WO2017159764A1 - 化学品の製造方法および微生物の培養方法 - Google Patents

化学品の製造方法および微生物の培養方法 Download PDF

Info

Publication number
WO2017159764A1
WO2017159764A1 PCT/JP2017/010555 JP2017010555W WO2017159764A1 WO 2017159764 A1 WO2017159764 A1 WO 2017159764A1 JP 2017010555 W JP2017010555 W JP 2017010555W WO 2017159764 A1 WO2017159764 A1 WO 2017159764A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganisms
culture solution
culture
separation membrane
fermentation
Prior art date
Application number
PCT/JP2017/010555
Other languages
English (en)
French (fr)
Inventor
健司 澤井
耳塚 孝
郁 雨貝
翔太 関口
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201780016496.3A priority Critical patent/CN108779478A/zh
Priority to BR112018068606A priority patent/BR112018068606A2/pt
Priority to AU2017232594A priority patent/AU2017232594A1/en
Priority to JP2017517387A priority patent/JP6927036B2/ja
Priority to US16/085,919 priority patent/US20190093132A1/en
Publication of WO2017159764A1 publication Critical patent/WO2017159764A1/ja
Priority to PH12018501662A priority patent/PH12018501662A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a chemical product by continuous culture using a fermentation raw material containing Kane molasses as a main component.
  • Biomass-derived chemicals such as biodegradable polymer raw materials such as lactic acid and biofuels such as ethanol have become sustainable (sustainable) as well as carbon dioxide emissions into the atmosphere and the emergence of energy problems. It is attracting a great deal of attention as a life cycle assessment (LCA) compatible product.
  • These biodegradable polymer raw materials and biofuel production methods include glucose, which is a hexose refined from edible biomass such as corn, and molasses (Kane molasses) produced in the process of refining sugar from sugarcane, Generally, it is obtained as a fermentation product by a microorganism. Cane molasses is consumed in large quantities as a raw material for ethanol fermentation in sugar producing countries such as Brazil and Thailand, and is an important raw material for fermentation.
  • a batch culture method, a fed-batch culture method, or a continuous culture method is used as a method for producing a chemical product by microbial culture.
  • Patent Document 1 production of a chemical product that is a fermentation product by a continuous culture method using a separation membrane is used. It is disclosed that speed and yield are improved.
  • Patent Document 2 there is no description regarding use of a cane molasses containing raw material.
  • patent document 2 the recovery rate by the membrane
  • the present invention has an object to provide a method capable of realizing continuous culture using a separation membrane similar to the case of using a fermentation raw material not containing cane molasses even when using a fermentation raw material containing cane molasses as a main component.
  • the present inventor has included microorganism-derived particles having an average particle diameter of 100 nm or more in the centrifugal supernatant of a culture solution in continuous fermentation using a separation membrane using a fermentation raw material containing Kane molasses as a main component.
  • the present inventors have found that the above-mentioned problems can be solved by culturing the microorganisms to be caused to arrive at the present invention.
  • the present invention is as follows (1) to (5).
  • Microorganisms are cultured with a fermentation raw material containing Kane molasses as a main component, the culture solution is filtered through a separation membrane to collect a filtrate containing chemicals from which microorganisms have been separated, and an unfiltered solution containing microorganisms
  • the microorganism is allowed to contain particles having an average particle diameter of 100 nm or more in the centrifugal supernatant of the culture solution.
  • a method for producing a chemical product is produced.
  • the microorganism is cultured with a fermentation raw material containing Kane molasses as a main component, the culture solution is filtered through a separation membrane, and an unfiltered solution containing the microorganism is retained or refluxed in the culture solution, and the fermentation raw material is used as the culture solution.
  • a method for culturing microorganisms wherein microorganisms that contain particles having an average particle diameter of 100 nm or more in the centrifugal supernatant of the culture solution are cultured.
  • the membrane of the separation membrane can be prevented and the chemical product can be produced efficiently.
  • the present invention cultivates microorganisms with fermentation raw materials mainly composed of cane molasses, collects the filtrate containing the chemical product from which the microorganisms have been separated by filtering the culture solution through a separation membrane, A method for producing a chemical product in which a filtrate is retained or refluxed in a culture solution, and a fermentation raw material is added to the culture solution to perform continuous fermentation, and particles having an average particle size of 100 nm or more in the centrifugal supernatant of the culture solution.
  • the present invention relates to a method for producing a chemical product and a method for culturing microorganisms, which are characterized by culturing microorganisms containing sucrose.
  • the microorganism used in the present invention is a microorganism having the ability to produce a chemical product, and when the microorganism is cultured with a fermentation raw material mainly containing cane molasses, There is no particular limitation as long as it is a microorganism that contains particles having a particle diameter of 100 nm or more.
  • Specific examples of such microorganisms include yeast belonging to the genus Shizosaccharomyces. As the yeast belonging to the genus Shizosaccharomyces, Shizosaccharomyces pombe, Shizosaccharomyces japonicus, Shizosaccharomyces octosporus or Shizosaccharomyces can be used.
  • the particle in the present invention means an insoluble granular substance other than microorganisms contained in the culture solution.
  • Measurement of the average particle size of the particles present in the culture solution is performed by a dynamic light scattering method (DLS, photon correlation method). Specifically, an autocorrelation function is obtained by cumulant analysis from the fluctuation of the scattering intensity obtained by measurement by the dynamic light scattering method, converted to a particle size distribution with respect to the scattering intensity, and then the analysis range minimum value is set to 1 nm. The maximum value is converted to an average particle diameter with 5000 nm.
  • ELS-Z2 manufactured by Otsuka Electronics Co., Ltd. is used.
  • microorganisms also exist as particles in the culture solution
  • the microorganisms are precipitated by centrifuging the culture solution at room temperature under conditions of 1000 ⁇ G for 10 minutes, and the particles contained in the centrifugation supernatant The average particle size is measured.
  • the average particle size of the particles is 100 nm or more, preferably 300 nm or more, more preferably 300 to 1500 nm.
  • a separation membrane is used.
  • the membrane occlusion can be remarkably suppressed.
  • the upper limit of the average particle diameter of the particles is not particularly limited as long as the filtration flux is not reduced due to the occurrence of membrane clogging, but the upper limit is the average particle diameter of particles that do not precipitate with microorganisms even by centrifugation, and is preferably the upper limit.
  • the value is 1500 nm.
  • Kane molasses is a by-product produced during sugar production from sugarcane juice or crude sugar. That is, it refers to a crystallization mother liquor containing a sugar component remaining after crystallization in the crystallization step in the sugar making process.
  • the crystallization process is usually performed a plurality of times, and the first sugar, which is the crystal component obtained by the first crystallization, and the remaining liquid (No. 1 molasses) of the first sugar are crystallized. Crystallization was repeated as in the case of No. 2 sugar, which is the crystal component obtained, and No. 3 sugar obtained by crystallization of the remaining liquid of No. 2 sugar (No. 2 molasses).
  • the final stage molasses obtained as the analysis mother liquor is called Kane molasses.
  • the cane molasses used in the present invention is preferably a cane molasses after a large number of crystallizations, and is preferably a cane molasses remaining after crystallization at least twice or more, more preferably three times or more. preferable.
  • the sugar component contained in cane molasses contains sucrose, glucose, and fructose as main components, and may contain some other sugar components such as xylose and galactose.
  • the sugar concentration in cane molasses is generally about 200 to 800 g / L.
  • the sugar concentration in cane molasses can be quantified by a known measurement technique such as HPLC.
  • the fermentation raw material contains all the nutrients necessary for the growth of microorganisms.
  • the fermentation raw material used in the present invention only needs to contain cane molasses as a main component.
  • a carbon source, a nitrogen source, inorganic salts, and if necessary, organic micronutrients such as amino acids and vitamins are appropriately added. May be.
  • the fermentation raw material which contains cane molasses as a main component means that 50 weight% or more is a cane molasses among the substances (except water) contained in a fermentation raw material.
  • Carbon sources include sugars such as glucose, sucrose, fructose, galactose, lactose, starch saccharified solution containing these sugars, sweet potato molasses, sugar beet molasses, high test molasses, and organic acids such as acetic acid, alcohols such as ethanol Cellulose-containing biomass-derived sugar solutions are preferably used in addition to glycerin and glycerin.
  • cellulose-containing biomass examples include plant biomass such as bagasse, switchgrass, corn stover, rice straw, and straw, and woody biomass such as trees and waste building materials.
