WO2017154864A1 - フェライト材料、複合磁性体、コイル部品および電源装置 - Google Patents

フェライト材料、複合磁性体、コイル部品および電源装置 Download PDF

Info

Publication number
WO2017154864A1
WO2017154864A1 PCT/JP2017/008890 JP2017008890W WO2017154864A1 WO 2017154864 A1 WO2017154864 A1 WO 2017154864A1 JP 2017008890 W JP2017008890 W JP 2017008890W WO 2017154864 A1 WO2017154864 A1 WO 2017154864A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
composite magnetic
magnetic body
sample
sio
Prior art date
Application number
PCT/JP2017/008890
Other languages
English (en)
French (fr)
Inventor
小谷 淳一
伸哉 松谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112017001243.0T priority Critical patent/DE112017001243T5/de
Priority to US16/082,159 priority patent/US11222739B2/en
Priority to CN201780015336.7A priority patent/CN108779035B/zh
Priority to JP2018504489A priority patent/JP6910011B2/ja
Publication of WO2017154864A1 publication Critical patent/WO2017154864A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores

Definitions

  • the present disclosure relates to a ferrite material, a composite magnetic body, a coil component, and a power supply device.
  • oxide magnetic materials such as ferrite have been used as magnetic materials for magnetic cores of motors and transformers.
  • a powder magnetic core formed by pressing iron powder has a high degree of freedom in product shape because it can be molded, and it can be manufactured in a highly accurate and simple process even with a complicated magnetic core shape.
  • Usefulness has attracted attention (see, for example, Patent Document 1).
  • Patent Document 1 discloses iron powder for a dust core.
  • the iron powder for a dust core described in Patent Document 1 is an iron powder for a dust core in which an oxide film made of Si-based oxide and an insulating layer made of Si resin or the like are coated on the surface of the iron powder.
  • This powder magnetic core iron powder is mixed with a binder resin and pressed to produce a powder magnetic core with high specific resistance and excellent iron loss characteristics without causing a decrease in mechanical strength. ing.
  • an oxide film and an insulating layer are formed around the iron powder.
  • the oxide film used here is, for example, Fe 2 SiO 4 that is a nonmagnetic material
  • the insulating layer is, for example, a Si-based resin that is a nonmagnetic material
  • the binder resin is a nonmagnetic material. Therefore, a nonmagnetic material is present between the iron powders in the pressed powder magnetic core. Therefore, even if the magnetic permeability of the iron powder for a dust core is high, there is a problem that the permeability of the dust core as a whole is low.
  • an object of the present disclosure is to provide a ferrite material and a composite magnetic body having high magnetic permeability.
  • the composite magnetic body according to one aspect of the present disclosure includes a ferrite material having the above-described characteristics and a metal powder.
  • the coil component according to one aspect of the present disclosure uses a composite magnetic body having the above-described characteristics.
  • the power supply device includes the coil component having the above-described feature.
  • FIG. 1 is a flowchart showing a manufacturing process of ferrite according to the first embodiment.
  • FIG. 2 is a diagram showing conditions in each manufacturing process of the ferrite according to the first embodiment.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of the ferrite shown in the example of the ferrite according to the first embodiment.
  • FIG. 4 is a diagram showing the ferromagnetic characteristics of the ferrite shown in the example of the ferrite according to the first embodiment.
  • FIG. 5 is a schematic diagram illustrating an example of the configuration of the composite magnetic body according to the second embodiment.
  • FIG. 6 is a flowchart showing manufacturing steps of the composite magnetic body according to the second embodiment.
  • the ferrite material according to the present embodiment is an oxide containing Fe, Si, and Mn, and is a ferrite represented by a configuration of Mn x Si y Fe z O 4- ⁇ .
  • the spinel type ferrite is generally represented by AB 2 O 4 (A and B are arbitrary metal elements).
  • Conventionally used ferrite Fe 2 SiO 4 has a olivine type structure, but is a non-magnetic material having a spinel type structure in a high pressure environment. Si ions are A sites and Fe ions are B sites. It is a structure arranged in.
  • the ferrite Mn x Si y Fe z O 4 - ⁇ according to the present embodiment, an Mn Mn ions are added to Fe 2 SiO 4 x Si y Fe z O 4- ⁇ , is Mn ions
  • the A site, Si ions, and Fe ions are arranged at the B site.
  • the ferrite Mn x Si y Fe z O 4- ⁇ has a spinel structure, and when Mn is added, it becomes a ferromagnetic material exhibiting ferromagnetism, unlike Fe 2 SiO 4 .
  • the ferrite Mn x Si y Fe z O 4- ⁇ is a ferrite having a new composition exhibiting ferromagnetism.
  • the spinel structure is a structure represented by the general formula AB 2 O 4 .
  • the ferrite Mn x Si y Fe z O 4- ⁇ in which Mn ions are added to the ferrite Fe 2 SiO 4 , it is assumed that Mn ions are arranged at the A site, and Si ions and Fe ions are arranged at the B site. There is a difference in magnitude between the magnetic moment of Mn ions and the magnetic moment of Fe ions. Due to the difference in magnetic moment, magnetization is developed as a whole in the ferrite Mn x Si y Fe z O 4- ⁇ . Due to such a mechanism, the ferrite Mn x Si y Fe z O 4- ⁇ exhibits ferromagnetism.
  • FIG. 1 is a flowchart showing manufacturing steps of ferrite Mn x Si y Fe z O 4- ⁇ according to the present embodiment.
  • the method for producing the ferrite Mn x Si y Fe z O 4- ⁇ according to the present embodiment is performed by a solid phase method using materials described later.
  • the solid phase method refers to a material manufacturing method in which a plurality of types of raw material powders as starting materials are weighed and mixed in a predetermined amount, and then subjected to calcination and main firing to synthesize a target substance.
  • the solid phase method is also called a solid phase reaction method.
  • MnO, SiO 2 and Fe 2 O 3 are used as starting materials for the ferrite Mn x Si y Fe z O 4- ⁇ .
  • the specific manufacturing method is as follows.
  • MnO, SiO 2 and Fe 2 O 3 are each weighed (step S11).
  • the masses of the weighed MnO, SiO 2 and Fe 2 O 3 are, for example, 5.1 [g] for MnO, 1.1 [g] for SiO 2 and 10 [g] for Fe 2 O 3 .
  • the mass and mixing ratio of MnO, SiO 2 and Fe 2 O 3 will be described in detail in later examples.
  • step S12 weighed MnO, SiO 2 and Fe 2 O 3 are mixed (step S12).
  • MnO mixing of SiO 2 and Fe 2 O 3 is weighed MnO, placed SiO 2 and Fe 2 O 3 in the vessel, pure water was added, carried out by mixing and dispersing in a rotary ball mill.
  • the mixing of MnO, SiO 2 and Fe 2 O 3 is not limited to mixing and dispersion using a rotating ball mill, and other mixing methods may be used.
  • step S13 the mixed and dispersed MnO, SiO 2 and Fe 2 O 3 are calcined (step S13). Specifically, first, MnO, SiO 2 and Fe 2 O 3 mixed and dispersed are put in a molding die and compressed to produce a molded body. At this time, for example, uniaxial molding is performed at a constant pressure of 98 [MPa]. Thereafter, the molded body is calcined for 2 hours at a temperature of 900 to 1100 [° C.] in an inert gas atmosphere such as N 2 gas.
  • an inert gas atmosphere such as N 2 gas.
  • the powder of ferrite Mn x Si y Fe z O 4- ⁇ is sintered (step S14).
  • the sintering method the calcined powder is once again uniaxially molded, and then heat-treated at atmospheric pressure, or a hot press method or the like is used.
  • the hot press method refers to a method in which powder or a pre-formed raw material is placed in a mold and pressure-sintered while heating at a high temperature.
  • the hot press method can control the microstructure of the sintered body, so it forms a sintered body with excellent mechanical and physical properties such as a high-strength sintered body. Is possible.
