WO2017158919A1 - 窒化ホウ素フィラ―、樹脂組成物、フィルム、窒化ホウ素フィラ―の製造方法 - Google Patents

窒化ホウ素フィラ―、樹脂組成物、フィルム、窒化ホウ素フィラ―の製造方法 Download PDF

Info

Publication number
WO2017158919A1
WO2017158919A1 PCT/JP2016/083281 JP2016083281W WO2017158919A1 WO 2017158919 A1 WO2017158919 A1 WO 2017158919A1 JP 2016083281 W JP2016083281 W JP 2016083281W WO 2017158919 A1 WO2017158919 A1 WO 2017158919A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
resin composition
particles
nitride particles
filler
Prior art date
Application number
PCT/JP2016/083281
Other languages
English (en)
French (fr)
Inventor
パウエル チューバロウ
敏行 佐藤
寛史 高杉
一生 青木
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to JP2018505231A priority Critical patent/JP6721219B2/ja
Publication of WO2017158919A1 publication Critical patent/WO2017158919A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present disclosure relates to a boron nitride filler, a resin composition containing the boron nitride filler, a film formed from the resin composition, and a method for producing the boron nitride filler.
  • BN particles alone or inorganic fillers in which boron nitride particles are combined with other particles are known.
  • a cured product of the resin composition to which such an inorganic filler is added is excellent in heat resistance. Therefore, the resin composition to which such an inorganic filler is added can be used as a material for high thermal conductivity.
  • the cured product of the resin composition is required to have a high withstand voltage characteristic.
  • the present disclosure relates to a boron nitride filler that improves a withstand voltage characteristic of a cured product of a resin composition, a resin composition containing the boron nitride filler, a film formed from the resin composition, and a boron nitride filler. Provide a method.
  • One embodiment of the present invention is a boron nitride filler added to a matrix resin.
  • the boron nitride filler has boron nitride particles and a layer that includes a pentafluorophenyl derivative represented by the formula (1) and is formed on the surface of the boron nitride particles.
  • R is hydrogen, fluorine, allyl group, vinyl group, or silyl group
  • Another aspect of the present invention is a method for producing a boron nitride filler in which a layer containing a pentafluorophenyl derivative represented by the formula (1) is formed on the surface of boron nitride particles.
  • R is hydrogen, fluorine, allyl group, vinyl group, or silyl group
  • R in the formula (1) is fluorine, an allyl group, or a silyl group.
  • Another embodiment of the present invention is a resin composition containing a matrix resin and a boron nitride filler.
  • the boron nitride filler has boron nitride particles and a layer formed on the surface of the boron nitride particles containing the pentafluorophenyl derivative represented by the formula (1).
  • One embodiment of the present invention is a resin composition containing a filler other than a boron nitride filler.
  • the present invention is a film formed from a resin composition.
  • the resin composition includes a boron nitride filler.
  • the boron nitride filler has boron nitride particles and a layer formed on the surface of the boron nitride particles containing the pentafluorophenyl derivative represented by the formula (1).
  • Boron nitride particles are a substance constituting a boron nitride filler.
  • the cured product of the resin composition to which boron nitride particles are added has excellent thermal conductivity.
  • As the boron nitride particles hexagonal boron nitride particles (h-BN) and cubic boron nitride particles (c-BN) can be used.
  • the boron nitride particles may be an aggregate of hexagonal boron nitride particles (clustered h-BN).
  • “boron nitride particles” include not only boron nitride particles but also aggregates thereof.
  • boron nitride particles examples include PCTF5 (h-BN, manufactured by Saint-Gobain Ceramic Materials), PCTH3MHF (clustered h-BN, manufactured by Saint-Gobain Ceramic Materials), and PCTH2MHF (clustered h-BN, manufactured by Saint-Gobain Ceramic Materials). ), CBN-B (c-BN, particle size: 4-8 ⁇ m, manufactured by Reade).
  • the surface treatment agent is used to form a predetermined layer on the surface of the boron nitride particles.
  • the surface treatment agent contains a pentafluorophenyl derivative represented by the following formula (1).
  • R is hydrogen, fluorine, allyl group, vinyl group, or silyl group
  • R in the formula is preferably fluorine, an allyl group, or a silyl group.
  • the surface treating agent examples include “C 6 F 5 Allyl” (manufactured by Alfa Aesar, R is an allyl group in formula (1)), “SIP6716.7” (manufactured by Gelest, Inc., formula (1)). R is a silyl group), “SIP6716.8” (manufactured by Gelest, Inc., R is a silyl group in formula (1)), “C 6 F 6 ” (manufactured by Alfa Aesar, R is fluorine in formula (1)) Etc.
  • Boron nitride filler can be produced by surface treatment of boron nitride particles using a surface treating agent. A layer containing a pentafluorophenyl derivative represented by the formula (1) is formed on the surface of the boron nitride particles.
  • the surface treatment can be performed by the following method, for example.
  • the slurry 1-1 is prepared by adding boron nitride particles to toluene and stirring and mixing.
  • a predetermined ratio of the surface treatment agent for example, 1 g of the surface treatment agent to 9 g of boron nitride particles
  • was added to the slurry 1-1 and the mixture was stirred at room temperature (20 ° C. ⁇ 15 ° C.) for 24 hours.
  • a slurry 1-2 is obtained. Thereafter, the slurry 1-2 is centrifuged, and the precipitate is left in the atmosphere for 2 days to obtain a solid.
  • the surface-treated boron nitride particles boron nitride filler
  • the matrix resin to which the boron nitride filler is added is a resin composition.
  • the matrix resin is composed of a thermosetting resin composition, a thermoplastic resin composition, or the like. From the viewpoint of thermal conductivity, the matrix resin is preferably composed of a thermosetting resin composition.
  • the thermosetting resin composition includes, for example, an epoxy resin, a curing agent, and a curing accelerator and an additive as necessary.
  • the resin composition according to the present embodiment may include a filler (other filler) other than the boron nitride filler.
  • a filler other filler
  • examples of other fillers include inorganic fillers, organic fillers, and organic-inorganic hybrid fillers.
  • MgO MgO, Al 2 O 3 , AlN, BN, diamond filler, ZnO, SiC, or the like
  • MgO is SMO-5, SMO-1, SMO-02, SMO-2 (above, manufactured by Sakai Chemical Industry)
  • Al 2 O 3 is CB-A20S (manufactured by Showa Denko KK), DAW. -05, AA-18, AA-04 (manufactured by Sumitomo Chemical Co., Ltd.), ASFP-20 (manufactured by Denka Co., Ltd.), TA389 (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) and the like can be used.
  • organic filler for example, a resin filler such as polyether ether ketone, polyimide, polymethyl methacrylate, or the like can be used.
  • a resin filler such as polyether ether ketone, polyimide, polymethyl methacrylate, or the like
  • polyether ether ketone Vicote 704 PEEK, manufactured by Victrex, Vicote is a registered trademark
  • organic-inorganic hybrid filler for example, polysilsesquioxane can be used.
  • SP series made by Konishi Chemical Industry Co., Ltd.
  • SP series made by Konishi Chemical Industry Co., Ltd.
  • Fillers other than boron nitride filler further improve the thermal conductivity of the cured product of the resin composition.
  • the thermal conductivity in the plane direction of the cured product is excellent, but the thermal conductivity in the direction perpendicular to the plane is inferior. Therefore, by adding another filler to the boron nitride filler and forming a percolation structure of the boron nitride filler and other filler, the thermal conductivity can be increased in the direction perpendicular to the surface of the cured product. .
