WO2019172312A1 - 遅波回路、進行波管、及び進行波管の製造方法 - Google Patents
遅波回路、進行波管、及び進行波管の製造方法 Download PDFInfo
- Publication number
- WO2019172312A1 WO2019172312A1 PCT/JP2019/008864 JP2019008864W WO2019172312A1 WO 2019172312 A1 WO2019172312 A1 WO 2019172312A1 JP 2019008864 W JP2019008864 W JP 2019008864W WO 2019172312 A1 WO2019172312 A1 WO 2019172312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- beam hole
- resist
- wave circuit
- slow wave
- folded
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/24—Slow-wave structures, e.g. delay systems
- H01J23/26—Helical slow-wave structures; Adjustment therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/165—Manufacturing processes or apparatus therefore
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/24—Slow-wave structures, e.g. delay systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/34—Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/34—Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
- H01J25/36—Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field
Definitions
- the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2018-041045 (filed on Mar. 7, 2018), the entire contents of which are incorporated herein by reference. Shall.
- the present invention relates to a slow wave circuit, a traveling wave tube, and a method of manufacturing the traveling wave tube.
- traveling wave tubes are mainly used as transmission source amplifiers.
- the traveling wave tube amplifies electromagnetic waves for transmission (for example, high frequency) by interacting with an electron beam serving as an energy source.
- the traveling wave tube has a slow wave circuit for bypassing the electromagnetic wave with respect to the electron beam in order to make the electromagnetic wave and the electron beam have the same speed when interacting.
- a helix type for example, see Patent Document 1 in which electromagnetic waves are transmitted through a spiral waveguide and a beam hole through which an electron beam passes through the central axis of the spiral waveguide is used. There is a method called.
- the radio frequency is being increased, and the development of radio devices in the terahertz region is underway.
- various sensing technologies have been developed in recent years. Accordingly, development of a transmission source amplifier in the terahertz region is required.
- the wavelength decreases as the frequency increases from microwaves to terahertz waves.
- it is difficult to manufacture the helix type slow wave circuit because the helical waveguide must be miniaturized.
- folding-type slow wave circuits are promising instead of helix-type slow wave circuits.
- the folding-type slow wave circuit transmits electromagnetic waves to a meander-shaped (repetitively folded shape, ninety-nine-fold shape) waveguide to delay the wave, and the folded portions of the meander-shaped waveguide are stacked in the direction of stacking. It has a configuration in which a beam hole through which an electron beam is transmitted penetrates in the center (for example, see Patent Document 2 and Non-Patent Document 1).
- electromagnetic waves transmitted through a meander-shaped waveguide receive and amplify the energy of an electron beam transmitted through a beam hole.
- the beam hole is large (about 1 ⁇ 4 of the operating wavelength ⁇ )
- electromagnetic waves are coupled through the beam hole, and evanescent energy (electromagnetic field fluctuations induced by electromagnetic waves inside a reflective medium such as metal).
- evanescent energy electromagnetically-induced by electromagnetic waves inside a reflective medium such as metal.
- Non-advancing energy occurs, energy loss increases, and energy loss due to reflection scattering at the beam hole portion in the transmission direction of the waveguide also increases.
- the frequency dispersion of the phase velocity also increases due to the influence of the beam hole. Since the slow wave circuit provides an amplification effect when the phase velocity is about the velocity of the electron beam, when the frequency dispersion of the phase velocity increases, the gain-acquisition band also decreases.
- the main problem of the present invention is to provide a slow wave circuit, a traveling wave tube, and a method of manufacturing the traveling wave tube that can contribute to widening the band while reducing energy loss.
- the slow wave circuit transmits an electromagnetic wave, and has a meandering portion in which a first folded portion and a second folded portion that is folded back on the side opposite to the first folded portion are alternately repeated.
- the beam hole includes a portion of the beam hole that is folded back into the first direction.
- the meandering part is penetrated so as to protrude from the part.
- the traveling wave tube according to the second viewpoint includes a structure, and the structure includes a slow wave circuit according to the first viewpoint.
- a traveling wave tube manufacturing method includes: a first step of forming a first resist on a substrate for forming a beam hole extending in a predetermined direction; and the substrate including the first resist.
- a second step of forming the first resist so that the first resist protrudes from a portion corresponding to the first folded portion of the two resists, and the first resist on the substrate including the first resist and the second resist.
- a third step of forming the first structure so that the second resist is completely filled, and removing the substrate, the first resist, and the second resist from the first structure.
- a second structure that is plane-symmetric with the first structure by a fourth step of forming the first structure having the beam hole and the waveguide, and a step similar to the first to fourth steps.
- FIG. 6 is a process cross-sectional view schematically showing a method for manufacturing a traveling wave tube having a slow wave circuit according to a third embodiment.
- FIG. 10 is a process cross-sectional view subsequent to FIG.
- FIG. 6A is a cross-sectional view taken along a line XX ′, a cross-sectional view taken along a line XY ′, and a cross-sectional view taken along a line ZZ ′, schematically illustrating a configuration of a slow wave circuit according to the fourth embodiment. .
- FIG. 1A and 1B schematically show a configuration of a traveling wave tube having a slow wave circuit according to the first embodiment
- FIG. 1A is a cross-sectional view taken along line XX ′
- FIG. 1B is a cross-sectional view taken along line YY ′
- FIG. 4 is a cross-sectional view taken along the line ZZ ′.
- the traveling wave tube 1 is a device for causing an electromagnetic wave to interact with an electron beam so that the electromagnetic wave and the electron beam have the same speed.
- the traveling wave tube 1 includes a slow wave circuit 2 and a structure 30.
- the slow wave circuit 2 is a circuit that bypasses the electromagnetic wave with respect to the electron beam, causes the electromagnetic wave to interact with the electron beam, and makes the electromagnetic wave and the electron beam have the same speed.
- the slow wave circuit 2 includes a beam hole 10 and a waveguide 20.
- the beam hole 10 extends in a predetermined direction 100 and is a space for transmitting an electron beam.
- the cross section of the beam hole 10 may be substantially circular, and may be polygonal.
- the predetermined direction 100 is substantially parallel to the stacking direction of the waveguide 20 of the meandering portion 24.
- the beam hole 10 intersects at a substantially right angle with respect to a portion extending in a direction perpendicular to the predetermined direction 100 in the meandering portion 24 of the waveguide 20.
- the beam hole 10 penetrates the meandering portion 24.
- the method of penetrating the beam hole 10 is as follows.
- the beam hole 10 penetrates the meandering portion 24 so that a part of the beam hole 10 protrudes from the first folded portion 21 of the waveguide 20.
- the beam hole 10 penetrates the meander-shaped portion 24 so that a part of the beam hole 10 continuously protrudes from the first folded portion 21 of the waveguide 20 in the predetermined direction 100.
- the beam hole 10 penetrates the meandering portion 24 so that a part of the beam hole 10 protrudes from the first reference plane 101 of the waveguide 20.
- the beam hole 10 penetrates the meander portion 24 so that a part of the beam hole 10 protrudes from the flat surface 21 a of the waveguide 20.