  • it also has the advantages of being able to bond crystals or different materials.
  • other methods that can sinter Mn x Si y Fe z O 4- ⁇ powder may be used.
  • Ferrite Mn x Si y Fe z O 4 - ⁇ in x, y by changing the value of z, performing molding of a plurality of types of powder ferrite Mn x Si y Fe z O 4 - ⁇ by the manufacturing method described above It was. Combinations of x, y, and z values are shown in the examples below. The crystal structure and magnetic properties of the ferrite Mn x Si y Fe z O 4- ⁇ powder synthesized by calcining were evaluated.
  • FIG. 2 is a diagram showing conditions in each manufacturing process of the ferrite Mn x Si y Fe z O 4- ⁇ according to the present embodiment.
  • Mn x Si y Fe z O 4- ⁇ in x, y a composition ratio different ferrite Mn x Si y Fe z O 4 - ⁇ of z, was fabricated by the manufacturing method described above.
  • the change in the combination of the composition ratios of y and z was 0.25.
  • Comparative Example 1 a ferrite Mn x Si y Fe z O 4- ⁇ shown in the sample (a) of FIG.
  • Comparative Example 2 a ferrite Mn x Si y Fe z O 4- ⁇ shown in the sample (e) of FIG.
  • the ferrite MnFe 2 O 4 is a known magnetic material, and was produced for comparison with the ferrite Mn x Si y Fe z O 4- ⁇ according to the present embodiment.
  • FIG. 3 is a diagram showing X-ray diffraction patterns (XRD patterns) of the samples (a) to (e) and the sample (f) shown in Examples 1 to 5 described above.
  • Sample (f) is shown as an example in which the composition ratio of x is other than 1 in the ferrite Mn x Si y Fe z O 4- ⁇ .
  • the ferrite Fe 2 SiO 4 shown as sample (a) is known to have an olivine type structure.
  • Fe 2 SiO 4 shows an olivine type structure.
  • the ferrite MnFe 2 O 4 shown as the sample (e) has a spinel structure.
  • FIG. 4 is a diagram showing the magnetic characteristics (ferromagnetic characteristics) of the samples (a) to (f) shown in Examples 1 to 5 described above.
  • the mass magnetization ⁇ s [emu / g] refers to a magnetic moment [emu] per unit mass. Mass magnetization is a parameter indicating the strength of magnetization.
  • the mass magnetization was measured in a magnetic field environment having a strength of 3 [kOe]. As shown in FIG. 4, the mass magnetization ⁇ s of the samples (a) to (e) is 0.5 [emu / g], 66 [emu / g], 55 [emu / g], and 44 [emu / g], 78 [emu / g].
  • the ferrite Mn x Si y Fe z O 4- ⁇ which is a composition obtained by adding Mn to the ferrite Fe 2 SiO 4 , is a ferrite having a new composition exhibiting ferromagnetism. Therefore, a magnetic core having a high magnetic permeability can be formed using the ferrite material according to the present embodiment, which is a magnetic material having high magnetic properties.
  • y may satisfy 0 ⁇ y ⁇ 0.8.
  • the range of the value of the mass magnetization ⁇ s [emu / g] of the ferrite material may be ⁇ s ⁇ 40.
  • ferrite Mn x Si y Fe z O 4- ⁇ which is a magnetic material having a high magnetic property with a mass magnetization ⁇ s of 40 [emu / g] or more.
  • FIG. 5 is a schematic diagram showing an example of the configuration of the composite magnetic body 10 according to the present embodiment.
  • the composite magnetic body 10 includes the ferrite 1 represented by Mn x Si y Fe z O 4- ⁇ described above and the metal powder 5. Specifically, the ferrite 1 is filled around the metal powder 5.
  • the metal powder 5 may be, for example, FeSiAl, Fe-based metal powder with Si added, or Fe or Ni with Si added.
  • the ferrite 1 is the above-described ferrite Mn x Si y Fe z O 4- ⁇ , and has a configuration containing Si, like the metal powder 5. Since both the ferrite 1 and the metal powder 5 contain Si, it is considered that the SiO 2 coating formed around the metal powder 5 and the ferrite 1 are likely to be integrated by sintering. Therefore, the composite magnetic body 10 having high adhesion between the metal powder 5 and the ferrite 1 and higher magnetic permeability can be provided.
  • the composite magnetic body 10 since the ferrite 1 which is a ferromagnetic body is filled around the metal powder 5, the composite magnetic body 10 having a high magnetic permeability can be provided.
  • the metal powder 5 is regularly arranged in the composite magnetic body 10.
  • the configuration is not limited to the configuration described above, and may be a configuration arranged randomly.
  • FIG. 6 is a flowchart showing manufacturing steps of the composite magnetic body 10 according to the present embodiment.
  • the metal powder 5 and the ferrite 1 are mixed and granulated (step S21).
  • a binder resin is further mixed into the mixture of the metal powder 5 and the ferrite 1.
  • the material which mixed the metal powder 5, the ferrite 1, and binder resin is shape
  • degreasing is performed to remove the binder resin (step S23).
  • the degreased mixture is sintered (step S24).
  • the metal powder 5 In the step of mixing and granulating the metal powder 5 and the ferrite 1, for example, Fe-5Si was used as the metal powder 5. Further, as the ferrite 1, the above-mentioned ferrite Mn x Si y Fe z O 4- ⁇ was used. As an example, the mixing ratio of the ferrite 1 and the metal powder 5 is set such that the weight of the ferrite 1 is 5 [wt%] of the weight of the metal powder 5 when the weight of the metal powder 5 is 100 [wt%].
  • the material of the metal powder 5 may be FeSiAl, Fe-based metal powder added with Si, Fe or Ni added with Si, and a mixture thereof.
  • a binder resin was further mixed into the mixture of the metal powder 5 and the ferrite 1.
  • the binding resin for example, butyral resin was used.
  • an organic solvent was further mixed with the mixture obtained by adding the metal powder 5, ferrite 1 and butyral resin, and the mixture was dispersed by a rotating ball mill.
  • the mixture described above was pressure molded at 784 [MPa] to produce a molded body having a predetermined shape.
  • This molded body was heated at a temperature of about 200 to 400 [° C.] to perform degreasing. Thereby, the butyral resin which is a binding resin was removed, and a molded body in which the ferrite 1 was filled around the metal powder 5 was obtained.
  • the compact was sintered with an electric furnace.
  • the sintering temperature was, for example, heat treatment for 5 hours in an N 2 atmosphere of 1000 [° C.]. Thereby, the sintered composite magnetic body was obtained.
  • the sintering temperature may be 1000 to 1200 [° C.].
  • the sintering temperature at this time may be, for example, 800 to 1000 [° C.].
  • the discharge plasma it is possible to sinter at a lower temperature as compared with sintering by an electric furnace.
  • a composite magnetic body having high magnetic permeability can be provided. Therefore, by using the composite magnetic body according to the present embodiment, a magnetic core having a high magnetic permeability can be formed.
  • coil components using the above-described composite magnetic material are also included in the present disclosure.
  • the coil component include a high-frequency inductor and a transformer.
  • the present disclosure also includes a power supply device including the above-described coil component.
  • composition ratios x, y, and z of Mn, Si, and Fe in the ferrite Mn x Si y Fe z O 4- ⁇ is not limited to the combination described above, and may be changed as appropriate.
  • the mixing method of MnO, SiO 2 and Fe 2 O 3 , the mixture of metal powder, ferrite and butyral resin, organic solvent, etc. is not limited to the above-mentioned mixing and dispersion by the rotating ball mill, and other mixing methods may be used. .
  • the calcining and sintering methods are not limited to the methods described above, and other methods such as a hot press method may be used.
  • the pressure, temperature, and time in each step described above are examples, and other pressures, temperatures, and times may be adopted.
  • the magnetic material according to the present disclosure can be applied to high frequency inductors, transformer core materials, and the like.