  • Cellulose-containing biomass contains cellulose or hemicellulose, which is a polysaccharide obtained by dehydrating and condensing sugar, and a sugar solution that can be used as a fermentation raw material is produced by hydrolyzing such a polysaccharide.
  • the method for preparing a cellulose-containing biomass-derived sugar solution is not particularly limited, and as a method for producing such sugar, a method for producing a sugar solution by acid hydrolysis of biomass using concentrated sulfuric acid (Japanese Patent Publication No. 11-506934).
  • JP 2005-229821 A discloses a method for producing a sugar solution by hydrolyzing biomass with dilute sulfuric acid and then further treating with an enzyme such as cellulase (A. Aden et al., “Lignocellulosic”). Biomassto Ethanol Process Design and Economics Customizing Co-Current Dilute Acid Prehydration and Enzymatic Hydrology for Corn Saver EL Technical Report (2002)).
  • a method not using an acid a method of hydrolyzing biomass using subcritical water at about 250 to 500 ° C. to produce a sugar solution (Japanese Patent Laid-Open No. 2003-212888), or treating the biomass with subcritical water Later, a method for producing a sugar solution by further enzyme treatment (Japanese Patent Application Laid-Open No. 2001-95597), a biomass solution by hydrolyzing biomass with pressurized hot water at 240 to 280 ° C. and further enzyme treatment Is disclosed (Japanese Patent No. 3041380). After the treatment as described above, the obtained sugar solution and Kane molasses may be mixed and purified. The method is disclosed, for example, in WO2012 / 118171.
  • Nitrogen sources include ammonia gas, aqueous ammonia, ammonium salts, urea, nitrates, and other supplementary organic nitrogen sources such as oil cakes, soybean hydrolysates, casein degradation products, other amino acids, vitamins, corn Steep liquor, yeast or yeast extract, meat extract, peptides such as peptone, various fermented cells and hydrolysates thereof are used.
  • inorganic salts phosphates, magnesium salts, calcium salts, iron salts, manganese salts and the like can be appropriately added.
  • the nutrient can be added and used as a standard or a natural product containing it.
  • the separation membrane used in the present invention is not particularly limited as long as it has a function of separating and filtering a culture solution obtained by microbial culture from microorganisms.
  • the material include porous ceramic membranes and porous glass.
  • a membrane, a porous organic polymer membrane, a metal fiber woven fabric, a non-woven fabric, and the like can be used. Among these, a porous organic polymer membrane or a ceramic membrane is particularly preferable.
  • the configuration of the separation membrane is preferably, for example, a separation membrane including a porous resin layer as a functional layer from the viewpoint of stain resistance.
  • the separation membrane including the porous resin layer preferably has a porous resin layer that acts as a separation functional layer on the surface of the porous substrate.
  • the porous substrate supports the porous resin layer and gives strength to the separation membrane.
  • the porous resin layer does not penetrate into the porous substrate even if the porous resin layer penetrates into the porous substrate. But either is fine.
  • the average thickness of the porous substrate is preferably 50 to 3000 ⁇ m.
  • the material of the porous substrate is made of an organic material and / or an inorganic material, and an organic fiber is preferably used.
  • the preferred porous substrate is a woven or non-woven fabric made of organic fibers such as cellulose fiber, cellulose triacetate fiber, polyester fiber, polypropylene fiber and polyethylene fiber. More preferably, the density control is relatively easy and the production is easy. Inexpensive nonwoven fabric is used.
  • An organic polymer film can be suitably used for the porous resin layer.
  • the material of the organic polymer film include polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene fluoride resin, polysulfone resin, polyethersulfone resin, polyacrylonitrile resin, cellulose resin, and the like. Examples thereof include cellulose triacetate resins.
  • the organic polymer film may be a mixture of resins mainly composed of these resins.
  • the main component means that the component is contained in an amount of 50% by weight or more, preferably 60% by weight or more.
  • the organic polymer film is made of a polyvinyl chloride resin, a polyvinylidene fluoride resin, a polysulfone resin, a polyethersulfone resin, which is easy to form a film with a solution and has excellent physical durability and chemical resistance.
  • Polyacrylonitrile-based resins are preferable, and polyvinylidene fluoride-based resins or resins containing them as the main components are most preferably used.
  • polyvinylidene fluoride-based resin a homopolymer of vinylidene fluoride is preferably used.
  • polyvinylidene fluoride resin a copolymer of a vinyl monomer copolymerizable with vinylidene fluoride is also preferably used.
  • vinyl monomers copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, and ethylene trichloride fluoride.
  • the separation membrane used in the present invention only needs to have a pore size through which microorganisms used in fermentation cannot pass, but clogging occurs due to secretions of microorganisms used in fermentation and fine particles in fermentation raw materials. It is difficult and it is desirable that the filtration performance is within a stable range for a long time. Therefore, the average pore diameter of the porous separation membrane is preferably 0.01 to 5 ⁇ m. More preferably, when the average pore diameter of the separation membrane is 0.01 to 1 ⁇ m, both a high exclusion rate at which microorganisms do not leak and high water permeability can be achieved, and water permeability can be maintained for a long time. Can be held.
  • the average pore diameter of the separation membrane is preferably 1 ⁇ m or less.
  • the average pore diameter of the separation membrane is preferably not too large compared to the size of the microorganism in order to prevent leakage of the microorganism, that is, the occurrence of a problem that the rejection rate decreases.
  • the average pore diameter is preferably 0.4 ⁇ m or less, more preferably 0.2 ⁇ m or less, and further preferably 0.1 ⁇ m or less.
  • the average pore diameter of the separation membrane in the present invention is preferably 0.01 ⁇ m or more. Yes, more preferably 0.02 ⁇ m or more, and still more preferably 0.04 ⁇ m or more.
  • the average pore diameter can be obtained by measuring and averaging the diameters of all pores that can be observed within a range of 9.2 ⁇ m ⁇ 10.4 ⁇ m in a scanning electron microscope observation at a magnification of 10,000 times. it can.
  • the average pore diameter or the membrane surface was photographed at a magnification of 10,000 times using a scanning electron microscope, and 10 or more, preferably 20 or more pores were randomly selected. It can also be obtained by measuring and number average.
  • a circle having an area equal to the area of the pores (equivalent circle) is obtained by an image processing device or the like, and the equivalent circle diameter is obtained by the method of setting the diameter of the pores.
  • the standard deviation ⁇ of the average pore diameter of the separation membrane used in the present invention is preferably 0.1 ⁇ m or less.
  • the standard deviation ⁇ of the average pore diameter is N (the number of pores that can be observed within the above-mentioned range of 9.2 ⁇ m ⁇ 10.4 ⁇ m), each measured diameter is Xk, and the average pore diameter is X (ave) It is calculated by the following (Formula 1).
  • the permeability of the fermentation broth is one of the important performances.
  • the pure water permeability coefficient of the separation membrane before use can be used as an index of the permeability of the separation membrane.
  • the pure water permeation coefficient of the separation membrane is 5.6 ⁇ 10 ⁇ 10 m 3 when calculated by measuring the water permeation amount at a head height of 1 m using purified water at a temperature of 25 ° C. by a reverse osmosis membrane.
  • the pure water permeability coefficient is 5.6 ⁇ 10 ⁇ 10 m 3 / m 2 / s / pa or more 6 ⁇ 10 ⁇ 7 m 3 / m 2 / s / If it is less than pa, a practically sufficient amount of permeated water can be obtained.
  • the surface roughness is an average value of heights in a direction perpendicular to the surface.
  • the membrane surface roughness is one of the factors for facilitating separation of microorganisms adhering to the separation membrane surface by the membrane surface cleaning effect by the liquid flow by stirring or a circulation pump.
  • the surface roughness of the separation membrane is not particularly limited, and may be in a range in which microorganisms attached to the membrane and other solid substances are peeled off, but is preferably 0.1 ⁇ m or less. When the surface roughness is 0.1 ⁇ m or less, microorganisms adhering to the film and other solid substances are easily peeled off.
  • the membrane surface roughness of the separation membrane is 0.1 ⁇ m or less, the average pore diameter is 0.01 to 1 ⁇ m, and the pure water permeability coefficient of the separation membrane is 2 ⁇ 10 ⁇ 9 m 3 / m 2 / It has been found that by using a separation membrane of s / pa or more, an operation that does not require excessive power necessary for membrane cleaning can be performed more easily.
  • the surface roughness of the separation membrane is 0.1 ⁇ m or less, the shearing force generated on the membrane surface can be reduced in the filtration of microorganisms, the destruction of microorganisms is suppressed, and the clogging of the separation membrane is also suppressed. By doing so, stable filtration for a long period of time becomes easier.
  • the surface roughness of the separation membrane is preferably as small as possible.
  • the membrane surface roughness of the separation membrane was measured under the following conditions using the following atomic force microscope (AFM).
  • FAM atomic force microscope
  • Device Atomic force microscope device (“Nanoscope IIIa” manufactured by Digital Instruments)
  • Condition probe SiN cantilever manufactured by Digital Instruments
  • Scan mode Contact mode in-air measurement
  • Underwater tapping mode underwater measurement
