WO2020157804A1 - 伝送線路及び移相器 - Google Patents

伝送線路及び移相器 Download PDF

Info

Publication number
WO2020157804A1
WO2020157804A1 PCT/JP2019/002774 JP2019002774W WO2020157804A1 WO 2020157804 A1 WO2020157804 A1 WO 2020157804A1 JP 2019002774 W JP2019002774 W JP 2019002774W WO 2020157804 A1 WO2020157804 A1 WO 2020157804A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
stub
transmission line
annular
line
Prior art date
Application number
PCT/JP2019/002774
Other languages
English (en)
French (fr)
Inventor
程 楊
西村 崇
裕子 陸田
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to CN201980087282.4A priority Critical patent/CN113287226B/zh
Priority to JP2020568894A priority patent/JP7026418B2/ja
Priority to PCT/JP2019/002774 priority patent/WO2020157804A1/ja
Publication of WO2020157804A1 publication Critical patent/WO2020157804A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P9/00Delay lines of the waveguide type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Definitions

  • the present invention relates to a transmission line and a phase shifter.
  • a plurality of antenna elements and a feed network configured to feed a signal and/or receive a signal from the antenna element and including a multi-blade wiper type phase shifter are disclosed.
  • An antenna comprising, wherein one or more conductive strips located at the center of rotation, i.e. at least one of said conductive strips, comprises at least one bent portion, a notched portion, The at least one bent portion, the notched portion, has a conductivity that provides an increased electrical length that is greater than the electrical length of a simple conductive strip of the same physical length.
  • An antenna having a conductive strip is disclosed.
  • the transmission line may be lengthened in order to increase the phase difference in the transmission line.
  • the transmission line is lengthened, there is a problem that the phase shifter including the transmission line becomes large, so that the phase shifter cannot be accommodated in the antenna or the cost required for the transmission line becomes high. It is an object of the present invention to provide a transmission line that increases the amount of phase delay as compared with the conventional microstrip line.
  • a transmission line to which the present invention is applied includes a unit line having one annular stub and another annular stub arranged opposite to each other through a bent line formed in a crank shape, and the unit line A first conductor configured by arranging the lines inverted to each other and a second conductor arranged so as to face the first conductor are provided.
  • a notch is provided at a connecting portion between one unit line and another unit line. The cut may be used to adjust the characteristic impedance.
  • the rings in the one annular stub and the other annular stub can be used for suppressing return loss.
  • a transmission line to which the present invention is applied includes a first conductor having a meander-shaped line and a stub arranged in a recess formed by the meander-shaped bend, and And a second conductor arranged to face the first conductor.
  • the stub may be an annular stub.
  • a plurality of the stubs may be arranged in each of the recesses.
  • the meander-shaped line may be characterized in that a notch is provided at a connection portion between one bent line and another bent line formed in a crank shape.
  • a phase shifter to which the present invention is applied includes a unit line having one annular stub and another annular stub arranged opposite to each other via a bent line formed in a crank shape.
  • the unit lines are arranged to be inverted with respect to each other, one end is connected to the first input/output terminal, and the first conductor is made of a conductive material, and one end is connected to the second input terminal. The other end is connected to the output terminal and extends so as to be electrically coupled to the first conductor, and the position electrically coupled to the first conductor is relatively movable in the first conductor.
  • a third conductor made of a conductive material, and a second conductor arranged to face the first conductor and the third conductor.
  • FIG. 1B is a diagram showing a cross section taken along the line AA of FIG.
  • (A) is a figure which shows the unit structure used as the unit which comprises the conductor which concerns on Embodiment 1
  • (B) is a figure which shows the case where two unit structures are arrange
  • (C) is a diagram showing an overview of a conductor according to the first embodiment.
  • FIG. 3 is a diagram showing an example of an equivalent circuit of the transmission line according to the first exemplary embodiment.
  • FIG. 3A is a diagram showing a configuration including an annular stub and two impedance adjusting units according to the first embodiment.
  • FIG. 9A is a diagram showing Smith chart characteristics in the configuration of each parameter of X1 to X3.
  • B is a diagram showing a phase characteristic in the configuration of each parameter of X1 to X3.
  • FIG. 4A is a diagram showing a transmission line in which two unit structures according to the first embodiment are arranged.
  • B is a figure which shows the transmission line provided with the non-annular stub instead of the annular stub.
  • FIG. 6A is a diagram showing a return loss characteristic in the transmission line shown in FIGS.
  • FIG. 6B is a diagram showing phase characteristics in the transmission lines shown in FIGS. 6A and 6B.
  • FIG. 6B is a diagram showing phase characteristics in the configuration of each parameter of X4 and X5.
  • A) is a figure which shows the return loss characteristic in the structure of each parameter of X6 and X7.
  • (B) is a diagram showing a phase characteristic in the configuration of each parameter of X6, X7.
  • A) is a figure which shows the conductor of the Example which concerns on Embodiment 1.
  • FIG. 3B is a diagram showing a conductor of a comparative example which is a conventional technique. It is a figure which shows the VSWR characteristic of the conductor of an Example, and the conductor of a comparative example.
  • FIG. 6 is a diagram showing an overview of a conductor according to the second embodiment. It is a figure which shows the external appearance of the conductor which concerns on Embodiment 3.
  • FIG. 1A is a diagram showing a configuration example of the phase shifter 1 to which the first embodiment is applied.
  • FIG. 1B is a diagram showing a cross section taken along the line AA of FIG.
  • the phase shifter 1 includes a plate member 114 and a plate member 115, and the plate member 115 is stacked on the plate member 114.
  • a linear conductor 111, a conductor 112 having one end overlapped with the conductor 111, and a spacer 113 are arranged on the plate-shaped member 115.
  • the plate-shaped member 114 is arranged to face the conductor 111, the conductor 112, and the spacer 113 with the plate-shaped member 115 interposed therebetween.
  • the phase shifter 1 includes P-In/Out which is an input/output terminal connected to the conductor 112, and Port1 and Port2 which are input/output terminals connected to the conductor 111. Then, the phase shifter 1 shifts the phase of the transmission signal input to the input/output terminal (P-In/Out) between the two input/output terminals (Port 1, Port 2) and outputs the shifted signal. Also, the phase shifter 1 shifts the phases of the received signals input to the two input/output terminals (Port 1, Port 2) so that they are different from each other, synthesizes them, and outputs them from the input/output terminals (P-In/Out). In the present embodiment, each of Port1 and Port2 is an example of the first input/output terminal. P-In/Out is an example of the second input/output terminal.
  • phase shifter 1 when the phase shifter 1 transmits a radio wave, Port1 and Port2 of the phase shifter 1 output the signals shifted in phase with respect to the transmission signal input to P-In/Out. .. Further, for example, when the phase shifter 1 receives a radio wave, P-In/Out shifts the phases of the received signals input to Port 1 and Port 2 and synthesizes and outputs them.
  • the amount of phase shift (phase shift amount) can be varied by moving the conductor 112, as will be described later.
  • the plate-shaped member 114 is made of a conductive material having high conductivity such as copper or aluminum.
  • the plate-shaped member 114 is connected to, for example, the ground and applies a reference potential to the conductor 111 and the conductor 112.
  • the plate member 115 is made of an insulating material (or a dielectric material) such as epoxy.
  • the conductors 111 and 112 are made of a conductive material having a high conductivity, such as copper or aluminum, and have a thickness of 1 mm, for example. These conductors 111 and 112 function as signal lines through which received signals and transmitted signals are transmitted.
  • the spacer 113 is made of, for example, an insulating material (or a dielectric material) such as polytetrafluoroethylene that causes little loss at high frequencies.
  • one end is connected to Port1 and the other end is connected to Port2.
  • one end is connected to P-In/Out, and the other end extends so as to be electrically coupled to the conductor 111 and overlaps with the conductor 111. It spreads in the width direction of the conductor 111.
  • a spacer 113 which is a dielectric layer, is sandwiched in a portion ⁇ where the conductor 112 and the conductor 111 overlap each other.
  • 111 is configured to be capacitively coupled (that is, electrically coupled).
  • the conductor 112 is configured to be movable in the arrow direction shown in FIG. 1A (for example, the width direction of the conductor 111). By moving the conductor 112, the position of the overlapping portion ⁇ of the conductor 112 and the conductor 111 moves along the conductor 111. As a result, the phase (phase shift amount) of the transmission/reception signal changes in Port1 and Port2.
  • the conductor 112 By widening the other end of the conductor 112 in the width direction of the conductor 111, the degree of coupling (capacitive coupling) of transmitted/received signals is increased. However, the other end of the conductor 112 does not have to be widened in the width direction. Further, the spacer 113 reduces friction with the conductor 111 when moving the conductor 112 and facilitates sliding. An air layer may be used instead of the spacer 113, which is a dielectric layer. Further, instead of moving the conductor 112, the conductor 111 may be moved. In other words, it is sufficient if the conductor 111 and the conductor 112 are relatively movable. In this embodiment, the conductor 111 is used as an example of the first conductor. The plate member 114 is used as an example of the second conductor. The conductor 112 is used as an example of the third conductor.
