WO2017154987A1 - 遅波回路 - Google Patents

遅波回路 Download PDF

Info

Publication number
WO2017154987A1
WO2017154987A1 PCT/JP2017/009283 JP2017009283W WO2017154987A1 WO 2017154987 A1 WO2017154987 A1 WO 2017154987A1 JP 2017009283 W JP2017009283 W JP 2017009283W WO 2017154987 A1 WO2017154987 A1 WO 2017154987A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
beam hole
folded waveguide
folded
frequency
Prior art date
Application number
PCT/JP2017/009283
Other languages
English (en)
French (fr)
Inventor
中野 隆
Original Assignee
Necネットワーク・センサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necネットワーク・センサ株式会社 filed Critical Necネットワーク・センサ株式会社
Priority to CN201780015764.XA priority Critical patent/CN108780724B/zh
Priority to DE112017001223.6T priority patent/DE112017001223B4/de
Priority to JP2018504560A priority patent/JP6648901B2/ja
Priority to US16/080,717 priority patent/US10490382B2/en
Publication of WO2017154987A1 publication Critical patent/WO2017154987A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • H01J25/36Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field
    • H01J25/38Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field the forward travelling wave being utilised

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2016-047258 (filed on Mar. 10, 2016), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a slow wave circuit. In particular, it relates to a slow wave circuit of a traveling wave tube.
  • traveling wave tubes are often used as high-frequency (microwave) transmission source amplifiers.
  • the traveling wave tube is a means for amplifying a transmission high-frequency wave (electromagnetic wave) by causing it to interact while traveling in the same direction as an electron beam serving as an amplification energy source.
  • a transmission high-frequency wave electromagnettic wave
  • it is necessary to bypass the high-speed high-frequency in order to make the high-frequency and the velocity in the traveling direction of the electron beam comparable. That is, a slow wave circuit that delays the high frequency is required.
  • a method of delaying a high frequency for example, there is a method of propagating a high frequency in a spiral waveguide and passing an electron beam through the center of the waveguide (see Patent Document 1).
  • a helical waveguide portion that bypasses the high frequency is called a helix type slow wave circuit.
  • the traveling wave tube has a configuration including a beam hole for allowing an electron beam to travel through the center (an electron beam penetrates).
  • Non-Patent Document 1 discloses the details of the structure of a traveling wave tube including a folded waveguide and a stop band described later.
  • the miniaturization of the structure is being promoted as the radio frequency is increased.
  • it is necessary to pass a predetermined electron beam with respect to the beam hole it is difficult to reduce the beam hole as compared with the waveguide, and the ratio of the beam hole to the entire configuration of the waveguide increases. As the beam hole ratio increases, the frequency deviation of the phase velocity increases or a stop band appears, making it difficult to secure a wide traveling wave tube band.
  • FIG. 9 is a diagram showing the frequency characteristics of the phase velocity Vp (Vp / c; Vp is the phase velocity and c is the velocity of light) normalized at the light speed c in the configuration shown in FIG.
  • FIG. 9 shows the difference in frequency characteristics of the phase velocity Vp depending on the presence or absence of a beam hole.
  • the phase velocity Vp / c when the phase velocity Vp / c is simply expressed, it indicates the phase velocity Vp normalized by the light velocity c.
  • An object of the present invention is to provide a slow wave circuit that contributes to securing a wide band in a folded waveguide.
  • a slow wave circuit including a folded waveguide and a beam hole disposed between a center and an end in the width direction of the folded waveguide.
  • a slow wave circuit that contributes to securing a wide band in a folded waveguide is provided.
  • FIG. 9 is a diagram illustrating frequency characteristics of a phase velocity Vp normalized at the speed of light c in the configuration illustrated in FIG. 8.
  • a slow wave circuit 100 includes a folded waveguide 20 and a beam hole 10 disposed between a center and an end in the width direction of the folded waveguide 20.
  • the slow wave circuit 100 according to the embodiment is formed at the end of the waveguide in the traveling wave tube having the shape of the folded waveguide 20, as shown in FIG. 8, not at the center of the waveguide.
  • a beam hole 10 is provided.
  • the slope of the frequency characteristic of the traveling wave tube phase velocity in the use band approaches a flat, and the stop band can be reduced.
  • a broadband traveling wave tube can be realized, or the degree of freedom in band design according to the purpose can be increased.