  • the percolation structure is a structure in which another filler is sandwiched between boron nitride fillers.
  • the filler other than the boron nitride filler preferably has an aspect ratio of 0.8 to 1.2.
  • the resin composition according to this embodiment includes at least a matrix resin and a boron nitride filler.
  • the boron nitride filler has boron nitride particles with a layer containing a pentafluorophenyl derivative formed on the surface.
  • the resin composition according to this embodiment can contain other fillers and various additives in addition to the boron nitride filler. Additives are, for example, coupling agents, dispersants, dyes, thixotropic agents.
  • the method for producing the resin composition is not particularly limited as long as the resin and the boron nitride filler are uniformly mixed.
  • a dissolver, a planetary mixer, a likai machine, a three-roll mill, a ball mill, a bead mill and the like can be used. These devices may include a heating device. Moreover, you may use combining these apparatuses suitably.
  • those described in Japanese Patent Publication No. 2015-193687 are incorporated.
  • the film according to this embodiment includes the above-described resin composition.
  • the film is obtained by applying the above resin composition to a desired support and then drying.
  • the support is not particularly limited, and examples thereof include metal foils such as copper and aluminum, organic films such as polyester resins, polyethylene resins, and polyethylene terephthalate resins.
  • the support may be release-treated with a silicone compound or the like.
  • the method of applying the resin composition to the support is not particularly limited, but the microgravure method, the slot die method, and the doctor blade method are preferable from the viewpoint of thinning and film thickness control.
  • the slot die method a film (adhesive film) having a thickness after thermosetting of 10 to 300 ⁇ m can be obtained.
  • the drying conditions can be appropriately set according to the type and amount of the organic solvent used in the resin composition, the thickness of the coating, and the like, for example, at 50 to 120 ° C. for about 1 to 30 minutes. Can do.
  • the production method those described in Japanese Patent Publication No. 2015-193687 are incorporated.
  • Hexagonal boron nitride aggregate particles (clustered h-BN)) “CBN-B (particle size: 4-8 ⁇ m)” (manufactured by Reade, c-BN) ⁇ Surface treatment agent> “C 6 F 5 Allyl” (manufactured by Alfa Aesar, R in formula (1) is an allyl group) "C 6 F 5 SIP 6716.7” (manufactured by Gelest, Inc. R in formula (1) is a silyl group) "C 6 F 5 SIP 6716.8” (manufactured by Gelest, Inc. R in formula (1) is a silyl group) - “C 6 F 6" (Alfa Aesar Corporation.
  • R is a fluorine-in) ⁇ Fillers other than boron nitride filler (other fillers)> ⁇ "CB-A20S” (Showa Denko KK. Alumina particles) ⁇ "TA389” (manufactured by Nippon Steel & Sumikin Materials Co., Ltd., alumina particles) ⁇ "ASFP-20” (Denka Co., Ltd. Alumina particles) ⁇ "AA-18” (Sumitomo Chemical Co., Ltd. Alumina particles) ⁇ "DAW-05” (Sumitomo Chemical Co., Ltd. Alumina particles) ⁇ "AA-04” (Sumitomo Chemical Co., Ltd.
  • Alumina particles ⁇ "Vicote 704 PEEK” (made by Reade. Polyetheretherketone resin particles) ⁇ Curing agent> ⁇ "2E4MZ” (Shikoku Kasei Kogyo Co., Ltd. Imidazole) ⁇ Dispersant> "DISPERBYK-111" (manufactured by ALTANA. Copolymer having acid groups. "DISPERBYK” is a registered trademark) ⁇ Silane coupling agent> ⁇ "KBM403" (Shin-Etsu Chemical Co., Ltd.) ⁇ “KBM503” (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • ⁇ Method for producing boron nitride filler 5 g of boron nitride particles were added to 15 g of toluene, and stirred for 15 minutes with a rotary stirrer to prepare a boron nitride particle slurry. A predetermined amount of a surface treatment agent was added to the obtained boron nitride particle slurry. Next, it stirred for 24 hours with the rotary stirrer at normal temperature, and the obtained solid substance was dried in air
  • ⁇ Method of treating boron nitride particles with a silane coupling agent > 60.0 g of water and 0.6 g of the silane coupling agent were stirred, and 19.4 g of boron nitride particles were added to the resulting silane coupling agent solution, followed by ultrasonic dispersion for 5 minutes. Then, after heating and stirring at 60 ° C. for 20 minutes, washing with water and suction filtration were performed, and the obtained solid was dried in the air for 1 day. Finally, the solid was heated and dried at 110 ° C. for 12 hours to obtain boron nitride particles surface-treated with 3% silane coupling agent. Further, the amount of boron nitride particles was changed, and boron nitride particles surface-treated with 10% silane coupling agent were obtained in the same manner.
  • the withstand voltage measurement was carried out based on JIS C2110 and ASTM D149 (JIS C2110 uses the description of Japan Industrial Standards) by cutting the above-mentioned 100 ⁇ m-thick cured product into a 40 mm ⁇ 40 mm test piece. ). More specifically, a 40 mm ⁇ 40 mm test piece was immersed in insulating oil, an AC voltage was applied at room temperature, and a dielectric breakdown voltage was measured with a DAC-6041 withstand voltage test system (manufactured by Soken Denki Co., Ltd.). The unit of withstand voltage is kV.
  • Withstand voltage values are the value immediately after curing of the resin composition, 125 ° C., 2 atm (reliability test, pressure current test) after 20 hours, and 40 hours under the same conditions. The average value was calculated.
  • Thermal conductivity measurement was performed using a thermal conductivity meter (Xe flash analyzer, model number: LFA447 Nanoflash, manufactured by NETZSCH) by cutting the 100 ⁇ m-thick cured product into 10 ⁇ 10 mm.
  • a thermal conductivity meter Xe flash analyzer, model number: LFA447 Nanoflash, manufactured by NETZSCH
  • Example of using Clustered h-BN as boron nitride particles In Examples 1 to 5 and Comparative Examples 1 and 2, hexagonal boron nitride aggregate particles (clustered h-BN) were used as the boron nitride particles.
  • Example 1 Resin, dispersant, curing agent, and surface-treated boron nitride particles were dispersed by a planetary mixer in the ratio (parts by weight) shown in Table 1 to obtain a resin composition a-1.
  • the surface-treated boron nitride particles in this example were obtained by adding C 6 F 5 Allyl at a ratio of 10% by weight to 90% by weight of boron nitride particles, and treating it to 100% by weight.
  • Example 2 Resin, dispersant, curing agent, and surface-treated boron nitride particles were dispersed by a planetary mixer in the ratio (parts by weight) shown in Table 1 to obtain a resin composition a-2.
  • the surface-treated boron nitride particles in this example were treated by adding C 6 F 5 Allyl at a ratio of 5% by weight to 95% by weight of the boron nitride particles to make 100% by weight.
  • Example 3 Resin, dispersant, curing agent, and surface-treated boron nitride particles were dispersed by a planetary mixer in the ratio (parts by weight) shown in Table 1 to obtain a resin composition a-3.
  • the surface-treated boron nitride particles in this example were treated by adding C 6 F 5 Allyl at a ratio of 20% by weight to 80% by weight of the boron nitride particles to make 100% by weight.
  • Example 4 Resin, dispersant, curing agent, and surface-treated boron nitride particles were dispersed by a planetary mixer in the ratio (parts by weight) shown in Table 1 to obtain a resin composition a-4.