  • Scanning range 10 ⁇ m, 25 ⁇ m square (measurement in air) 5 ⁇ m
  • 10 ⁇ m square underwater measurement
  • Scanning resolution 512 ⁇ 512 -Sample preparation The membrane sample was immersed in ethanol at room temperature for 15 minutes, then immersed in RO water for 24 hours, washed, and then air-dried.
  • the RO water refers to water that has been filtered using a reverse osmosis membrane (RO membrane), which is a type of filtration membrane, to exclude impurities such as ions and salts.
  • RO membrane reverse osmosis membrane
  • the pore size of the RO membrane is approximately 2 nm or less.
  • the film surface roughness “drough” is calculated by the following (Formula 2) from the height of each point in the Z-axis direction by the above-described atomic force microscope (AFM).
  • the shape of the separation membrane used in the present invention is not particularly limited, and a flat membrane or a hollow fiber membrane can be used, but a hollow fiber membrane is preferred.
  • the inner diameter of the hollow fiber is preferably 200 to 5000 ⁇ m, and the film thickness is preferably 20 to 2000 ⁇ m.
  • a woven fabric or a knitted fabric in which organic fibers or inorganic fibers are formed in a cylindrical shape may be included in the hollow fiber.
  • the above-mentioned separation membrane can be manufactured by the manufacturing method described in WO2007 / 097260, for example.
  • a microorganism culture solution is filtered through a separation membrane to collect a filtrate containing a chemical product from which microorganisms have been separated, and an unfiltered solution containing microorganisms is retained or refluxed in the culture solution.
  • continuous fermentation which collect
  • the transmembrane pressure difference during filtration is not particularly limited as long as the fermentation broth can be filtered.
  • the organic polymer membrane is filtered at a transmembrane differential pressure higher than 150 kPa to filter the culture solution, the structure of the organic polymer membrane is likely to be destroyed, and the ability to produce chemicals is increased. May decrease.
  • the transmembrane pressure is lower than 0.1 kPa, the permeated water amount of the fermentation broth is often not sufficiently obtained, and the productivity when producing a chemical product tends to decrease.
  • the permeated water amount of the fermentation broth is increased by setting the transmembrane differential pressure, which is the filtration pressure, preferably in the range of 0.1 to 150 kPa. Further, since there is no decrease in chemical production capacity due to destruction of the film structure, it is possible to maintain a high ability to produce chemical products.
  • the transmembrane pressure difference is preferably in the range of 0.1 to 50 kPa and more preferably in the range of 0.1 to 20 kPa in the case of the organic polymer film.
  • the temperature in yeast fermentation may be set to a temperature suitable for the yeast to be used, and is not particularly limited as long as the microorganism grows, but the temperature is in the range of 20 to 75 ° C.
  • continuous fermentation filtration of the culture solution
  • continuous fermentation may be started after batch culture or fed-batch culture is performed at the initial stage of culture to increase the microorganism concentration. Moreover, you may seed
  • the concentration of microorganisms in the culture solution is preferably maintained in a state where the productivity of chemicals is high in order to obtain efficient productivity. For example, good production efficiency can be obtained by maintaining the concentration of microorganisms in the culture solution as a dry weight of 5 g / L or more.
  • culture is performed by removing a part of the culture solution containing microorganisms from the fermenter and supplying and diluting the fermentation raw material as necessary during the continuous fermentation.
  • the number of fermenters is not limited.
  • the continuous fermentation apparatus used in the present invention filters a yeast culture solution through a separation membrane, collects a product from the filtrate, holds or refluxs an unfiltered solution containing microorganisms in the culture solution, and a fermentation raw material.
  • a yeast culture solution through a separation membrane
  • collects a product from the filtrate holds or refluxs an unfiltered solution containing microorganisms in the culture solution
  • a fermentation raw material Is not particularly limited as long as it is an apparatus for producing a chemical product by continuous fermentation in which the product in the filtrate is recovered by adding the above to the culture solution, but specific examples are described in WO2007 / 097260 and WO2010 / 038613. Can be used.
  • Examples of chemical products produced by the present invention include substances that are mass-produced in the fermentation industry, such as alcohols and organic acids.
  • alcohol ethanol, 1,3-propanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, glycerol, butanol, isobutanol, 2-butanol, isopropanol, etc.
  • Examples of the organic acid include acetic acid, lactic acid, adipic acid, pyruvic acid, succinic acid, malic acid, itaconic acid, and citric acid.
  • the present invention can also be applied to the production of substances such as enzymes, antibiotics, and recombinant proteins. These chemicals are recovered from the filtrate by known methods (membrane separation, concentration, distillation, crystallization, extraction, etc.).
  • the present invention is not limited to the above-described chemical production method, and may be a culture method for the purpose of growing microorganisms by the above-described method.
  • culture using a microorganism as a production target can be mentioned.
  • Example 1 Separation membrane-based continuous fermentation using Schizo Saccharomyces pombe NBRC1628 strain Ethanol-producing yeast Schizosaccharomyces pombe NBRC1628 strain as a culture microorganism, and a kenmorasses-containing material shown in Table 2 as a culture medium, Utilized continuous culture was performed.
  • the separation membrane element the form of a hollow fiber described in JP2010-22321 was adopted.
  • Schizo Saccharomyces pombe NBRC1628 strain was inoculated into a test tube containing 5 ml of the raw material shown in Table 2 and cultured overnight with shaking (pre-culture).
  • the obtained culture broth was inoculated into a fresh 45 ml Erlenmeyer flask charged with the raw materials shown in Table 2, and cultured with shaking at 30 ° C. and 120 rpm for 8 hours (pre-culture).
  • 35 mL of 50 mL of the culture broth was collected in advance and inoculated into a continuous fermentation apparatus charged with 700 mL of the cane molasses-containing raw material shown in Table 2, and the fermentation reaction tank was stirred at 300 rpm with the attached stirrer. Time culture was performed (pre-culture).
  • the fermented liquid circulation pump was operated immediately after inoculation, and the liquid was circulated between the separation membrane module and the fermenter.
  • the filtration pump was operated to start extracting the fermentation broth from the separation membrane module. After the start of filtration, continuous cultivation was performed for about 300 hours under the following continuous fermentation conditions while controlling the addition of fermentation raw materials so that the amount of fermentation liquid in the continuous fermentation apparatus was 700 mL. The transition of transmembrane pressure difference and filtration rate during continuous culture is shown in FIG.
  • Fermentation reactor capacity 2 (L) Separation membrane: Polyvinylidene fluoride filtration membrane separation element Effective filtration area: 218 (cm 2 ) Temperature adjustment: 30 (° C) Aeration rate of fermentation reaction tank: Stirring speed of non-aeration fermentation reaction tank: 300 (rpm) pH adjustment: Unadjusted filtration flux set value: 0.1 (m 3 / m 2 / day) Sterilization: The culture tank containing the separation membrane element is autoclaved at 121 ° C. for 20 min.
  • FIG. 3 shows changes in transmembrane pressure difference and filtration flux during a 600 hour continuous filtration test. As shown in FIG. 3, the transmembrane pressure difference was almost constant, no membrane clogging occurred, and the filtration flux was stably maintained at a constant value.
  • Example 2 Separation membrane-based continuous fermentation using Schizosaccharomyces japonicus NBRC1609 strain
  • Continuous culture was performed in the same manner as in Example 1 except that Schizosaccharomyces japonicus NBRC1609 strain was used as the culture microorganism. It was.
  • the transition of transmembrane pressure difference and filtration flux during continuous culture is shown in FIG. As shown in FIG. 4, during the continuous culture for about 300 hours, the transmembrane pressure difference was almost constant, the membrane was not clogged, and the filtration flux was stably maintained at a constant value.
  • FIG. 5 shows changes in transmembrane pressure difference and filtration rate during continuous culture.
  • membrane clogging may or may not occur depending on the combination of fermentation raw materials and yeast used.
  • Example 3 Measurement result of average particle size in culture supernatant Supernatant was obtained by centrifuging each culture solution of Example 1, Example 2, Comparative Example 1, and Reference Example 3 and the raw material containing Kane molasses. The average particle size of the supernatant was measured. Specifically, Schizosaccharomyces pombe NBRC1628 strain, NBRC1609 strain or Saccharomyces cerevisiae NBRC2260 strain was inoculated into a test tube containing 5 mL of the raw material containing Kane molasses of Reference Example 2 and cultured at 30 ° C. and 120 rpm for 72 hours. did.
  • Each yeast culture solution and the cane molasses-containing raw material of Reference Example 3 were centrifuged at 1000 ⁇ G for 10 minutes, and 3 mL of each supernatant was collected. 30 ⁇ L of the collected supernatant was diluted with 970 ⁇ L of pH 5 citrate buffer, each diluted solution was placed in a 1 mL capacity disposable cell, and the average particle size was measured by dynamic light scattering.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