  • FIG. 2A is a diagram showing a unit structure 120 that is a unit constituting the conductor 111 according to the first embodiment
  • FIG. 2B is a diagram showing a case where two unit structures 120 are arranged. is there.
  • FIG. 2C is a diagram showing an overview of the conductor 111 according to the first embodiment.
  • the unit structure 120 is used as an example of the unit line.
  • the unit structure 120 includes two annular stubs 1A formed in an annular shape and a crank-shaped bent line 1B. Then, the two annular stubs 1A are arranged to face each other with the bent line 1B interposed therebetween. Further, a cut 1D is formed between the annular stub 1A and the bent line 1B. In other words, in the unit structure 120, the two annular stubs 1A and the bent line 1B alternately form cuts 1D.
  • an impedance adjusting section 1C is provided at both ends of the bent line 1B.
  • the impedance adjusting section 1C is a convex portion at both ends of the bent line 1B.
  • two unit structures 120 are arranged as shown in FIG. 2B, they are formed by notches extending from both sides of the conductor 111 in the width direction. Then, the one unit structure 120 and the other unit structure 120 are arranged to face each other via the impedance adjusting unit 1C. That is, the structure shown in FIG. 2B has a symmetrical structure with respect to the impedance adjusting unit 1C.
  • the conductor 111 is configured by arranging the unit structures 120 in an inverted manner and repeatedly arranging the unit structures 120.
  • four unit structures 120 are arranged.
  • a meander shape is formed by connecting a plurality of bent lines 1B.
  • two annular stubs 1A are provided in the recess 1E formed by the meander-shaped bending.
  • H1 is the width of the conductor 111 in the bent line 1B.
  • H2 is the length of the cut 1D between the annular stub 1A and the bent line 1B.
  • H3 is a length between the end of the annular stub 1A and the end of the ring (that is, the ring) in the annular stub 1A.
  • L1 is the length of the ring of the annular stub 1A.
  • L3 is the length of the annular stub 1A.
  • W1 is the width of the bent line 1B.
  • W2 is the width of the annular stub 1A.
  • W3 is the width of the impedance adjustment unit 1C.
  • W4 is the width between the end of the ring of the annular stub 1A and the end of the conductor 111.
  • P1 is the width of the ring of the annular stub 1A.
  • P2 is the width of the cut 1D between the annular stub 1A and the bent line 1B.
  • P3 is the width of the cut between the one annular stub 1A and the other annular stub 1A arranged via the impedance adjusting unit 1C.
  • the length H2 of the cut 1D and the length L3 of the annular stub 1A may be the same, or for example, the cut 1D may be extended toward the end of the conductor 111,
  • the position of the ring of the annular stub 1A may be changed so that H2 and L3 are different.
  • H3 may have a value common to all the annular stubs 1A, but it is not limited to such a configuration.
  • H3 may be set to different values for one annular stub 1A and another annular stub 1A.
  • transmission line ⁇ Equivalent circuit of transmission line>
  • FIG. 3 is a diagram showing an example of an equivalent circuit of the transmission line according to the first exemplary embodiment.
  • the transmission line according to the first embodiment is expressed as a configuration in which a plurality of equivalent circuits shown in FIG. 3 are connected.
  • this equivalent circuit is similar to a general microstrip line.
  • the physical transmission line length is shortened by increasing the phase delay amount per unit length of the transmission line, that is, by decreasing the phase velocity v 0 of the transmission line. The purpose is to let.
  • This phase velocity v 0 is expressed by the equation 1 using the inductance L and the capacitance C per unit length of the equivalent circuit shown in FIG.
  • Equation 1 From Equation 1, it can be seen that the phase velocity v 0 becomes smaller by increasing the inductance L or the capacitance C. In other words, it can be said that the physical transmission line length can be shortened by increasing the inductance L or the capacitance C.
  • the characteristic impedance Z 0 of the transmission line is expressed by the equation (2).
  • the inductance L or the capacitance C is set in order to shorten the physical transmission line length and to match the characteristic impedance Z 0 with a predetermined value.
  • a predetermined value for example, 50 ohms
  • FIG. 4A is a diagram showing a configuration including the annular stub 1A and the two impedance adjusting units 1C according to the first embodiment.
  • FIG. 4B is a diagram showing parameters of the configuration shown in FIG. An experiment was conducted using the parameters X1 to X3 in FIG. 4B, and changes in electrical characteristics due to differences in length of each part of the configuration in FIG. 4A were confirmed.
  • X1 and X2, W2, W4, and H3 are common, and for L3, X2 is 1 mm longer than X1.
  • L3, W2, and H3 are common, and W4 is shorter by 0.4 mm than X1.
  • FIG. 5A is a diagram showing Smith chart characteristics in the configuration of each parameter of X1 to X3.
  • FIG. 5B is a diagram showing a phase characteristic in the configuration of each parameter of X1 to X3.
  • the horizontal axis represents frequency (Frequency) (GHz) and the vertical axis represents phase (Phase) (degrees).
  • the phase characteristic means the reference phase and the phase of the radio wave reaching the other end with the phase of the radio wave transmitted from one end of the target configuration (in this example, the annular stub 1A) as a reference. It shows the difference with.
  • the capacitance C increases due to the Smith chart characteristic shown in FIG. Further, in the phase characteristic shown in FIG. 5(B), in the case of X2, a phase delay occurs as compared with the case of X1, and it is confirmed that a delay of 1.4 degrees occurs at 2.0 GHz, for example. Was done. From the above, it is understood that the capacitance C increases and the phase is delayed by increasing the length L3 of the annular stub 1A. Since the capacitance C is a parameter necessary to adjust the characteristic impedance Z 0 as shown in the equation 2, the characteristic impedance Z 0 is also adjusted by changing the length L3 of the annular stub 1A. It
  • the capacitance C or the inductance L can be adjusted and the characteristic impedance Z 0 can be adjusted.
  • the phase delay amount can be adjusted by changing the length L3 of the annular stub 1A.
  • FIG. 6A is a diagram showing a transmission line in which two unit structures 120 according to the first embodiment are arranged.
  • FIG. 6B is a diagram showing a transmission line provided with a non-annular stub 1F instead of the annular stub 1A.
  • the length H2 of the cut 1D see FIG. 2
  • the length L3 of the annular stub 1A (or stub 1F) are the same.
  • FIG. 7A is a diagram showing a return loss characteristic in the transmission line shown in FIGS. 6A and 6B.
  • the horizontal axis represents frequency (Frequency) (GHz) and the vertical axis represents return loss (Return Loss) (dB).
  • FIG. 7B is a diagram showing phase characteristics in the transmission lines shown in FIGS. 6A and 6B.
  • the horizontal axis represents frequency (Frequency) (GHz) and the vertical axis represents phase (Phase) (degrees).
  • the annular stub 1A of FIG. 6(A) is The return loss was good in both the configuration (with a ring) and the configuration of the non-ring stub 1F in FIG. 6(B) (without a ring). However, it was confirmed that the return loss was suppressed in the case of the configuration of the annular stub 1A (with a ring), as compared with the configuration of the non-annular stub 1F (without a ring).
  • the capacitance C becomes large and the phase delay easily occurs.
  • the current flows through the stub, matching of the characteristic impedance Z 0 becomes poor. Therefore, when a ring such as the ring stub 1A is provided, the flow of current flowing through the stub changes, and as a result, the characteristic impedance Z 0 changes and the return loss is suppressed.
  • the configuration of the annular stub 1A has the effect of suppressing the return loss and increasing the phase delay as compared with the configuration of the non-annular stub 1F. That is, the ring of the annular stub 1A can be used for suppressing the return loss and adjusting the phase delay.
  • the phase delay amount increases by the number of arranged unit structures 120 by increasing the number of arranged unit structures 120.
  • the phase delay amount when 2N unit structures 120 are arranged is N times the phase delay amount when two unit structures 120 are arranged.
  • P1 and H1 are common, and for L1 and L3, X5 is 1 mm longer than X4.
  • W4 is common to X4 and X5. More specifically, X4 is obtained by shortening L1, L3, and H1 by 1 mm in comparison with the parameters of FIG. 6A, and H1 is (L3+W4) as in the configuration shown in FIG. ) Is equal to the length. On the other hand, in the case of X5, L1 and L3 are made 1 mm longer than in the case of X4, and H1 and W4 are not changed. Therefore, at X5, the tip of the annular stub 1A has a structure protruding in the width direction of the conductor 111 with respect to the portion having the length H1 of the bent line 1B. With these configurations, the phase delay effect by increasing the length L3 of the annular stub 1A and the length L1 of the ring was confirmed.
  • FIG. 8A is a diagram showing a return loss characteristic in the configuration of each parameter of X4 and X5.
  • the horizontal axis represents frequency (Frequency) (GHz) and the vertical axis represents return loss (Return Loss) (dB).
  • FIG. 8B is a diagram showing phase characteristics in the configuration of each parameter of X4 and X5.
  • the horizontal axis represents frequency (Frequency) (GHz) and the vertical axis represents phase (Phase) (degrees).
  • the return loss is -25 dB or less, so it is the reference -25 dB or less, and it is confirmed that the return loss characteristics are similarly good.
  • FIG. 8B in the case of X5, there is a delay in the phase as compared with the case of X4.
  • the phase at 2.0 GHz is -112.7 degrees in the case of X4.
  • X6 and X7 L1, L3, and P1 are common, and with respect to H1, X7 is 1 mm longer than X6.
  • W4 is common to X6 and X7.
  • X6 is the same as the parameter of X5, and has a structure in which the tip of the annular stub 1A projects in the width direction of the conductor 111 with respect to the portion of the length H1 of the bent line 1B.