  • FIG. 1 is a perspective view showing a configuration example of an end of the slow wave circuit 100 according to the first embodiment.
  • a beam hole 10 is formed at the end of the folded waveguide 20 in the width direction. Further, regarding the arrangement of the beam hole 10 in the height direction with respect to the folded waveguide 20, the beam hole 10 is disposed at the center of the folded waveguide 20.
  • the folded waveguide 20 is a high-frequency (electromagnetic wave) path
  • the beam hole 10 is an electron beam path. That is, in the first embodiment, the electromagnetic wave is guided to the folded waveguide 20 and the electron beam is guided to the beam hole 10 so that the slow wave circuit 100 operates as a traveling wave tube that amplifies the electromagnetic wave. To do.
  • the pipe length 2L for one cycle is 6.64 mm
  • the length 2P for one cycle is 1.48 mm.
  • FIG. 2 is a perspective view showing an example of the overall configuration of the slow wave circuit 100 according to the first embodiment.
  • a drawing in which a dotted area (one period in the meander line shape) is extracted corresponds to FIG.
  • the slow wave circuit 100 shown in FIG. 2 is obtained by arranging the configuration shown in FIG. 1 in 73 stages. That is, by arranging 73 stages of the structure shown in FIG. 1, a traveling wave tube (slow wave circuit) of one folded waveguide is formed.
  • FIGS. 1 and 2 are input diagrams of the electromagnetic field simulation, and only the space portion is shown. Actually, it has a structure in which the boundary shown in FIGS. 1 and 2 is covered with a conductor such as copper (Cu).
  • a conductor such as copper (Cu).
  • the shape shown in FIG. As a method of manufacturing the slow wave circuit 100, the shape shown in FIG. Then, after depositing a metal film on each of them, a method of forming them at once, a method of forming them at once (for example, a method of sequentially laminating the metal of the outer wall, or a dummy shape to be the core is formed first, and the metal film is deposited. Then, a method of removing the dummy shape of the core is conceivable. Alternatively, use of on-chip MEMS (Micro Electro Mechanical Systems) or a 3D printer is also conceivable.
  • MEMS Micro Electro Mechanical Systems
  • FIG. 3 is a diagram illustrating an example of a change in the phase velocity Vp / c in the slow wave circuit 100.
  • FIG. 3 shows a change in the phase velocity Vp / c when the beam hole 10 is folded and moved in the width direction of the waveguide 20 (moved from the center to the end).
  • a waveform 101 indicates the phase velocity Vp / c when the beam hole 10 is located at the center of the folded waveguide 20.
  • a waveform 102 shows a waveform when the beam hole 10 is moved slightly to the left from the center of the folded waveguide 20, and a waveform 103 is obtained when the beam hole 10 is moved further to the left than the waveform 102.
  • Waveform is shown.
  • Waveforms 104 to 106 show waveforms when the beam hole 10 is folded and disposed at the end of the waveguide 20, and the correspondence between the waveform and the position of the beam hole 10 is as shown in the region surrounded by the dotted line in FIG. And
  • the waveform indicating the phase velocity Vp / c has a smaller slope and the frequency deviation is improved.
  • the beam hole 10 when the beam hole 10 is arranged so as to protrude more than half from the folded waveguide 20, it can be seen that the slope of the frequency characteristic increases again and the deviation worsens.
  • the interaction between the high frequency (electromagnetic wave) and the electron beam is not normally performed, and gain cannot be obtained (the high frequency cannot be amplified). ). Therefore, a structure in which the beam hole 10 is disposed so as to protrude from the folded waveguide 20 is excluded.
  • the beam hole 10 is disposed at the end in the width direction of the folded waveguide 20 and at a position where the beam hole 10 does not protrude from the folded waveguide 20.
  • the beam hole 10 is disposed slightly inside from the end of the folded waveguide 20 (that is, at a predetermined distance from the end). Is desirable.
  • FIG. 4 is a diagram illustrating an example of a change in the phase velocity Vp / c of the slow wave circuit 100 in a high frequency region.
  • a waveform 201 indicates the phase velocity Vp / c when the beam hole 10 is located at the center of the folded waveguide 20, and is a reference waveform (in FIG. 4, the waveform 201 is indicated by a dotted line). Shown).
  • a waveform 202 indicates the phase velocity Vp / c when the beam hole 10 is located on the left side near the center of the folded waveguide 20.
  • Waveforms 203 and 204 indicate the phase velocity Vp / c when the beam hole 10 is located at the end of the folded waveguide 20.
  • the waveform 203 is a waveform after adjusting the cut-off frequency by narrowing the width of the waveguide.