- the diameter of the cross section of the beam hole 10 can be about 1 ⁇ 4 of the operating wavelength ⁇ , and is, for example, not less than 0.2 times and not more than 0.3 times the operating wavelength related to the electromagnetic wave, and preferably is about 0.1. It is 22 times or more and 0.28 times or less, more preferably 0.24 times or more and 0.26 times or less.
- the waveguide 20 is a space for transmitting electromagnetic waves.
- the waveguide 20 has a meander-shaped portion 24 in which a first folded portion 21 and a second folded portion 22 folded back on the opposite side of the first folded portion 21 are alternately repeated.
- the waveguide 20 has a predetermined width and thickness except for the first folded portion 21.
- the first folded portion 21 is folded along the first reference plane 101.
- the top of the first folded portion 21 has a flat surface 21 a along the first reference surface 101.
- the second folded portion 22 is folded along the second reference surface 102 that is spaced apart from the first reference surface 101.
- the top of the second folded portion 22 has a curved surface 22a.
- the meander-shaped portion 24 is configured in a meander shape (folded shape, ninety-nine folded shape) in which meandering, folding, and folding are repeated.
- the first reference surface 101 and the second reference surface 102 are substantially parallel to the predetermined direction 100. Both ends of the meander-like portion 24 are connected to ports 23 serving as electromagnetic wave entrances and exits.
- the structure 30 is an object in which the slow wave circuit 2 is formed.
- a metal or an alloy such as copper, silver, gold, or nickel can be used.
- the traveling wave tube 1 is described as an example.
- the slow wave circuit according to the first embodiment may be used for an amplifier such as a klystron.
- the beam hole 10 is formed so that a part of the beam hole 10 protrudes from the first folded portion 21 in the meandering portion 24 of the waveguide 20, thereby reducing the influence of the beam hole (matching).
- the energy loss is reduced, the frequency dispersion of the phase velocity is reduced, and it is possible to contribute to widening the band.
- the electric field in the predetermined direction 100 of the electromagnetic wave with respect to the beam is increased and the gain is increased by setting the top of the first folded portion 21 to the flat surface 21a along the first reference plane 101. be able to.
- FIG. 2A is a cross-sectional view taken along line XX ′
- FIG. 2B is a cross-sectional view taken along line YY ′
- FIG. 4 is a cross-sectional view taken along the line ZZ ′.
- Embodiment 2 is a modification of Embodiment 1, in which the waveguide 20 is made thicker than in Embodiment 1.
- the thickness of the waveguide 20 can be optimized within a range thicker than that of the first embodiment in consideration of withstand voltage and the like, and is about 1.2 to 1.8 times (around 1.5 times) that of the first embodiment. ).
- the diameter of the cross section of the beam hole 10 is 0.8 times or more and 1.2 times or less (around 1 time) the distance between the first reference surface 101 and the third reference surface 103, preferably 0.9 times or more. And 1.1 times or less, more preferably 0.95 times or more and 1.05 times or less.
- the third reference plane 103 is a reference plane shifted from the second reference plane 102 toward the first reference plane 101 by the thickness of the waveguide.
- the influence of the beam hole is reduced (matching is achieved), the energy loss is reduced, the frequency dispersion of the phase velocity is reduced, and this contributes to a wider band. be able to. Further, the thickness of the waveguide 20 is increased, and the diameter of the cross section of the beam hole 10 is set to be about one time as large as the interval between the first reference surface 101 and the third reference surface 103, thereby further matching the embodiment 1. Can be improved.
- FIG. 3 schematically shows the structure of a traveling wave tube having a slow wave circuit according to a comparative example, (A) XX ′ cross-sectional view, (B) YY ′ cross-sectional view, (C) Z
- FIG. 4 is a graph showing the frequency dependence of S21 (transmission characteristics) of the slow wave circuit.
- FIG. 5 is a graph showing the calculation result of the gain band when there is no energy loss.
- FIG. 6 is a graph showing the frequency dependence of the phase velocity.
- FIG. 7 is a graph showing the calculation result of the gain band in which the operating point is adjusted so that the peak is at 275 GHz.
- 8A and 8B are diagrams schematically showing the electric field distribution of the slow wave circuit, where FIG. 8A relates to Example 1 and FIG. 8B relates to a comparative example.
- the traveling wave tube 1 has a waveguide 20 and a beam hole 10.
- the waveguide 20 has a meandering portion 24 that transmits electromagnetic waves and repeats folding.
- the thickness of the waveguide 20 is the same as that of the first embodiment.
- the beam hole 10 transmits an electron beam, extends in a predetermined direction 100, and penetrates the center of the meandering portion 24.
- the cross-sectional shape of the beam hole 10 is circular, and its diameter is the same as in the first and second embodiments.
- the thickness of the traveling wave tube waveguide (20 in FIG. 2) according to the second embodiment is 1.5 times the thickness of the traveling wave tube waveguide (20 in FIG. 1) according to the first embodiment. Is set. Other configurations are the same in Examples 1 and 2 and the comparative example.
- FIG. 4 shows the frequency dependence of S21 (transmission characteristics) of Examples 1 and 2 and the comparative example.
- the energy loss is improved by about 7 dB (43%) with respect to the comparative example.
- the gain (no loss) is about the same, and the bandwidth is about doubled.
- the energy loss is improved by about 3 dB compared to the comparative example.
- the conductivity of Cu as the material of the structure 30 is 2 ⁇ 10 7 S / m in consideration of the surface roughness.
- Fig. 5 shows the calculation result of the gain band when there is no energy loss.
- the beam diameter is 0.6 times that of the beam hole 10.
- the gain is about the same and the band is improved about twice.
- the gain is about the same and the band is improved about 1.6 times.
- Fig. 6 shows the frequency dependence of the phase velocity (Vp / c).
- the frequency dispersion of the phase velocity also increases due to the influence of the beam hole 10. Since the traveling wave tube has an amplification effect when the phase velocity is about the velocity of the electron beam, when the dispersion increases, the band where the gain can be obtained also decreases.
- the frequency dispersion of phase velocity is smaller than that of the comparative example.
- the operating point is adjusted to obtain the same gain.
- the gradient of the phase velocity in FIG. 6 is large in the comparative example, the band is narrowed.
- the operating point is not adjusted so much to increase the gain.
- Fig. 7 shows the calculation result of the gain band with the operating point adjusted and the peak at 275 GHz.
- the gain increases but the band decreases.
- Example 2 the gain is decreased, but the band is increased compared to the comparative example.
- the peak frequencies are aligned, in the first and second embodiments, the gain is slightly reduced, but the band is greatly increased.
- the gradient of the phase velocity in FIG. 6 is large, a wide band cannot be created.
- FIG. 8 shows the electric field diagram.
- FIG. 8A shows Example 1
- FIG. 8B shows a comparative example. It is formulated that the gain increases as the axial electric field increases.
- the electric field at the center of the beam is substantially the same in both Example 1 and the comparative example.