  • H1 is made 1 mm longer than in the case of X6, and L1, L3, and P1 are not changed.
  • This X7 is the same as the parameter of FIG. 6(A), and H1 is equal to the length of (L3+W4) as in the configuration shown in FIG. 6(A). With these configurations, the phase delay effect by increasing the width H1 of the conductor 111 in the bent line 1B was confirmed.
  • FIG. 9A is a diagram showing a return loss characteristic in the configuration of each parameter of X6 and X7.
  • the horizontal axis represents frequency (Frequency) (GHz) and the vertical axis represents return loss (Return Loss) (dB).
  • FIG. 9B is a diagram showing a phase characteristic in the configuration of each parameter of X6 and X7.
  • the horizontal axis represents frequency (Frequency) (GHz) and the vertical axis represents phase (Phase) (degrees).
  • the characteristic impedance Z 0 of the transmission line becomes smaller. ..
  • the characteristic impedance Z 0 of the transmission line increases.
  • the length L3 and ring length L1 of the annular stub 1A by adjusting the width H1 of the conductor, after adjusting the phase delay and the characteristic impedance Z 0, for example, 50 ohm characteristic impedance Z 0 of the conductor 111
  • the width W3 of the impedance adjusting unit 1C is adjusted to match the width W3.
  • the conductor 111 is connected to a device or a cable having a characteristic impedance Z 0 of 50 ohms at the input/output terminals of Port1 and Port2. Therefore, by adjusting the width W3 of the impedance adjusting portion 1C connected to Port1 or Port2, the characteristic impedance Z 0 of the conductor 111 is matched so as to be 50 ohms.
  • the width W3 of the impedance adjusting portion 1C connecting the unit structures 120 is also used for matching the characteristic impedance Z 0 of the conductor 111 to 50 ohms. As described above, by providing the impedance adjusting section 1C, it becomes easy to adjust the characteristic impedance Z 0 of the conductor 111.
  • FIG. 10A is a diagram showing the conductor 111 of the example according to the first embodiment.
  • FIG. 10B is a diagram showing a conductor 201 of a comparative example which is a conventional technique.
  • the length L of the conductor 111 of the example is 69.3 mm.
  • the conductor 201 of the comparative example is a conventional microstrip line, and the length L is 98.5 mm.
  • FIG. 11 is a diagram showing VSWR (Voltage Standing Wave Ratio) characteristics of the conductor 111 of the example and the conductor 201 of the comparative example.
  • the VSWR characteristic is one of the indices showing the high frequency characteristic, and is the degree to which a part of the signal is reflected on the circuit when the high frequency signal passes through. The larger the reflection, the larger the numerical value of VSWR, indicating that the signal loss (that is, the return loss) is large. Therefore, the VSWR is required to be as low as possible.
  • the numerical value of VSWR is represented by the ratio of the maximum value and the minimum value of the voltage as the voltage standing wave ratio, and is represented by the formula (3).
  • Equation 3 ⁇ is the voltage reflection coefficient, which is the ratio of the amplitude of the reflected wave to the amplitude of the traveling wave.
  • the horizontal axis represents frequency (GHz) and the vertical axis represents VSWR.
  • the VSWR of the conductor 111 of the embodiment in the frequency range of 0.1 to 3.0 GHz.
  • the characteristics were equivalent to the VSWR characteristics of the conductor 201 of the comparative example, and good results were obtained.
  • the length L of the conductor 111 of the example is about 30 mm shorter than the length L of the conductor 201 of the comparative example, but the conductor 111 of the example has a VSWR characteristic as compared with the conductor 201 of the comparative example. It was confirmed that it was not damaged.
  • FIG. 12 is a diagram showing phase characteristics of the conductor 111 of the example and the conductor 201 of the comparative example.
  • the horizontal axis represents frequency (Frequency) (GHz) and the vertical axis represents phase (Phase) (degrees).
  • the phase characteristic of the conductor 111 of the example was equivalent to that of the conductor 201 of the comparative example.
  • the length L of the conductor 111 of the example is about 30 mm shorter than the length L of the conductor 201 of the comparative example, but the conductor 111 of the example has a phase characteristic higher than that of the conductor 201 of the comparative example. It was confirmed that there was no big difference.
  • the transmission line according to the first embodiment when the transmission line according to the first embodiment is compared with the microstrip line having the same physical length, the transmission line according to the first embodiment has a microstrip line. It was confirmed that the phase delay amount was increased by 20% to 35% as compared with the line.
  • the conductor 111 has the annular stub 1A.
  • the conductor 111 includes a non-annular stub 1F instead of the annular stub 1A.
  • the configuration other than the stub 1F is the same as that of the first embodiment. Therefore, in the following, the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and different parts will be described.
  • FIG. 13 is a diagram showing an overview of the conductor 111 according to the second embodiment.
  • the unit structure 120 includes two stubs 1F and a bent line 1B. Then, the two stubs 1F are arranged to face each other via the bent line 1B. Further, the two unit structures 120 are arranged to face each other with the impedance adjusting unit 1C interposed therebetween. In this way, the conductor 111 is formed by repeatedly arranging the unit structures 120. Further, in the present embodiment, since the stub 1F that is not a ring is used, unlike the first embodiment, by providing a ring or changing the length L1 (see FIG. 2) of the ring, the phase delay is increased.
  • phase delay amount and the characteristic impedance Z 0 are adjusted by adjusting the lengths of other portions such as the width H1 of the conductor 111 (see FIG. 2) and the width W3 of the impedance adjustment unit 1C.
  • first embodiment and the second embodiment may be combined.
  • the annular stubs 1A instead of all the annular stubs 1A, non-annular stubs 1F are used, and instead of some annular stubs 1A, non-annular stubs 1F are used. Good.
  • the annular stub 1A and the stub 1F may be mixed.
  • the unit structure 120 of the conductor 111 includes the two annular stubs 1A.
  • the two annular stubs 1A are provided in the meander-shaped recess 1E.
  • the unit structure 120 of the conductor 111 includes one annular stub 1A.
  • one annular stub 1A is provided in the meander-shaped recess 1E.
  • the same parts as those in the first embodiment will be designated by the same reference numerals, description thereof will be omitted, and different parts will be described.
  • FIG. 14 is a diagram showing an overview of the conductor 111 according to the third embodiment.
  • the unit structure 120 of the conductor 111 includes one annular stub 1A and a bent line 1G bent in an L shape. Further, impedance adjusting sections 1C are provided at both ends of the bent line 1G. Then, the unit structure 120 is arranged via the impedance adjustment unit 1C. In this way, the conductor 111 is formed by repeatedly arranging the unit structures 120. In the example shown in FIG. 14, six unit structures 120 are arranged.
  • the meander shape is formed by disposing the plurality of bent lines 1G.
  • One annular stub 1A is provided in the meander-shaped recess 1E.
  • each part of the conductor 111 such as the length L3 of the annular stub 1A, the length L1 of the ring, and the width H1 of the conductor is adjusted to adjust the phase delay amount and the characteristic impedance Z 0 .
  • a stub 1F that is not annular may be provided instead of the annular stub 1A.
  • the phase delay amount and the characteristic impedance Z 0 are not adjusted by providing the ring or changing the length L1 of the ring, but for example, the width H1 of the conductor 111 and the impedance adjusting unit 1C are not adjusted.
  • the phase delay amount and the characteristic impedance Z 0 are adjusted by adjusting the lengths of other parts such as the width W3.
  • the meander-shaped recess 1E is provided with one or two annular stubs 1A, but the meander-shaped recess 1E is provided with three or more annular stubs 1A. Good. Also in this case, the amount of phase delay and the characteristic impedance Z 0 are adjusted by adjusting the length of each part of the conductor 111. Further, three or more non-annular stubs 1F may be provided in the meander-shaped recess 1E instead of the annular stub 1A.
  • another conductor may be further provided on the conductor 111 and the conductor 112 through an insulating material (or a dielectric material) or the like to form a three-layer triplate structure. ..
  • Another conductor provided on the conductor 111 and the conductor 112 is connected to, for example, the ground, and gives a reference potential to the conductor 111 and the conductor 112. Then, each of the conductor 111 and the conductor 112 constitutes a transmission line by the plate-shaped member 114, and also constitutes a transmission line by another conductor.
  • the transmission line is composed of three layers of a two-layer member (plate-shaped member 114 and another conductor) that gives a reference potential and a signal line layer (conductor 111 and conductor 112) provided between the two layers.
  • a two-layer member plate-shaped member 114 and another conductor
  • a signal line layer conductor 111 and conductor 112
  • the conductor 111 is a linear conductor in the first to third embodiments, the conductor 111 is not limited to a linear conductor.
  • the conductor 111 may be a conductor curved in an arc.
  • the conductor 112 is configured to be rotatable with respect to the conductor 111, for example, and by rotating the conductor 112, the position of the overlapping portion ⁇ between the conductor 112 and the conductor 111 moves along the conductor 111, and Port1 And Port2, the phase of the transmission/reception signal (phase shift amount) changes.
  • the conductor 111 is used for the phase shifter 1, but the structure is not limited to the structure used for the phase shifter 1.
  • the conductor 111 may be one that functions as a signal line through which a reception signal and a transmission signal are transmitted.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguides (AREA)