  • the reason for adjusting the cut-off frequency is that when the beam hole 10 is folded and moved to the end of the waveguide 20, a decrease in the cut-off frequency is recognized. It is for suppressing the fall of this.
  • the inclination near 300 GHz improves, and the stop band generated from around 330 GHz of the reference level (waveform 201) It can be seen that it is improved.
  • FIG. 5 is a diagram showing an example of changes in the stop band when the beam hole 10 is folded and moved from the center of the waveguide 20 to the end.
  • the change in the stop band is obtained by calculating the S parameter S21 that is the S parameter indicating the insertion loss. That is, the calculation of the characteristics near the stop band can be performed using the S parameter.
  • a waveform 301 indicates an S parameter S21 (insertion loss) when the beam hole 10 is located at the center of the folded waveguide 20.
  • Each of the waveforms 302 to 305 indicates an S parameter S21 when the position of the beam hole 10 is moved from the center of the folded waveguide 20 to the left side.
  • the relationship between each waveform and the position of the beam hole 10 with respect to the folded waveguide 20 is as shown in the region surrounded by the dotted line in FIG.
  • the stop band is the smallest when the beam hole 10 is positioned slightly closer to the center than the end of the folded waveguide 20 (in the case of the waveform 303).
  • FIG. 6 is a diagram showing an example of an electric field distribution of electromagnetic waves.
  • FIG. 6A shows an electric field distribution when the beam hole 10 is folded and disposed at the end of the waveguide 20 as in the slow wave circuit 100 according to the first embodiment.
  • FIG. 6B shows the electric field distribution when the beam hole 10 is folded and disposed at the center of the waveguide 20 as shown in FIG.
  • the color intensity indicates the strength of the electric field distribution of the electromagnetic wave.
  • an increase in the slope of the characteristic Vp / cf due to an increase in the ratio of the beam hole 10 to the waveguide or the appearance of a stop band is caused by high frequency (electromagnetic wave) in the folded waveguide (traveling wave tube). It is considered that the resonance is caused by the resonance between the beam holes 10 repeatedly appearing when traveling. That is, as shown in FIG. 6B, when the beam hole 10 is located at the center of the folded waveguide 20, the electromagnetic wave propagates by detouring so as to avoid the beam hole 10. At that time, it is considered that frequency dispersion of the phase velocity occurs. On the other hand, as shown in FIG. 6A, when the beam hole 10 is located at the end of the folded waveguide 20, the electromagnetic wave propagates linearly and becomes flat without causing frequency dispersion of the phase velocity.
  • the stop band With regard to the appearance of the stop band, it is considered that electromagnetic waves are reflected by the beam holes 10 and resonate between the beam holes 10.
  • the beam holes 10 are folded and arranged at the end of the waveguide 20, Since the reflection of the light is reduced, the stop band is also reduced.
  • FIG. 7 is a diagram illustrating an example of a gain calculation result of a folded waveguide (traveling wave tube).
  • FIG. 7A shows the gain when the beam hole 10 is folded and disposed at the end of the waveguide 20 as in the slow wave circuit 100 according to the first embodiment.
  • FIG. 7B shows the gain when the beam hole 10 is folded and disposed at the center of the waveguide 20 as shown in FIG.
  • the bandwidth of 3 dB down is 10 GHz in the configuration of FIG. 8, while the bandwidth according to the first embodiment can be widely secured at about 30 GHz.
  • the improvement of the band by the slow wave circuit 100 (folding waveguide; traveling wave tube) according to the first embodiment is recognized.
  • the beam hole 10 in addition to the method of moving the beam hole 10 to the end portion of the folded waveguide 20 to ensure a wide band, the beam hole 10 is gradually moved toward the end to obtain a necessary band.
  • a method of adjusting to a degree is also conceivable.
  • the case where the beam hole 10 is moved from the center of the folded waveguide 20 to the left side has been described with reference to FIG. 1 and the like. However, the beam hole 10 is moved from the center to the right side. Of course, it may be.
  • the slow wave circuit 100 (traveling wave tube) according to the first embodiment forms the beam hole 10 of the folded waveguide 20 not at the center of the waveguide but at the end thereof.
  • the inclination of the frequency characteristic of the phase velocity of the traveling wave tube in the use band approaches a flat, and the stop band can be reduced. Therefore, a broadband traveling wave tube can be provided. Further, by finely adjusting the position of the beam hole 10, the frequency characteristics of the traveling wave tube can be controlled, and the degree of freedom in band design according to the purpose can be increased.