  • the surface-treated boron nitride particles in the present example are obtained by adding C 6 F 6 at a ratio of 10% by weight to 90% by weight of boron nitride particles and treating it to 100% by weight.
  • Example 5 Resin, dispersant, curing agent, and surface-treated boron nitride particles were dispersed by a planetary mixer in the ratio (parts by weight) shown in Table 1 to obtain a resin composition a-5.
  • the surface-treated boron nitride particles in this example were treated by adding SIP 6716.7 at a ratio of 10% by weight to 90% by weight of the boron nitride particles.
  • the withstand voltage values of the examples were improved by at least 170% as compared with the withstand voltage values of the comparative examples. From this result, it became clear that the withstand voltage characteristic of the cured product of the resin composition can be improved by using boron nitride particles surface-treated with a pentafluorophenyl derivative represented by the formula (1) as a filler. Moreover, when R in Formula (1) is fluorine, it became clear that the cured product of the resin composition has particularly high withstand voltage characteristics (see Example 4).
  • Example 6 hexagonal boron nitride aggregate particles (clustered h-BN) were used as the boron nitride particles, and alumina particles were used as the other fillers.
  • Example 6 Resin, dispersant, curing agent, surface-treated boron nitride particles, and alumina particles were dispersed by a planetary mixer in the ratio (parts by weight) shown in Table 2 to obtain a resin composition a-6.
  • the withstand voltage value of Example 6 was improved by about 140% compared to the withstand voltage value of Comparative Example 3. From this result, it is clear that the withstand voltage characteristics of the cured product of the resin composition can be improved even when alumina particles are added to the boron nitride particles surface-treated with the pentafluorophenyl derivative represented by the formula (1). became.
  • Example 6 As is apparent from the values of thermal conductivity shown in Table 3, Example 6 to which alumina particles (fillers other than boron nitride filler) were added was more heat-resistant than Examples 1 to 5 to which alumina particles were not added. The conductivity was high. From this result, it was clarified that the thermal conductivity can be improved together with the withstand voltage characteristics by adding other fillers such as alumina particles.
  • Example of changing resin In Example 7 and Comparative Example 4, an acrylate resin was used as the resin component instead of the epoxy resin.
  • Example 7 Resin, dispersant, and surface-treated boron nitride particles were dispersed by a planetary mixer in the ratio (parts by weight) shown in Table 4 to obtain a resin composition a-7.
  • Example 7 As is clear from the average withstand voltage values shown in Table 4, the withstand voltage value of Example 7 was improved by about 110% compared to the withstand voltage value of Comparative Example 4. From this result, even when an acrylate resin is used as the resin component, by using boron nitride particles that have been surface-treated with the pentafluorophenyl derivative represented by the formula (1), the resistance of the cured product of the resin composition is improved. It became clear that the voltage characteristics could be improved.
  • Example 8 Resin, dispersant, curing agent, surface-treated boron nitride particles, and alumina particles were dispersed by a planetary mixer in the proportion (parts by weight) shown in Table 5 to obtain a resin composition a-8.
  • the surface-treated boron nitride particles in this example were obtained by adding C 6 F 5 Allyl at a ratio of 10% by weight to 90% by weight of boron nitride particles, and treating it to 100% by weight.
  • Example 9 Resin, dispersant, curing agent, surface-treated boron nitride particles, and alumina particles were dispersed by a planetary mixer in the proportions (parts by weight) shown in Table 5 to obtain a resin composition a-9.
  • the surface-treated boron nitride particles in this example were treated by adding SIP 6716.7 at a ratio of 10% by weight to 90% by weight of the boron nitride particles.
  • Example 10 Resin, dispersant, curing agent, surface-treated boron nitride particles, and alumina particles were dispersed by a planetary mixer in the ratio (parts by weight) shown in Table 5 to obtain a resin composition a-10.
  • the surface-treated boron nitride particles in this example were obtained by adding C 6 F 5 SIP 6716.8 at a ratio of 10% by weight to 90% by weight of boron nitride particles, and treating it to 100% by weight.
  • Example 11 Resin, dispersant, curing agent, surface-treated boron nitride particles, and alumina particles were dispersed by a planetary mixer in the proportions (parts by weight) shown in Table 5 to obtain a resin composition a-11.
  • the surface-treated boron nitride particles in the present example are obtained by adding C 6 F 6 at a ratio of 10% by weight to 90% by weight of boron nitride particles and treating it to 100% by weight.
  • Example 12 Resin, dispersant, curing agent, surface-treated boron nitride particles, and alumina particles were dispersed by a planetary mixer in the proportions (parts by weight) shown in Table 5 to obtain a resin composition a-12.
  • the surface-treated boron nitride particles in this example were obtained by adding C 6 F 5 Allyl at a ratio of 10% by weight to 90% by weight of boron nitride particles, and treating it to 100% by weight.
  • the alumina particles used in this example are different in composition from the alumina particles of Examples 8-12.
  • the withstand voltage values of the examples were improved by at least 110% or more compared to the withstand voltage values of the comparative examples. From this result, even when hexagonal particles are used as boron nitride particles, the withstand voltage characteristics of the cured product of the resin composition are improved by forming a layer containing a pentafluorophenyl derivative on the particle surface. It became clear that it was possible. For example, according to Example 8 and Example 12, when using alumina particles, it has become clear that the withstand voltage characteristics are not greatly affected even if the types and blends thereof are different.
  • Examples 8 to 12 using no agglomerated powder had higher withstand voltage values than Example 6 using agglomerated powder, and the layer containing the pentafluorophenyl derivative formed on the surface of the boron nitride particles was higher than the agglomerated powder. It was also estimated that the film was uniformly formed.
  • Example 13 [Examples using other fillers other than alumina particles]
  • polyether ether ketone resin particles were used as other fillers.
  • the withstand voltage value of Example 13 was improved by about 130% compared to the withstand voltage value of Comparative Example 8. From this result, even when the polyether ether ketone resin particles are used as the heat conductive particles, the withstand voltage characteristics of the cured product of the resin composition can be improved by using the boron nitride particles subjected to the surface treatment. It became clear.
  • Example 14 [Examples using c-BN as boron nitride particles]
  • Example 14 and Comparative Example 9 cubic boron nitride particles (c-BN) were used as the boron nitride particles.
  • the withstand voltage value of Example 14 was improved by about 190% compared to the withstand voltage value of Comparative Example 9. Even when cubic particles are used as the boron nitride particles, the withstand voltage characteristics of the cured product of the resin composition can be improved by forming a layer containing a pentafluorophenyl derivative on the particle surface. It became clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