Abstract

クランク状に形成された曲折線路を介して対向に配置された一の環状スタブ及び他の環状スタブを有する単位線路を備え、単位線路を互いに反転して配置して構成される第1の導体と、第1の導体に対向して配置される第2の導体とを備える伝送線路。

Description

伝送線路及び移相器
 本発明は、伝送線路及び移相器に関する。
 例えば、引用文献1には、複数のアンテナ素子と、信号をフィードし、及び/又は前記アンテナ素子からの信号を受信するように構成され、マルチブレードワイパー型の位相シフタを含むフィードネットワークと、を含むアンテナであって、回転の中心に位置された一又はそれ以上の導電性ストリップ、すなわち該導電性ストリップの少なくとも1つは、少なくとも1つの曲折された部分、切り目が付された部分を含み、それら少なくとも1つの曲折された部分、切り目が付された部分は、同じ物理的長さの単純な導電性ストリップの電気的長さよりも大きい電気的長さを有する増加した電気的長さを与える導電性ストリップを有するアンテナが開示されている。
特許第5348683号公報
 伝送線路における位相量の差を大きくするために、伝送線路を長くすることがある。ただし、伝送線路を長くすることで、例えば伝送線路を備える移相器が大きくなるために移相器をアンテナに収容できなくなったり、伝送線路に要する費用が高くなったりするという問題がある。
 本発明の目的は、従来のマイクロストリップ線路と比較して、位相遅延の量を大きくする伝送線路を提供することにある。
 かかる目的のもと、本発明が適用される伝送線路は、クランク状に形成された曲折線路を介して対向に配置された一の環状スタブ及び他の環状スタブを有する単位線路を備え、当該単位線路を互いに反転して配置して構成される第1の導体と、前記第1の導体に対向して配置される第2の導体とを備える。
 ここで、一の単位線路と他の単位線路との接続部には、切り込みが設けられることを特徴とすることができる。
 また、前記切り込みは、特性インピーダンスの調整に用いられることを特徴とすることができる。
 さらに、前記一の環状スタブ及び前記他の環状スタブにおける環は、リターンロスの抑制に用いられることを特徴とすることができる。
 また、他の観点から捉えると、本発明が適用される伝送線路は、メアンダ形状の線路と、当該メアンダ形状の屈曲により形成される凹部に配置されるスタブとを有する第1の導体と、前記第1の導体に対向して配置される第2の導体とを備える。
 ここで、前記スタブは、環状スタブであることを特徴とすることができる。
 また、前記凹部のそれぞれには、複数の前記スタブが配置されることを特徴とすることができる。
 さらに、前記メアンダ形状の線路では、クランク状に形成された一の曲折線路と他の曲折線路との接続部に、切り込みが設けられることを特徴とすることができる。
 また、他の観点から捉えると、本発明が適用される移相器は、クランク状に形成された曲折線路を介して対向に配置された一の環状スタブ及び他の環状スタブを有する単位線路を備え、当該単位線路を互いに反転して配置して構成されており、一端部が第1の入出力端子に接続され、導電材料で構成された第1の導体と、一端部が第2の入出力端子に接続され、他端部が前記第1の導体と電気的に結合するように延びるとともに、当該第1の導体と電気的に結合する位置が当該第1の導体において相対的に移動可能である、導電材料で構成された第3の導体と、前記第1の導体及び前記第3の導体に対向して配置される第2の導体とを備える。
 本発明によれば、従来のマイクロストリップ線路と比較して、位相遅延の量を大きくする伝送線路を提供できる。
(A)実施の形態1が適用される移相器の構成例を示す図である。(B)は、図1(A)のA-A線での断面を示す図である。 (A)は、実施の形態1に係る導体を構成する単位となる単位構造を示す図であり、(B)は、2つの単位構造を配置した場合を示す図である。(C)は、実施の形態1に係る導体の概観を示す図である。 実施の形態1に係る伝送線路の等価回路の一例を示した図である。 (A)は、実施の形態1に係る環状スタブと2つのインピーダンス調整部とを含む構成を示す図である。(B)は、図4(A)に示す構成のパラメータを示す図である。 (A)は、X1~X3の各パラメータの構成におけるスミスチャート特性を示す図である。(B)は、X1~X3の各パラメータの構成における位相特性を示す図である。 (A)は、実施の形態1に係る単位構造を2つ配置した伝送線路を示す図である。(B)は、環状スタブの代わりに、環状ではないスタブを備えた伝送線路を示す図である。 (A)は、図6(A)、(B)に示す伝送線路におけるリターンロス特性を示す図である。(B)は、図6(A)、(B)に示す伝送線路における位相特性を示す図である。 (A)は、X4、X5の各パラメータの構成におけるリターンロス特性を示す図である。(B)は、X4、X5の各パラメータの構成における位相特性を示す図である。 (A)は、X6、X7の各パラメータの構成におけるリターンロス特性を示す図である。(B)は、X6、X7の各パラメータの構成における位相特性を示す図である。 (A)は、実施の形態1に係る実施例の導体を示す図である。(B)は、従来技術である比較例の導体を示す図である。 実施例の導体及び比較例の導体のVSWR特性を示す図である。 実施例の導体及び比較例の導体の位相特性を示す図である。 実施の形態2に係る導体の概観を示す図である。 実施の形態3に係る導体の概観を示す図である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[実施の形態1]
<移相器の構成>
 図1(A)は、実施の形態1が適用される移相器1の構成例を示す図である。図1(B)は、図1(A)のA-A線での断面を示す図である。
 移相器1は、板状部材114、板状部材115を備え、板状部材114の上に板状部材115が重ねられている。また、板状部材115の上には、直線状の導体111、一端部が導体111と重ねられた導体112、スペーサ113が配置される。付言すると、板状部材114は、板状部材115を挟んで、導体111、導体112、スペーサ113に対向して配置される。
 また、移相器1は、導体112に接続される入出力端子のP-In/Outと、導体111に接続される入出力端子のPort1、Port2を備える。そして、移相器1は、入出力端子(P-In/Out)に入力された送信信号の位相を2つの入出力端子(Port1、Port2)で異なるようにずらして出力する。また、移相器1は、2つの入出力端子(Port1、Port2)に入力された受信信号の位相を異なるようにずらして合成して、入出力端子(P-In/Out)から出力する。
 本実施の形態では、Port1、Port2のそれぞれが第1の入出力端子の一例である。また、P-In/Outが第2の入出力端子の一例である。
 より具体的には、例えば、移相器1が電波を送信する場合、移相器1のPort1及びPort2は、P-In/Outに入力された送信信号に対してそれぞれ位相をずらして出力する。また、例えば、移相器1が電波を受信する場合、P-In/Outは、Port1及びPort2にそれぞれ入力された受信信号の位相をずらして合成して出力する。
 なお、ずらす位相の量(移相量)は、後述するように、導体112を移動させることにより可変できるようになっている。
 板状部材114は、銅又はアルミニウムなどの導電率の高い導電材料で構成される。この板状部材114は、例えばアースに接続されており、導体111及び導体112に対して基準電位を与えるものである。
 板状部材115は、エポキシなどの絶縁材料(又は誘電材料)で構成される。
 導体111、112は、例えば、銅又はアルミニウムなどの導電率の高い導電材料で構成され、例えば厚さは1mmである。これらの導体111、112は、受信信号や送信信号が伝達される信号線路として機能するものである。
 スペーサ113は、例えばポリテトラフルオロエチレンなどの高周波において損失が少ない絶縁材料(又は誘電材料)で構成されている。
 さらに説明すると、導体111では、一端部がPort1に接続され、他端部がPort2に接続されている。また、導体112では、一端部がP-In/Outに接続され、他端部は、導体111と電気的に結合するように延びて導体111と重なっており、導体111と重なる部分αにおいて、導体111の幅方向に広がっている。さらに、導体112と導体111とが重なる部分αには、誘電体層であるスペーサ113が挟み込まれており、導体112と導体111とが重なる部分αにおいて、スペーサ113を介して、導体112と導体111とが容量結合(即ち、電気的に結合)するように構成されている。
 また、導体112は、図1(A)に示す矢印方向(例えば、導体111の幅方向)に移動可能に構成される。導体112を移動させることにより、導体112と導体111との重なる部分αの位置が導体111に沿って移動する。これにより、Port1及びPort2において、送受信信号の位相(移相量)が変化する。
 なお、導体112の他端部を、導体111の幅方向に広げることで、送受信信号の結合(容量結合)の程度が大きくなる。しかし、導体112の他端部を幅方向に広げなくともよい。