微生物を、ケーンモラセスを主成分として含む発酵原料で培養し、培養液を分離膜で濾過して微生物が分離された化学品を含む濾過液を回収し、さらに微生物を含む未濾過液を培養液に保持または還流し、かつ発酵原料を培養液に追加して連続発酵する化学品の製造方法において、前記培養液の遠心上清中に平均粒子径が100nm以上の粒子を含有せしめる微生物を培養する、化学品の製造方法。

Description

化学品の製造方法および微生物の培養方法
 本発明は、ケーンモラセスを主成分として含有する発酵原料を用いた連続培養による化学品の製造方法に関する。
 乳酸などの生分解性ポリマー原料やエタノールなどのバイオ燃料に代表されるバイオマス由来の化学品は、大気中への二酸化炭素の排出問題やエネルギー問題の顕在化と共にサスティナビリティー(持続可能性)およびライフサイクルアセスメント(LCA)対応型製品として強い注目を浴びている。これら生分解性ポリマー原料やバイオ燃料の製造方法としては、とうもろこしなどの可食性バイオマスから精製した六炭糖であるグルコースや、サトウキビから砂糖を精製する過程で生じる糖蜜(ケーンモラセス)を原料として、微生物による発酵産物として得るのが一般的である。ケーンモラセスは、ブラジルやタイなどの砂糖生産国においてはエタノール発酵原料として多量に消費されており、重要な発酵原料となっている。
 一般に、微生物培養による化学品の製造方法としてはバッチ培養法、フェドバッチ培養法または連続培養法などが用いられるが、特許文献1では分離膜を用いた連続培養方法により発酵産物である化学品の生産速度や収率が向上することが開示されている。一方で当該特許文献では、ケーンモラセス含有原料の使用に関する記載はない。また、特許文献2では、前処理バイオマスを酵素糖化した後にケーンモラセスを添加することで、糖化酵素の膜による回収率が向上することおよび得られた糖液を原料とした微生物発酵によるエタノール生産方法が開示されている。
WO2007/097260 WO2012/118171
 本発明者は、ケーンモラセスを主成分として含有する発酵原料を用いた分離膜利用連続培養を検討した結果、ケーンモラセス非含有発酵原料では膜閉塞が発生しない濾過速度(フラックス)であっても、膜閉塞が発生してしまうという課題を新規に見出した。そこで本発明では、ケーンモラセスを主成分として含有する発酵原料を用いた場合においても、ケーンモラセス非含有発酵原料を用いた場合と同様の分離膜利用連続培養を実現できる方法を提供することを目的とする。
 本発明者は鋭意検討した結果、ケーンモラセスを主成分として含有する発酵原料を用いた分離膜利用連続発酵において、培養液の遠心上清中に、平均粒子径100nm以上の微生物由来の粒子を含有せしめる微生物を培養することにより上記課題を解決できることを見出し、本発明に至った。
 すなわち、本発明は以下の(1)~(5)の通りである。
(1)微生物を、ケーンモラセスを主成分として含む発酵原料で培養し、培養液を分離膜で濾過して微生物が分離された化学品を含む濾過液を回収し、さらに微生物を含む未濾過液を培養液に保持または還流し、かつ発酵原料を培養液に追加して連続発酵する化学品の製造方法において、前記培養液の遠心上清中に平均粒子径が100nm以上の粒子を含有せしめる微生物を培養する、化学品の製造方法。
(2)前記粒子の平均粒子径が300nm以上である、(1)に記載の化学品の製造方法。
(3)前記発酵原料がケーンモラセスおよびセルロース含有バイオマス由来糖液の混合物を含む、(1)または(2)に記載の化学品の製造方法。
(4)前記微生物がシゾサッカロマイセス(Schizosaccharomyces)属に属する酵母である、(1)~(3)のいずれかに記載の化学品の製造方法。
(5)微生物を、ケーンモラセスを主成分として含む発酵原料で培養し、培養液を分離膜で濾過して微生物を含む未濾過液を培養液に保持または還流し、かつ発酵原料を培養液に追加して連続培養する微生物の培養方法において、前記培養液の遠心上清中に平均粒子径100nm以上の粒子を含有せしめる微生物を培養する、微生物の培養方法。
 本発明によれば、ケーンモラセス含有発酵原料を用いた分離膜利用連続発酵をおこなっても、分離膜の膜閉塞を防ぐことができ、化学品を効率よく製造することができる。
ケーンモラセス含有原料を用いたシゾサッカロミセス・ポンベNBRC1628株による分離膜利用連続発酵時のろ過フラックスおよび膜間差圧推移を示す図である。 ケーンモラセス含有原料を用いたサッカロミセス・セレビセNBRC2260株による分離膜利用連続発酵時のろ過フラックスおよび膜間差圧推移を示す図である。 ケーンモラセス含有原料を用いた連続ろ過時のろ過フラックスおよび膜間差圧推移を示す図である。 ケーンモラセス含有原料を用いたシゾサッカロミセス・ジャポニカスNBRC1609株による分離膜利用連続発酵時のろ過フラックスおよび膜間差圧推移を示す図である。 ケーンモラセス非含有原料を用いたサッカロミセス・セレビセNBRC2260株による分離膜利用連続発酵時のろ過フラックスおよび膜間差圧推移を示す図である。
 本発明は、微生物を、ケーンモラセスを主成分とする発酵原料で培養して、培養液を分離膜で濾過して微生物が分離された化学品を含む濾過液を回収し、さらに微生物を含む未濾過液を培養液に保持または還流し、かつ発酵原料を培養液に追加して連続発酵する化学品の製造方法であって、前記培養液の遠心上清中に平均粒子径が100nm以上の粒子を含有せしめる微生物を培養することを特徴とする、化学品の製造方法および微生物の培養方法に関する。
 本発明で使用する微生物は、化学品を生産する能力を有する微生物であり、かつ、当該微生物を、ケーンモラセスを主成分として含む発酵原料で培養した際に培養液の遠心上清中に、平均粒子径が100nm以上の粒子を含有せしめる微生物であれば特に制限はない。そのような微生物の好ましい具体例としては、Shizosaccharomyces属に属する酵母が挙げられる。Shizosacharomyces属に属する酵母としては、Shizosaccharomyces pombe、Shizosaccharomyces japonicus、Shizosaccharomyces octosporusまたはShizosaccharomyces cryophilusを好適に用いることができる。
 本発明における粒子とは、培養液中に含まれる微生物以外の不溶性の粒状物質を意味する。培養液中に存在する粒子の平均粒子径の測定は、動的光散乱法(DLS、光子相関法)により行う。具体的には、動的光散乱法による測定によって得られた散乱強度の揺らぎから、キュムラント(Cumulant)解析によって自己相関関数を求め、散乱強度に対する粒度分布へ変換した後に、解析範囲最小値を1nm、最大値を5000nmとして平均粒子径に換算する。測定には、大塚電子株式会社のELS-Z2を用いる。また、培養液中には微生物も粒子として存在していることから、室温の培養液を1000×G、10分の条件で遠心することにより微生物を沈殿させ、その遠心上清に含まれる粒子の平均粒子径を測定する。
 前記粒子の平均粒子径は100nm以上であり、好ましくは300nm以上、より好ましくは300~1500nmである。このような平均粒子径が100nm以上の粒子を培養液中に含有せしめる微生物を利用することで、詳細な作用機序は明らかではないが、後述の実施例・比較例で示されるように分離膜の膜閉塞を顕著に抑制することができる。なお、粒子の平均粒子径の上限は、膜閉塞の発生により濾過フラックスを低下させない範囲においては特に制限されないが、前記遠心によっても微生物とともに沈殿しないような粒子の平均粒子径が上限となり、好ましい上限値としては1500nmである。
 ケーンモラセスとは、サトウキビの絞り汁あるいは粗糖より、製糖の過程で生成する副産物である。すなわち、製糖過程における結晶化工程で結晶化の後に残った糖成分を含む晶析母液のことを指す。一般的に、結晶化工程は、複数回行うことが通常であり、1回目の結晶化を行い得た結晶成分である1番糖、さらに1番糖の残り液(1番糖蜜)の結晶化を行い得た結晶成分である2番糖、さらに2番糖の残り液(2番糖蜜)の結晶化を行い得た3番糖、のように結晶化を繰り返し行い、その際に残った晶析母液として得た最終段階の糖蜜のことをケーンモラセスという。結晶化の回数が多くなるに伴い、糖成分以外の無機塩がケーンモラセス中に濃縮される。本発明で使用するケーンモラセスとしては、結晶化回数が多く経た後のケーンモラセスであることが好ましく、少なくとも2回以上、さらに好ましくは3回以上結晶化を行った後に残るケーンモラセスであることが好ましい。ケーンモラセスに含まれる糖成分としては、スクロース、グルコース、フルクトースを主成分として含んでおり、キシロース、ガラクトースなどのその他の糖成分も若干含まれる場合がある。ケーンモラセス中の糖濃度は、一般的に200~800g/L程度である。ケーンモラセス中の糖濃度は、HPLCなどの公知の測定手法によって定量することができる。