樹脂組成物の硬化物の耐電圧特性を向上させる。マトリックス樹脂に添加される窒化ホウ素フィラ―であって、当該窒化ホウ素フィラ―は、窒化ホウ素粒子と、式(1)で示されるペンタフルオロフェニル誘導体を含み、前記窒化ホウ素粒子の表面に形成される層と、を含む。 (式中、Rは、水素、フッ素、アリル基、ビニル基、またはシリル基である)

Description

窒化ホウ素フィラ―、樹脂組成物、フィルム、窒化ホウ素フィラ―の製造方法
 本開示は、窒化ホウ素フィラ―、当該窒化ホウ素フィラ―を含む樹脂組成物、当該樹脂組成物から形成されるフィルム、及び窒化ホウ素フィラ―の製造方法に関する。
 窒化ホウ素(BN)粒子単独、或いは窒化ホウ素粒子を他の粒子と組み合わせた無機フィラ―が知られている。このような無機フィラ―を添加した樹脂組成物の硬化物は、耐熱性に優れる。従って、このような無機フィラ―を添加した樹脂組成物は、高熱伝導用の材料として使用することができる。
特開2003-347483号公報 特開2012-087250号公報
 ところで、高電圧がかかる環境下で使用される半導体装置等に樹脂組成物を使用する場合、当該樹脂組成物の硬化物には、高い耐電圧特性が要求される。
 本開示は、樹脂組成物の硬化物の耐電圧特性を向上させる窒化ホウ素フィラ―、当該窒化ホウ素フィラ―を含む樹脂組成物、当該樹脂組成物から形成されるフィルム、及び窒化ホウ素フィラ―の製造方法を提供する。
 本発明の一態様は、マトリックス樹脂に添加される窒化ホウ素フィラ―である。窒化ホウ素フィラ―は、窒化ホウ素粒子と、式(1)で示されるペンタフルオロフェニル誘導体を含み、前記窒化ホウ素粒子の表面に形成される層と、を有する。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、水素、フッ素、アリル基、ビニル基、またはシリル基である)
 また、本発明の別の態様は、窒化ホウ素粒子の表面に、式(1)で示されるペンタフルオロフェニル誘導体を含む層を形成する窒化ホウ素フィラ―の製造方法である。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、水素、フッ素、アリル基、ビニル基、またはシリル基である)
 後述する明細書の記載から、上記発明の態様の他、少なくとも以下の事項が明らかとなる。
 本発明の一態様によれば、窒化ホウ素フィラ―は、前記式(1)中のRがフッ素、アリル基またはシリル基である。
 本発明の別の態様は、マトリックス樹脂、及び窒化ホウ素フィラ―を含む樹脂組成物である。窒化ホウ素フィラ―は、窒化ホウ素粒子と、式(1)で示されるペンタフルオロフェニル誘導体を含み、前記窒化ホウ素粒子の表面に形成される層とを有する。
 本発明の一態様は、窒化ホウ素フィラ―以外のフィラ―を含む樹脂組成物である。
 本発明の別の態様は、樹脂組成物から形成されるフィルムである。樹脂組成物は、窒化ホウ素フィラ―を含む。窒化ホウ素フィラ―は、窒化ホウ素粒子と、式(1)で示されるペンタフルオロフェニル誘導体を含み、前記窒化ホウ素粒子の表面に形成される層とを有する。
==実施形態==
[窒化ホウ素粒子]
 窒化ホウ素粒子は、窒化ホウ素フィラ―を構成する物質である。窒化ホウ素粒子を添加した樹脂組成物の硬化物は、優れた熱伝導性を有する。窒化ホウ素粒子は、六方晶(hexagonal)の窒化ホウ素粒子(h-BN)、立方晶(cubic)の窒化ホウ素粒子(c-BN)を用いることができる。また、窒化ホウ素粒子は、六方晶の窒化ホウ素粒子の凝集体(clustered h-BN)であってもよい。本明細書中において、「窒化ホウ素粒子」には、窒化ホウ素粒子単体の他、その凝集体も含まれる。
 窒化ホウ素粒子としては、たとえば、PCTF5(h-BN。サンゴバンセラミックマテリアルズ社製)、PCTH3MHF(clustered h-BN。サンゴバンセラミックマテリアルズ社製)、PCTH2MHF(clustered h-BN。サンゴバンセラミックマテリアルズ社製)、CBN-B(c-BN。粒径サイズ:4-8μm。Reade社製)を使用することができる。
[表面処理剤]
 表面処理剤は、窒化ホウ素粒子の表面に所定の層を形成するために用いられる。表面処理剤は、下記の式(1)で示されるペンタフルオロフェニル誘導体を含む。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、水素、フッ素、アリル基、ビニル基、またはシリル基である)
 樹脂組成物の硬化物の耐電圧特性をより向上させるため、式中のRは、フッ素、アリル基、またはシリル基であることが好ましい。
 表面処理剤の具体例としては、「CAllyl」(Alfa Aesar社製。式(1)においてRがアリル基)、「SIP6716.7」(Gelest,Inc.製。式(1)においてRがシリル基)、「SIP6716.8」(Gelest,Inc.製。式(1)においてRがシリル基)、「C」(Alfa Aesar社製。式(1)においてRがフッ素)等を挙げることができる。
[窒化ホウ素フィラ―の製造方法]
 表面処理剤を用いて窒化ホウ素粒子の表面処理を行うことにより、窒化ホウ素フィラ―を製造することができる。窒化ホウ素粒子の表面には式(1)で示されるペンタフルオロフェニル誘導体を含む層が形成される。
 表面処理は、たとえば、次の方法で行うことができる。窒化ホウ素粒子をトルエンに加え、攪拌・混合することによりスラリー1-1を作成する。スラリー1-1に対して所定割合の表面処理剤(たとえば、窒化ホウ素粒子9gに対して、表面処理剤が1gの割合)を加え、常温(20℃±15℃)下、24時間攪拌してスラリー1-2を得る。その後、スラリー1-2を遠心分離機にかけ、沈殿物を大気中に2日間放置し、固形物を得る。更に、この固形物を常温下で2時間の真空乾燥を行うことで、表面処理された窒化ホウ素粒子(窒化ホウ素フィラ―)を得ることができる。
[マトリックス樹脂]
 窒化ホウ素フィラ―が添加されるマトリックス樹脂は、樹脂組成物である。たとえば、マトリックス樹脂は、熱硬化性樹脂組成物や熱可塑性樹脂組成物等で構成される。熱伝導性の観点から、マトリックス樹脂は、熱硬化性樹脂組成物で構成されることが好ましい。熱硬化性樹脂組成物には、たとえば、エポキシ樹脂、硬化剤、必要に応じて硬化促進剤や添加剤等が含まれる。
[窒化ホウ素フィラ―以外のフィラ―]
 本実施形態に係る樹脂組成物は、窒化ホウ素フィラ―以外のフィラ―(その他のフィラ―)を含んでもよい。その他のフィラーとしては、無機フィラー、有機フィラー、有機-無機ハイブリッドフィラー等が挙げられる。
 無機フィラーとしては、たとえば、MgO、Al、AlN、BN、ダイヤモンドフィラー、ZnO、SiC等を用いることができる。市販品としては、MgOは、SMO-5、SMO-1、SMO-02、SMO-2(以上、堺化学工業製)、Alは、CB-A20S(昭和電工株式会社製)、DAW-05、AA-18、AA-04(以上、住友化学株式会社製)、ASFP-20(デンカ株式会社製)、TA389(新日鉄住金マテリアルズ株式会社製)等を用いることができる。
 有機フィラーとしては、たとえば、ポリエーテルエーテルケトン、ポリイミド、ポリメタクリル酸メチル等の樹脂フィラーを用いることができる。市販品としては、ポリエーテルエーテルケトン(Vicote 704 PEEK。Victrex製。Vicoteは登録商標)を用いることができる。
 有機-無機ハイブリッドフィラーとしては、たとえば、ポリシルセスキオキサンを用いることができる。市販品としては、たとえば、SPシリーズ(小西化学工業株式会社製)等を用いることができる。
 窒化ホウ素フィラ―以外のフィラ―(その他のフィラ―)は、樹脂組成物の硬化物の熱伝導性を更に向上させる。たとえば、六方晶の窒化ホウ素フィラ―を含む樹脂組成物の硬化物の場合、硬化物の面方向の熱伝導性は優れているが、面と垂直方向の熱伝導性は劣る。そこで、窒化ホウ素フィラ―にその他のフィラ―を更に添加し、窒化ホウ素フィラ―及びその他のフィラ―のpercolation構造を構成することで硬化物の面と垂直方向にも熱伝導性を高めることができる。percolation構造は、窒化ホウ素フィラ―の間にその他のフィラ―が挟み込まれた構造である。percolation構造を構成するためには、窒化ホウ素フィラ―以外のフィラ―は、アスペクト比が0.8~1.2であることが好ましい。
[樹脂組成物及びその製造方法]
 本実施形態に係る樹脂組成物は、少なくともマトリックス樹脂及び窒化ホウ素フィラ―を含む。窒化ホウ素フィラ―は、ペンタフルオロフェニル誘導体を含む層が表面に形成された窒化ホウ素粒子を有する。本実施形態に係る樹脂組成物は、窒化ホウ素フィラ―以外にその他のフィラ―や様々な添加剤を含むことができる。添加剤は、たとえば、カップリング剤、分散剤、染料、揺変剤である。
 樹脂組成物の製造方法は、樹脂及び窒化ホウ素フィラ―が均一に混ざり合った状態となる方法であれば特に限定されない。たとえば、ディゾルバー、プラネタリーミキサー、ライカイ機、3本ロールミル、ボールミル、ビーズミル等を使用することができる。これらの装置は、加熱装置を備えていてもよい。また、これら装置を適宜組み合わせて使用してもよい。製造方法の詳細は、日本国特許公開2015-193687号公報に記載されているものを援用する。