- the first embodiment has three cycles (the electric field may be generated in the center), and the comparative example has two cycles.
- the gain of Example 1 does not decrease so much even when the number of interactions is halved compared to the comparative example.
- the operating point can be adjusted by changing the dimensions, and the band can be designed as desired.
- FIG. 9 and 10 are process cross-sectional views schematically showing a method for manufacturing a traveling wave tube having a slow wave circuit according to the third embodiment.
- Embodiment 3 is a modification of Embodiment 1, in which a traveling wave tube is divided into a plurality (two in FIG. 10B) so as to be bonded together.
- the beam hole 10 is divided into a plurality of lengths at the center along the extending direction, and the waveguide 20 (including the port 23) is divided along the dividing surface of the beam hole 10.
- the structure is also divided into the first structure 30A and the second structure 30B.
- the first structure 30A and the second structure 30B are bonded together.
- a brazing material for example, an alloy having a melting point of 800 to 1000 ° C.
- the completed traveling wave tube 1 has the same configuration as that of the first embodiment (see FIG. 1). Note that the method of pasting the divided pieces as in the third embodiment may be applied to the second embodiment.
- a first resist 41 for forming a beam hole (10 in FIG. 10A) extending in a predetermined direction (corresponding to 100 in FIG. 1) is formed on the substrate 40 (step A1; FIG. 9).
- the first resist 41 can be formed using a lithography technique.
- the first resist 41 protrudes from the portion 42a corresponding to the first folded portion (21 in FIG. 10A) of the second resist 42 (and the second folded portion (22 in FIG. 10A)).
- Step A2 refer to FIG. 9 (B)
- the second resist 42 can be formed using a lithography technique.
- the first structure 30A is formed on the substrate 40 including the first resist 41 and the second resist 42 so that the first resist 41 and the second resist 42 are completely filled (step A3; FIG. 9C )reference).
- the first structure 30A can be formed using a plating technique.
- the substrate (40 in FIG. 9C) is removed (for example, peeled off) from the first structure 30A, and then the first resist (41 in FIG. 9C) and the second resist (FIG. 9C). 42) of C) is removed (for example, dissolved and removed) (step A4; see FIG. 10A). Thereby, the first structure 30A having the beam hole 10 and the waveguide 20 is manufactured.
- a second structure (30B in FIG. 10B) that is plane-symmetric with the first structure 30A is formed by steps similar to steps A1 to A4 (step A5; (Not shown).
- first structure 30A and the second structure 30B are bonded together (step A6; see FIG. 10B).
- a brazing material can be used for joining the first structure 30A and the second structure 30B.
- the traveling wave tube is completed.
- the configurations of the first and second embodiments can be easily manufactured, and man-hours can be reduced and costs can be reduced as compared with the case where the structure is not divided into a plurality of parts.
- FIG. 11A and 11B schematically show the configuration of the slow wave circuit according to the fourth embodiment: (A) XX ′ cross-sectional view, (B) YY ′ cross-sectional view, and (C) ZZ ′ cross-sectional view. It is sectional drawing.
- the slow wave circuit 2 is a circuit that bypasses the electromagnetic wave with respect to the electron beam, causes the electromagnetic wave to interact with the electron beam, and makes the electromagnetic wave and the electron beam have the same speed.
- the slow wave circuit 2 includes a beam hole 10 and a waveguide 20.
- the beam hole 10 transmits an electron beam, extends in a predetermined direction 100, and penetrates the meandering portion 24 of the waveguide 20.
- the beam hole 10 penetrates the meandering portion 24 so that a part of the beam hole 10 protrudes from the first folded portion 21 of the waveguide 20.
- the waveguide 20 transmits electromagnetic waves, and has a meander-shaped portion 24 in which a first folded portion 21 and a second folded portion 22 that is folded back on the opposite side of the first folded portion 21 are alternately repeated.
- the beam hole 10 is formed so that a part of the beam hole 10 protrudes from the first folded portion 21 in the meander-like portion 24 of the waveguide 20, thereby widening the band while reducing energy loss. Can contribute.
- the beam hole penetrates the meander portion so that a part of the beam hole protrudes continuously from the first folded portion in the predetermined direction.
- the first folded portion is folded along a first reference plane, and the second folded portion is disposed at a distance from the first reference plane. Folded along two reference planes, the beam hole penetrates the meander-like portion so that a part of the beam hole protrudes from the first reference plane.
- a top portion of the first folded portion has a flat surface along the first reference plane, and the beam hole has a portion of the beam hole that is the flat surface.
- the meandering portion is penetrated so as to protrude from the outside.
- the top of the second folded portion has a curved surface.
- a cross section of the beam hole is circular, the predetermined direction is substantially parallel to the first reference plane and the second reference plane, and the beam hole has the cross section.
- the diameter of the cross section is not less than 0.8 times the interval between the first reference plane and the third reference plane shifted from the second reference plane to the first reference plane by the thickness of the waveguide. .2 times or less.
- the diameter of the cross section of the beam hole is not less than 0.2 times and not more than 0.3 times the wavelength used for the electromagnetic wave.
- the predetermined direction is substantially parallel to a laminating direction of the waveguide of the meander-shaped portion.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microwave Tubes (AREA)
Abstract
エネルギー損失を低減しつつ広帯域化することに貢献することができる遅波回路等を提供する。遅波回路は、電磁波を伝送するとともに、第1折り返し部分と、前記第1折り返し部分とは反対側に折り返した第2折り返し部分とを交互に繰り返したミアンダ状部分を有する導波路と、電子ビームを伝送するとともに、所定方向に延在し、かつ、前記ミアンダ状部分を貫通するビームホールと、を備え、前記ビームホールは、前記ビームホールの一部が前記第1折り返し部分からはみ出すようにして前記ミアンダ状部分を貫通する。
Description
[関連出願についての記載]
本発明は、日本国特許出願:特願2018-041045号(2018年 3月 7日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、遅波回路、進行波管、及び進行波管の製造方法に関する。
本発明は、日本国特許出願:特願2018-041045号(2018年 3月 7日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、遅波回路、進行波管、及び進行波管の製造方法に関する。
衛星通信、レーダなどの無線システムにおいては、送信源用増幅器として、主に進行波管が用いられている。進行波管は、送信用の電磁波(例えば、高周波)を、エネルギー源となる電子ビームと相互作用させることにより増幅させる。進行波管は、相互作用させる際に電磁波と電子ビームとを同程度の速度とするために、電子ビームに対して電磁波を迂回させるための遅波回路を有する。遅波回路において電磁波を迂回させる方法として、らせん状の導波路に電磁波を伝送させ、らせん状の導波路の中心軸に電子ビームが通るビームホールを通すヘリックス型(例えば、特許文献1参照)と呼ばれる方法がある。
ところで、現在、無線周波数の高周波化が進められており、テラヘルツ領域の無線装置の開発が進められている。また、テラヘルツ領域においては、各種センシング技術の開発等も近年進められている。これに伴い、テラヘルツ領域における送信源用増幅器の開発が求められている。
マイクロ波からテラヘルツ波へ高周波化が進むことより、波長が小さくなる。これに伴い、ヘリックス型の遅波回路では、らせん状の導波路を微細化しなければならないことから、ヘリックス型の遅波回路の製造が困難になる。テラヘルツ領域においては、ヘリックス型の遅波回路に替わって折り畳み型の遅波回路が有望とされている。
折り畳み型の遅波回路は、ミアンダ状(繰り返し折り返された形状、九十九折形状)の導波路に電磁波を伝送させて遅波させ、ミアンダ状の導波路の折り畳んだ部分が積層する方向の中央に電子ビームが伝送するビームホールを貫通した構成となっている(例えば、特許文献2、非特許文献1参照)。
Design Methodology and Experimental Verification of Serpentine/Folded-Waveguide TWTs, Khanh T. Nguyen, IEEE Trans. on E.D., Vol. 61, No. 6, JUNE 2014.
