WO2016125466A1 - 磁性材料およびその製造方法 - Google Patents

磁性材料およびその製造方法 Download PDF

Info

Publication number
WO2016125466A1
WO2016125466A1 PCT/JP2016/000433 JP2016000433W WO2016125466A1 WO 2016125466 A1 WO2016125466 A1 WO 2016125466A1 JP 2016000433 W JP2016000433 W JP 2016000433W WO 2016125466 A1 WO2016125466 A1 WO 2016125466A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic material
magnetic
citric acid
metal
nitrate
Prior art date
Application number
PCT/JP2016/000433
Other languages
English (en)
French (fr)
Inventor
健 廣田
将樹 加藤
小谷 淳一
伸哉 松谷
Original Assignee
学校法人同志社
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社, パナソニックIpマネジメント株式会社 filed Critical 学校法人同志社
Priority to US15/547,681 priority Critical patent/US11056258B2/en
Priority to DE112016000609.8T priority patent/DE112016000609T8/de
Priority to JP2016573219A priority patent/JP6550586B2/ja
Priority to CN201680007779.7A priority patent/CN107408439B/zh
Publication of WO2016125466A1 publication Critical patent/WO2016125466A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present disclosure relates to a ferrite magnetic material having ferromagnetism and a manufacturing method thereof.
  • Ferrite is a ceramic mainly composed of iron oxide, and for example, Mg (Fe 1-x Mn x ) 2 O 4 , FeAl 2 O 4 (helsinite) and the like are known.
  • Ferrites include magnetic materials that exhibit magnetism and non-magnetic materials that do not exhibit magnetism.
  • Magnetic materials, particularly ferromagnetic ferrites, are high frequency inductors, transformer core materials, and black coating materials. It is applied to various fields such as pigment powder (see, for example, Patent Document 1).
  • Patent Document 1 a ceramic burner is disclosed as a technique using ferrite.
  • Patent Document 1 discloses ferrite having a spinel structure such as MgAl 2 O 4 , FeAl 2 O 4 , and CoAl 2 O 4 as a ceramic burner material. Depending on the field in which ferrite is used, the use of helsinite FeAl 2 O 4 containing Fe and Al as a composition may be particularly preferred.
  • helsinite FeAl 2 O 4 is a non-magnetic material, there is a problem that it is impossible to use helsinite FeAl 2 O 4 when it is desired to use the magnetic properties of ferrite. Therefore, development of a magnetic material having high magnetic properties while containing Fe and Al as a composition is required.
  • an object of the present invention is to provide a magnetic material having high magnetic properties and a method for manufacturing the magnetic material.
  • a magnetic material according to one embodiment of the present disclosure is a magnetic material exhibiting ferromagnetism represented by a configuration of Fe (Al 1-x Mn x ) 2 O 4 (0 ⁇ x ⁇ 1).
  • FIG. 1 is a flowchart showing manufacturing steps of Fe (Al 1-x Mn x ) 2 O 4 according to the embodiment.
  • FIG. 1 is a flowchart showing manufacturing steps of Fe (Al 1-x Mn x ) 2 O 4 according to the embodiment.
  • FIG. 2 is a diagram showing an X-ray diffraction pattern of Fe (Al 1-x Mn x ) 2 O 4 when
  • FIG. 8 is a diagram showing an X-ray diffraction pattern of a product obtained in a gas atmosphere generated by Fe (Al 1-x Mn x ) 2 O 4 having a spinel structure.
  • FIG. 9A is a diagram summarizing products when the value of x and the content ratio of H 2 are changed.
  • FIG. 9A is a diagram summarizing products when the value of x and the content ratio of H 2 are changed.
  • FIG. 9B is a diagram showing an X-ray diffraction pattern of a product generated by
  • FIG. 11 is a diagram showing the relationship between the value of x and the lattice constant of Fe (Al 1-x Mn x ) 2 O 4 .
  • FIG. 12C is a diagram showing the BH characteristics of Fe (Al 1-x Mn x
  • FIG. 13 is a diagram showing the relationship between the value of x and mass magnetization ⁇ s in Fe (Al 1-x Mn x ) 2 O 4 .
  • FIG. 14 is a diagram showing the relationship between the value of x and the saturation magnetic flux density B s in Fe (Al 1-x Mn x ) 2 O 4 .