[フィルム及びその製造方法]
 本実施形態に係るフィルムは、上述の樹脂組成物を含む。フィルムは、上述の樹脂組成物を、所望の支持体に塗布した後、乾燥することにより得られる。支持体は、特に限定されず、銅、アルミニウム等の金属箔、ポリエステル樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂等の有機フィルム等が挙げられる。支持体はシリコーン系化合物等で離型処理されていてもよい。樹脂組成物を支持体に塗布する方法は、特に限定されないが、薄膜化・膜厚制御の点からはマイクログラビア法、スロットダイ法、ドクターブレード法が好ましい。スロットダイ法により、熱硬化後の厚さが10~300μmになるフィルム(接着フィルム)を得ることができる。乾燥条件は、樹脂組成物に使用される有機溶剤の種類や量、塗布の厚み等に応じて、適宜、設定することができ、例えば、50~120℃で、1~30分程度とすることができる。製造方法の詳細は、日本国特許公開2015-193687号公報に記載されているものを援用する。
==実施例==
 以下の実施例1~14及び比較例1~8で得られた樹脂組成物の硬化物について耐電圧の測定を行った。また、実施例1~6については、硬化物の熱伝導率の測定も行った。
 本実施例で使用した材料を以下に示す。実施例及び比較例では以下の材料を適宜組み合わせて使用している。
<樹脂>
・「エピコート828」(三菱化学株式会社製。液状ビスフェノールA型エポキシ樹脂。「エピコート」は登録商標)
・「NC3000H」(日本化薬株式会社製。固形ビスフェニル型エポキシ樹脂)
・「IB-XA」(共栄社化学株式会社製。イソボニルアクリレート)
・「NP」(共栄社化学株式会社製。ネオペンチルグリコールジアクリレート)
・「Luperox LP」(アルケマ製。ジラウロイルパーオキサイド。「Luperox」は登録商標)
<窒化ホウ素粒子>
・「PCTF5」(サンゴバンセラミックマテリアルズ製。六方晶窒化ホウ素粒子(h-BN))
・「PCTH2MHF」(サンゴバンセラミックマテリアルズ製。六方晶窒化ホウ素凝集体粒子(clustered h-BN))
・「CBN-B(粒径サイズ:4-8μm)」(Reade社製。c-BN)
<表面処理剤>
・「CAllyl」(Alfa Aesar社製。式(1)におけるRがアリル基)
・「CSIP6716.7」(Gelest,Inc.製。式(1)におけるRがシリル基)
・「CSIP6716.8」(Gelest,Inc.製。式(1)におけるRがシリル基)
・「C」(Alfa Aesar社製。式(1)におけるRがフッ素)
<窒化ホウ素フィラ―以外のフィラ―(その他のフィラ―)>
・「CB-A20S」(昭和電工株式会社製。アルミナ粒子)
・「TA389」(新日鉄住金マテリアルズ株式会社製。アルミナ粒子)
・「ASFP-20」(デンカ株式会社製。アルミナ粒子)
・「AA-18」(住友化学株式会社製。アルミナ粒子)
・「DAW-05」(住友化学株式会社製。アルミナ粒子)
・「AA-04」(住友化学株式会社製。アルミナ粒子)
・「Vicote 704 PEEK」(Reade製。ポリエーテルエーテルケトン樹脂粒子)
<硬化剤>
・「2E4MZ」(四国化成工業株式会社製。イミダゾール)
<分散剤>
・「DISPERBYK-111」(ALTANA製。酸基を有するコポリマー。「DISPERBYK」は登録商標)
<シランカップリング剤>
・「KBM403」(信越化学工業株式会社製)
・「KBM503」(信越化学工業株式会社製)
<窒化ホウ素フィラ―の製造方法>
 トルエン15gに対し、窒化ホウ素粒子を5g加え、回転式攪拌機で15分間攪拌し、窒化ホウ素粒子スラリーを作製した。得られた窒化ホウ素粒子スラリーに、所定量の表面処理剤を加えた。次に、常温下、回転式攪拌機で24時間攪拌し、得られた固形物を大気中で2日間乾燥させた。最後に、固形物を常温真空下で2時間乾燥させ、窒化ホウ素フィラーを得た。
<シランカップリング剤による窒化ホウ素粒子の処理方法>
 60.0gの水と、0.6gのシランカップリング剤とを攪拌し、得られたシランカップリング剤溶液に19.4gの窒化ホウ素粒子を加え、5分間超音波分散を行った。続いて、60℃で20分間加熱攪拌した後、水洗と吸引ろ過を行い、得られた固形物を大気中で1日間乾燥させた。最後に、固形物を110℃で12時間加熱乾燥させ、3%のシランカップリング剤で表面処理された窒化ホウ素粒子を得た。また、窒化ホウ素粒子の量を変更し、同様の方法で、10%のシランカップリング剤で表面処理された窒化ホウ素粒子を得た。
<評価>
 実施例または比較例で得られた樹脂組成物を180℃の温度下、真空プレスで1.0MPaの圧力をかけながら120分加熱することにより、100μm厚の樹脂組成物の硬化物を得た。得られた硬化物を用いて以下の測定を行った。
(耐電圧測定)
 耐電圧測定は、上述の100μm厚の硬化物を40mm×40mmに切り出して試験片とし、JIS C2110、ASTMD149に基づいて行った(JIS C2110は、日本工業規格(Japanese Industrial Standards)の記載を援用する)。より詳細には、40mm×40mmの試験片を絶縁油中に浸漬し、室温で交流電圧を印加し、DAC-6041耐電圧試験システム(総研電気社製)にて、絶縁破壊電圧を測定した。なお、耐電圧の単位はkVである。
 耐電圧値は、樹脂組成物の硬化直後の値、125℃、2気圧下(信頼性試験。Pressure Current Test)で20時間放置後の値、及び同条件下で40時間放置後の値をそれぞれ測定し、その平均値を算出した。
(熱伝導率測定)
 熱伝導率測定は、上述の100μm厚の硬化物を10×10mmに裁断して試験片とし、熱伝導率計(Xeフラッシュアナライザー、型番:LFA447Nanoflash。NETZSCH社製)を用いて行った。詳細は、日本国特許公開2015-193687号公報に記載されているものを援用する。
[窒化ホウ素粒子としてClustered h-BNを用いた例について]
 実施例1~5、及び比較例1、2では、窒化ホウ素粒子として、六方晶窒化ホウ素凝集体粒子(clustered h-BN)を用いた。
(実施例1)
 表1に示す割合(重量部)で、樹脂、分散剤、硬化剤、及び表面処理された窒化ホウ素粒子をプラネラリーミキサーにより分散し、樹脂組成物a-1を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子90重量%に対し、CAllylを10重量%の割合で加えて処理し、100重量%としたものである。
(実施例2)
 表1に示す割合(重量部)で、樹脂、分散剤、硬化剤、及び表面処理された窒化ホウ素粒子をプラネラリーミキサーにより分散し、樹脂組成物a-2を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子95重量%に対し、CAllylを5重量%の割合で加えて処理し、100重量%としたものである。
(実施例3)
 表1に示す割合(重量部)で、樹脂、分散剤、硬化剤、及び表面処理された窒化ホウ素粒子をプラネラリーミキサーにより分散し、樹脂組成物a-3を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子80重量%に対し、CAllylを20重量%の割合で加えて処理し、100重量%としたものである。
(実施例4)
 表1に示す割合(重量部)で、樹脂、分散剤、硬化剤、及び表面処理された窒化ホウ素粒子をプラネラリーミキサーにより分散し、樹脂組成物a-4を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子90重量%に対し、Cを10重量%の割合で加えて処理し、100重量%としたものである。
(実施例5)
 表1に示す割合(重量部)で、樹脂、分散剤、硬化剤、及び表面処理された窒化ホウ素粒子をプラネラリーミキサーにより分散し、樹脂組成物a-5を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子90重量%に対し、SIP6716.7を10重量%の割合で加えて処理し、100重量%としたものである。
(比較例1)
 表1に示す割合(重量部)で、樹脂、分散剤、硬化剤、及び窒化ホウ素粒子(表面処理無し)をプラネラリーミキサーにより分散し、樹脂組成物b-1を得た。
(比較例2)
 表1に示す割合(重量部)で、樹脂、分散剤、硬化剤、窒化ホウ素粒子(シランカップリング剤による処理済み)をプラネラリーミキサーにより分散し、樹脂組成物b-2を得た。
Figure JPOXMLDOC01-appb-T000006
 表1に示す耐電圧の平均値から明らかなように、比較例の耐電圧値に比べ、実施例の耐電圧値は少なくとも170%以上、向上していた。この結果から、式(1)で示すペンタフルオロフェニル誘導体で表面処理を行った窒化ホウ素粒子をフィラ―として用いることで樹脂組成物の硬化物の耐電圧特性を向上できることが明らかとなった。また、式(1)におけるRがフッ素の場合、樹脂組成物の硬化物は、特に高い耐電圧特性を有することが明らかとなった(実施例4参照)。
[その他のフィラ―を用いた例について]