Landscapes

  • Waveguide Aerials (AREA)
  • Microwave Tubes (AREA)

Abstract

本発明は、折り畳み導波管における広範囲な帯域を確保する遅波回路を提供する。遅波回路は、折り畳み導波管とビームホールを備える。ビームホールは、折り畳み導波管の幅方向における中央と端部の間に配置される。ビームホールは、折り畳み導波管の幅方向における端部であって、折り畳み導波管からはみ出さない位置に配置されることが望ましい。また、ビームホールは、折り畳み導波管の幅方向における端部から所定の距離、離れた位置に配置されることが望ましい。

Description

遅波回路
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2016-047258号(2016年3月10日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、遅波回路に関する。特に、進行波管の遅波回路に関する。
 高周波(マイクロ波)の送信源用増幅器として、進行波管が使用されることが多い。進行波管は、送信用の高周波(電磁波)を、増幅エネルギー源となる電子ビームと同一方向に進行させながら相互作用させることにより増幅する手段である。当該進行波管における増幅動作の際、高周波と電子ビームの進行方向の速度を同程度とするために速度の速い高周波を迂回させる必要がある。つまり、高周波を遅波する遅波回路が必要となる。
 高周波を遅波する(高周波を迂回させる)方法として、例えば、らせん状の導波路に高周波を伝搬させて、当該導波路の中央に電子ビームを通す方法が存在する(特許文献1参照)。このような高周波を迂回させるらせん状の導波路部分は、ヘリックス形遅波回路とよばれる。
 一方、現在、無線周波数の高周波化に対する強い要望がある。具体的には、テラヘルツ領域の無線装置の研究開発が進められている。マイクロ波からテラヘルツ波に高周波化が進むと、波長が小さくなるため(波長が短くなるため)、上記ヘリックス型遅波回路における「らせん状配線」も微細化されることとなり、当該回路の製造が困難となる。
 そこで、上記のような高周波帯域(例えば、テラヘルツ領域)においては、微細構造の実現が比較的容易な「折り畳み導波管」形状が有望視され、研究開発が進められている。当該折り畳み導波管では、高周波(電磁波)をミアンダライン状に曲がった導波管を通過させ遅波する。また、当該進行波管(導波管)は、その中央を電子ビームが進行する(電子ビームが貫く)ためのビームホールを備えた構成を有している。
 具体的には、折り畳み導波管は図8に示すような構造を有し、折り畳み導波管20の中央をビームホール10が貫く構成となっている。なお、折り畳み導波管を備えた進行波管の構成や後述するストップバンドの詳細は非特許文献1に開示されている。
特表2010-519695号公報
Khanh T. Nguyen, etc、"Design Methodology and Experimental Verification of Serpentine/Folded-Waveguide TWTs"、IEEE Trans. on E.D.、Vol. 61、No. 6、JUNE 2014.
 なお、上記先行技術文献の各開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明者らによってなされたものである。
 折り畳み導波管においても、無線周波数の高周波化に伴って構造の微細化(ミアンダライン状に曲がった導波管のサイズの縮小)が進められている。しかし、ビームホールに関しては、所定の電子ビームを通す必要があるため、導波路と比較して縮小が困難であり、導波管の全体構成に対するビームホールの比率が大きくなっていく。ビームホールの比率が大きくなるに従って、位相速度の周波数偏差が増加したり、ストップバンドが出現したりして、進行波管の帯域を広く確保することが困難となる。
 図9は、図8に示す構成において、光速cで規格化された位相速度Vp(Vp/c;Vpは位相速度、cは光速)の周波数特性を示す図である。図9では、ビームホールの有無による位相速度Vpの周波数特性の相違を示す。また、以降の説明において、単に位相速度Vp/cと表記した場合は、光速cで規格化された位相速度Vpを示すものとする。
 図9を参照すると、ビームホールが存在しない場合、300GHz付近では位相速度Vp/cの傾きが小さいが、ビームホールが存在する場合では、傾きが大きくなっていることが分かる。また、330GHz付近からストップバンドが出現していることも分かる。即ち、図9の例は、無線周波数が300GHz程度であり、且つ、導波路に対するビームホールが占める比率が上昇すると、Vp/c-f(f:周波数)の傾きが大きくなり、ストップバンドが現れることを示す。
 進行波管では、電子ビームの速度と高周波(電磁波)の位相速度Vpが同程度のとき相互作用が強くなり、高い増幅利得(ゲイン)が得られる。換言するならば、電子ビームの速度は一定なので、Vp/c-fの傾きが大きいと、両者の速度が同程度となる領域が減少し、ゲインの得られる帯域が減少してしまうことになる。
 本発明は、折り畳み導波管における広範囲な帯域を確保することに寄与する遅波回路を提供することを目的とする。
 本発明の一視点によれば、折り畳み導波管と、前記折り畳み導波管の幅方向における中央と端部の間に配置されたビームホールと、を備える、遅波回路が提供される。
 本発明によれば、折り畳み導波管における広範囲な帯域を確保することに寄与する遅波回路が提供される。