 発酵原料とは、微生物が増殖するために必要な栄養が全て含まれるものである。本発明で使用する発酵原料にはケーンモラセスが主成分として含まれていればよく、その他、炭素源、窒素源、無機塩類、および必要に応じてアミノ酸、ビタミンなどの有機微量栄養素を適宜添加してもよい。なお、本発明においてケーンモラセスを主成分として含む発酵原料とは、発酵原料に含まれる物質(水を除く)のうち50重量パーセント以上がケーンモラセスであることを意味する。
 炭素源としては、グルコース、シュークロース、フラクトース、ガラクトース、ラクトース等の糖類、これら糖類を含有する澱粉糖化液、甘藷糖蜜、甜菜糖蜜、ハイテストモラセス、更には酢酸等の有機酸、エタノールなどのアルコール類、グリセリンなどの他、セルロース含有バイオマス由来糖液が好ましく使用される。
 セルロース含有バイオマスとしては、バガス、スイッチグラス、コーンストーバー、稲わら、麦わらなど草木系バイオマスと、樹木、廃建材などの木質系バイオマスなどを例として挙げることができる。セルロース含有バイオマスは、糖が脱水縮合した多糖であるセルロースあるいはヘミセルロースを含有しており、こうした多糖を加水分解することで発酵原料として利用可能な糖液が製造される。
 セルロース含有バイオマス由来糖液の調製方法は特に制限はなく、こうした糖の製造方法としては、濃硫酸を使用してバイオマスを酸加水分解して糖液を製造する方法(特表平11-506934号公報、特開2005-229821号公報)、バイオマスを希硫酸で加水分解処理した後に、さらにセルラーゼなどの酵素処理することより糖液を製造する方法が開示されている(A.Adenら、“Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover”NREL Technical Report(2002))。また酸を使用しない方法として、250~500℃程度の亜臨界水を使用しバイオマスを加水分解して糖液を製造する方法(特開2003-212888号公報)、またバイオマスを亜臨界水処理した後に、さらに酵素処理することにより糖液を製造する方法(特開2001-95597号公報)、バイオマスを240~280℃の加圧熱水で加水分解処理した後に、さらに酵素処理することにより糖液を製造する方法(特許3041380号公報)が開示されている。以上のような処理の後、得られた糖液とケーンモラセスを混合して精製してもよい。その方法は、例えば、WO2012/118171に開示されている。
 窒素源としてはアンモニアガス、アンモニア水、アンモニウム塩類、尿素、硝酸塩類、その他補助的に使用される有機窒素源、例えば油粕類、大豆加水分解液、カゼイン分解物、その他のアミノ酸、ビタミン類、コーンスティープリカー、酵母または酵母エキス、肉エキス、ペプトン等のペプチド類、各種発酵菌体およびその加水分解物などが使用される。
 無機塩類としてはリン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等を適宜添加することができる。
 また、本発明に使用する微生物が生育のために特定の栄養素を必要とする場合にはその栄養物を標品もしくはそれを含有する天然物として添加して使用できる。
 本発明に用いる分離膜については、微生物の培養で得られた培養液を微生物から分離濾過する機能を有するものであれば特に制限はなく、材質としては、例えば、多孔質セラミック膜、多孔質ガラス膜、多孔質有機高分子膜、金属繊維編織体、不織布などを用いることができるが、これらの中で特に多孔質有機高分子膜もしくはセラミック膜が好適である。
 本発明で分離膜の構成としては、例えば、耐汚れ性の点から、多孔質樹脂層を機能層として含む分離膜であることが好ましい。
 多孔質樹脂層を含む分離膜は、好ましくは、多孔質基材の表面に、分離機能層として作用とする多孔質樹脂層を有している。多孔質基材は、多孔質樹脂層を支持して分離膜に強度を与える。また、多孔質基材の表面に多孔質樹脂層を有している場合、多孔質基材に多孔質樹脂層が浸透していても、多孔質基材に多孔質樹脂層が浸透していなくてもどちらでも良い。
 多孔質基材の平均厚みは、好ましくは50~3000μmである。
 多孔質基材の材質は、有機材料および/または無機材料等からなり、有機繊維が望ましく用いられる。好ましい多孔質基材は、セルロース繊維、セルローストリアセテート繊維、ポリエステル繊維、ポリプロピレン繊維およびポリエチレン繊維などの有機繊維なる織布や不織布であり、より好ましくは、密度の制御が比較的容易であり製造も容易で安価な不織布が用いられる。
 多孔質樹脂層は、有機高分子膜を好適に使用することができる。有機高分子膜の材質としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ塩化ビニル系樹脂、ポリフッ化ビニリデン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアクリロニトリル系樹脂、セルロース系樹脂およびセルローストリアセテート系樹脂などが挙げられる。有機高分子膜は、これらの樹脂を主成分とする樹脂の混合物であってもよい。ここで主成分とは、その成分が50重量%以上、好ましくは60重量%以上含有することをいう。有機高分子膜の材質は、溶液による製膜が容易で物理的耐久性や耐薬品性にも優れているポリ塩化ビニル系樹脂、ポリフッ化ビニリデン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂およびポリアクリロニトリル系樹脂が好ましく、ポリフッ化ビニリデン系樹脂またはそれを主成分とする樹脂が最も好ましく用いられる。
 ここで、ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体が好ましく用いられる。さらに、ポリフッ化ビニリデン系樹脂は、フッ化ビニリデンと共重合可能なビニル系単量体との共重合体も好ましく用いられる。フッ化ビニリデンと共重合可能なビニル系単量体としては、テトラフルオロエチレン、ヘキサフルオロプロピレンおよび三塩化フッ化エチレンなどが例示される。
 本発明で使用される分離膜は、発酵に使用される微生物が通過できない細孔径を有していればよいが、発酵に使用される微生物の分泌物や発酵原料中の微粒子による目詰まりが起こりにくく、かつ、濾過性能が長期間安定に継続する範囲であることが望ましい。よって、多孔性分離膜の平均細孔径が、0.01~5μmであることが好ましい。また、さらに好ましくは、分離膜の平均細孔径が、0.01~1μmであると、微生物がリークすることのない高い排除率と、高い透水性を両立させることができ、透水性を長時間保持することができる。
 微生物の大きさに近いと、これらが直接孔を塞いでしまう場合があるので、分離膜の平均細孔径は1μm以下であることが好ましい。分離膜の平均細孔径は、微生物の漏出、すなわち排除率が低下する不具合の発生を防止するため、微生物の大きさと比較して大きすぎないことが好ましい。微生物のうち、細胞の小さい細菌などを用いる場合には、平均細孔径として0.4μm以下が好ましく、0.2μm以下がより好ましく、0.1μm以下がさらに好ましい。平均細孔径が小さすぎると分離膜の透水性能が低下し、膜が汚れていなくても効率的な運転ができなくなるため、本発明における分離膜の平均細孔径は、好ましくは0.01μm以上であり、より好ましくは0.02μm以上であり、さらに好ましくは0.04μm以上である。
 ここで、平均細孔径は、倍率10,000倍の走査型電子顕微鏡観察における、9.2μm×10.4μmの範囲内で観察できる細孔すべての直径を測定し、平均することにより求めることができる。平均細孔径は、あるいは膜表面を、走査型電子顕微鏡を用いて倍率10,000倍で写真撮影し、10個以上、好ましくは20個以上の細孔を無作為に選び、それら細孔の直径を測定し、数平均して求めることもできる。細孔が円状でない場合、画像処理装置等によって、細孔が有する面積と等しい面積を有する円(等価円)を求め、等価円直径を細孔の直径とする方法により求められる。