以下の分析は、本願発明者により与えられる。
特許文献2、非特許文献1に記載されているような折り畳みの型の遅波回路では、ミアンダ状の導波路を伝送する電磁波が、ビームホールを伝送する電子ビームのエネルギーを受け取って増幅される。その際、ビームホールが大きい(使用波長λの1/4程度)と、ビームホールを介して電磁波同士が結合し、エバネッセントなエネルギー(電磁波が金属などの反射性媒質の内部で誘起する電磁場の変動、進行しないエネルギー)が発生し、エネルギー損失が増加し、導波路の伝送方向のビームホール部の反射散乱によるエネルギー損失も増加する。
また、折り畳み型の通常の遅波回路の構成では、ビームホールの影響により、位相速度の周波数分散も増加する。遅波回路は位相速度が電子ビームの速度程度のときに増幅作用が得られるため、位相速度の周波数分散が増加すると、ゲインの得られる帯域も減少してしまう。
さらに、無線周波数の高周波化に伴い遅波回路のサイズが小さくなっても、電子ビームをビームホールは通すために小さくしきれないので、ビームホールの影響による問題がより顕著となる。
本発明の主な課題は、エネルギー損失を低減しつつ広帯域化することに貢献することができる遅波回路、進行波管、及び進行波管の製造方法を提供することである。
第1の視点に係る遅波回路は、電磁波を伝送するとともに、第1折り返し部分と、前記第1折り返し部分とは反対側に折り返した第2折り返し部分とを交互に繰り返したミアンダ状部分を有する導波路と、電子ビームを伝送するとともに、所定方向に延在し、かつ、前記ミアンダ状部分を貫通するビームホールと、を備え、前記ビームホールは、前記ビームホールの一部が前記第1折り返し部分からはみ出すようにして前記ミアンダ状部分を貫通する。
第2の視点に係る進行波管は、構造体を備え、前記構造体は、前記第1の視点に係る遅波回路を有する。
第3の視点に係る進行波管の製造方法は、基板上に、所定方向に延在するビームホールを形成するための第1レジストを形成する第1工程と、前記第1レジストを含む前記基板上に、第1折り返し部分と、前記第1折り返し部分とは反対側に折り返した第2折り返し部分とを交互に繰り返したミアンダ状部分を有する導波路を形成するための第2レジストを、前記第2レジストにおける前記第1折り返し部分に相当する部分から前記第1レジストがはみ出すようにして、形成する第2工程と、前記第1レジスト及び前記第2レジストを含む前記基板上に、前記第1レジスト及び前記第2レジストが完全に埋まるように第1構造体を形成する第3工程と、前記第1構造体から前記基板及び前記第1レジスト並びに前記第2レジストを除去することにより前記ビームホール及び前記導波路を有する前記第1構造体を形成する第4工程と、前記第1乃至第4工程と同様な工程により、前記第1構造体と面対称な第2構造体を形成する第5工程と、前記第1構造体と前記第2構造体とを貼り合わせる第6工程と、を含む。
前記第1~第3の視点によれば、エネルギー損失を低減しつつ広帯域化することに貢献することができる。
以下、実施形態について図面を参照しつつ説明する。なお、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。また、下記の実施形態は、あくまで例示であり、本発明を限定するものではない。
[実施形態1]
実施形態1に係る遅波回路を有する進行波管について図面を用いて説明する。図1は、実施形態1に係る遅波回路を有する進行波管の構成を模式的に示した(A)X-X’間断面図、(B)Y-Y’間断面図、(C)Z-Z’間断面図である。
実施形態1に係る遅波回路を有する進行波管について図面を用いて説明する。図1は、実施形態1に係る遅波回路を有する進行波管の構成を模式的に示した(A)X-X’間断面図、(B)Y-Y’間断面図、(C)Z-Z’間断面図である。
進行波管1は、電磁波を電子ビームと相互作用させ、電磁波と電子ビームとを同程度の速度にするための装置である。進行波管1は、遅波回路2と、構造体30と、を有する。
遅波回路2は、電子ビームに対して電磁波を迂回させて、電磁波を電子ビームと相互作用させ、電磁波と電子ビームとを同程度の速度にする回路である。遅波回路2は、ビームホール10と、導波路20と、を有する。
ビームホール10は、所定方向100に延在するとともに電子ビームを伝送するための空間である。ビームホール10の断面は、略円形とすることができ、多角形としてもよい。ここで、所定方向100は、ミアンダ状部分24の導波路20の積層方向と略平行である。
ビームホール10は、導波路20のミアンダ状部分24における所定方向100に対して直角方向に延在する部分、に対して略直角に交わる。
ビームホール10は、ミアンダ状部分24を貫通する。ビームホール10の貫通の仕方は、以下の通りである。ビームホール10は、ビームホール10の一部が導波路20の第1折り返し部分21からはみ出すようにしてミアンダ状部分24を貫通する。ビームホール10は、ビームホール10の一部が導波路20の第1折り返し部分21から所定方向100に連続してはみ出すようにしてミアンダ状部分24を貫通する。ビームホール10は、ビームホール10の一部が導波路20の第1基準面101からはみ出すようにしてミアンダ状部分24を貫通する。ビームホール10は、ビームホール10の一部が導波路20の平坦面21aからはみ出すようにしてミアンダ状部分24を貫通する。
ビームホール10の断面の直径は、使用波長λの1/4前後とすることができ、例えば、前記電磁波に係る使用波長の0.2倍以上かつ0.3倍以下であり、好ましくは0.22倍以上かつ0.28倍以下であり、より好ましくは0.24倍以上かつ0.26倍以下である。
導波路20は、電磁波を伝送するための空間である。導波路20は、第1折り返し部分21と、第1折り返し部分21とは反対側に折り返した第2折り返し部分22とを交互に繰り返したミアンダ状部分24を有する。導波路20は、第1折り返し部分21を除き、所定の幅及び厚さとなっている。
第1折り返し部分21は、第1基準面101に沿って折り返されている。第1折り返し部分21の頂部は、第1基準面101に沿った平坦面21aを有する。
第2折り返し部分22は、第1基準面101と間隔をおいて配された第2基準面102に沿って折り返されている。第2折り返し部分22の頂部は、曲面22aを有する。
ミアンダ状部分24は、蛇行、折り畳み、折り返しが繰り返されたミアンダ状(折り畳み状、九十九折状)に構成されている。ここで、第1基準面101及び第2基準面102は、所定方向100に対して略平行である。ミアンダ状部分24の両端には、電磁波の出入口となるポート23に接続されている。
構造体30は、遅波回路2が形成された物体である。構造体30には、例えば、銅、銀、金、ニッケル等の金属や合金を用いることができる。
なお、実施形態1では、進行波管1を例に記載しているが、実施形態1に係る遅波回路をクライストロン等の増幅器に利用してもよい。
実施形態1によれば、ビームホール10の一部が導波路20のミアンダ状部分24における第1折り返し部分21からはみ出すようにビームホール10を形成することにより、ビームホールの影響を低減し(マッチングがとれ)、エネルギー損失が低減され、位相速度の周波数分散が小さくなり、広帯域化を図ることに貢献することができる。また、実施形態1によれば、第1折り返し部分21の頂部を第1基準面101に沿った平坦面21aとすることで、ビームに対する電磁波の所定方向100の電界が大きくなり、ゲインを大きくすることができる。
[実施形態2]
実施形態2に係る遅波回路を有する進行波管について図面を用いて説明する。図2は、実施形態2に係る遅波回路を有する進行波管の構成を模式的に示した(A)X-X’間断面図、(B)Y-Y’間断面図、(C)Z-Z’間断面図である。
実施形態2に係る遅波回路を有する進行波管について図面を用いて説明する。図2は、実施形態2に係る遅波回路を有する進行波管の構成を模式的に示した(A)X-X’間断面図、(B)Y-Y’間断面図、(C)Z-Z’間断面図である。
実施形態2は、実施形態1の変形例であり、導波路20の厚さを実施形態1のときよりも厚くしたものである。導波路20の厚さは、耐圧等も考慮して、実施形態1より太い範囲で最適なものとすることができ、実施形態1の約1.2~1.8倍(1.5倍前後)とすることができる。