 また、スペーサ113は、導体112を移動させる場合に、導体111との摩擦を減らし、摺動を容易にする。なお、誘電体層であるスペーサ113の代わりに、空気層であってもよい。
 さらに、導体112を移動させる代わりに、導体111を移動させてもよい。言い換えると、導体111と導体112とが相対的に移動可能であればよい。
 本実施の形態では、第1の導体の一例として、導体111が用いられる。第2の導体の一例として、板状部材114が用いられる。第3の導体の一例として、導体112が用いられる。
<導体111の説明>
 次に、実施の形態1に係る導体111について詳述する。
 図2(A)は、実施の形態1に係る導体111を構成する単位となる単位構造120を示す図であり、図2(B)は、2つの単位構造120を配置した場合を示す図である。また、図2(C)は、実施の形態1に係る導体111の概観を示す図である。
 本実施の形態では、単位線路の一例として、単位構造120が用いられる。
 図2(A)に示すように、単位構造120は、環状に構成された2つの環状スタブ1A、クランク形状の曲折線路1Bを備える。そして、2つの環状スタブ1Aは、曲折線路1Bを介して対向に配置される。また、環状スタブ1Aと曲折線路1Bとの間には切り込み1Dが形成される。言い換えると、単位構造120では、2つの環状スタブ1A及び曲折線路1Bにより、互い違いに切り込み1Dが形成される。
 また、曲折線路1Bの両端部、言い換えると、一の曲折線路1Bと他の曲折線路1Bとの接続部(又は、曲折線路1BにおいてPort1又はPort2と接続される部分)には、インピーダンス調整部1Cが設けられる。このインピーダンス調整部1Cは、図2(A)に示すように、曲折線路1Bの両端部における凸部である。図2(B)のように2つの単位構造120を配置した場合には、導体111の両側から幅方向に向かう切り込みによって形成される。そして、一の単位構造120と他の単位構造120とは、インピーダンス調整部1Cを介して対向に配置される。即ち、図2(B)に示す構造は、インピーダンス調整部1Cに対して対称構造となっている。
 このようにして、導体111は、単位構造120を互いに反転して配置して、単位構造120を繰り返し配置することにより構成される。図2(C)に示す例では、4つの単位構造120が配置されている。
 また、導体111では、複数の曲折線路1Bを接続することにより、メアンダ形状が形成される。実施の形態1では、図2(C)に示すように、このメアンダ形状の屈曲により形成される凹部1Eに、2つの環状スタブ1Aが設けられる。
 次に、図2(B)を参照しながら、導体111を構成する各部の長さ・幅について説明する。
 H1は、曲折線路1Bにおける導体111の幅である。H2は、環状スタブ1Aと曲折線路1Bとの間の切れ込み1Dの長さである。H3は、環状スタブ1Aにおいて、環状スタブ1Aの端部と環(即ち、輪)の端部との間の長さである。
 L1は、環状スタブ1Aの環の長さである。L3は、環状スタブ1Aの長さである。
 W1は、曲折線路1Bの幅である。W2は、環状スタブ1Aの幅である。W3は、インピーダンス調整部1Cの幅である。W4は、環状スタブ1Aの環の端部と導体111の端部との間の幅である。
 P1は、環状スタブ1Aの環の幅である。P2は、環状スタブ1Aと曲折線路1Bとの間の切れ込み1Dの幅である。P3は、インピーダンス調整部1Cを介して配置される一の環状スタブ1Aと他の環状スタブ1Aとの間の切れ込みの幅である。
 なお、本実施の形態において、切れ込み1Dの長さH2と、環状スタブ1Aの長さL3とは、同じにしてもよいし、例えば、切れ込み1Dを導体111の端部に向けて延長したり、環状スタブ1Aの環の位置を変更したりして、H2とL3とが異なるようにしてもよい。
 また、本実施の形態において、H3は、全ての環状スタブ1Aにおいて共通の値にしてもよいが、このような構成に限られない。一の環状スタブ1Aと他の環状スタブ1AとでH3を異なる値にしてもよい。
<伝送線路の等価回路>
 次に、実施の形態1に係る導体111の特性を説明する。なお、導体111の特性を説明するにあたり、導体111と、例えば板状部材114のように基準電位を与える他の導体とによって、伝送線路(以下、単に「伝送線路」という)を構成するものとする。
 図3は、実施の形態1に係る伝送線路の等価回路の一例を示した図である。実施の形態1に係る伝送線路は、図3に示す等価回路を複数接続した構成として表現される。付言すると、この等価回路は、一般的なマイクロストリップ線路と同様である。
 ここで、本実施の形態では、伝送線路の単位長さ当たりの位相の遅延量を大きくすることにより、即ち、伝送線路の位相速度v0を小さくすることにより、物理的な伝送線路長を短縮させることを目的としている。この位相速度v0は、図3に示す等価回路の単位長さ当たりのインダクタンスL及びキャパシタンスCを用いて、数1式のように表される。
Figure JPOXMLDOC01-appb-M000001
 数1式から、インダクタンスL又はキャパシタンスCを増加させることで、位相速度v0が小さくなることがわかる。言い換えると、インダクタンスL又はキャパシタンスCを増加させることで、物理的な伝送線路長を短縮させることが可能になるといえる。
 他方、伝送線路の特性インピーダンスZ0は、数2式のように表される。
Figure JPOXMLDOC01-appb-M000002
 伝送線路の特性インピーダンスZ0を予め定められた値(例えば50オーム)に整合するためには、数2式を満たすインダクタンスL又はキャパシタンスCを設定することが求められる。
 このように、実施の形態1に係る伝送線路では、物理的な伝送線路長を短縮させるために、また、特性インピーダンスZ0を予め定められた値に整合するために、インダクタンスL又はキャパシタンスCを設定する必要がある。そこで、導体111の各部の長さが調整される。
<環状スタブ1Aの特性>
 次に、伝送線路のうちの環状スタブ1Aの特性について説明する。図4(A)は、実施の形態1に係る環状スタブ1Aと2つのインピーダンス調整部1Cとを含む構成を示す図である。図4(B)は、図4(A)に示す構成のパラメータを示す図である。図4(B)のX1~X3のパラメータを使用して実験を行い、図4(A)の構成の各部の長さの違いによる電気的特性の変化を確認した。
 X1は、L3=4mm、W2=2.1mm、W4=1.8mm、H3=1mmである。X2は、L3=5mm、W2=2.1mm、W4=1.8mm、H3=1mmである。X3は、L3=4mm、W2=2.1mm、W4=1.4mm、H3=1mmである。
 付言すると、X1とX2を比較した場合、W2、W4、H3は共通し、L3について、X2はX1よりも1mm長い。また、X1とX3を比較した場合、L3、W2、H3は共通し、W4について、X3はX1よりも0.4mm短い。
 なお、図4(B)に示す例では、環状スタブ1Aの環の長さL1(図2(B)参照)について示していないが、L3について、X2はX1よりも1mm長いのと同様に、L1についても、X2はX1よりも1mm長いものとする。
 図5(A)は、X1~X3の各パラメータの構成におけるスミスチャート特性を示す図である。また、図5(B)は、X1~X3の各パラメータの構成における位相特性を示す図である。図5(B)において、横軸は周波数(Frequency)(GHz)、縦軸は位相(Phase)(度)である。ここで、位相特性とは、対象となる構成(この例では、環状スタブ1A)において、その一端部から送信される電波の位相を基準として、その基準の位相と他端部に届く電波の位相との差異を示すものである。
 X1を基準寸法とした場合、X2のように環状スタブ1Aの長さL3を延長すると、図5(A)に示すスミスチャート特性により、キャパシタンスCが増加することが確認された。また、図5(B)に示す位相特性では、X2の場合、X1の場合と比較して、位相の遅れが生じており、例えば2.0GHzでは、1.4度の遅れが生じることが確認された。
 以上より、環状スタブ1Aの長さL3を長くすることにより、キャパシタンスCが増加し、位相を遅延させる効果があることがわかる。なお、数2式に示すように、キャパシタンスCは、特性インピーダンスZ0を調整する上で必要なパラメータであるため、環状スタブ1Aの長さL3を変更することで、特性インピーダンスZ0も調整される。
 また、X1を基準寸法とした場合、X3のようにW4を狭くすると、図5(A)に示すスミスチャート特性により、インダクタンスLが増加することが確認された。一方で、図5(B)に示す位相特性では、X3の場合、X1の場合と同様の特性を示している。
 以上より、W4を0.4mm狭くすることにより、インダクタンスLが増加するが、位相の遅延への影響は小さいことがわかる。なお、数2式に示すように、インダクタンスLは、特性インピーダンスZ0を調整する上で必要なパラメータであるため、W4を変更することで、特性インピーダンスZ0も調整される。
 このように、環状スタブ1Aの長さL3又はW4をそれぞれ変更することにより、キャパシタンスC又はインダクタンスLを調整し、特性インピーダンスZ0を調整することができる。また、環状スタブ1Aの長さL3を変更することにより、位相遅延量を調整することができる。W4を変更した場合には、その変更の程度にもよるが、0.4mm狭くした場合には位相遅延量への影響は小さい。