  • FIG. 15 is a diagram showing the relationship between the value of x and logH c in Fe (Al 1-x Mn x ) 2 O 4 .
  • FIG. 16 is a diagram summarizing the relationship between the value of x and magnetic properties in Fe (Al 1-x Mn x ) 2 O 4 .
  • Helsinite FeAl 2 O 4 which is a kind of ferrite, is a nonmagnetic material and does not exhibit ferromagnetism. Therefore, in order to produce a magnetic material exhibiting high magnetic properties, the inventors of the present application added ferromagnetism to Helsinite FeAl 2 O 4 by adding Mn as a fourth element other than Fe, Al, and O. We are trying to develop a ferrite magnetic material with the new composition shown. However, powder preparation is difficult in the conventional solid phase reaction method, sol-gel method, and citrate gel method, and such a composite magnetic material cannot be synthesized. From these experimental results, the present inventors have obtained the following knowledge.
  • the new composition of ferrite is expressed as Fe (Al 1-x Mn x ) 2 O 4 .
  • Fe at the A site is divalent and Al at the B site is trivalent. Therefore, in the new composition of ferrite, Fe at the A site must be divalent and Mn at the B site must be trivalent. I must.
  • hercinite FeAl 2 O 4 by a solid phase reaction method, ⁇ -Fe 2 O 3 (Fe 3+ ) and fine ⁇ -Al 2 O 3 are uniformly mixed as starting materials, and then 1 A method is assumed in which heat treatment is performed at 900 ° C. in N 2 gas containing slightly less than H 2 and Fe 3+ is reduced to Fe 2+ for synthesis.
  • this solid-phase reaction method is applied to ferrite Fe (Al 1-x Mn x ) 2 O 4 having a new composition, Mn in the raw material Mn oxide is reduced to Mn 2+ , so that it is arranged at the A site. is, it is difficult to obtain the Fe (Al 1-x Mn x ) part of the 2 O 4 in the B site of Al was substituted with Mn Fe (Al 1-x Mn x) 2 O 4.
  • a magnetic material according to one embodiment of the present disclosure is a magnetic material exhibiting ferromagnetism represented by a configuration of Fe (Al 1-x Mn x ) 2 O 4 (0 ⁇ x ⁇ 1).
  • a magnetic material having high magnetic properties can be provided.
  • the range of the value of mass magnetization ⁇ s [emu / g] of the magnetic material may be ⁇ s ⁇ 10.
  • the range of the value of x may be x ⁇ 0.2.
  • the magnetic material may contain manganese dioxide MnO 2 as a raw material.
  • the ferrite magnetic material having a configuration of Fe (Al 1-x Mn x ) 2 O 4 can be easily synthesized.
  • the magnetic material exhibits ferromagnetism represented by a configuration of Fe (Al 1-x Mn x ) 2 O 4 (0 ⁇ x ⁇ 1).
  • a step of preparing a mixed aqueous solution by dissolving an oxide containing Fe nitrate, Al nitrate and Mn as starting materials in distilled water, and mixing citric acid and ethylene glycol in the mixed aqueous solution.
  • trivalent Fe ions may be reduced to divalent Fe ions, and tetravalent Mn ions may be reduced to trivalent Mn ions.
  • the ferrite magnetic material having a configuration of Fe (Al 1-x Mn x ) 2 O 4 can be easily synthesized.
  • the nitrate of Fe is iron (III) nitrate nonahydrate Fe (NO 3 ) 3 ⁇ 9H 2 O
  • the nitrate of Al is aluminum (III) nitrate nonahydrate Al (NO 3 )
  • the oxide containing 2.9H 2 O and containing Mn may be manganese dioxide MnO 2 .
  • the ferrite magnetic material having a configuration of Fe (Al 1-x Mn x ) 2 O 4 can be easily synthesized.
  • the molar ratio of metal ions, moles of citric acid, and ethylene glycol in the mixed aqueous solution may be 1: 3: 9.
  • a ferrite magnetic material having a configuration of single-phase Fe (Al 1-x Mn x ) 2 O 4 can be easily synthesized.
  • the citric acid gel method refers to the following material production method.