第1の実施形態に係る遅波回路の端部の一構成例を示す斜視図である。 第1の実施形態に係る遅波回路の全体構成の一例を示す斜視図である。 遅波回路における位相速度Vp/cの変化の一例を示す図である。 高周波領域における遅波回路の位相速度Vp/cの変化の一例を示す図である。 ビームホールを折り畳み導波管の中央から端部に移動させた場合のストップバンドの変化の一例を示す図である。 電磁波の電界分布の一例を示す図である。 折り畳み導波管(進行波管)のゲイン計算の結果の一例を示す図である。 折り畳み導波管の構造の一例を示す斜視図である。 図8に示す構成において、光速cで規格化された位相速度Vpの周波数特性を示す図である。
 初めに、一実施形態の概要について説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、この概要の記載はなんらの限定を意図するものではない。
 図1に示すように、一実施形態に係る遅波回路100は、折り畳み導波管20と、折り畳み導波管20の幅方向における中央と端部の間に配置されたビームホール10と、を備える。即ち、一実施形態に係る遅波回路100は、折り畳み導波管20の形状をした進行波管において、図8に示すように導波管の中央でなく、導波管の端部に形成されたビームホール10を備える。
 詳細については後述するが、上記構成により、進行波管の位相速度の周波数特性の使用帯域での傾きがフラットに近づき、且つ、ストップバンドを低減できる。また、上記構成により、広帯域の進行波管を実現できる、又は、目的に合わせた帯域設計の自由度を高めることができる。
 以下に具体的な実施の形態について、図面を参照してさらに詳しく説明する。なお、各実施形態において同一構成要素には同一の符号を付し、その説明を省略する。
[第1の実施形態]
 第1の実施形態について、図面を用いてより詳細に説明する。
 図1は、第1の実施形態に係る遅波回路100の端部の一構成例を示す斜視図である。図1を参照すると、折り畳み導波管20の幅方向における端部にビームホール10が形成されている。また、折り畳み導波管20に対する高さ方向のビームホール10の配置に関しては、折り畳み導波管20の中央にビームホール10は配置される。
 折り畳み導波管20は高周波(電磁波)の通り道であり、ビームホール10は電子ビームの通り道である。即ち、第1の実施形態において、電磁波は折り畳み導波管20に導波され、電子ビームはビームホール10に導波されることで、遅波回路100は、電磁波を増幅する進行波管として動作する。なお、第1の実施形態では、1周期分の管路長2Lは6.64mm、1周期分の長さ2Pは1.48mmとしている。
 図1に示す構造が繰り返され、第1の実施形態に係る遅波回路100が形成される。
 図2は、第1の実施形態に係る遅波回路100の全体構成の一例を示す斜視図である。図2において、点線の領域(ミアンダライン形状における1周期)を抜き出した図面が図1に相当する。図2に示す遅波回路100は、図1に示す構成を73段並べることで得られる。つまり、図1に示す構造を73段並べることで、1つの折り畳み導波管の進行波管(遅波回路)が形成される。
 なお、図1及び図2は、電磁界シミュレーションの入力図であって、空間の部分だけが表記されている。実際には、図1及び図2に示す境界の周りが銅(Cu)等の導体で覆われている構造を有する。
 なお、遅波回路100の製造方法としては、図2の形状を、ビームホール10を中心として左右に2分割して形成し、貼り合わせる方法(例えば、2分割された芯となるダミー形状を形成し、それぞれに金属膜を蒸着後、貼り合わせる方法)と、一気に形成する方法(例えば、外壁の金属を順次積層していく方法や、芯となるダミー形状を先に形成し金属膜を蒸着させ、その後芯のダミー形状を取り除く方法)が考えられる。あるいは、オンチップMEMS(Micro Electro Mechanical Systems)や3Dプリンタの利用も考えられる。
 図3は、遅波回路100における位相速度Vp/cの変化の一例を示す図である。図3において、ビームホール10を折り畳み導波管20の幅方向に移動(中央から端部に移動)させた場合の位相速度Vp/cの変化を示す。
 図3において、波形101は、ビームホール10が折り畳み導波管20の中央に位置する場合の位相速度Vp/cを示す。波形102は、折り畳み導波管20の中央から若干左にビームホール10を移動させた場合の波形を示し、波形103は、波形102の場合よりもさらに左にビームホール10を移動させた場合の波形を示す。波形104~106は、ビームホール10を折り畳み導波管20の端部に配置した場合の波形を示し、波形とビームホール10の位置の対応関係は図3の点線により囲まれた領域に示すとおりとする。
 図3を参照すると、ビームホール10が端部に移動するに従い、位相速度Vp/cを示す波形は傾きが小さくなり、周波数偏差が改善していくことが分かる。
 また、波形104等から分かるように、ビームホール10が折り畳み導波管20から半分以上はみ出して配置されると、上記周波数特性の傾斜は再び大きくなり、偏差が悪化していくことが分かる。但し、実際には、ビームホール10が折り畳み導波管20からはみ出して配置されると、高周波(電磁波)と電子ビームの相互作用が正常に行われなくなり、ゲインが得られない(高周波を増幅できない)。そのため、ビームホール10が折り畳み導波管20からはみ出して配置されるような構造は除外される。
 以上のことから、ビームホール10は、折り畳み導波管20の幅方向における端部、且つ、ビームホール10が折り畳み導波管20からはみ出すことのない位置に配置されるのが望ましい。上記位置にビームホール10が配置されることにより、周波数偏差が最小となり進行波管の帯域は広くなる。但し、実際には、製造マージンを考慮する必要があるため、ビームホール10は折り畳み導波管20の端部から少し内側(即ち、端部から所定の距離、離れた位置)に配置されるのが望ましい。