Abstract

高い透磁率を有するフェライト材料、複合磁性体、コイル部品および電源装置を提供する。フェライト(1)は、MnSiFe4-δ(0<x<1、y>0、z>0、x+y+z=3、δ≦0.5)という構成で表され、強磁性を示すフェライトである。

Description

フェライト材料、複合磁性体、コイル部品および電源装置
 本開示は、フェライト材料、複合磁性体、コイル部品および電源装置に関する。
 従来、モータや変圧器の磁心向けの磁性材料として、フェライトをはじめとする酸化物磁性体材料が用いられている。例えば、鉄粉を加圧成形した圧粉磁心は、金型成形が可能なため製品形状の自由度が高く、また、複雑な磁心形状でも高精度で簡便な工程で製造可能なことから、その有用性が注目されている(例えば、特許文献1参照)。
 特許文献1では、圧粉磁心用の鉄粉が開示されている。特許文献1に記載の圧粉磁心用の鉄粉は、鉄粉の表面に、Si系酸化物からなる酸化膜とSi樹脂等からなる絶縁層を被膜した圧粉磁心用鉄粉である。この圧粉磁心用鉄粉を結着性樹脂と混合して加圧成形することにより、機械的強度の低下を招くことなしに、比抵抗が高く鉄損特性に優れた圧粉磁心を生成している。
国際公開第2009/078453号
 しかし、上述した圧粉磁心では、鉄粉の周囲には酸化膜および絶縁層が形成されている。ここで使用されている酸化膜は、例えば非磁性材料であるFeSiO等であり、絶縁層は、例えば非磁性材料であるSi系樹脂であり、結着性樹脂は非磁性材料である。従って、加圧成形された圧粉磁心において、鉄粉同士の間には非磁性材料が存在することになる。したがって、圧粉磁心用鉄粉単体での透磁率は高い場合であっても、圧粉磁心全体としての透磁率は低いといった問題がある。
 上述した課題に鑑み、本開示は、高い透磁率を有するフェライト材料および複合磁性体を提供することを目的とする。
 本開示の一態様に係るフェライト材料は、MnSiFe4-δ(0<x<1、y>0、z>0、x+y+z=3、δ≦0.5)という構成で表され、強磁性を示す。
 また、本開示の一態様に係る複合磁性体は、上述した特徴を有するフェライト材料と、金属粉とを含む。
 また、本開示の一態様に係るコイル部品は、上述した特徴を有する複合磁性体を用いている。
 また、本開示の一態様に係る電源装置は、上述した特徴を有するコイル部品を備えている。
 本開示によれば、高い透磁率を有するフェライト材料及び複合磁性体を提供することができる。
図1は、実施の形態1に係るフェライトの製造工程を示すフローチャートである。 図2は、実施の形態1に係るフェライトの各製造工程における条件を示す図である。 図3は、実施の形態1に係るフェライトの実施例に示したフェライトのX線回折パターンを示す図である。 図4は、実施の形態1に係るフェライトの実施例に示したフェライトの強磁性特性を示す図である。 図5は、実施の形態2に係る複合磁性体の構成の一例を示す模式図である。 図6は、実施の形態2に係る複合磁性体の製造工程を示すフローチャートである。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置、接続形態、ステップ及びステップの順序等は一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態)
 [1.フェライトMnSiFe4-δの構成]
 本実施の形態に係るフェライト材料は、Fe、Si、Mnを含む酸化物であり、MnSiFe4-δという構成で表されるフェライトである。
 スピネル型フェライトは、一般にAB(A、Bは任意の金属元素)で表される。従来使用されていたフェライトFeSiOは、通常はオリビン型の構造を有するが、高圧環境下においてスピネル型の構造を有する非磁性体材料であり、SiイオンがAサイト、FeイオンがBサイトに配置された構造である。
 これに対し、本実施の形態に係るフェライトMnSiFe4-δは、FeSiOにMnイオンが添加されたMnSiFe4-δであり、MnイオンがAサイト、SiイオンおよびFeイオンがBサイトに配置された構造である。フェライトMnSiFe4-δは、スピネル型の構造を有しており、Mnが加わることにより、FeSiOとは異なり強磁性を示す強磁性体材料となる。フェライトMnSiFe4-δは、強磁性を示す新組成のフェライトである。
 なお、MnSiFe4-δにおいて、x、y、z、δは、0<x<1、y>0、z>0、x+y+z=3、δ≦0.5を満たす。
 ここで、MnSiFe4-δが強磁性を示すメカニズムについて、スピネル型の構造より説明する。スピネル型の構造とは、一般式ABで表される構造である。
 スピネル型の構造を有するフェライトFeSiOにおいて、SiイオンがAサイト、FeイオンがBサイトに配置されると仮定すると、フェライトFeSiOではFeイオンの磁気モーメントを反平行に向ける交換作用が働く。そのため、フェライトFeSiOでは、反平行の磁気モーメントが互いに打ち消し合うことによって、全体として磁化は発現しない。したがって、フェライトFeSiOは、非磁性を示す。
 これに対し、フェライトFeSiOにMnイオンが添加されたフェライトMnSiFe4-δでは、MnイオンがAサイト、SiイオンおよびFeイオンがBサイトに配置されると仮定すると、Mnイオンの磁気モーメントとFeイオンの磁気モーメントとの大きさに差分が生じる。この磁気モーメントの差分により、フェライトMnSiFe4-δでは、全体として磁化が発現する。このようなメカニズムにより、フェライトMnSiFe4-δは強磁性を示す。
 [2.フェライトMnSiFe4-δの製造方法]