  • a stable chelate complex (metal citrate complex) is generated from a plurality of types of metal ions and citric acid.
  • Ethylene glycol is added to the produced metal citrate complex, and the metal citrate complex is dissolved and dispersed in ethylene glycol.
  • Ethylene glycol in which a metal citrate complex is dispersed is subjected to thermal polymerization esterification, and the metal citrate complex (polymer metal complex) is confined in the polyester in a uniform state. That is, a gel is obtained by adding ethylene glycol to the produced metal citrate complex to cause thermal polymerization esterification.
  • the gelled metal citrate complex is heated and calcined (calcination and main firing) to synthesize an oxide as a target substance.
  • the network structure of the polymer metal complex obtained by the above citric acid gel method (or complex polymerization method) is mainly formed by ester polymerization and copolymerization and is chemically stable. Therefore, the mobility of metal ions is small, and there is an effect that can suppress aggregation and segregation of metal elements in the subsequent heating and firing process.
  • the solid phase method refers to the following material manufacturing method. A plurality of kinds of raw material powders as starting materials are weighed into a predetermined amount and mixed. After mixing, calcination is performed through calcination. Thereby, the target substance is synthesized.
  • the solid phase method is also called a solid phase reaction method.
  • Lattice constant is one of the parameters used as crystal data and is an important factor for specifying substances.
  • the lattice constant is indicated by the lengths a, b, and c of the unit lattice of the crystal lattice and the angles ⁇ , ⁇ , and ⁇ between them.
  • magnetization refers to applying a magnetic field to a magnetic material to align the direction of the magnetic moment in one direction.
  • the magnetization characteristics of the magnetic material are generally irreversible and change in a curved manner. Such an irreversible characteristic of the magnetic material is called hysteresis.
  • the magnetic moment of the substance obtained by magnetization is also called magnetization [emu].
  • the magnetization in this case is indicated by a vector and indicates the strength of the magnetization.
  • the magnetic moment per unit volume is called volume magnetization [emu / cm 3 ]
  • the magnetic moment per unit mass is called mass magnetization [emu / g]. These all indicate the strength of magnetization.
  • the mass magnetization ⁇ s may be simply referred to as “magnetization”.
  • saturation magnetization J s The strength of magnetization when a magnetic field is saturated by applying a magnetic field.
  • the magnetic flux density B [T] refers to the surface density of magnetic flux per unit area, and is sometimes simply referred to as a magnetic field. Further, the magnetic flux density B corresponding to the saturation magnetization J s is referred to as saturation magnetic flux density B s [T]. In addition, regarding the saturation magnetic flux density B s , the point where the strength of magnetization reaches saturation is referred to as the S point.
  • the magnitude of magnetization When the magnetic field is removed after saturation magnetization, the magnitude of magnetization does not become zero due to the presence of hysteresis, and a certain magnitude of magnetization remains. This magnitude of magnetization is referred to as residual magnetization Jr. Furthermore, when a magnetic field in the reverse direction is applied to the magnetic material in the residual magnetization state, the magnitude of magnetization becomes zero with a certain magnitude of the applied magnetic field. The magnitude of the magnetic field at this time is referred to as coercive force H c [Oe]. A substance with a small coercive force is called a soft magnetic material. On the other hand, a substance having a large coercive force is called a hard magnetic material (permanent magnet or the like). The value of the coercive force varies greatly in the magnetic material.
  • Permeability ⁇ is an index representing how easily magnetic flux can pass through a magnetic substance, that is, the amount of change in magnetic flux when a certain magnetic field is applied.
  • the magnetic permeability indicates the ease of magnetization and is one factor for evaluating the characteristics of the magnetic material.
  • magnetic susceptibility the one indicating the relationship between magnetic field and magnetization is called magnetic susceptibility (magnetic susceptibility).
  • magnetic susceptibility ⁇ the magnetic susceptibility ⁇ is defined by the following equation.
  • H is the magnetic field
  • J is the strength of magnetization
  • a material having a high magnetic permeability characteristic in which a large magnetic flux density is induced by applying a slight magnetic field from the outside is referred to as a high magnetic permeability material or a soft magnetic material.
  • a high permeability material is required to have a high permeability ⁇ , a small coercive force H c , a high saturation magnetic flux density B s and a small loss.