 実施例6及び比較例3では、窒化ホウ素粒子として、六方晶窒化ホウ素凝集体粒子(clustered h-BN)を用い、その他のフィラ―としてアルミナ粒子を用いた。
(実施例6)
 表2に示す割合(重量部)で、樹脂、分散剤、硬化剤、表面処理された窒化ホウ素粒子、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物a-6を得た。
(比較例3)
 表2に示す割合(重量部)で、樹脂、分散剤、硬化剤、窒化ホウ素粒子(表面処理無し)、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物b-3を得た。
Figure JPOXMLDOC01-appb-T000007
 表2に示す耐電圧の平均値から明らかなように、比較例3の耐電圧値に比べ、実施例6の耐電圧値は約140%向上していた。この結果から、式(1)で示すペンタフルオロフェニル誘導体で表面処理された窒化ホウ素粒子にアルミナ粒子を添加した場合であっても、樹脂組成物の硬化物の耐電圧特性を向上できることが明らかとなった。
[熱伝導率の比較]
 実施例1~6で得られた樹脂組成物の硬化物について熱伝導率の測定を行った。
Figure JPOXMLDOC01-appb-T000008
 表3に示す熱伝導率の値から明らかなように、アルミナ粒子(窒化ホウ素フィラ―以外のフィラ―)を添加した実施例6は、アルミナ粒子を添加しなかった実施例1~5に比べ熱伝導率が高くなっていた。この結果から、アルミナ粒子のような他のフィラ―を添加することで、耐電圧特性と併せ、熱伝導性も向上できることが明らかとなった。
[樹脂を変えた例について]
 実施例7及び比較例4では、樹脂成分として、エポキシ樹脂の代わりにアクリレート樹脂を用いた。
(実施例7)
 表4に示す割合(重量部)で、樹脂、分散剤、及び表面処理された窒化ホウ素粒子をプラネラリーミキサーにより分散し、樹脂組成物a-7を得た。
(比較例4)
 表4に示す割合(重量部)で、樹脂、分散剤、及び窒化ホウ素粒子(表面処理無し)をプラネラリーミキサーにより分散し、樹脂組成物b-4を得た。
Figure JPOXMLDOC01-appb-T000009
 表4に示す耐電圧の平均値から明らかなように、比較例4の耐電圧値に比べ、実施例7の耐電圧値は約110%、向上していた。この結果から、樹脂成分としてアクリレート樹脂を用いた場合であっても、式(1)で示すペンタフルオロフェニル誘導体で表面処理を行った窒化ホウ素粒子を用いることにより、樹脂組成物の硬化物の耐電圧特性を向上できることが明らかとなった。
[窒化ホウ素粒子としてh-BNを用いた例について]
 実施例8~12及び比較例5~7では、窒化ホウ素粒子として、六方晶窒化ホウ素粒子(h-BN)を用いた。
(実施例8)
 表5に示す割合(重量部)で、樹脂、分散剤、硬化剤、表面処理された窒化ホウ素粒子、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物a-8を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子90重量%に対し、CAllylを10重量%の割合で加えて処理し、100重量%としたものである。
(実施例9)
 表5に示す割合(重量部)で、樹脂、分散剤、硬化剤、表面処理された窒化ホウ素粒子、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物a-9を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子90重量%に対し、SIP6716.7を10重量%の割合で加えて処理し、100重量%としたものである。
(実施例10)
 表5に示す割合(重量部)で、樹脂、分散剤、硬化剤、表面処理された窒化ホウ素粒子、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物a-10を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子90重量%に対し、CSIP6716.8を10重量%の割合で加えて処理し、100重量%としたものである。
(実施例11)
 表5に示す割合(重量部)で、樹脂、分散剤、硬化剤、表面処理された窒化ホウ素粒子、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物a-11を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子90重量%に対し、Cを10重量%の割合で加えて処理し、100重量%としたものである。
(実施例12)
 表5に示す割合(重量部)で、樹脂、分散剤、硬化剤、表面処理された窒化ホウ素粒子、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物a-12を得た。本実施例における表面処理された窒化ホウ素粒子は、窒化ホウ素粒子90重量%に対し、CAllylを10重量%の割合で加えて処理し、100重量%としたものである。また、本実施例で用いたアルミナ粒子は、実施例8~12のアルミナ粒子とは配合が異なっている。
(比較例5)
 表5に示す割合(重量部)で、樹脂、分散剤、硬化剤、窒化ホウ素粒子(表面処理無し)、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物b-5を得た。
(比較例6)
 表5に示す割合(重量部)で、樹脂、分散剤、硬化剤、窒化ホウ素粒子(シランカップリング剤による処理済み)、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物b-6を得た。
(比較例7)
 表5に示す割合(重量部)で、樹脂、分散剤、硬化剤、窒化ホウ素粒子(シランカップリング剤による処理済み)、及びアルミナ粒子をプラネラリーミキサーにより分散し、樹脂組成物b-7を得た。
Figure JPOXMLDOC01-appb-T000010
 表5に示す耐電圧の平均値から明らかなように、比較例の耐電圧値に比べ、実施例の耐電圧値は少なくとも110%以上、向上していた。この結果から、窒化ホウ素粒子として六方晶の粒子を用いた場合であっても、粒子表面にペンタフルオロフェニル誘導体を含む層を形成することによって、樹脂組成物の硬化物の耐電圧特性を向上させることができることが明らかとなった。また、たとえば、実施例8及び実施例12によれば、アルミナ粒子を用いる場合、その種類や配合が異なっていても耐電圧特性に大きな影響を与えることがないことが明らかとなった。また、凝集粉を使用していない実施例8~12は、凝集粉を使用した実施例6より耐電圧値が高く、窒化ホウ素粒子表面に形成されるペンタフルオロフェニル誘導体を含む層が凝集粉よりも均一に形成されていることが推定された。
[アルミナ粒子以外のその他のフィラ―を用いた例について]
 実施例13及び比較例8では、その他のフィラ―としてポリエーテルエーテルケトン樹脂粒子を用いた。
(実施例13)
 表6に示す割合(重量部)で、樹脂、分散剤、硬化剤、表面処理された窒化ホウ素粒子、及びポリエーテルエーテルケトン樹脂粒子をプラネラリーミキサーにより分散し、樹脂組成物a-13を得た。
(比較例8)
 表6に示す割合(重量部)で、樹脂、分散剤、硬化剤、窒化ホウ素粒子(表面処理無し)、及びポリエーテルエーテルケトン樹脂粒子をプラネラリーミキサーにより分散し、樹脂組成物b-8を得た。
Figure JPOXMLDOC01-appb-T000011
 表6に示す耐電圧の平均値から明らかなように、比較例8の耐電圧値に比べ、実施例13の耐電圧値は約130%、向上していた。この結果から、熱伝導性粒子としてポリエーテルエーテルケトン樹脂粒子を用いた場合であっても、表面処理を行った窒化ホウ素粒子を用いることで樹脂組成物の硬化物の耐電圧特性を向上できることが明らかとなった。
[窒化ホウ素粒子としてc-BNを用いた例について]
 実施例14及び比較例9では、窒化ホウ素粒子として、立方晶窒化ホウ素粒子(c-BN)を用いた。
(実施例14)
 表7に示す割合(重量部)で、樹脂、分散剤、硬化剤、表面処理された窒化ホウ素粒子、及びポリエーテルエーテルケトン樹脂粒子をプラネラリーミキサーにより分散し、樹脂組成物a-14を得た。
(比較例9)
 表7に示す割合(重量部)で、樹脂、分散剤、硬化剤、窒化ホウ素粒子(表面処理無し)、及びポリエーテルエーテルケトン樹脂粒子をプラネラリーミキサーにより分散し、樹脂組成物b-9を得た。
Figure JPOXMLDOC01-appb-T000012
 表7に示す耐電圧の平均値から明らかなように、比較例9の耐電圧値に比べ、実施例14の耐電圧値は約190%、向上していた。窒化ホウ素粒子として立方晶の粒子を用いた場合であっても、粒子表面にペンタフルオロフェニル誘導体を含む層を形成することによって、樹脂組成物の硬化物の耐電圧特性を向上させることができることが明らかとなった。
 本発明の実施形態及び実施例を説明したが、上記実施形態及び実施例は、例として提示したものであり、発明の範囲を限定することは意図していない。実施形態や実施形態は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (7)