 以下、本実施の形態にかかるフェライトMnSiFe4-δの製造方法について説明する。図1は、本実施の形態に係るフェライトMnSiFe4-δの製造工程を示すフローチャートである。
 本実施の形態にかかるフェライトMnSiFe4-δの製造方法は、後述する材料を用いて固相法により行う。
 固相法とは、出発原料となる複数種類の原料粉体を所定量に秤量し混合した後、仮焼を経て本焼を行うことにより目的物質を合成する材料製造方法をいう。なお、固相法は、固相反応法とも呼ばれる。本実施の形態では、フェライトMnSiFe4-δの出発原料として、MnO、SiOおよびFeを用いる。
 具体的な製造方法は、以下のとおりである。
 図1に示すように、はじめにMnO、SiOおよびFeをそれぞれ秤量する(ステップS11)。秤量したMnO、SiOおよびFeの質量は、例えば、MnOが5.1[g]、SiOが1.1[g]、Feが10[g]である。なお、MnO、SiOおよびFeの質量および混合割合については、後の実施例において詳述する。
 次に、秤量したMnO、SiOおよびFeを混合する(ステップS12)。MnO、SiOおよびFeの混合は、秤量したMnO、SiOおよびFeを容器に入れ、純水を添加し、回転ボールミルで混合分散することにより行う。なお、MnO、SiOおよびFeの混合は、回転ボールミルを用いた混合分散に限らず、他の混合方法であってもよい。
 次に、混合分散したMnO、SiOおよびFeを仮焼する(ステップS13)。具体的には、まず、混合分散したMnO、SiOおよびFeを、成形金型に入れて圧縮し、成形体を作製する。このとき、例えば一定圧力98[MPa]で一軸成形を行う。その後、例えばNガス等の不活性ガス雰囲気中において、900~1100[℃]の温度で2時間成形体の仮焼を行う。
 以上の工程により、フェライトFeSiOの一部がMnに置換された構成である、フェライトMnSiFe4-δの粉体が得られる。
 その後、フェライトMnSiFe4-δの粉体を焼結する(ステップS14)。なお、焼結の方法については、仮焼した粉体を再度一軸金型成形した後、常圧雰囲気熱処理するか、ホットプレス法等を用いる。ここで、ホットプレス法とは、粉体或いは予め成形した原料を型に入れ、高温で加熱しながら加圧焼結させる方法をいう。ホットプレス法では、理論密度に近い緻密焼結体が得られるほか、焼結体の微細構造を制御できるので、高強度焼結体等機械的性質、物理的性質の優れた焼結体を形成することが可能である。さらに、異種材料間の界面接触がよくなるほか、結晶同士或いは異種材料を結合できる等の特長を有している。これらの方法に限らず、MnSiFe4-δ粉体を焼結できる他の方法を用いてもよい。
 フェライトMnSiFe4-δのx、y、zの値を変化させて、上述の製造方法により複数種類のフェライトMnSiFe4-δの粉体の成形を行った。x、y、zの値の組み合わせについては、以下の実施例に示す。また、仮焼して合成したフェライトMnSiFe4-δの粉体について、結晶構造および磁気特性の評価を行った。
 [3-1.実施例]
 次に、実施例について説明する。図2は、本実施の形態に係るフェライトMnSiFe4-δの各製造工程における条件を示す図である。
 図2に示すように、MnSiFe4-δのx、y、zの組成比が異なるフェライトMnSiFe4-δを、上述した製造方法により作製した。なお、以下の実施例では、y、zの組成比の組み合わせの変化は0.25とした。
  (実施例1)
 実施例1として、図2のサンプル(b)に示すフェライトMnSiFe4-δの作製を行った。サンプル(b)において、x、y、z、の組成比は(x,y,z)=(1,0.25,1.75)とした。すなわち、サンプル(b)として、フェライトMnSi0.25Fe1.75を作製した。
 まず、サンプル(b)の出発原料として、MnOを5.1[g]、SiOを1.1[g]、Feを10[g]用意した。これらの出発原料を混合し、純水を加えて回転ボールミルにより混合分散した。さらに、仮焼を行い、結晶化したサンプル(b)を得た。
  (実施例2)
 実施例2として、図2のサンプル(c)に示すフェライトMnSiFe4-δの作製を行った。サンプル(c)において、x、y、z、の組成比は(x,y,z)=(1,0.5,1.5)とした。すなわち、サンプル(c)として、フェライトMnSi0.5Fe1.5を作製した。
 まず、サンプル(c)の出発原料として、MnOを5.9[g]、SiOを2.5[g]、Feを10[g]用意した。これらの出発原料を混合し、純水を加えて回転ボールミルにより混合分散した。さらに、仮焼を行い、結晶化したサンプル(c)を得た。
  (実施例3)
 実施例3として、図2のサンプル(d)に示すフェライトMnSiFe4-δの作製を行った。サンプル(d)において、x、y、z、の組成比は(x,y,z)=(1,0.75,1.25)とした。すなわち、サンプル(d)として、フェライトMnSi0.75Fe1.25を作製した。
 まず、サンプル(d)の出発原料として、MnOを7.1[g]、SiOを4.5[g]、Feを10[g]用意した。これらの出発原料を混合し、純水を加えて回転ボールミルにより混合分散した。さらに、仮焼を行い、結晶化したサンプル(d)を得た。
  (比較例1)
 また、比較例1として、図2のサンプル(a)に示すフェライトMnSiFe4-δの作製を行った。サンプル(a)において、x、y、z、の組成比は(x,y,z)=(0,1,2)とした。すなわち、サンプル(a)として、従来使用されていたフェライトFeSiOを作製した。なお、フェライトFeSiOは非磁性体である。