 本発明で用いられる分離膜の平均細孔径の標準偏差σは、0.1μm以下であることが好ましい。平均細孔径の標準偏差σは小さければ小さい方が望ましい。平均細孔径の標準偏差σは、上述の9.2μm×10.4μmの範囲内で観察できる細孔数をNとして、測定した各々の直径をXkとし、細孔直径の平均をX(ave)とした下記の(式1)により算出される。
Figure JPOXMLDOC01-appb-M000001
 本発明で用いられる分離膜においては、発酵培養液の透過性が重要な性能の一つである。分離膜の透過性の指標として、使用前の分離膜の純水透過係数を用いることができる。本発明において、分離膜の純水透過係数は、逆浸透膜による25℃の温度の精製水を用い、ヘッド高さ1mで透水量を測定し算出したとき、5.6×10-10/m/s/pa以上であることが好ましく、純水透過係数が、5.6×10-10/m/s/pa以上6×10-7/m/s/pa以下であれば、実用的に十分な透過水量が得られる。
 本発明で用いられる分離膜において、表面粗さとは、表面に対して垂直方向の高さの平均値である。膜表面粗さは、分離膜表面に付着した微生物が、撹拌や循環ポンプによる液流による膜面洗浄効果で剥離しやすくするための因子の一つである。分離膜の表面粗さは、特に制限はなく、膜に付着した微生物、ならびにその他の固形物が剥がれる範囲であればよいが、0.1μm以下であることが好ましい。表面粗さが0.1μm以下であると、膜に付着した微生物、ならびにその他の固形物が剥がれやすくなる。
 さらに好ましくは、分離膜の膜表面粗さが0.1μm以下であり、平均細孔径が0.01~1μmであり、分離膜の純水透過係数が2×10-9/m/s/pa以上の分離膜を使用することにより、膜面洗浄に必要な動力を過度に必要としない運転が、より容易に可能であることがわかった。分離膜の表面粗さを、0.1μm以下とすることにより、微生物の濾過において、膜表面で発生する剪断力を低下させることができ、微生物の破壊が抑制され、分離膜の目詰まりも抑制されることにより、長期間安定な濾過が、より容易に可能になる。また、分離膜の表面粗さを、0.1μm以下とすることにより、より低い膜間差圧で連続発酵が実施可能であり、分離膜が目詰まりした場合でも高い膜間差圧で運転した場合に比べて、洗浄回復性が良好である。分離膜の目詰まりを抑えることにより、安定した連続発酵が可能になることから、分離膜の表面粗さは小さければ小さいほど好ましい。
 ここで、分離膜の膜表面粗さは、下記の原子間力顕微鏡装置(AFM)を使用して、下記の条件で測定したものである。
・装置  原子間力顕微鏡装置(Digital Instruments(株)製“Nanoscope IIIa”)
・条件  探針    SiNカンチレバー(Digital Instruments(株)製)
     走査モード コンタクトモード(気中測定)
           水中タッピングモード(水中測定)
     走査範囲  10μm、25μm四方(気中測定)
           5μm、10μm四方(水中測定)
     走査解像度 512×512
・試料調製 測定に際し膜サンプルは、常温でエタノールに15分浸漬後、RO水中に24時間浸漬し洗浄した後、風乾し用いた。RO水とは、濾過膜の一種である逆浸透膜(RO膜)を用いて濾過し、イオンや塩類などの不純物を排除した水を指す。RO膜の孔の大きさは、概ね2nm以下である。
 膜表面粗さdroughは、上記の原子間力顕微鏡装置(AFM)により各ポイントのZ軸方向の高さから、下記の(式2)により算出する。
Figure JPOXMLDOC01-appb-M000002
 本発明で用いられる分離膜の形状は特に限定されず、平膜や中空糸膜などを用いることができるが、好ましくは中空糸膜である。分離膜が中空糸膜の場合、中空糸の内径は、好ましくは200~5000μmであり、膜厚は、好ましくは20~2000μmである。また、有機繊維または無機繊維を筒状にした織物や編物を中空糸の内部に含んでいても良い。
 なお、前述の分離膜は、例えばWO2007/097260に記載される製造方法により製造することができる。
 本発明での連続発酵は、微生物の培養液を分離膜で濾過して微生物が分離された化学品を含む濾過液を回収し、さらに微生物を含む未濾過液を培養液に保持または還流し、かつ発酵原料を培養液に追加して濾過液中から生産物を回収する連続発酵であることを特徴とする。
 本発明の化学品の製造方法においては、濾過時の膜間差圧は特に制限されることはなく、発酵培養液を濾過できればよい。しかし、培養液を濾過するために、有機高分子膜において150kPaより高い膜間差圧で濾過処理すると、有機高分子膜の構造が破壊される可能性が高くなり、化学品を生産する能力が低下することがある。また、0.1kPaより低い膜間差圧では、発酵培養液の透過水量が十分得られない場合が多く化学品を製造するときの生産性が低下する傾向がある。したがって、本発明の化学品の製造方法では、有機高分子膜においては、濾過圧力である膜間差圧を好ましくは0.1~150kPaの範囲とすることにより、発酵培養液の透過水量が多く、膜の構造の破壊による化学品製造能力の低下もないことから、化学品を生産する能力を高く維持することが可能である。膜間差圧は、有機高分子膜においては、好ましくは0.1~50kPaの範囲であり、さらに好ましくは0.1~20kPaの範囲である。
 酵母の発酵における温度は、用いる酵母に適した温度を設定すればよく、微生物が生育する範囲であれば特に限定されないが、温度が20~75℃の範囲で行われる。
 本発明の化学品の製造方法では、培養初期にバッチ培養またはフェドバッチ培養を行って微生物濃度を高くした後に、連続発酵(培養液の濾過)を開始しても良い。また、高濃度の菌体をシードし、培養開始とともに連続発酵を行っても良い。本発明の化学品の製造方法では、適当な時期から、発酵原料の供給および培養液の濾過を行うことが可能である。発酵原料の供給と培養液の濾過の開始時期は、必ずしも同じである必要はない。また、培地供給と培養液の濾過は連続的であってもよいし、間欠的であってもよい。
 供給する発酵原料には、菌体増殖に必要な栄養素を添加し、菌体増殖が連続的に行われるようにすればよい。培養液中の微生物の濃度は、化学品の生産性を高い状態で維持することが効率よい生産性を得るのに好ましい。培養液中の微生物の濃度は、一例として、乾燥重量として、5g/L以上に維持することで良好な生産効率が得られる。
 本発明の化学品の製造方法では、連続発酵の途中において必要に応じて、発酵槽内から微生物を含んだ培養液の一部を取り除いた上、発酵原料を供給して希釈することによって、培養槽内の微生物濃度を調整してもよい。例えば、発酵槽内の微生物濃度が高くなりすぎると、分離膜の閉塞が発生しやすくなることから、微生物を含んだ培養液の一部を取り除き、発酵原料を供給して希釈することで、閉塞から回避することができることがある。本発明の化学品の製造方法では、発酵槽の数は問わない。
 本発明で用いられる連続発酵装置は、酵母の培養液を分離膜で濾過し、濾液から生産物を回収するとともに微生物を含む未濾過液を前記の培養液に保持または還流し、かつ、発酵原料を前記の培養液に追加して濾過液中の生産物を回収する連続発酵による化学品の製造装置であれば特に制限はないが、具体例を挙げると、WO2007/097260、WO2010/038613に記載される装置が使用できる。
 本発明により製造される化学品としては、アルコール、有機酸など発酵工業において大量生産されている物質を挙げることができる。例えば、アルコールとしては、エタノール、1,3-プロパンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、グリセロール、ブタノール、イソブタノール、2-ブタノール、イソプロパノールなど、有機酸としては、酢酸、乳酸、アジピン酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸を挙げることができる。また、本発明は、酵素、抗生物質、組み換えタンパク質のような物質の生産に適用することも可能である。これら化学品は周知の方法(膜分離、濃縮、蒸留、晶析、抽出等)により濾過液より回収される。