 図4は、高周波領域における遅波回路100の位相速度Vp/cの変化の一例を示す図である。図4において、波形201は、ビームホール10が折り畳み導波管20の中央に位置する場合の位相速度Vp/cを示すものであり、リファレンスとなる波形である(図4において波形201を点線にて図示)。波形202は、ビームホール10が折り畳み導波管20の中央寄りの左側に位置する場合の位相速度Vp/cを示す。波形203及び204は、ビームホール10が折り畳み導波管20の端部に位置する場合の位相速度Vp/cを示す。
 なお、波形203は、導波管の幅を狭くしてカットオフ周波数を調整した後の波形である。カットオフ周波数を調整する理由は、ビームホール10を折り畳み導波管20の端部に移動させていくと、カットオフ周波数の低下が認められるので、導波管の幅を狭くし当該カットオフ周波数の低下を抑制するためである。
 図4を参照すると、ビームホール10を折り畳み導波管20の端部に移動させていくと、300GHz付近の傾きが改善すると共に、リファレンス水準(波形201)の330GHz付近から生じているストップバンドも改善されることが分かる。
 また、波形203及び204の比較において、カットオフ周波数を調整した場合であっても、上記改善効果が期待できることが分かる。
 図5は、ビームホール10を折り畳み導波管20の中央から端部に移動させた場合のストップバンドの変化の一例を示す図である。なお、ストップバンドの変化は、挿入損失を示すSパラメータであるSパラメータS21を計算することで求めている。即ち、ストップバンド付近の特性の計算は、Sパラメータを用いて計算することができる。
 図5において、波形301は、ビームホール10が折り畳み導波管20の中央に位置する場合のSパラメータS21(挿入損失)を示す。また、波形302~305のそれぞれは、ビームホール10の位置を折り畳み導波管20の中央から左側に移動させた場合のSパラメータS21を示す。各波形と、ビームホール10の折り畳み導波管20に対する位置と、の関係は図5の点線により囲まれた領域に示すとおりである。
 図5を参照すると、ビームホール10が折り畳み導波管20の端部より若干中央よりに位置する場合(波形303の場合)に、最もストップバンドが小さいことが分かる。
 図6は、電磁波の電界分布の一例を示す図である。図6(a)は、第1の実施形態に係る遅波回路100のようにビームホール10を折り畳み導波管20の端部に配置した場合の電界分布を示す。図6(b)は、図8に示すようにビームホール10を折り畳み導波管20の中央に配置した場合の電界分布を示す。なお、図6において、色の濃さが電磁波の電界分布の強度を示す。
 ここで、導波管に対するビームホール10の比率が大きくなることによる、特性Vp/c-fの傾きの増大やストップバンドの出現は、折り畳み導波管(進行波管)を高周波(電磁波)が進行する際に、繰り返し現れるビームホール10間での共振が原因であると考えられる。つまり、図6(b)に示すように、ビームホール10が折り畳み導波管20の中央に位置する場合には、電磁波はビームホール10を避けるように迂回して伝搬する。その際に、位相速度の周波数分散が生じると考えられる。対して、図6(a)に示すように、ビームホール10が折り畳み導波管20の端部に位置すると、電磁波は直線的に伝搬し位相速度の周波数分散が生じずフラットとなる。
 ストップバンドの出現に関しては、電磁波がビームホール10で反射し、ビームホール10の間で共振することが原因と考えられ、ビームホール10を折り畳み導波管20の端部に配置するとビームホール10での反射が減少するため、ストップバンドも減少する。
 図7は、折り畳み導波管(進行波管)のゲイン計算の結果の一例を示す図である。図7(a)は、第1の実施形態に係る遅波回路100のようにビームホール10を折り畳み導波管20の端部に配置した場合のゲインを示す。図7(b)は、図8に示すようにビームホール10を折り畳み導波管20の中央に配置した場合のゲインを示す。
 図7に示す両図を参照すると、3dBダウンの帯域幅が図8の構成では10GHzであるのに対し、第1の実施形態に係る構成では30GHz程度と広く確保できている。このように、第1の実施形態に係る遅波回路100(折り畳み導波管;進行波管)による帯域の改善が認められる。
 なお、図8に示す構成のように、傾きの大きいVp/c-fでは帯域を広げることは原理的に不可能であると言える。また、本願開示において、ビームホール10を折り畳み導波管20の端部に移動させ、帯域を広く確保する方法の他に、ビームホール10を徐々に端へ向けて移動させ、必要な帯域がとれる程度に調整する方法も考えられる。また、第1の実施形態では、図1等を参照して、ビームホール10を折り畳み導波管20の中央から左側に移動する場合について説明したが、ビームホール10は中央から右側方向に移動させても良いことは勿論である。
 以上のように、第1の実施形態に係る遅波回路100(進行波管)は、折り畳み導波管20のビームホール10を導波管の中央でなく、その端部に形成する。その結果、進行波管の位相速度の周波数特性の使用帯域での傾きがフラットに近づき、且つ、ストップバンドが低減できる。そのため、広帯域の進行波管が提供出来る。また、ビームホール10の位置を微調整することで、進行波管の周波数特性が制御可能であり、目的に合わせた帯域設計の自由度を高めることができる。
 なお、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
10 ビームホール
20 折り畳み導波管
100 遅波回路
101~106、201~204、301~305 波形