 まず、サンプル(a)の出発原料として、SiOを3.8[g]、Feを10[g]用意した。これらの出発原料を混合し、純水を加えて回転ボールミルにより混合分散した。さらに、仮焼を行い、結晶化したサンプル(a)を得た。
  (比較例2)
 また、比較例2として、図2のサンプル(e)に示すフェライトMnSiFe4-δの作製を行った。サンプル(e)において、x、y、z、の組成比は(x,y,z)=(1,0,2)とした。すなわち、サンプル(e)として、フェライトMnFeを作製した。なお、フェライトMnFeは公知の磁性体であり、本実施の形態に係るフェライトMnSiFe4-δとの比較のために作製した。
 まず、サンプル(e)の出発原料として、MnOを4.4[g]、Feを10[g]用意した。これらの出発原料を混合し、純水を加えて回転ボールミルにより混合分散した。さらに、仮焼を行い、結晶化したサンプル(e)を得た。
 以下、上述したサンプル(a)~(e)の結晶構造および磁気特性について評価した。
 [3-2.フェライトMnSiFe4-δの結晶構造の評価]
 上述したサンプル(a)~(e)について、はじめに結晶構造の評価を行った。具体的には、結晶構造の評価は、X線回折パターンを計測することにより行った。図3は、上述した実施例1~5において示したサンプル(a)~(e)、および、サンプル(f)のX線回折パターン(XRDパターン)を示す図である。
 なお、サンプル(f)については図2には示していないが、フェライトMnSiFe4-δにおいてx、y、z、の組成比を(x,y,z)=(0.75,0.25,2)とした場合のサンプルである。サンプル(f)は、フェライトMnSiFe4-δにおいてxの組成比を1以外とした場合の例として示している。
 サンプル(a)として示したフェライトFeSiOは、オリビン型の構造をとることが知られている。なお、図3の(a)に示すフェライトFeSiOのXRD回折パターンでは、FeSiOはオリビン型の構造を示している。
 また、サンプル(e)として示したフェライトMnFeについて、スピネル型の構造をとることが知られている。
 また、図3に示すように、サンプル(b)~(d)、(f)については、スピネル型の構造のX線回折パターンにおけるピークパターンと一致するピークパターンが見られた。したがって、サンプル(b)~(d)、(f)についても、単一相のスピネル型の構造のフェライトMnSiFe4-δが生成していることが確認できた。
 [3-3.フェライトMnSiFe4-δの磁気特性の評価]
 次に、上述したサンプル(a)~(e)について、磁気特性の評価を行った。具体的には、フェライトの磁気特性の評価は、サンプル(a)~(e)の質量磁化を計測することにより行った。図4は、上述した実施例1~5において示したサンプル(a)~(f)の磁気特性(強磁性特性)を示す図である。
 なお、質量磁化σ[emu/g]とは、単位質量当たりの磁気モーメント[emu]のことをいう。質量磁化は、磁化の強さを示すパラメータである。
 質量磁化の計測は、3[kOe]の強さの磁場環境において行った。図4に示すように、サンプル(a)~(e)の質量磁化σは、それぞれ0.5[emu/g]、66[emu/g]、55[emu/g]、44[emu/g]、78[emu/g]という値が得られた。
 ここで、図4に示したサンプル(a)および(d)を比較すると分かるように、フェライトMnSiFe4-δにおいて、Mnが含まれない組成(サンプル(a))に比べてMnが含まれる組成(サンプル(d))のほうが質量磁化は大きかった。詳細には、MnとSiとFeの組成比が(x、y、z)=(1,1,1)の状態から、最も小さい変化量である(x、y、z)=(1,0.75,0.25)に組成比を変化させた場合、質量磁化σは、サンプル(a)の0.5[emu/g]からサンプル(d)の44[emu/g]に急激に増加していることが分かった。これにより、多少の計測誤差等を考慮しても、フェライトMnSiFe4-δの質量磁化σ[emu/g]の値の範囲は、σ≧40を満たすと考えられる。
 また、xの組成比を1以外とした場合の例であるサンプル(f)では、79[emu/g]という値の質量磁化σが得られた。
 また、図4に示したサンプル(b)~(e)を比較すると分かるように、Mnの組成比xが一定の場合、Siの組成比yが減少しFeの組成比zが増加するにつれて、質量磁化はほぼ一定の割合で増加した。また、SiがMnに完全に置き換わった組成(すなわち、(x,y,z)=(1,0,2))の場合に質量磁化は最も大きく、78[emu/g]という値が得られた。また、サンプル(d)に示すように、Siの組成比が最も大きい場合((x,y,z)=(1,0.75,1.25))には、質量磁化σは最も小さい値が得られた。これにより、組成比の誤差等を考慮しても、フェライトMnSiFe4-δにおいて、yの値は0<y≦0.8であればよいといえる。
 [4.効果等]
 以上、本実施の形態にかかるフェライト材料は、MnSiFe4-δ(0<x<1、y>0、z>0、x+y+z=3、δ≦0.5)という構成で表され、強磁性を示す材料である。
 この構成によれば、フェライトFeSiOにMnを添加した組成であるフェライトMnSiFe4-δは、強磁性を示す新組成のフェライトである。したがって、高い磁気特性を有する磁性材料である本実施の形態にかかるフェライト材料を用いて、透磁率の高い磁心等を形成することができる。
 また、フェライトMnSiFe4-δにおいて、yは0<y≦0.8を満たしてもよい。
 この構成によれば、高い磁気特性を有する磁性材料であるフェライトMnSiFe4-δを提供することができる。
 また、フェライト材料の質量磁化σ[emu/g]の値の範囲は、σ≧40であってもよい。