 また、本発明は、前述のような化学品の製造方法に限定されず、前述の方法による微生物の増殖を目的とした培養方法であってもよい。このような具体例としては、微生物を製造目的物とする培養が挙げられる。
 以下、実施例を挙げて本発明を具体的に説明する。但し、本発明はこれらに限定されるものではない。
 (参考例1)糖類、エタノールの分析方法
 原料中の糖類、エタノール濃度は、下記に示すHPLC条件で、標品との比較により定量した。
カラム:Shodex SH1011(昭和電工株式会社製)
移動相:5mM 硫酸(流速0.6mL/分)
反応液:なし
検出方法:RI(示差屈折率)
温度:65℃。
 (参考例2)ケーンモラセス含有原料の調製
 バガスを水熱処理して得られる固形分(C6画分)および水を混合し、固形分仕込濃度10%とした混合液に糖化酵素を20mg/g-乾燥バガスを添加して48時間糖化反応を行った。なお、糖化反応は50℃で行い、pH制御は行わなかった。48時間後に最終的に表1に示す割合になるようにケーンモラセスを添加した後に、フィルタープレスによって糖化残渣と糖化液の固液分離を行い、その後、精密濾過膜、限外濾過膜を通じて、ケーンモラセス含有原料を得た。参考例1に示す方法によるケーンモラセス含有原料の分析結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (実施例1)シゾサッカロマイセス・ポンベNBRC1628株を用いた分離膜利用連続発酵
 培養微生物としてエタノール生産酵母シゾサッカロマイセス・ポンベNBRC1628株、培地として表2に示すケーンモラセス含有原料を用い、分離膜を利用した連続培養を行なった。分離膜エレメントとしては特開2010-22321に記載の中空糸の形態を採用した。シゾサッカロマイセス・ポンベNBRC1628株を5mlの表2に示す原料を投入した試験管に植菌し一晩振とう培養した(前々々培養)。得られた培養液を、新鮮な45mlの表2に示す原料を投入した三角フラスコに植菌し、30℃、120rpmで8時間振とう培養した(前々培養)。前々培養液50mLのうち35mLを分取して、700mLの表2に示すケーンモラセス含有原料を投入した連続発酵装置に植菌し、発酵反応槽を付属の撹拌機によって300rpmで撹拌し、24時間培養を行った(前培養)。なお、植菌後直ちに発酵液循環ポンプを稼動させ、分離膜モジュールと発酵槽間の液循環をおこなった。前培養終了後、ろ過ポンプを稼動させて分離膜モジュールより発酵液の抜き出しを開始した。ろ過開始後は、連続発酵装置の発酵液量を700mLになるよう発酵原料添加制御を行いながら以下の連続発酵条件で約300時間の連続培養を行った。連続培養中の膜間差圧およびろ過速度の推移を図1に示す。
 [連続発酵条件]
発酵反応槽容量:2(L)
使用分離膜:ポリフッ化ビニリデン製ろ過膜
膜分離エレメント有効濾過面積:218(cm
温度調整:30(℃)
発酵反応槽通気量:無通気
発酵反応槽撹拌速度:300(rpm)
pH調整:無調整
ろ過フラックス設定値:0.1(m/m/日)
滅菌:分離膜エレメントを含む培養槽は121℃、20minのオートクレーブにより高圧蒸気滅菌
平均細孔径:0.1μm
平均細孔径の標準偏差:0.035μm
膜表面粗さ:0.06μm
純水透過係数:50×10-9/m/s/pa。
 その結果、図1に示したように、約300時間の連続培養中、膜間差圧はほぼ一定であり、膜閉塞も起こらずろ過フラックスも安定して一定値で推移した。また、連続培養終了時点のエタノール濃度は64g/Lであった。
 (比較例1)サッカロマイセス・セレビセNBRC2260株を用いた分離膜利用連続発酵1
 培養微生物としてエタノール生産酵母のサッカロマイセス・セレビセNBRC2260株を用いた以外は実施例1と同様の方法にて連続培養を行った。連続培養中の膜間差圧およびろ過フラックスの推移を図2に示す。図2に示したように、300時間の連続培養中、100時間を経過した後から膜間差圧の急激な上昇が起こり、膜閉塞が起こったためろ過フラックスも設定値より低下していくことがわかった。また、連続培養終了時点のエタノール濃度は65g/Lであった。
 (参考例3)ケーンモラセス含有原料を用いた連続ろ過試験
 次に、表2に示すケーンモラセス含有原料のみを用いた連続ろ過試験を行った。ろ過中の温度、攪拌速度、pH等の条件は実施例1に記載した方法と同様の方法で行った。600時間の連続ろ過試験中の膜間差圧およびろ過フラックスの推移を図3に示す。図3に示したように膜間差圧はほぼ一定であり、膜閉塞も起こらずろ過フラックスも安定して一定値で推移した。
 (実施例2)シゾサッカロマイセス・ジャポニカスNBRC1609株を用いた分離膜利用連続発酵
 培養微生物としてシゾサッカロマイセス・ジャポニカスNBRC1609株を用いた以外は実施例1と同様の方法にて連続培養を行った。連続培養中の膜間差圧およびろ過フラックスの推移を図4に示す。図4に示したように、約300時間の連続培養中、膜間差圧はほぼ一定であり、膜閉塞も起こらずろ過フラックスも安定して一定値で推移した。
 (参考例4)サッカロマイセス・セレビセNBRC2260株を用いた分離膜利用連続発酵試験2
 培養微生物としてエタノール生産酵母のサッカロマイセス・セレビセNBRC2260株を用い、発酵原料として表3に示すケーンモラセス非含有原料を用いて実施例1と同様の方法で連続培養を行った。ただし設定ろ過フラックスは0.2(m/m/日)で実施した。連続培養中の膜間差圧およびろ過速度の推移を図5に示す。
 その結果、設定ろ過フラックスが比較例2の2倍であるにもかかわらず、約300時間の連続培養中、膜間差圧はほぼ一定であり、膜閉塞も起こらずろ過フラックスも安定して一定値で推移した。また、連続培養終了時点のエタノール濃度は47g/Lであった。
 膜閉塞は使用する発酵原料や酵母の組み合わせで発生したり発生しなかったりすることが明らかになった。
Figure JPOXMLDOC01-appb-T000005
 (実施例3)培養液上清中の平均粒子径測定結果
 実施例1、実施例2、比較例1、参考例3のそれぞれの培養液および、ケーンモラセス含有原料を遠心分離し、得られた上清の平均粒子径測定を実施した。具体的には、参考例2のケーンモラセス含有原料を5mL加えた試験管に、シゾサッカロマイセス・ポンベNBRC1628株、NBRC1609株またはサッカロマイセス・セレビセNBRC2260株を植菌し、30℃、120rpmで72時間培養した。各酵母培養液および参考例3のケーンモラセス含有原料を1000×Gで10分間遠心して、それぞれの上清3mLを回収した。回収した上清30μLをpH5のクエン酸緩衝液970μLに加えて希釈し、希釈した各溶液を1mL容量のディスポセルに入れ、動的光散乱により平均粒子径を測定した。
 [測定条件]
・光源のピンホールサイズ:100μm
・測定波長:660nm
・測定角度:165°
・測定積算回数:70回
・溶媒屈折率:1.3313
・溶媒粘度:0.8852cp。
 次に、測定結果を以下の条件にて解析した。
 [解析条件]
 粒子径の解析には、大塚電子株式会社のゼータ電位・粒子測定システムELS-Z2を用い、25℃の条件で、大気中で測定を行った。動的光散乱によって得られた散乱強度の揺らぎからキュムラント解析によって自己相関関数を求め、散乱強度に対する粒度分布へ変換した。粒度分布のヒストグラム解析範囲は最小値を1nm、最大値を5000nmとした。得られた平均粒子径を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 その結果、表4に示したようにケーンモラセス含有原料で分離膜を用いた連続培養中に、膜閉塞が起こらずろ過速度の低下が発生しなかったシゾサッカロマイセス・ポンベNBRC1628株およびシゾサッカロマイセス・ジャポニカスNBRC1609株の培養液上清中には平均粒子径300nm以上の粒子が含まれていた。一方で、連続培養中に膜閉塞が起こりろ過速度の低下が発生したサッカロマイセス・セレビセNBRC2260株の培養液上清中には平均粒子径300nm以上の粒子が含まれていなかった。なお、ケーンモラセス含有原料にも粒子の存在は認められなかった。つまりケーンモラセス含有培地を用いた分離膜利用連続発酵では、培養液の遠心上清中に、平均粒子径100nm以上の粒子を含有せしめる微生物を発酵に用いると膜閉塞が生じないことがわかった。
 