<環状スタブ1Aの環による効果>
 次に、伝送線路のうちの環状スタブ1Aの環による効果について説明する。図6(A)は、実施の形態1に係る単位構造120を2つ配置した伝送線路を示す図である。一方、図6(B)は、環状スタブ1Aの代わりに、環状ではないスタブ1Fを備えた伝送線路を示す図である。そして、L1=3.5mm、L3=4.5mm、P1=0.7mm、H1=5.8mm、W4=1.3mmとして、実験を行った。
 なお、この例では、切れ込み1Dの長さH2(図2参照)と、環状スタブ1A(又はスタブ1F)の長さL3とが同じ長さになるように構成した。
 また、図7(A)は、図6(A)、(B)に示す伝送線路におけるリターンロス特性を示す図である。図7(A)において、横軸は周波数(Frequency)(GHz)、縦軸はリターンロス(Return Loss)(dB)である。また、図7(B)は、図6(A)、(B)に示す伝送線路における位相特性を示す図である。図7(B)において、横軸は周波数(Frequency)(GHz)、縦軸は位相(Phase)(度)である。
 リターンロスが良好であるか否かを判断するための基準として、例えば-25dB以下であることを条件とした場合、図7(A)に示すように、図6(A)の環状スタブ1Aの構成(環あり)、図6(B)の環状ではないスタブ1Fの構成(環なし)、共にリターンロスが良好であった。ただし、環状スタブ1Aの構成(環あり)の場合、環状ではないスタブ1Fの構成(環なし)の場合と比較して、リターンロスが抑制されることが確認された。
 付言すると、メアンダ形状の線路に対して、環状スタブ1Aやスタブ1Fのようなスタブを設けると、キャパシタンスCが大きくなり、位相遅延が生じ易くなる。一方で、スタブに電流が流れることにより、特性インピーダンスZ0の整合が悪くなる。そこで、環状スタブ1Aのように環を設けると、スタブに流れる電流の流れが変化するため、その結果、特性インピーダンスZ0が変わり、リターンロスが抑制されることになる。
 また、図7(B)に示す位相特性では、図6(A)の環状スタブ1Aの構成(環あり)の場合、図6(B)の環状ではないスタブ1Fの構成(環なし)の場合と比較して、位相の遅れが生じた。例えば2GHzにおいて、環状スタブ1Aの構成(環あり)では-120.8度であり、環状ではないスタブ1Fの構成(環なし)では-120.1度であった。よって、環状スタブ1Aの構成(環あり)の場合には、環状ではないスタブ1Fの構成(環なし)の場合と比較して、0.7度の位相遅延が生じることが確認された。
 以上より、環状スタブ1Aの構成の場合、環状ではないスタブ1Fの構成の場合と比較して、リターンロスを抑制し、且つ位相遅延を増加させる効果があることがわかる。即ち、環状スタブ1Aの環は、リターンロスの抑制、位相遅延の調整に用いることができる。
 なお、図6に示す例では、単位構造120を2つ配置したが、配置する単位構造120の数を増やすことにより、位相遅延量は、その配置した単位構造120の個数分増加する。例えば、単位構造120を2N個配置した場合の位相遅延量は、単位構造120を2つ配置した場合の位相遅延量のN倍になる。
<環状スタブ1Aの長さを増加させた場合の位相遅延>
 次に、伝送線路のうちの環状スタブ1Aの長さを増加させた場合の位相遅延効果について説明する。伝送線路は、図6(A)に示すものと同様であり、パラメータとして、X4、X5を使用して実験を行った。
 X4は、L1=2.5mm、L3=3.5mm、P1=0.7mm、H1=4.8mmである。X5は、L1=3.5mm、L3=4.5mm、P1=0.7mm、H1=4.8mmである。
 付言すると、X4とX5を比較した場合、P1、H1は共通し、L1及びL3について、X5はX4よりも1mm長い。なお、W4は、X4とX5で共通である。
 さらに説明すると、X4は、図6(A)のパラメータと比較して、L1、L3、H1を1mmずつ短くしたものであり、図6(A)に示す構成のように、H1は、(L3+W4)の長さに等しい。一方、X5の場合、L1及びL3をX4の場合よりも1mm長くして、H1及びW4を変更しない。そのため、X5では、環状スタブ1Aの先端が、曲折線路1BのH1の長さの部分に対して、導体111の幅方向に飛び出した構造になる。
 これらの構成により、環状スタブ1Aの長さL3及び環の長さL1を増加させたことによる位相遅延効果を確認した。
 図8(A)は、X4、X5の各パラメータの構成におけるリターンロス特性を示す図である。図8(A)において、横軸は周波数(Frequency)(GHz)、縦軸はリターンロス(Return Loss)(dB)である。また、図8(B)は、X4、X5の各パラメータの構成における位相特性を示す図である。図8(B)において、横軸は周波数(Frequency)(GHz)、縦軸は位相(Phase)(度)である。
 図8(A)に示すように、X4及びX5において、リターンロスは-25dB以下であるため、基準である-25dB以下であり、リターンロス特性は同様に良好であることが確認された。一方、図8(B)に示すように、X5の場合、X4の場合と比較して、位相の遅れが生じており、例えば2.0GHzにおける位相は、X4の場合には-112.7度であるのに対して、X5の場合には-117.1度であった。即ち、図6(A)に示す伝送線路において、4箇所ある環状スタブ1Aの長さが1mm増加することにより、4.4度の位相遅延が生じることが確認された。
 以上より、環状スタブ1Aの長さL3及び環の長さL1を増加させることにより、位相遅延を生じさせることが可能であり、L3及びL1の値を変更することにより、位相遅延量が調整される。
<導体111の幅を増加させた場合の位相遅延>
 次に、伝送線路における導体111の幅を増加させた場合の位相遅延効果について説明する。伝送線路としては、図6(A)に示すものと同様であり、パラメータとして、X6、X7を使用して実験を行った。
 X6は、L1=3.5mm、L3=4.5mm、P1=0.7mm、H1=4.8mmである。X7は、L1=3.5mm、L3=4.5mm、P1=0.7mm、H1=5.8mmである。
 付言すると、X6とX7を比較した場合、L1、L3、P1は共通し、H1について、X7はX6よりも1mm長い。なお、W4は、X6とX7で共通である。
 さらに説明すると、X6は、X5のパラメータと同様であり、環状スタブ1Aの先端が、曲折線路1BのH1の長さの部分に対して、導体111の幅方向に飛び出した構造である。一方、X7の場合、H1をX6の場合よりも1mm長くして、L1、L3、P1を変更しない。このX7は、図6(A)のパラメータと同様であり、図6(A)に示す構成のように、H1は、(L3+W4)の長さに等しい。
 これらの構成により、曲折線路1Bにおける導体111の幅H1を増加させたことによる位相遅延効果を確認した。
 図9(A)は、X6、X7の各パラメータの構成におけるリターンロス特性を示す図である。図9(A)において、横軸は周波数(Frequency)(GHz)、縦軸はリターンロス(Return Loss)(dB)である。また、図9(B)は、X6、X7の各パラメータの構成における位相特性を示す図である。図9(B)において、横軸は周波数(Frequency)(GHz)、縦軸は位相(Phase)(度)である。
 図9(A)に示すように、X6及びX7において、リターンロスは-25dB以下であるため、基準である-25dB以下であり、リターンロス特性は同様に良好であることが確認された。一方、図9(B)に示すように、X7の場合、X6の場合と比較して、位相の遅れが生じており、例えば2.0GHzにおける位相は、X6の場合には-117.1度であるのに対して、X7の場合には-121.2度であった。即ち、図6(A)に示す伝送線路において、2箇所あるH1の部分の幅を1mm増加することにより、4.1度の位相遅延が生じることが確認された。
 以上より、導体111の幅H1を増加させることにより、位相遅延を生じさせることが可能であり、H1の値を変更することにより、位相遅延量が調整される。
 なお、伝送線路では、インピーダンス調整部1Cの幅W3(図2参照)を広くすることで、伝送線路上で受信信号や送信信号が伝達され易くなるため、伝送線路の特性インピーダンスZ0は小さくなる。一方で、インピーダンス調整部1Cの幅W3を狭くすることで、伝送線路の特性インピーダンスZ0は大きくなる。例えば、環状スタブ1Aの長さL3や環の長さL1、導体の幅H1などを調整して、位相遅延量や特性インピーダンスZ0を調整した後、導体111の特性インピーダンスZ0を例えば50オームに整合させるために、インピーダンス調整部1Cの幅W3の調整が行われる。
 より具体的には、例えば、導体111は、Port1及びPort2の入出力端子において、特性インピーダンスZ0が50オームの機器やケーブルと接続される。そこで、Port1又はPort2と接続されるインピーダンス調整部1Cの幅W3を調整することにより、導体111の特性インピーダンスZ0が50オームになるように整合される。また、単位構造120同士を接続するインピーダンス調整部1Cの幅W3についても、導体111の特性インピーダンスZ0を50オームに整合するために用いられる。このように、インピーダンス調整部1Cを設けることにより、導体111の特性インピーダンスZ0を調整し易くなる。
