  1.  帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う静電式電気機械変換機であって、
     固定基板と、
     前記固定基板との間で一定の距離を保って移動可能な可動基板と、
     前記可動基板の前記固定基板との対向面において前記可動基板の移動方向に間隔を空けて配置された複数の帯電部と、
     前記固定基板の前記可動基板との対向面において前記移動方向に配置された複数の対向電極と、
     前記可動基板の前記対向面とは反対側の面に対向して配置された接地電極と、
     を有することを特徴とする静電式電気機械変換機。
  2.  前記接地電極は、前記複数の帯電部の配置位置に対応する前記可動基板の前記反対側の面上の領域全体を覆っている、請求項1に記載の静電式電気機械変換機。
  3.  前記可動基板と前記固定基板との距離は、30μm以上かつ150μm以下である、請求項1又は2に記載の静電式電気機械変換機。
  4.  前記可動基板と前記固定基板とは、天板と地板との間に配置され、
     前記接地電極は、前記天板又は前記地板の前記可動基板との対向面に形成されている、請求項1~3のいずれか一項に記載の静電式電気機械変換機。
  5.  前記可動基板と前記固定基板とは、天板と地板との間に配置され、
     前記天板又は前記地板を前記接地電極としている、請求項1~3のいずれか一項に記載の静電式電気機械変換機。
  6.  前記可動基板は、前記可動基板の中心を通る回転軸の周りに回転可能であり、
     前記複数の帯電部と前記複数の対向電極とは、それぞれ前記回転軸を中心として放射状に配置されている、請求項1~3のいずれか一項に記載の静電式電気機械変換機。
  7.  極性が交互に切り替わる電圧を前記複数の対向電極に印加して、前記複数の帯電部と前記複数の対向電極との間で発生する静電気力により前記可動基板を回転させる駆動部と、
     前記接地電極を挟んで前記可動基板とは反対側において前記回転軸に連結され、前記可動基板とともに回転して前記可動基板の回転運動を外部に伝達する歯車列と、
     をさらに有する、請求項6に記載の静電式電気機械変換機。
  8.  前記接地電極を挟んで前記可動基板とは反対側において前記回転軸に連結され、外部の動力源により駆動されて前記回転軸及び前記可動基板を回転させる歯車列と、
     前記可動基板の回転に応じて前記複数の帯電部と前記複数の対向電極との間の静電誘導により発生した電力を蓄積する蓄電部と、
     をさらに有する、請求項6に記載の静電式電気機械変換機。
PCT/JP2017/010757 2016-03-17 2017-03-16 静電式電気機械変換機 WO2017159813A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780017533.2A CN108886330A (zh) 2016-03-17 2017-03-16 静电式机电换能器
US16/084,537 US10622917B2 (en) 2016-03-17 2017-03-16 Electrostatic-type electromechanical transducer
CN202010248751.0A CN111313746B (zh) 2016-03-17 2017-03-16 静电式机电换能器
JP2018506019A JP7022683B2 (ja) 2016-03-17 2017-03-16 静電式電気機械変換機
EP17766808.4A EP3432462B1 (en) 2016-03-17 2017-03-16 Electrostatic-mechanical converter
HK19100720.6A HK1258350A1 (zh) 2016-03-17 2019-01-16 靜電式機電換能器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-053782 2016-03-17
JP2016053782 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159813A1 true WO2017159813A1 (ja) 2017-09-21

Family

ID=59850321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010757 WO2017159813A1 (ja) 2016-03-17 2017-03-16 静電式電気機械変換機

Country Status (6)