  1.  マトリックス樹脂に添加される窒化ホウ素フィラ―であって、
     当該窒化ホウ素フィラ―は、
     窒化ホウ素粒子と、
     式(1)で示されるペンタフルオロフェニル誘導体を含み、前記窒化ホウ素粒子の表面に形成される層と、
     を含む。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素、フッ素、アリル基、ビニル基、またはシリル基である)
  2.  請求項1記載の窒化ホウ素フィラ―において、前記式(1)中のRは、フッ素、アリル基またはシリル基である。
  3.  マトリックス樹脂、及び請求項1記載の窒化ホウ素フィラ―を含む樹脂組成物。
  4.  請求項1の窒化ホウ素フィラ―以外のフィラ―を含む請求項3記載の樹脂組成物。
  5.  請求項3の樹脂組成物から形成されるフィルム。
  6.  請求項4の樹脂組成物から形成されるフィルム。
  7.  窒化ホウ素粒子の表面に、式(1)で示されるペンタフルオロフェニル誘導体を含む層を形成する窒化ホウ素フィラ―の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、水素、フッ素、アリル基、ビニル基、またはシリル基である)
     
PCT/JP2016/083281 2016-03-14 2016-11-09 窒化ホウ素フィラ―、樹脂組成物、フィルム、窒化ホウ素フィラ―の製造方法 WO2017158919A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505231A JP6721219B2 (ja) 2016-03-14 2016-11-09 窒化ホウ素フィラ―、樹脂組成物、フィルム、窒化ホウ素フィラ―の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662307730P 2016-03-14 2016-03-14
US62/307,730 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017158919A1 true WO2017158919A1 (ja) 2017-09-21