Claims (4)

  1.  折り畳み導波管と、
     前記折り畳み導波管の幅方向における中央と端部の間に配置されたビームホールと、
     を備える、遅波回路。
  2.  前記ビームホールは、前記折り畳み導波管の幅方向における端部であって、前記折り畳み導波管からはみ出さない位置に配置される、請求項1の遅波回路。
  3.  前記ビームホールは、前記折り畳み導波管の幅方向における端部から所定の距離、離れた位置に配置される、請求項1又は2の遅波回路。
  4.  電磁波は前記折り畳み導波管に導波され、電子ビームは前記ビームホールに導波されることで、前記電磁波を増幅する進行波管として動作する、請求項1乃至3のいずれか一項に記載の遅波回路。
PCT/JP2017/009283 2016-03-10 2017-03-08 遅波回路 WO2017154987A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780015764.XA CN108780724B (zh) 2016-03-10 2017-03-08 慢波电路
DE112017001223.6T DE112017001223B4 (de) 2016-03-10 2017-03-08 Verzögerungsschaltung
JP2018504560A JP6648901B2 (ja) 2016-03-10 2017-03-08 遅波回路
US16/080,717 US10490382B2 (en) 2016-03-10 2017-03-08 Slow-wave circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-047258 2016-03-10
JP2016047258 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154987A1 true WO2017154987A1 (ja) 2017-09-14

Family

ID=59789528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009283 WO2017154987A1 (ja) 2016-03-10 2017-03-08 遅波回路

Country Status (5)

Country Link
US (1) US10490382B2 (ja)
JP (1) JP6648901B2 (ja)
CN (1) CN108780724B (ja)
DE (1) DE112017001223B4 (ja)
WO (1) WO2017154987A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172312A1 (ja) * 2018-03-07 2019-09-12 Necネットワーク・センサ株式会社 遅波回路、進行波管、及び進行波管の製造方法
WO2024084546A1 (ja) * 2022-10-17 2024-04-25 ソニーグループ株式会社 伝送路、遅波回路、増幅器、送受信機、中継器、回路装置、伝送路の製造方法及び遅波回路の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573828B (zh) 2019-03-25 2024-03-01 肯纳金属公司 增材制造技术及其应用
CN110729160B (zh) * 2019-10-22 2020-10-23 电子科技大学 一种双通道交错栅慢波结构
CN114005719B (zh) * 2021-12-03 2023-10-13 电子科技大学长三角研究院(湖州) 一种双电子注通道折叠波导慢波结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161794A (ja) * 2012-02-07 2013-08-19 Samsung Electronics Co Ltd 多重トンネルを有する電磁波発振器及び該電磁波発振器を含む電磁波発生装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922917A (en) * 1953-12-21 1960-01-26 Bell Telephone Labor Inc Nonreciprocal elements in microwave tubes
US2985791A (en) * 1958-10-02 1961-05-23 Hughes Aircraft Co Periodically focused severed traveling-wave tube
US3066237A (en) * 1958-12-15 1962-11-27 Hughes Aircraft Co Slow-wave structure
US3010047A (en) * 1959-03-09 1961-11-21 Hughes Aircraft Co Traveling-wave tube
NL257375A (ja) * 1959-10-29
US3181024A (en) * 1962-05-23 1965-04-27 Hughes Aircraft Co Traveling-wave tube with oscillation prevention means
US3268761A (en) * 1963-04-03 1966-08-23 Hughes Aircraft Co Traveling-wave tube slow-wave structure including multiple helices interconnected byspaced conductive plates
US3400297A (en) * 1964-07-27 1968-09-03 Hitachi Ltd Traveling-wave type electron tube utilizing interaction between beam and te20 waveguide mode
FR1472218A (fr) * 1966-01-26 1967-03-10 Thomson Varian élément coupleur entre guide d'onde et structure à retard à hyperfréquences
US4951380A (en) * 1988-06-30 1990-08-28 Raytheon Company Waveguide structures and methods of manufacture for traveling wave tubes
US5179862A (en) * 1990-06-29 1993-01-19 Panametrics, Inc. Snap-on flow measurement system
US6417622B2 (en) * 1999-01-14 2002-07-09 Northrop Grumman Corporation Broadband, inverted slot mode, coupled cavity circuit
US6593695B2 (en) * 1999-01-14 2003-07-15 Northrop Grumman Corp. Broadband, inverted slot mode, coupled cavity circuit
KR101697039B1 (ko) 2007-02-21 2017-01-16 테라피직스 코포레이션 고주파 나선 증폭기와 발진기
US7952287B2 (en) * 2007-10-12 2011-05-31 Barnett Larry R Traveling-wave tube 2D slow wave circuit
CN101615553B (zh) * 2009-07-22 2011-06-15 电子科技大学 一种矩形槽加载曲折波导慢波线
CN202940212U (zh) * 2012-10-17 2013-05-15 安徽华东光电技术研究所 一种用于行波管的慢波结构
CN103050355B (zh) 2012-12-24 2015-08-26 安徽华东光电技术研究所 一种用于行波管的慢波结构
US9406477B2 (en) * 2014-03-10 2016-08-02 Wisconsin Alumni Research Foundation Traveling wave tube loaded by a material having negative permittivity and positive permeability
JP6496653B2 (ja) 2015-10-27 2019-04-03 サミー株式会社 遊技機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161794A (ja) * 2012-02-07 2013-08-19 Samsung Electronics Co Ltd 多重トンネルを有する電磁波発振器及び該電磁波発振器を含む電磁波発生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI KE ET AL.: "Dispersion Characteristics of Two-Beam Folded Waveguide for Terahertz Radiation", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 60, no. 12, December 2013 (2013-12-01), pages 4252 - 4257, XP055420893 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172312A1 (ja) * 2018-03-07 2019-09-12 Necネットワーク・センサ株式会社 遅波回路、進行波管、及び進行波管の製造方法
JPWO2019172312A1 (ja) * 2018-03-07 2021-02-12 Necネットワーク・センサ株式会社 遅波回路、進行波管、及び進行波管の製造方法
DE112019000369B4 (de) 2018-03-07 2024-02-08 Nec Network And Sensor Systems, Ltd. Verzögerungsschaltung, Wanderfeldröhre und Verfahren zur Herstellung einer Wanderfeldröhre
WO2024084546A1 (ja) * 2022-10-17 2024-04-25 ソニーグループ株式会社 伝送路、遅波回路、増幅器、送受信機、中継器、回路装置、伝送路の製造方法及び遅波回路の製造方法