 この構成によれば、質量磁化σが40[emu/g]以上の高い磁気特性を有する磁性材料であるフェライトMnSiFe4-δを提供することができる。
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、実施の形態1に示したフェライトMnSiFe4-δを用いた複合磁性体および複合磁性体の製造方法について説明する。図5は、本実施の形態に係る複合磁性体10の構成の一例を示す模式図である。
 本実施の形態にかかる複合磁性体10は、図5に示すように、上述したMnSiFe4-δで示されるフェライト1と、金属粉5とを含む。具体的には、金属粉5の周りにフェライト1が充填された構成である。
 金属粉5は、例えばFeSiAl、Fe基金属粉にSiを添加したもの、FeまたはNiにSiを添加したものであってもよい。
 フェライト1は、上述したフェライトMnSiFe4-δであり、金属粉5と同様、Siを含む構成である。フェライト1と金属粉5とはいずれもSiを含むので、金属粉5の周囲に形成されるSiOの被膜とフェライト1とは、焼結により一体となりやすいと考えられる。したがって、金属粉5とフェライト1との密着度が高く、より透磁率の高い複合磁性体10を提供することができる。
 この複合磁性体10によれば、金属粉5の周りに強磁性体であるフェライト1が充填されているので、透磁率の高い複合磁性体10を提供することができる。
 なお、図5に示した複合磁性体10では、一例として金属粉5が最も密に充填された六方細密構造の場合を示しているが、複合磁性体10は、金属粉5が規則的に配置された構成に限らず、ランダムに配置された構成であってもよい。
 図6は、本実施の形態に係る複合磁性体10の製造工程を示すフローチャートである。
 図6に示すように、本実施の形態に係る複合磁性体10の製造工程では、はじめに、金属粉5とフェライト1とを混合および造粒する(ステップS21)。次に、金属粉5とフェライト1との混合物に、さらに結着性樹脂を混合する。その後、金属粉5とフェライト1と結着性樹脂とを混合した材料を成形する(ステップS22)。さらに、結着性樹脂を除去させるために脱脂を行う(ステップS23)。続けて、脱脂を行った混合物を焼結する(ステップS24)。これにより、本実施の形態にかかる複合磁性体10を得ることができる。
 詳細には、以下のとおりである。
 金属粉5とフェライト1とを混合および造粒する工程において、金属粉5としては、例えばFe-5Siを用いた。また、フェライト1としては上述したフェライトMnSiFe4-δを用いた。フェライト1と金属粉5との混合割合は、一例として、金属粉5の重量を100[wt%]としたときフェライト1の重量を金属粉5の重量の5[wt%]とした。なお、金属粉5の材料としては、FeSiAl、Fe基金属粉にSiを添加したもの、FeまたはNiにSiを添加したもの、および、これらの混合物等であってもよい。
 次に、金属粉5およびフェライト1の混合物に、さらに結着性樹脂を混合した。結着性樹脂としては、例えば、ブチラール樹脂を用いた。また、金属粉5、フェライト1およびブチラール樹脂を加えた混合物に、さらに有機溶剤を混合し、回転ボールミルにより混合分散した。
 次に、上述した混合物を784[MPa]で加圧成形して、所定形状の成形体を作製した。この成形体を200~400[℃]程度の温度で加熱し、脱脂を行った。これにより、結着性樹脂であるブチラール樹脂は除去され、金属粉5の周囲にフェライト1が充填された成形体が得られた。
 さらに、電気炉により成形体を焼結した。焼結の温度は、例えば、1000[℃]のN雰囲気中で5時間熱処理を施した。これにより、焼結した複合磁性体が得られた。なお、焼結の温度は、1000~1200[℃]であってもよい。
 なお、電気炉による焼結に代えて、放電プラズマにより焼結してもよい。このときの焼結温度は、例えば800~1000[℃]としてもよい。放電プラズマを用いることにより、電気炉による焼結に比べて低い温度で焼結することができる。
 以上、本実施の形態に係る複合磁性体によると、透磁率の高い複合磁性体を提供することができる。したがって、本実施の形態に係る複合磁性体を用いることにより、透磁率の高い磁心等を形成することができる。
 (変形例等)
 以上、本開示の実施の形態に係るフェライトおよび複合磁性体について説明したが、本開示は、この実施の形態に限定されるものではない。
 例えば、上述した複合磁性体を用いたコイル部品についても、本開示に含まれる。コイル部品としては、例えば、高周波用のインダクタ、トランス等が挙げられる。また、上述したコイル部品を備えた電源装置についても、本開示に含まれる。
 また、フェライトMnSiFe4-δにおけるMn、Si、Feの組成比x、y、zの組み合わせは、上述した組み合わせに限らず、適宜変更してもよい。
 また、MnO、SiOおよびFeの混合方法、金属粉、フェライトおよびブチラール樹脂、有機溶剤等の混合物は、上述した回転ボールミルによる混合分散に限らず、他の混合方法を用いてもよい。
 また、仮焼および焼結の方法については、上述した方法に限らず、ホットプレス法等の他の方法を用いてもよい。また、上述した各ステップにおける圧力、温度および時間は一例であって、他の圧力、温度および時間を採用してもよい。
 また、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本開示にかかる磁性材料は、高周波用のインダクタ、トランスの磁芯の材料等に適用できる。
 1 フェライト(フェライト材料)
 5 金属粉
 10 複合磁性体