<伝送線路の特性>
 さらに、実施例に基づいて、実施の形態1に係る伝送線路の特性について説明する。
 図10(A)は、実施の形態1に係る実施例の導体111を示す図である。また、図10(B)は、従来技術である比較例の導体201を示す図である。
 実施例の導体111の長さLは69.3mmである。一方、比較例の導体201は、従来のマイクロストリップラインであり、長さLは98.5mmである。
 次に、図11及び図12を参照しながら、図10(A)の実施例の導体111及び図10(B)の比較例の導体201を用いた実験結果について説明する。
 図11は、実施例の導体111及び比較例の導体201のVSWR(Voltage Standing Wave Ratio)特性を示す図である。VSWR特性とは、高周波特性を示す指標の1つであり、高周波信号が通過するときに信号の一部が回路上で反射されてしまう度合である。反射が大きいほどVSWRの数値が大きくなり、信号ロス(即ち、リターンロス)が大きいことを示しているため、VSWRはできる限り低いことが求められる。
 VSWRの数値は、電圧定在波比として、電圧の最大値と最小値との比で表され、数3式のように表される。
Figure JPOXMLDOC01-appb-M000003
 数3式において、ρは、電圧反射係数であり、進行波の振幅に対する反射波の振幅の比率である。
 図11において、横軸は周波数(Frequency)(GHz)、縦軸はVSWRである。VSWRが良好であるか否かを判断するための基準として、例えば、1.1以下であることを条件とした場合、周波数0.1~3.0GHzの範囲で、実施例の導体111のVSWR特性は比較例の導体201のVSWR特性と同等となり、良好な結果が得られた。言い換えると、実施例の導体111の長さLは、比較例の導体201の長さLよりも約30mm短いが、実施例の導体111は、比較例の導体201と比較して、VSWR特性が損なわれていないことが確認された。
 図12は、実施例の導体111及び比較例の導体201の位相特性を示す図である。図12において、横軸は周波数(Frequency)(GHz)、縦軸は位相(Phase)(度)である。そして、周波数0.1~3.0GHzの範囲で、実施例の導体111の位相特性は比較例の導体201の位相特性と同等であった。言い換えると、実施例の導体111の長さLは、比較例の導体201の長さLよりも約30mm短いが、実施例の導体111は、比較例の導体201と比較して、位相特性に大きな差異のないことが確認された。
 なお、図10~図12には示していないが、実施の形態1に係る伝送線路と、同じ物理長さのマイクロストリップ線路とを比較した場合、実施の形態1に係る伝送線路では、マイクロストリップ線路と比較して、位相遅延量が20%~35%増加することが確認された。
[実施の形態2]
 実施の形態1において、導体111は環状スタブ1Aを備えていた。一方、実施の形態2では、導体111は、環状スタブ1Aの代わりに、環状ではないスタブ1Fを備えている。なお、実施の形態2において、スタブ1F以外の他の構成は実施の形態1と同様である。よって、以下では、実施の形態1と同様の部分には同じ符号を付して説明を省略し、異なる部分を説明する。
 図13は、実施の形態2に係る導体111の概観を示す図である。図13に示すように、単位構造120は、2つのスタブ1F、曲折線路1Bを備える。そして、2つのスタブ1Fは、曲折線路1Bを介して対向に配置される。また、2つの単位構造120は、インピーダンス調整部1Cを介して対向に配置される。このようにして、導体111は、単位構造120が繰り返し配置されることにより構成される。
 そして、本実施の形態では、環状ではないスタブ1Fを用いるため、実施の形態1とは異なり、環を設けたり、環の長さL1(図2参照)を変化させたりすることによって、位相遅延量や特性インピーダンスZ0の調整は行われない。例えば導体111の幅H1(図2参照)やインピーダンス調整部1Cの幅W3など、その他の各部の長さが調整されることにより、位相遅延量や特性インピーダンスZ0が調整される。
 また、実施の形態1と実施の形態2とを組み合わせてもよい。例えば、実施の形態1に係る導体111において、全ての環状スタブ1Aに代えて、環状ではないスタブ1Fを用いるのではなく、一部の環状スタブ1Aに代えて、環状ではないスタブ1Fを用いてもよい。言い換えると、導体111において、環状スタブ1Aとスタブ1Fとが混在していてもよい。
[実施の形態3]
 実施の形態1において、導体111の単位構造120は、2つの環状スタブ1Aを備えていた。言い換えると、実施の形態1では、メアンダ形状の凹部1Eに、2つの環状スタブ1Aが設けられた。一方、実施の形態3では、導体111の単位構造120は、1つの環状スタブ1Aを備えている。そして、メアンダ形状の凹部1Eには、1つの環状スタブ1Aが設けられる。なお、実施の形態3において、実施の形態1と同様の部分には同じ符号を付して説明を省略し、異なる部分を説明する。
 図14は、実施の形態3に係る導体111の概観を示す図である。図14に示すように、導体111の単位構造120は、1つの環状スタブ1A、L字型に曲折している曲折線路1Gを備える。また、曲折線路1Gの両端部には、インピーダンス調整部1Cが設けられる。そして、インピーダンス調整部1Cを介して単位構造120が配置される。
 このようにして、導体111は、単位構造120が繰り返し配置されることにより構成される。図14に示す例では、6つの単位構造120が配置されている。
 付言すると、導体111では、複数の曲折線路1Gが配置されることにより、メアンダ形状が形成される。このメアンダ形状の凹部1Eに、1つの環状スタブ1Aが設けられる。
 そして、環状スタブ1Aの長さL3や環の長さL1、導体の幅H1などの導体111の各部の長さが調整されることにより、位相遅延量や特性インピーダンスZ0が調整される。
 なお、実施の形態3において、実施の形態2と同様に、環状スタブ1Aの代わりに、環状ではないスタブ1Fを備えてもよい。この場合も、環を設けたり、環の長さL1を変化させたりすることによって、位相遅延量や特性インピーダンスZ0の調整は行われないが、例えば導体111の幅H1やインピーダンス調整部1Cの幅W3など、その他の各部の長さが調整されることにより、位相遅延量や特性インピーダンスZ0が調整される。
[他の実施の形態]
 次に、他の実施の形態について説明する。
 実施の形態1及び実施の形態3では、メアンダ形状の凹部1Eには、1つ又は2つの環状スタブ1Aが設けられたが、メアンダ形状の凹部1Eに、3つ以上の環状スタブ1Aを設けてもよい。この場合も、導体111の各部の長さが調整されることにより、位相遅延量や特性インピーダンスZ0が調整される。
 また、メアンダ形状の凹部1Eに、環状スタブ1Aの代わりに、環状ではないスタブ1Fを3つ以上設けてもよい。
 また、実施の形態1~実施の形態3では、さらに、導体111及び導体112の上に、絶縁材料(又は誘電材料)等を介して別の導体を設け、3層のトリプレート構造としてもよい。導体111及び導体112の上に設けられる別の導体は、例えばアースに接続されて、導体111及び導体112に対して基準電位を与える。そして、導体111及び導体112のそれぞれは、板状部材114によって伝送線路を構成するとともに、別の導体によっても伝送線路を構成する。即ち、基準電位を与える2層の部材(板状部材114、別の導体)、それら2層の間に設けられた信号線路の層(導体111及び導体112)という3層によって構成される。このように、別の導体を設けて3層のトリプレート構造にすることによって、例えば、伝送線路におけるノイズの発生が抑制される。
 さらに、実施の形態1~実施の形態3では、導体111を直線状の導体としたが、導体111は直線状のものに限られない。例えば、導体111を円弧上に湾曲した導体としてもよい。この場合、導体112は、例えば、導体111に対して回転可能に構成され、導体112を回転させることにより、導体112と導体111との重なる部分αの位置が導体111に沿って移動し、Port1及びPort2において、送受信信号の位相(移相量)が変化する。
 そして、実施の形態1~実施の形態3では、導体111を移相器1に用いることとしたが、移相器1に用いる構成に限られない。導体111は、受信信号や送信信号が伝達される信号線路として機能するものであればよい。
 なお、上記では種々の実施形態および変形例を説明したが、これらの実施形態や変形例どうしを組み合わせて構成してももちろんよい。
 また、本開示は上記の実施形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の形態で実施することができる。
1…移相器、1A…環状スタブ、1B…曲折線路、1C…インピーダンス調整部、1E…凹部、1F…スタブ、111…導体、112…導体、114…板状部材、120…単位構造