Also Published As

Publication number Publication date
JPWO2017154987A1 (ja) 2019-01-10
DE112017001223B4 (de) 2024-02-01
US20190122848A1 (en) 2019-04-25
JP6648901B2 (ja) 2020-02-14
DE112017001223T5 (de) 2018-12-20
CN108780724B (zh) 2022-02-22
CN108780724A (zh) 2018-11-09
US10490382B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2017154987A1 (ja) 遅波回路
KR101407727B1 (ko) 군위성 단말기용 siw 구조 및 적층형 구조를 갖는 소형 저손실 여파기
US8704723B2 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
JP2010141877A (ja) 結合線路フィルタ及びその配置方法
US9300042B2 (en) Matching and pattern control for dual band concentric antenna feed
Zhang et al. A compact multilayer dual-mode substrate integrated circular cavity (SICC) filter for X-band application
SG173241A1 (en) Planar helix slow-wave structure with straight-edge connections
KR101616768B1 (ko) 너치가 형성된 유전체 도파관 필터
JP2010087651A (ja) 導波管・ストリップ線路変換器
Moradian et al. Spurious-response suppression in microstrip parallel-coupled bandpass filters by grooved substrates
CN111244615A (zh) 一种太赫兹片上集成偶极子天线过渡结构
JP2010050653A (ja) バンドパスフィルタ及びその設計方法
Yechou et al. A novel wideband bandpass filter using coupled lines and T-shaped transmission lines with wide stopband on low-cost substrate
JP2016189259A (ja) 進行波管
JP6879614B2 (ja) 遅波回路、進行波管、及び進行波管の製造方法
JP5043134B2 (ja) 導波管接続方法
JP2009159609A (ja) キャビティ・フィルタ結合システム
JP2008079085A (ja) 伝送線路導波管変換器
JP7455528B2 (ja) 高性能交差連結rfフィルターのための調節可能プローブ
Kesari et al. Propagation characteristics of a variant of disc-loaded circular waveguide
JP6870845B2 (ja) 遅波回路、進行波管、及び進行波管の製造方法
JP6777100B2 (ja) フィルタ回路及び周波数切替方法
Yang et al. 60 GHz compact integrated cross-coupled SIR-MH bandpass filter on bulk CMOS
Moitra et al. Performance Study of 90° Bend Substrate Integrated Waveguide Band-Pass Filter with Multi-transmission Zeroes for MIC Applications
Naser-Moghadasi et al. Hairpin bandpass filter with broadband spurious-response suppression

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504560

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763327

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763327

Country of ref document: EP

Kind code of ref document: A1