Family

ID=59850164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083281 WO2017158919A1 (ja) 2016-03-14 2016-11-09 窒化ホウ素フィラ―、樹脂組成物、フィルム、窒化ホウ素フィラ―の製造方法

Country Status (3)

Country Link
JP (1) JP6721219B2 (ja)
TW (1) TWI701278B (ja)
WO (1) WO2017158919A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912307A (ja) * 1995-06-28 1997-01-14 Shin Etsu Chem Co Ltd 高撥水・撥油性bn粉末
JP2000095508A (ja) * 1998-09-24 2000-04-04 Denki Kagaku Kogyo Kk 窒化硼素とそれを用いたシリコーンオイル組成物
JP2012526830A (ja) * 2009-05-13 2012-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 表面改質六方晶窒化ホウ素粒子
JP2012526906A (ja) * 2009-05-13 2012-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリマーおよび表面改質六方晶窒化ホウ素粒子の複合体
JP2012526907A (ja) * 2009-05-13 2012-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリマーおよび表面改質六方晶窒化ホウ素粒子を含む流延組成物から製造されるフィルム
JP2012526688A (ja) * 2009-05-13 2012-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フレキシブルプリント回路用の多層品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524560B2 (en) * 2005-08-19 2009-04-28 Momentive Performance Materials Inc. Enhanced boron nitride composition and compositions made therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912307A (ja) * 1995-06-28 1997-01-14 Shin Etsu Chem Co Ltd 高撥水・撥油性bn粉末
JP2000095508A (ja) * 1998-09-24 2000-04-04 Denki Kagaku Kogyo Kk 窒化硼素とそれを用いたシリコーンオイル組成物
JP2012526830A (ja) * 2009-05-13 2012-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 表面改質六方晶窒化ホウ素粒子
JP2012526906A (ja) * 2009-05-13 2012-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリマーおよび表面改質六方晶窒化ホウ素粒子の複合体
JP2012526907A (ja) * 2009-05-13 2012-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリマーおよび表面改質六方晶窒化ホウ素粒子を含む流延組成物から製造されるフィルム
JP2012526688A (ja) * 2009-05-13 2012-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フレキシブルプリント回路用の多層品

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROMI HANAGASAKI ET AL.: "Research on the properties of treated BN filler as material of heat releasing resin", BULLETIN OF THE HIROSHIMA PREFECTURAL TECHNOLOGY RESEARCH, vol. 49, 2006, pages 70 - 73 *
HIROMI HANAGASAKI ET AL.: "The properties of BN filler as materials of heat releasing resin and method of making heat releasing epoxy resin mixed with BN filler", BULLETIN OF THE HIROSHIMA PREFECTURAL TECHNOLOGY RESEARCH, vol. 50, 2007, pages 54 - 60 *
KARNTHIDAPORN WATTANAKUL ET AL.: "Effective Surface Treatments for Enhancing the Thermal Conductivity of BN-Filled Epoxy Composite", J. APPL. POLYM. SCI., vol. 119, no. 6, 2011, pages 3234 - 3243, XP055197894, DOI: doi:10.1002/app.32889 *
NOBORU SUZUKI ET AL.: "The Surface-treatment of Boron Nitride and its Surface Properties", JOURNAL OF THE SOCIETY OF POWDER TECHNOLOGY, vol. 29, no. 3, 1992, Japan, pages 185 - 189, XP055423554 *

Also Published As

Publication number Publication date
JP6721219B2 (ja) 2020-07-08
JPWO2017158919A1 (ja) 2019-01-17
TW201803927A (zh) 2018-02-01
TWI701278B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
TWI700243B (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
TWI585147B (zh) 樹脂組成物、樹脂片、附有金屬箔的樹脂片、樹脂硬化物片、結構體以及動力用或光源用半導體元件
KR101784148B1 (ko) 열전도성 에폭시 복합조성물, 이의 제조방법 및 열전도 기능성 접착제
EP3761355B1 (en) Insulating heat dissipation sheet
TWI520926B (zh) A ceramic mixture, and a thermally conductive resin sheet containing a ceramic composition
TWI734552B (zh) 被覆二氧化矽的氮化硼粒子之製造方法、散熱性樹脂組成物之製造方法
TWI834900B (zh) 含矽氧化物被覆氮化鋁粒子之製造方法及含矽氧化物被覆氮化鋁粒子
TWI745158B (zh) 含矽氧化物被覆氮化鋁粒子的製造方法及放熱性樹脂組成物的製造方法
CN107406728B (zh) 粘接组合物片材及其制造方法以及半导体器件
CN108299791B (zh) 树脂组合物、由该树脂组合物制备的物品及其制备方法
TWI651262B (zh) 六方晶氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片
CN108753261A (zh) 一种高k值相变导热片及其制备方法
JP2020073626A (ja) 無機粒子分散樹脂組成物及び無機粒子分散樹脂組成物の製造方法
JP2019131669A (ja) 樹脂組成物および絶縁熱伝導性シート
JP5888584B2 (ja) 樹脂組成物、樹脂シート、プリプレグシート、樹脂硬化物シート、構造体、および動力用又は光源用半導体デバイス
KR101333260B1 (ko) 고열 전도성 절연 재료용 수지 조성물 및 절연 필름
JP6721219B2 (ja) 窒化ホウ素フィラ―、樹脂組成物、フィルム、窒化ホウ素フィラ―の製造方法
KR20180032213A (ko) 수지 조성물, 이로부터 제조된 물품 및 이의 제조 방법
JP2017197648A (ja) 回路基板用樹脂組成物とそれを用いた金属ベース回路基板
CN114685935B (zh) 一种低介电常数树脂组合物及其制备方法与应用
JP2023085133A (ja) フラーレン被覆窒化ホウ素粒子、樹脂組成物、樹脂シート、半導体デバイスおよびフラーレン被覆窒化ホウ素粒子の製造方法
WO2022209784A1 (ja) 無機粒子、無機粒子の製造方法、組成物、および、電子デバイスの製造方法
KR20240028327A (ko) 조성물
JP2023028091A (ja) 組成物及び積層体の製造方法
JP2021031600A (ja) 樹脂組成物、樹脂シート及び樹脂シート硬化物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894536

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894536

Country of ref document: EP

Kind code of ref document: A1