ビームホール10の断面の直径は、第1基準面101と第3基準面103との間隔の0.8倍以上かつ1.2倍以下(1倍前後)であり、好ましくは0.9倍以上かつ1.1倍以下であり、より好ましくは0.95倍以上かつ1.05倍以下である。ここで、第3基準面103は、第2基準面102から第1基準面101側に導波路の厚さ分シフトした基準面である。
実施形態2によれば、実施形態1と同様に、ビームホールの影響を低減し(マッチングがとれ)、エネルギー損失が低減され、位相速度の周波数分散が小さくなり、広帯域化を図ることに貢献することができる。また、導波路20の厚さを厚くし、ビームホール10の断面の直径を第1基準面101と第3基準面103との間隔の1倍前後とすることで、実施形態1よりもさらにマッチングを改善することができる。
[実施例1、実施例2、比較例]
実施例1、2に係る進行波管の特性について、比較例に係る進行波管を比較しながら、図面を用いて説明する。図3は、比較例に係る遅波回路を有する進行波管の構成を模式的に示した(A)X-X’間断面図、(B)Y-Y’間断面図、(C)Z-Z’間断面図である。図4は、遅波回路のS21(伝送特性)の周波数依存性を表したグラフである。図5は、エネルギー損失無しの場合のゲイン帯域の計算結果を表したグラフである。図6は、位相速度の周波数依存性を表したグラフである。図7は、275GHzにピークがくるように動作点を調整したゲイン帯域の計算結果を表したグラフである。図8は、遅波回路の電界分布を模式的に示した図であり、(A)は実施例1、(B)は比較例に関するものである。
実施例1、2に係る進行波管の特性について、比較例に係る進行波管を比較しながら、図面を用いて説明する。図3は、比較例に係る遅波回路を有する進行波管の構成を模式的に示した(A)X-X’間断面図、(B)Y-Y’間断面図、(C)Z-Z’間断面図である。図4は、遅波回路のS21(伝送特性)の周波数依存性を表したグラフである。図5は、エネルギー損失無しの場合のゲイン帯域の計算結果を表したグラフである。図6は、位相速度の周波数依存性を表したグラフである。図7は、275GHzにピークがくるように動作点を調整したゲイン帯域の計算結果を表したグラフである。図8は、遅波回路の電界分布を模式的に示した図であり、(A)は実施例1、(B)は比較例に関するものである。
まず、比較例に係る進行波管について説明する。図3を参照すると、進行波管1は、導波路20と、ビームホール10と、を有する。導波路20は、電磁波を伝送するとともに、折り返しを繰り返したミアンダ状部分24を有する。導波路20の厚さは、実施形態1と同様である。ビームホール10は、電子ビームを伝送するとともに、所定方向100に延在し、かつ、ミアンダ状部分24の中央を貫通する。ビームホール10の断面の形状は円形であり、その直径は実施形態1、2と同様である。
なお、実施例2に係る進行波管の導波路(図2の20)の厚さは、実施例1に係る進行波管の導波路(図1の20)の厚さの1.5倍に設定されている。その他の構成は、実施例1、2及び比較例ともに同じである。
図4に実施例1、2及び比較例のS21(伝送特性)の周波数依存性を示す。0.27THz付近の各々の最適値で比較して、実施例2では、エネルギー損失が比較例に対し7dB程度(43%)改善している。その際、ゲイン(損失無し)は同程度、帯域は倍程度に拡大できている。実施例1では、エネルギー損失が比較例に対し3dB程度改善している。なお、構造体30の材料のCuの導電率は表面粗さも考慮して2×107S/mとしている。
図5にエネルギー損失無しの場合のゲイン帯域の計算結果を示す。ビーム径はビームホール10の0.6倍としている。実施例2では、比較例に対し、ゲインが同程度で、帯域が2倍程度に改善している。実施例1では、比較例に対し、ゲインが同程度で、帯域が1.6倍程度に改善している。
図6に位相速度(Vp/c)の周波数依存性を示す。比較例の構成では、ビームホール10の影響により、位相速度の周波数分散も増加する。進行波管は位相速度が電子ビームの速度程度のときに増幅作用が得られるため、分散が増加するとゲインの得られる帯域も減少してしまう。一方、実施例1、2では、比較例に対して、位相速度の周波数分散が小さい。
なお、図6では、ゲインに関して、動作点を調整し同程度のゲインが得られるようにしている。その際、図6の位相速度の傾きが比較例では大きいため、帯域が狭くなる。ただし、動作点はゲインを上げるためにそれほど無理な調整にはなっていない。
図7に、動作点を調整し、275GHzにピークがくるようにしたゲイン帯域の計算結果を示す。比較例は、ゲインが増加するが帯域が減少している。実施例2は、比較例に対して、ゲインが減少するが、帯域が増加している。ピークの周波数をそろえた場合、実施例1、2では少しゲインが低下するものの、帯域は大幅に増加している。比較例では、図6の位相速度の傾きが大きいため、広帯域なものを作成することはできない。
図8に電界図を示す。図8(A)が実施例1、図8(B)が比較例である。ゲインは、軸方向の電界が大きいほど、大きくなることは定式化されている。ビーム中央部の電界は実施例1及び比較例の両者でほぼ同じである。電界がかかっている領域(図中破線円部、図8(A)は1周期分、図8(B)は半周期分)の比率は、実施例1の1周期に対し、比較例は6周期(3×2=6)となっている。また、ビーム中央部に関しては、実施例1が3周期(中央にも電界が発生する場合がある)に対し、比較例は2周期となっている。このことで、実施例1は、比較例に対し、相互作用の回数が半分になってもゲインがそれほど低下していないことがいえる。
なお、動作点に関しては、寸法変更により調節可能であり、帯域も所望のものに設計可能である。
[実施形態3]
実施形態3に係る遅波回路を有する進行波管の製造方法について図面を用いて説明する。図9、図10は、実施形態3に係る遅波回路を有する進行波管の製造方法を模式的に示した工程断面図である。
実施形態3に係る遅波回路を有する進行波管の製造方法について図面を用いて説明する。図9、図10は、実施形態3に係る遅波回路を有する進行波管の製造方法を模式的に示した工程断面図である。
実施形態3は、実施形態1の変形例であり、進行波管を貼り合わせ可能に複数(図10(B)では2つ)に分割したものである。ビームホール10は、その延在方向に沿って中央で縦に複数に分割されており、導波路20(ポート23を含む)は、ビームホール10の分割面に沿って分割されている。これに伴って、構造体も第1構造体30Aと第2構造体30Bに分割される。第1構造体30Aと第2構造体30Bとは貼り合わせによって接合している。第1構造体30Aと第2構造体30Bとの接合には、ろう材(例えば、融点が800~1000℃の合金)を用いることができる。完成した進行波管1の構成は、実施形態1(図1参照)の構成と同様である。なお、実施形態3のような分割したものを貼り合わせる方法は、実施形態2に適用してもよい。
まず、基板40上に、所定方向(図1の100に相当)に延在するビームホール(図10(A)の10)を形成するための第1レジスト41を形成する(ステップA1;図9(A)参照)。ここで、第1レジスト41は、リソグラフィ技術を用いて形成することができる。
次に、第1レジスト41を含む基板40上に、第1折り返し部分(図10(A)の21)と、第1折り返し部分(図10(A)の21)とは反対側に折り返した第2折り返し部分(図10(A)の22)とを交互に繰り返したミアンダ状部分(図10(A)の24)を有する導波路(図10(A)の20)を形成するための第2レジスト42を、第2レジスト42における第1折り返し部分(図10(A)の21)に相当する部分42aから第1レジスト41がはみ出す(かつ、第2折り返し部分(図10(A)の22)に相当する部分42bが第1レジスト41と重ならない)ようにして、形成する(ステップA2;図9(B)参照)。ここで、第2レジスト42は、リソグラフィ技術を用いて形成することができる。
次に、第1レジスト41及び第2レジスト42を含む基板40上に、第1レジスト41及び第2レジスト42が完全に埋まるように第1構造体30Aを形成する(ステップA3;図9(C)参照)。ここで、第1構造体30Aは、めっき技術を用いて形成することができる。