Claims (7)

  1.  MnSiFe4-δ(0<x<1、y>0、z>0、x+y+z=3、δ≦0.5)という構成で表され、強磁性を示す
     フェライト材料。
  2.  前記MnSiFe4-δにおいて、yは0<y≦0.8を満たす
     請求項1に記載のフェライト材料。
  3.  前記フェライト材料の質量磁化σ[emu/g]の値の範囲は、σ≧40である
     請求項1または2に記載のフェライト材料。
  4.  請求項1~3のいずれか1項に記載のフェライト材料と、金属粉とを含む
     複合磁性体。
  5.  前記金属粉は、Siを含む
     請求項4に記載の複合磁性体。
  6.  請求項4または5に記載の複合磁性体を用いた
     コイル部品。
  7.  請求項6に記載のコイル部品を備えた
     電源装置。
PCT/JP2017/008890 2016-03-10 2017-03-07 フェライト材料、複合磁性体、コイル部品および電源装置 WO2017154864A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017001243.0T DE112017001243T5 (de) 2016-03-10 2017-03-07 Ferritmaterial, magnetischer Verbundkörper, Spulenkomponente, und Stromversorgung
US16/082,159 US11222739B2 (en) 2016-03-10 2017-03-07 Ferrite material, composite magnetic body, coil component, and power supply device
CN201780015336.7A CN108779035B (zh) 2016-03-10 2017-03-07 铁氧体材料、复合磁性体、线圈部件以及电源装置
JP2018504489A JP6910011B2 (ja) 2016-03-10 2017-03-07 複合磁性体、コイル部品および電源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-047677 2016-03-10
JP2016047677 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154864A1 true WO2017154864A1 (ja) 2017-09-14

Family

ID=59789544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008890 WO2017154864A1 (ja) 2016-03-10 2017-03-07 フェライト材料、複合磁性体、コイル部品および電源装置

Country Status (5)