Claims (9)

  1.  クランク状に形成された曲折線路を介して対向に配置された一の環状スタブ及び他の環状スタブを有する単位線路を備え、当該単位線路を互いに反転して配置して構成される第1の導体と、
     前記第1の導体に対向して配置される第2の導体と
    を備える伝送線路。
  2.  一の単位線路と他の単位線路との接続部には、切り込みが設けられること
    を特徴とする請求項1に記載の伝送線路。
  3.  前記切り込みは、特性インピーダンスの調整に用いられること
    を特徴とする請求項2に記載の伝送線路。
  4.  前記一の環状スタブ及び前記他の環状スタブにおける環は、リターンロスの抑制に用いられること
    を特徴とする請求項1に記載の伝送線路。
  5.  メアンダ形状の線路と、当該メアンダ形状の屈曲により形成される凹部に配置されるスタブとを有する第1の導体と、
     前記第1の導体に対向して配置される第2の導体と
    を備える伝送線路。
  6.  前記スタブは、環状スタブであること
    を特徴とする請求項5に記載の伝送線路。
  7.  前記凹部のそれぞれには、複数の前記スタブが配置されること
    を特徴とする請求項5又は6に記載の伝送線路。
  8.  前記メアンダ形状の線路では、クランク状に形成された一の曲折線路と他の曲折線路との接続部に、切り込みが設けられること
    を特徴とする請求項5に記載の伝送線路。
  9.  クランク状に形成された曲折線路を介して対向に配置された一の環状スタブ及び他の環状スタブを有する単位線路を備え、当該単位線路を互いに反転して配置して構成されており、一端部が第1の入出力端子に接続され、導電材料で構成された第1の導体と、
     一端部が第2の入出力端子に接続され、他端部が前記第1の導体と電気的に結合するように延びるとともに、当該第1の導体と電気的に結合する位置が当該第1の導体において相対的に移動可能である、導電材料で構成された第3の導体と、
     前記第1の導体及び前記第3の導体に対向して配置される第2の導体と
    を備える移相器。
PCT/JP2019/002774 2019-01-28 2019-01-28 伝送線路及び移相器 WO2020157804A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980087282.4A CN113287226B (zh) 2019-01-28 2019-01-28 传输线路及移相器
JP2020568894A JP7026418B2 (ja) 2019-01-28 2019-01-28 伝送線路及び移相器
PCT/JP2019/002774 WO2020157804A1 (ja) 2019-01-28 2019-01-28 伝送線路及び移相器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002774 WO2020157804A1 (ja) 2019-01-28 2019-01-28 伝送線路及び移相器

Publications (1)

Publication Number Publication Date
WO2020157804A1 true WO2020157804A1 (ja) 2020-08-06

Family

ID=71842146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002774 WO2020157804A1 (ja) 2019-01-28 2019-01-28 伝送線路及び移相器

Country Status (3)

Country Link
JP (1) JP7026418B2 (ja)
CN (1) CN113287226B (ja)
WO (1) WO2020157804A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024088178A1 (zh) * 2022-10-28 2024-05-02 中信科移动通信技术股份有限公司 一种移相器及基站天线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960585B (zh) * 2023-09-18 2023-12-29 深圳大学 一种基于慢波的液晶移相器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144204A (ja) * 1983-02-07 1984-08-18 Elmec Corp 電磁遅延線
JPS6211312A (ja) * 1985-07-09 1987-01-20 Elmec Corp 電磁遅延線
JPH03123111A (ja) * 1989-10-06 1991-05-24 Nippon Telegr & Teleph Corp <Ntt> 位相器
JPH03195104A (ja) * 1989-12-22 1991-08-26 Mitsubishi Electric Corp マイクロストリップライン

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139402A (ja) * 1986-12-02 1988-06-11 Fujitsu Ltd チツプ型遅延素子
JP4904196B2 (ja) * 2007-05-08 2012-03-28 パナソニック株式会社 不平衡給電広帯域スロットアンテナ
WO2009104265A1 (ja) * 2008-02-21 2009-08-27 日本電業工作株式会社 分配移相器
CN104810597A (zh) * 2015-03-31 2015-07-29 中国电子科技集团公司第五十五研究所 一种宽带小型化大延时非色散微带延迟线
RU2639992C1 (ru) * 2016-11-15 2017-12-25 Геннадий Алексеевич Крисламов Дискретный СВЧ фазовращатель

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144204A (ja) * 1983-02-07 1984-08-18 Elmec Corp 電磁遅延線
JPS6211312A (ja) * 1985-07-09 1987-01-20 Elmec Corp 電磁遅延線
JPH03123111A (ja) * 1989-10-06 1991-05-24 Nippon Telegr & Teleph Corp <Ntt> 位相器
JPH03195104A (ja) * 1989-12-22 1991-08-26 Mitsubishi Electric Corp マイクロストリップライン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024088178A1 (zh) * 2022-10-28 2024-05-02 中信科移动通信技术股份有限公司 一种移相器及基站天线

Also Published As

Publication number Publication date
JPWO2020157804A1 (ja) 2021-11-11
CN113287226B (zh) 2023-06-13
CN113287226A (zh) 2021-08-20
JP7026418B2 (ja) 2022-02-28

Similar Documents

Publication Publication Date Title
JP4341699B2 (ja) 移相器
US8704723B2 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
US6876280B2 (en) High-frequency switch, and electronic device using the same
US4882553A (en) Microwave balun
US7471165B2 (en) High-frequency balun
EP2278657B1 (en) Power divider
CN110199431B (zh) 宽带天线巴伦
JP4636950B2 (ja) 伝送回路、アンテナ共用器、高周波スイッチ回路
WO2020157804A1 (ja) 伝送線路及び移相器
KR101154091B1 (ko) 메타 재질 mimo 안테나
EP3168926A1 (en) Ultra wideband true time delay lines
JP4650561B2 (ja) 移相器
US9178262B2 (en) Feed network comprised of marchand baluns and coupled line quadrature hybrids
WO2014141993A1 (ja) 移相器及びアンテナシステム
JP4884358B2 (ja) 終端器
US5467098A (en) Transmission line notch antenna
EP0853377A2 (en) Four-phase phase converter
US20080180350A1 (en) Broadband antenna
JPH0229007A (ja) アンテナ装置
KR101310745B1 (ko) 나선형 결합 선로를 가지는 결합기
US20230238678A1 (en) Directional coupler
CN110994106A (zh) 一种多层基片集成波导的双面输出宽频带功分器
JP4762930B2 (ja) 左手系線路
JP2004172284A (ja) 平面型バルントランス
RU45864U1 (ru) Согласованный поворот полосковой линии

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912345

Country of ref document: EP

Kind code of ref document: A1