次に、第1構造体30Aから基板(図9(C)の40)を除去(例えば、剥離)し、その後、第1レジスト(図9(C)の41)及び第2レジスト(図9(C)の42)を除去(例えば、溶解除去)する(ステップA4;図10(A)参照)。これにより、ビームホール10及び導波路20を有する第1構造体30Aが製造される。
第1構造体30Aの製造とは別に、ステップA1~A4と同様なステップにより、第1構造体30Aと面対称な第2構造体(図10(B)の30B)を形成する(ステップA5;図省略)。
最後に、第1構造体30Aと第2構造体30Bとを貼り合わせる(ステップA6;図10(B)参照)。ここで、第1構造体30Aと第2構造体30Bとの接合には、ろう材を用いることができる。これにより、進行波管が完成する。
実施形態3によれば、実施形態1、2の構成を簡易に製造することができ、構造体を複数に分割しない場合と比べて、工数が低減し、コストを低減させることができる。
[実施形態4]
実施形態4に係る遅波回路について図面を用いて説明する。図11は、実施形態4に係る遅波回路の構成を模式的に示した(A)X-X’間断面図、(B)Y-Y’間断面図、(C)Z-Z’間断面図である。
実施形態4に係る遅波回路について図面を用いて説明する。図11は、実施形態4に係る遅波回路の構成を模式的に示した(A)X-X’間断面図、(B)Y-Y’間断面図、(C)Z-Z’間断面図である。
遅波回路2は、電子ビームに対して電磁波を迂回させて、電磁波を電子ビームと相互作用させ、電磁波と電子ビームとを同程度の速度にする回路である。遅波回路2は、ビームホール10と、導波路20と、を有する。
ビームホール10は、電子ビームを伝送するとともに、所定方向100に延在し、かつ、導波路20のミアンダ状部分24を貫通する。ビームホール10は、ビームホール10の一部が導波路20の第1折り返し部分21からはみ出すようにしてミアンダ状部分24を貫通する。
導波路20は、電磁波を伝送するとともに、第1折り返し部分21と、第1折り返し部分21とは反対側に折り返した第2折り返し部分22とを交互に繰り返したミアンダ状部分24を有する。
実施形態4によれば、ビームホール10の一部が導波路20のミアンダ状部分24における第1折り返し部分21からはみ出すようにビームホール10を形成することにより、エネルギー損失を低減しつつ広帯域化することに貢献することができる。
上記実施形態の一部または全部は以下の付記のようにも記載され得るが、以下には限られない。
(付記)
本発明では、前記第1の視点に係る遅波回路の形態が可能である。
本発明では、前記第1の視点に係る遅波回路の形態が可能である。
前記第1の視点に係る遅波回路において、前記ビームホールは、前記ビームホールの一部が前記第1折り返し部分から前記所定方向に連続してはみ出すようにして前記ミアンダ状部分を貫通する。
前記第1の視点に係る遅波回路において、前記第1折り返し部分は、第1基準面に沿って折り返され、前記第2折り返し部分は、前記第1基準面と間隔をおいて配された第2基準面に沿って折り返され、前記ビームホールは、前記ビームホールの一部が前記第1基準面からはみ出すようにして前記ミアンダ状部分を貫通する。
前記第1の視点に係る遅波回路において、前記第1折り返し部分の頂部は、前記第1基準面に沿った平坦面を有し、前記ビームホールは、前記ビームホールの一部が前記平坦面からはみ出すようにして前記ミアンダ状部分を貫通する。
前記第1の視点に係る遅波回路において、前記第2折り返し部分の頂部は、曲面を有する。
前記第1の視点に係る遅波回路において、前記ビームホールの断面は、円形であり、前記所定方向は、前記第1基準面及び前記第2基準面と略平行であり、前記ビームホールの前記断面の直径は、前記第1基準面と、前記第2基準面から前記第1基準面側に前記導波路の厚さ分シフトした第3基準面と、の間隔の0.8倍以上かつ1.2倍以下である。
前記第1の視点に係る遅波回路において、前記ビームホールの前記断面の直径は、前記電磁波に係る使用波長の0.2倍以上かつ0.3倍以下である。
前記第1の視点に係る遅波回路において、前記所定方向は、前記ミアンダ状部分の前記導波路の積層方向と略平行である。
本発明では、前記第2の視点に係る進行波管の形態が可能である。
本発明では、前記第3の視点に係る進行波管の製造方法の形態が可能である。
なお、上記の特許文献等の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(特許請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択(必要により不選択)が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、本願に記載の数値及び数値範囲については、明記がなくともその任意の中間値、下位数値、及び、小範囲が記載されているものとみなされる。
1 進行波管
2 遅波回路
10 ビームホール
20 導波路
21 第1折り返し部分
21a 平坦面
22 第2折り返し部分
22a 曲面
23 ポート
24 ミアンダ状部分
30 構造体
30A 第1構造体
30B 第2構造体
40 基板
41 第1レジスト
42 第2レジスト
42a 第1折り返し部分に相当する部分
42b 第2折り返し部分に相当する部分
100 所定方向
101 第1基準面
102 第2基準面
103 第3基準面
2 遅波回路
10 ビームホール
20 導波路
21 第1折り返し部分
21a 平坦面
22 第2折り返し部分
22a 曲面
23 ポート
24 ミアンダ状部分
30 構造体
30A 第1構造体
30B 第2構造体
40 基板
41 第1レジスト
42 第2レジスト
42a 第1折り返し部分に相当する部分
42b 第2折り返し部分に相当する部分
100 所定方向
101 第1基準面
102 第2基準面
103 第3基準面
Claims (10)
- 電磁波を伝送するとともに、第1折り返し部分と、前記第1折り返し部分とは反対側に折り返した第2折り返し部分とを交互に繰り返したミアンダ状部分を有する導波路と、
電子ビームを伝送するとともに、所定方向に延在し、かつ、前記ミアンダ状部分を貫通するビームホールと、
を備え、
前記ビームホールは、前記ビームホールの一部が前記第1折り返し部分からはみ出すようにして前記ミアンダ状部分を貫通する、
遅波回路。 - 前記ビームホールは、前記ビームホールの一部が前記第1折り返し部分から前記所定方向に連続してはみ出すようにして前記ミアンダ状部分を貫通する、
請求項1記載の遅波回路。 - 前記第1折り返し部分は、第1基準面に沿って折り返され、
前記第2折り返し部分は、前記第1基準面と間隔をおいて配された第2基準面に沿って折り返され、
前記ビームホールは、前記ビームホールの一部が前記第1基準面からはみ出すようにして前記ミアンダ状部分を貫通する、
請求項1又は2記載の遅波回路。 - 前記第1折り返し部分の頂部は、前記第1基準面に沿った平坦面を有し、
前記ビームホールは、前記ビームホールの一部が前記平坦面からはみ出すようにして前記ミアンダ状部分を貫通する、
請求項3記載の遅波回路。 - 前記第2折り返し部分の頂部は、曲面を有する、
請求項3又は4記載の遅波回路。 - 前記ビームホールの断面は、円形であり、
前記所定方向は、前記第1基準面及び前記第2基準面と略平行であり、
前記ビームホールの前記断面の直径は、前記第1基準面と、前記第2基準面から前記第1基準面側に前記導波路の厚さ分シフトした第3基準面と、の間隔の0.8倍以上かつ1.2倍以下である、
請求項3乃至5のいずれか一に記載の遅波回路。 - 前記ビームホールの前記断面の直径は、前記電磁波に係る使用波長の0.2倍以上かつ0.3倍以下である、
請求項6記載の遅波回路。 - 前記所定方向は、前記ミアンダ状部分の前記導波路の積層方向と略平行である、
請求項1乃至6のいずれか一に記載の遅波回路。 - 構造体を備え、
前記構造体は、請求項1乃至8のいずれか一に記載の遅波回路を有する進行波管。 - 基板上に、所定方向に延在するビームホールを形成するための第1レジストを形成する第1工程と、
前記第1レジストを含む前記基板上に、第1折り返し部分と、前記第1折り返し部分とは反対側に折り返した第2折り返し部分とを交互に繰り返したミアンダ状部分を有する導波路を形成するための第2レジストを、前記第2レジストにおける前記第1折り返し部分に相当する部分から前記第1レジストがはみ出すようにして、形成する第2工程と、