Country Link
US (1) US11222739B2 (ja)
JP (1) JP6910011B2 (ja)
CN (1) CN108779035B (ja)
DE (1) DE112017001243T5 (ja)
WO (1) WO2017154864A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891038A (ja) * 1981-11-24 1983-05-30 Chuo Denki Kogyo Kk フエライト用原料の製造方法
JPH06267723A (ja) * 1993-03-16 1994-09-22 Tdk Corp 複合軟磁性材料
WO2002080202A1 (fr) * 2001-03-29 2002-10-10 Sumitomo Electric Industries, Ltd. Materiau magnetique composite
JP2009003026A (ja) * 2007-06-19 2009-01-08 Dowa Electronics Materials Co Ltd 電子写真現像剤用キャリアおよび電子写真現像剤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548218B1 (en) 1994-06-22 2003-04-15 Canon Kabushiki Kaisha Magnetic particles for charging means, and electrophotographic apparatus, process cartridge and image forming method including same
JPH10338600A (ja) * 1997-06-06 1998-12-22 Hitachi Metals Ltd Mn−Zn単結晶フェライト材料および高周波用磁気ヘッド
JP4265358B2 (ja) 2003-10-03 2009-05-20 パナソニック株式会社 複合焼結磁性材の製造方法
US20070181847A1 (en) * 2006-02-08 2007-08-09 Tdk Corporation Ferrite material
JP4802182B2 (ja) 2007-12-14 2011-10-26 Jfeスチール株式会社 圧粉磁心用鉄粉
JP5439888B2 (ja) 2009-03-25 2014-03-12 パナソニック株式会社 複合磁性材料およびその製造方法
CN102381873A (zh) * 2011-07-28 2012-03-21 电子科技大学 一种开关电源用MnZn功率铁氧体材料及其制备方法
KR20130123252A (ko) * 2012-05-02 2013-11-12 삼성전기주식회사 적층형 인덕터 및 그 제조방법
KR20150085253A (ko) * 2014-01-15 2015-07-23 삼성전기주식회사 복합 페라이트 시트와 그 제조 방법 및 이를 구비하는 전자 기기
KR101685951B1 (ko) * 2014-02-27 2016-12-13 티디케이가부시기가이샤 페라이트 소결체 및 이것을 사용한 전자 부품, 및 전원 장치
KR20160000166A (ko) * 2014-06-24 2016-01-04 삼성전기주식회사 복합 전자부품 및 그 실장 기판
WO2019078257A1 (ja) * 2017-10-17 2019-04-25 株式会社豊田中央研究所 圧粉磁心、磁心用粉末およびそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891038A (ja) * 1981-11-24 1983-05-30 Chuo Denki Kogyo Kk フエライト用原料の製造方法
JPH06267723A (ja) * 1993-03-16 1994-09-22 Tdk Corp 複合軟磁性材料
WO2002080202A1 (fr) * 2001-03-29 2002-10-10 Sumitomo Electric Industries, Ltd. Materiau magnetique composite
JP2009003026A (ja) * 2007-06-19 2009-01-08 Dowa Electronics Materials Co Ltd 電子写真現像剤用キャリアおよび電子写真現像剤

Also Published As

Publication number Publication date
US20190066892A1 (en) 2019-02-28
JP6910011B2 (ja) 2021-07-28
DE112017001243T5 (de) 2018-12-27
JPWO2017154864A1 (ja) 2019-01-10
US11222739B2 (en) 2022-01-11
CN108779035A (zh) 2018-11-09
CN108779035B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
KR100895915B1 (ko) 비결정 연자성 합금 및 상기 비결정 연자성 합금을 이용한인덕턴스 소자
Rane et al. Synthesis of low coercive BaFe 12 O 19 hexaferrite for microwave applications in low-temperature cofired ceramic
KR20080072069A (ko) 산화물 자성 재료 및 그의 제조 방법, 및 페라이트 소결자석 및 그의 제조 방법
KR101903212B1 (ko) 자성 결정립계가 조절된 페라이트 코어 재료
JPWO2005020252A1 (ja) 高周波用磁心及びそれを用いたインダクタンス部品
JP7128439B2 (ja) 圧粉磁芯およびインダクタ素子
US7754094B2 (en) Sintered ferrite and its production method and electronic part using same
JP4670435B2 (ja) フェライト焼結体とその製造方法及びコイル部品
JP4858941B2 (ja) 磁性体材料の製造方法
JP4664649B2 (ja) 高周波磁性材料およびそれを用いた高周波磁性部品
JP5472694B2 (ja) アルミニウム酸化物と鉄の複合焼結体、およびその製造方法
WO2017154864A1 (ja) フェライト材料、複合磁性体、コイル部品および電源装置
JP5387947B2 (ja) 焼結フェライト材料
JPH07272919A (ja) 酸化物磁性材料及びそれを用いたインダクタ
JP2006206420A (ja) フェライト焼結体、その製造方法及びコイル部品
JP2010215453A (ja) NiCuZnフェライト
CN110418774B (zh) Ni系铁氧体烧结体、线圈部件及Ni系铁氧体烧结体的制造方法
JP5105660B2 (ja) フェライト材料及びこれを用いたフェライトコア
JP2007112671A (ja) 高周波用磁性材料
JP7338644B2 (ja) 焼結体およびその製造方法
JP2010215454A (ja) NiCuZnフェライト
WO2016125466A1 (ja) 磁性材料およびその製造方法
Sharma Study on the Effect of Mno2 as Sintering Additive in Structural, Magnetic and Electrical Properties of Solid-State Derived Ni0. 8Zn0. 2Fe2O4
CN112041273A (zh) MnZn系铁氧体及其制造方法
Ceramic Vivek A. Rane, Sher Singh Meena, Suresh P. Gokhale, SM Yusuf, Girish J. Phatak & Sadgopal K. Date

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504489

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763204

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763204

Country of ref document: EP

Kind code of ref document: A1