Claims (5)

  1.  微生物を、ケーンモラセスを主成分として含む発酵原料で培養し、培養液を分離膜で濾過して微生物が分離された化学品を含む濾過液を回収し、さらに微生物を含む未濾過液を培養液に保持または還流し、かつ発酵原料を培養液に追加して連続発酵する化学品の製造方法において、前記培養液の遠心上清中に平均粒子径が100nm以上の粒子を含有せしめる微生物を培養する、化学品の製造方法。
  2.  前記粒子の平均粒子径が300nm以上である、請求項1に記載の化学品の製造方法。
  3.  前記発酵原料がケーンモラセスおよびセルロース含有バイオマス由来糖液の混合物を含む、請求項1または2に記載の化学品の製造方法。
  4.  前記微生物がシゾサッカロマイセス(Schizosaccharomyces)属に属する酵母である、請求項1~3のいずれかに記載の化学品の製造方法。
  5.  微生物を、ケーンモラセスを主成分として含む発酵原料で培養し、培養液を分離膜で濾過して微生物を含む未濾過液を培養液に保持または還流し、かつ発酵原料を培養液に追加して連続培養する微生物の培養方法において、前記培養液の遠心上清中に平均粒子径100nm以上の粒子を含有せしめる微生物を培養する、微生物の培養方法。
     
PCT/JP2017/010555 2016-03-17 2017-03-16 化学品の製造方法および微生物の培養方法 WO2017159764A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780016496.3A CN108779478A (zh) 2016-03-17 2017-03-16 化学品的制造方法和微生物的培养方法
BR112018068606A BR112018068606A2 (pt) 2016-03-17 2017-03-16 método para a produção de um produto químico e método de cultivar um microrganismo
AU2017232594A AU2017232594A1 (en) 2016-03-17 2017-03-16 Method for manufacturing chemical and method for culturing microorganism
JP2017517387A JP6927036B2 (ja) 2016-03-17 2017-03-16 化学品の製造方法および微生物の培養方法
US16/085,919 US20190093132A1 (en) 2016-03-17 2017-03-16 Method of manufacturing chemical and method of culturing microorganism
PH12018501662A PH12018501662A1 (en) 2016-03-17 2018-08-03 Method for manufacturing chemical and method for culturing microorganism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016053831 2016-03-17
JP2016-053831 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159764A1 true WO2017159764A1 (ja) 2017-09-21

Family

ID=59851588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010555 WO2017159764A1 (ja) 2016-03-17 2017-03-16 化学品の製造方法および微生物の培養方法

Country Status (7)

Country Link
US (1) US20190093132A1 (ja)
JP (1) JP6927036B2 (ja)
CN (1) CN108779478A (ja)
AU (1) AU2017232594A1 (ja)
BR (1) BR112018068606A2 (ja)
PH (1) PH12018501662A1 (ja)
WO (1) WO2017159764A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054469A1 (ja) * 2017-09-15 2019-03-21 東レ株式会社 エタノールの製造方法およびエタノール発酵液
WO2021117849A1 (ja) * 2019-12-13 2021-06-17 東レ株式会社 膜濾過性を改善する連続発酵による化学品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097260A1 (ja) * 2006-02-24 2007-08-30 Toray Industries, Inc. 化学品の製造方法、および、連続発酵装置
WO2011135588A2 (en) * 2010-04-29 2011-11-03 Shree Renuka Sugars Limited A continuous process for the preparation of alcohol
WO2012118171A1 (ja) * 2011-03-03 2012-09-07 東レ株式会社 糖液の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372939A (en) * 1991-03-21 1994-12-13 The United States Of America As Represented By The United States Department Of Energy Combined enzyme mediated fermentation of cellulous and xylose to ethanol by Schizosaccharoyces pombe, cellulase, β-glucosidase, and xylose isomerase
JP5082496B2 (ja) * 2006-02-24 2012-11-28 東レ株式会社 連続発酵による化学品の製造方法および連続発酵装置
WO2009100102A2 (en) * 2008-02-04 2009-08-13 Danisco Us Inc., Genencor Division Ts23 alpha-amylase variants with altered properties
WO2014156998A1 (ja) * 2013-03-28 2014-10-02 旭硝子株式会社 化成品の製造方法および製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097260A1 (ja) * 2006-02-24 2007-08-30 Toray Industries, Inc. 化学品の製造方法、および、連続発酵装置
WO2011135588A2 (en) * 2010-04-29 2011-11-03 Shree Renuka Sugars Limited A continuous process for the preparation of alcohol
WO2012118171A1 (ja) * 2011-03-03 2012-09-07 東レ株式会社 糖液の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAKHIET SHAMI E. A. ET AL.: "Production of Bio-ethanol from Molasses by Schizosaccharomyces Species", ANNUAL RESEARCH & REVIEW IN BIOLOGY, vol. 7, no. 1, 13 April 2015 (2015-04-13), pages 45 - 53, XP055601580, DOI: 10.9734/ARRB/2015/15918 *
DALE M C ET AL.: "Ethanol from Concentrated Sucrose and Molasses Solutions Using S. Pombe in an Immobilized Cell Reactor-Separator", AICHE SYMPOSIUM SERIES, vol. 90, no. 300, 1994, pages 56 - 62 *
SAITHONG PRAMUAN ET AL.: "Prevention of bacterial contamination using acetate-tolerant Schizosaccharomyces pombe during bioethanol production from molasses", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 108, no. 3, 2009, pages 216 - 219, XP026436941 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054469A1 (ja) * 2017-09-15 2019-03-21 東レ株式会社 エタノールの製造方法およびエタノール発酵液
WO2021117849A1 (ja) * 2019-12-13 2021-06-17 東レ株式会社 膜濾過性を改善する連続発酵による化学品の製造方法

Also Published As

Publication number Publication date
PH12018501662A1 (en) 2019-06-17
JP6927036B2 (ja) 2021-08-25
BR112018068606A2 (pt) 2019-02-05
CN108779478A (zh) 2018-11-09
AU2017232594A1 (en) 2018-07-26
US20190093132A1 (en) 2019-03-28
JPWO2017159764A1 (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP5757443B2 (ja) セルロース含有バイオマスからのアルコールの製造方法
JP6447682B2 (ja) 化学品の製造方法
US20130092157A1 (en) Process for production of aqueous refined sugar solution
CA2875083C (en) Process for producing sugar solution
WO2017159764A1 (ja) 化学品の製造方法および微生物の培養方法
WO2019054469A1 (ja) エタノールの製造方法およびエタノール発酵液
AU2013208440B2 (en) Method for producing chemical substance
WO2015159812A1 (ja) 連続発酵による化学品の製造方法
WO2021117849A1 (ja) 膜濾過性を改善する連続発酵による化学品の製造方法
US20190002931A1 (en) Method for producing compound derived from herbaceous plant of family gramineae or cucurbitaceae
AU2013208441B2 (en) Method for producing chemical substance
JP5141133B2 (ja) 連続発酵によるタンパク質の製造方法
JP2008017837A (ja) ピルビン酸の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017517387

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017232594

Country of ref document: AU

Date of ref document: 20170316

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018068606

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018068606

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180913

122 Ep: pct application non-entry in european phase

Ref document number: 17766760

Country of ref document: EP

Kind code of ref document: A1