前記第1レジスト及び前記第2レジストを含む前記基板上に、前記第1レジスト及び前記第2レジストが完全に埋まるように第1構造体を形成する第3工程と、
前記第1構造体から前記基板及び前記第1レジスト並びに前記第2レジストを除去することにより前記ビームホール及び前記導波路を有する前記第1構造体を形成する第4工程と、
前記第1乃至第4工程と同様な工程により、前記第1構造体と面対称な第2構造体を形成する第5工程と、
前記第1構造体と前記第2構造体とを貼り合わせる第6工程と、
を含む、
進行波管の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980015827.0A CN111788653B (zh) | 2018-03-07 | 2019-03-06 | 慢波电路、行波管及行波管的制造方法 |
JP2020505078A JP6879614B2 (ja) | 2018-03-07 | 2019-03-06 | 遅波回路、進行波管、及び進行波管の製造方法 |
DE112019000369.0T DE112019000369B4 (de) | 2018-03-07 | 2019-03-06 | Verzögerungsschaltung, Wanderfeldröhre und Verfahren zur Herstellung einer Wanderfeldröhre |
US16/969,647 US12062517B2 (en) | 2018-03-07 | 2019-03-06 | Slow-wave circuit, traveling wave tube, and method for manufacturing traveling wave tube |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-041045 | 2018-03-07 | ||
JP2018041045 | 2018-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019172312A1 true WO2019172312A1 (ja) | 2019-09-12 |
Family
ID=67846642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008864 WO2019172312A1 (ja) | 2018-03-07 | 2019-03-06 | 遅波回路、進行波管、及び進行波管の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12062517B2 (ja) |
JP (1) | JP6879614B2 (ja) |
CN (1) | CN111788653B (ja) |
DE (1) | DE112019000369B4 (ja) |
WO (1) | WO2019172312A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024084546A1 (ja) * | 2022-10-17 | 2024-04-25 | ソニーグループ株式会社 | 伝送路、遅波回路、増幅器、送受信機、中継器、回路装置、伝送路の製造方法及び遅波回路の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113871277B (zh) * | 2021-09-09 | 2024-09-24 | 中国电子科技集团公司第十二研究所 | 一种高频结构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120081003A1 (en) * | 2010-10-04 | 2012-04-05 | Samsung Electronics Co., Ltd. | Terahertz interaction circuit having ridged structure |
CN104576266A (zh) * | 2014-12-29 | 2015-04-29 | 中国电子科技集团公司第十二研究所 | 一种用于返波振荡器的单侧折叠波导慢波结构 |
WO2017104680A1 (ja) * | 2015-12-18 | 2017-06-22 | Necネットワーク・センサ株式会社 | 遅波回路、および進行波管 |
WO2017154987A1 (ja) * | 2016-03-10 | 2017-09-14 | Necネットワーク・センサ株式会社 | 遅波回路 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB984578A (en) * | 1962-05-04 | 1965-02-24 | M O Valve Co Ltd | Improvements in or relating to high frequency electric discharge devices |
US4586009A (en) | 1985-08-09 | 1986-04-29 | Varian Associates, Inc. | Double staggered ladder circuit |
US4807355A (en) * | 1986-04-03 | 1989-02-28 | Raytheon Company | Method of manufacture of coupled-cavity waveguide structure for traveling wave tubes |
US5422596A (en) * | 1994-06-30 | 1995-06-06 | The United States Of America As Represented By The Secretary Of The Navy | High power, broadband folded waveguide gyrotron-traveling-wave-amplifier |
US7315126B2 (en) | 2004-11-04 | 2008-01-01 | L-3 Communications Corporation | Folded waveguide traveling wave tube having polepiece-cavity coupled-cavity circuit |
JP2006134751A (ja) | 2004-11-08 | 2006-05-25 | Nec Microwave Inc | 電子管 |
CN101615553B (zh) * | 2009-07-22 | 2011-06-15 | 电子科技大学 | 一种矩形槽加载曲折波导慢波线 |
CN202111052U (zh) * | 2010-12-13 | 2012-01-11 | 电子科技大学 | 一种起伏状波导慢波结构 |
CN102324363A (zh) * | 2011-08-11 | 2012-01-18 | 电子科技大学 | 一种脊加载曲折矩形槽波导慢波线 |
US9202660B2 (en) * | 2013-03-13 | 2015-12-01 | Teledyne Wireless, Llc | Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes |
CN103354199B (zh) * | 2013-07-01 | 2016-01-13 | 电子科技大学 | 一种加脊微带线平面慢波结构 |
JP2016189259A (ja) | 2015-03-30 | 2016-11-04 | Necネットワーク・センサ株式会社 | 進行波管 |
CN107424888A (zh) * | 2017-07-08 | 2017-12-01 | 上海交通大学 | 行波管的慢波结构 |
FR3074364B1 (fr) * | 2017-11-28 | 2019-10-25 | Thales | Charge interne pour tube a ondes progressives utilisant une ligne a retard en guide replie |