Country Link
US (1) US10622917B2 (ja)
EP (1) EP3432462B1 (ja)
JP (1) JP7022683B2 (ja)
CN (2) CN108886330A (ja)
HK (1) HK1258350A1 (ja)
WO (1) WO2017159813A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534704A (zh) * 2018-06-07 2021-03-19 恩赛特有限责任公司 微静电马达和微机械力传递装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019161256A2 (en) 2018-02-15 2019-08-22 The Charles Stark Draper Laboratory, Inc. Electrostatic motor
USD917310S1 (en) * 2020-01-31 2021-04-27 Citizen Watch Co., Ltd. Watch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208392A (ja) * 2002-12-25 2004-07-22 Shindengen Electric Mfg Co Ltd 半導体静電モータ
JP2013123337A (ja) * 2011-12-12 2013-06-20 Murata Mfg Co Ltd 発電装置
WO2013132753A1 (ja) * 2012-03-07 2013-09-12 パナソニック株式会社 振動発電器及び振動発電装置と、振動発電装置を搭載した通信装置及び電子機器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395864A (ja) * 1986-10-13 1988-04-26 Canon Inc 静電アクチユエ−タ
JP2549356Y2 (ja) * 1991-02-28 1997-09-30 狭山精密工業株式会社 ギャードモータの騒音低減構造
JPH09163762A (ja) * 1995-12-11 1997-06-20 Yaskawa Electric Corp 静電アクチュエータ
JP3542261B2 (ja) * 1997-12-24 2004-07-14 本田技研工業株式会社 シーム溶接機
CN100521030C (zh) * 2003-06-26 2009-07-29 Nxp股份有限公司 微机电装置和模块及其驱动方法
US8018307B2 (en) 2003-06-26 2011-09-13 Nxp B.V. Micro-electromechanical device and module and method of manufacturing same
JP2005341675A (ja) 2004-05-25 2005-12-08 Olympus Corp エレクトレット駆動装置
JP2009232667A (ja) * 2008-03-22 2009-10-08 Toshio Sakai 垂直・水平電界中の樋型電極を使用する静電モータ・発電機
JP5126038B2 (ja) * 2008-12-08 2013-01-23 オムロン株式会社 静電誘導型のエネルギー変換素子
JP5402395B2 (ja) * 2009-08-21 2014-01-29 オムロン株式会社 静電誘導型発電装置
JP6145391B2 (ja) 2013-11-14 2017-06-14 小倉クラッチ株式会社 駆動装置
CN106233608B (zh) 2014-03-26 2018-12-07 西铁城时计株式会社 静电感应型发电器
JP6317156B2 (ja) 2014-03-28 2018-04-25 シチズン時計株式会社 発電装置
US10222761B2 (en) 2014-08-22 2019-03-05 Citizen Watch Co., Ltd. Electronic timepiece with electrostatic induction generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208392A (ja) * 2002-12-25 2004-07-22 Shindengen Electric Mfg Co Ltd 半導体静電モータ
JP2013123337A (ja) * 2011-12-12 2013-06-20 Murata Mfg Co Ltd 発電装置
WO2013132753A1 (ja) * 2012-03-07 2013-09-12 パナソニック株式会社 振動発電器及び振動発電装置と、振動発電装置を搭載した通信装置及び電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534704A (zh) * 2018-06-07 2021-03-19 恩赛特有限责任公司 微静电马达和微机械力传递装置
EP3802404A4 (en) * 2018-06-07 2022-03-16 Encite LLC ELECTROSTATIC MICRO MOTOR AND MICROMECHANICAL FORCE TRANSFER DEVICES
EP3804115A4 (en) * 2018-06-07 2022-04-20 Encite LLC ELECTROSTATIC MICRO-MOTOR AND MICRO-MECHANICAL FORCE TRANSFER DEVICES

Also Published As

Publication number Publication date
JP7022683B2 (ja) 2022-02-18
EP3432462A1 (en) 2019-01-23
CN111313746B (zh) 2023-07-28
HK1258350A1 (zh) 2019-11-08
EP3432462A4 (en) 2019-11-13
CN111313746A (zh) 2020-06-19
US10622917B2 (en) 2020-04-14
JPWO2017159813A1 (ja) 2019-01-24
CN108886330A (zh) 2018-11-23
US20190081576A1 (en) 2019-03-14
EP3432462B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP5800707B2 (ja) 発電装置およびそれを備えた発電機器
JP6799484B2 (ja) 電気機械変換器およびその製造方法
WO2017159813A1 (ja) 静電式電気機械変換機
JP2015186424A (ja) 静電誘導型発電器
JP6707018B2 (ja) 電気機械変換器
JP6789156B2 (ja) 電気機械変換器
JP6742084B2 (ja) 静電誘導型発電器
JP6861718B2 (ja) 電気機械変換器
JP6678526B2 (ja) 電気機械変換器
JP6832690B2 (ja) 電気機械変換器
JP2018098833A (ja) 電気機械変換器
JP5876179B2 (ja) 発電装置
JP6062081B2 (ja) 発電装置
US11563386B2 (en) Electromechanical transducer and method for manufacturing same
JP6656055B2 (ja) 電気機械変換器
JP7069003B2 (ja) 電気機械変換器および電子時計
JP2018068065A (ja) 電気機械変換器
JP6700139B2 (ja) エレクトレット基板の製造方法
JP7194080B2 (ja) 電気機械変換器およびその製造方法
US10211760B2 (en) Piezoelectric ultrasonic motor and operation method of the same
JP2016059194A (ja) 発電装置
JPS63268471A (ja) 超音波モ−タ
JPH0223076A (ja) 超音波モータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766808

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766808

Country of ref document: EP

Effective date: 20181017

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766808

Country of ref document: EP

Kind code of ref document: A1