-
2019
- 2019-03-06 JP JP2020505078A patent/JP6879614B2/ja active Active
- 2019-03-06 CN CN201980015827.0A patent/CN111788653B/zh active Active
- 2019-03-06 WO PCT/JP2019/008864 patent/WO2019172312A1/ja active Application Filing
- 2019-03-06 US US16/969,647 patent/US12062517B2/en active Active
- 2019-03-06 DE DE112019000369.0T patent/DE112019000369B4/de active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120081003A1 (en) * | 2010-10-04 | 2012-04-05 | Samsung Electronics Co., Ltd. | Terahertz interaction circuit having ridged structure |
CN104576266A (zh) * | 2014-12-29 | 2015-04-29 | 中国电子科技集团公司第十二研究所 | 一种用于返波振荡器的单侧折叠波导慢波结构 |
WO2017104680A1 (ja) * | 2015-12-18 | 2017-06-22 | Necネットワーク・センサ株式会社 | 遅波回路、および進行波管 |
WO2017154987A1 (ja) * | 2016-03-10 | 2017-09-14 | Necネットワーク・センサ株式会社 | 遅波回路 |
Non-Patent Citations (1)
Title |
---|
MASSOOD TABIB-AZAR ET AL.: "Microplasma Traveling Wave Terahertz Amplifier", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 64, no. 9, September 2017 (2017-09-01), pages 3877 - 3884, XP011658799, doi:10.1109/TED.2017.2732446 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024084546A1 (ja) * | 2022-10-17 | 2024-04-25 | ソニーグループ株式会社 | 伝送路、遅波回路、増幅器、送受信機、中継器、回路装置、伝送路の製造方法及び遅波回路の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019172312A1 (ja) | 2021-02-12 |
CN111788653B (zh) | 2023-04-28 |
CN111788653A (zh) | 2020-10-16 |
US20200402758A1 (en) | 2020-12-24 |
US12062517B2 (en) | 2024-08-13 |
DE112019000369B4 (de) | 2024-02-08 |
DE112019000369T5 (de) | 2020-10-01 |
JP6879614B2 (ja) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mruk | Wideband monolithically integrated front-end subsystems and components | |
US8842054B2 (en) | Grid array antennas and an integration structure | |
He et al. | A cavity-backed endfire dipole antenna array using substrate-integrated suspended line technology for 24 GHz band applications | |
JP6648901B2 (ja) | 遅波回路 | |
WO2019172312A1 (ja) | 遅波回路、進行波管、及び進行波管の製造方法 | |
JP2012054869A (ja) | アンテナ装置及びレーダ装置 | |
WO2019138468A1 (ja) | 導波管マイクロストリップ線路変換器およびアンテナ装置 | |
EP3168926B1 (en) | Ultra wideband true time delay lines | |
Guntupalli et al. | Ultra-compact millimeter-wave substrate integrated waveguide crossover structure utilizing simultaneous electric and magnetic coupling | |
JP2000505991A (ja) | 連続的横断方向スタブアンテナアレイと共に使用するアンテナ給電アーキテクチャ | |
US20160293376A1 (en) | Traveling wave tube | |
JP2016149755A (ja) | アンテナ装置およびアレーアンテナ装置 | |
JP4764358B2 (ja) | マイクロストリップ線路−導波管変換器 | |
CN111244615A (zh) | 一种太赫兹片上集成偶极子天线过渡结构 | |
JP6870845B2 (ja) | 遅波回路、進行波管、及び進行波管の製造方法 | |
WO2020157804A1 (ja) | 伝送線路及び移相器 | |
JP6611238B2 (ja) | 導波管/伝送線路変換器、アレーアンテナ及び平面アンテナ | |
Deng et al. | Differential SIW slot antenna array with intrinsic common‐mode rejection | |
JPWO2019053823A1 (ja) | 誘電体フィルタ | |
Liu et al. | Dual-layer slow-wave half-mode substrate integrated waveguide E-plane coupler | |
Kazemi et al. | Design guidelines for multi-layer dielectric rod antennas fed by Vivaldi antennas | |
JP2011147081A (ja) | 導波管接続方法 | |
EP3276741B1 (en) | Waveguide tube/transmission line converter and antenna device | |
Karandikar et al. | Comparisons of different descrambler/power combining boards layout for multi-port, decade bandwidth Eleven feed | |
Wang et al. | Broadband directional filter in multilayer liquid crystal polymer films at W-band |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19764422 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020505078 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19764422 Country of ref document: EP Kind code of ref document: A1 |