  • Ferrite which is a soft magnetic material that is an oxide, generally has a high electric resistance, and can generally be used for high frequencies.
  • the magnetic material according to the present embodiment is ferrite Fe (Al 1-x Mn x ) 2 O 4 which is an oxide containing Fe, Al, and Mn.
  • the structure of ferrite can be generally expressed as AB 2 O 4 (A and B are arbitrary metal elements).
  • the ferrite according to the present embodiment has a structure in which Fe is arranged at the A site and Al and Mn are arranged at the B site, and a part of Al at the B site of the hercinite FeAl 2 O 4 which is known as a kind of ferrite. It is the structure substituted by Mn.
  • the ferrite Fe (Al 1-x Mn x ) 2 O 4 has the same characteristics as the helsinite containing Fe and Al as a composition, and also has a ferromagnetic characteristic not found in the helsinite.
  • ferrite Fe (Al 1-x Mn x ) 2 O 4 In the method for producing ferrite Fe (Al 1-x Mn x ) 2 O 4 according to the present embodiment, a part of the citric acid gel method described above is modified.
  • iron (III) nitrate nonahydrate Fe (NO 3 ) 3 that is a metal nitrate is used as a metal element source of ferrite Fe (Al 1-x Mn x ) 2 O 4 .
  • iron (III) nitrate nonahydrate Fe (NO 3 ) 3 that is a metal nitrate is used as a source of Mn And adopt.
  • ferritic Fe (Al 1-x Mn x ) 2 O 4 As a source of metal elements of ferrite Fe (Al 1-x Mn x ) 2 O 4 , metal nitrate employing the iron (III) nitrate nonahydrate Fe (NO 3) 3 ⁇ 9H 2 O and aluminum nitrate (III) nonahydrate Al (NO 3) 3 ⁇ 9H 2 O is. Further, manganese dioxide MnO 2 (Mn 4+ ) is employed as a source of Mn.
  • a mixed aqueous solution in which fine particles of manganese dioxide MnO 2 are added and uniformly mixed in the aqueous solution is prepared.
  • ferrite Fe (Al 1-x Mn x ) 2 O 4 which is a new material is simply Fe (Al 1-x Mn x ) 2 O 4 and iron (III) nitrate nonahydrate Fe ( NO 3 ) 3 ⁇ 9H 2 O is simply Fe (NO 3 ) 3 ⁇ 9H 2 O and aluminum nitrate (III) nonahydrate Al (NO 3 ) 3 ⁇ 9H 2 O is simply Al (NO 3 ) 3 ⁇ 9H 2 O and manganese dioxide MnO 2 is simply referred to as MnO 2.
  • FIG. 1 is a flowchart showing a manufacturing process of a ferrite magnetic material according to the present embodiment.
  • a solution 1a, a solution 1b, and a solution 1c are prepared.
  • the solution 1a is a solution containing Fe (NO 3 ) 3 ⁇ 9H 2 O and Al (NO 3 ) 3 ⁇ 9H 2 O, which are metal nitrates, and MnO 2 as a source of Mn as starting materials. Since Fe (NO 3 ) 3 ⁇ 9H 2 O and Al (NO 3 ) 3 ⁇ 9H 2 O both have H 2 O, they have the property of being easily soluble in water and easily mixed. Further, Fe in Fe (NO 3 ) 3 ⁇ 9H 2 O and Al in Al (NO 3 ) 3 ⁇ 9H 2 O both become ions in the aqueous solution and exist as Fe 3+ and Al 3+ . Fe and Al are uniformly dispersed in the aqueous solution by being ionized. Note that the MnO 2, for ease of dispersion in an aqueous solution, it is preferred to use MnO 2 of less fine powder diameter 0.5 [mu] m.
  • Solution 1b is a solution of citric acid C 3 H 4 (OH) (COOH) 3 .
  • the citric acid used here may be anhydrous citric acid (C (CH 2 COOH) 2 (OH) (COOH)) or citric acid monohydrate C 6 H 8 O 7 .H 2. O may be sufficient.
  • the solution 1c is a solution of ethylene glycol HOCH 2 CH 2 OH.
  • the mixing ratio of the solution 1a and the solution 1b is preferably 3 for the solution 1b and 9 for the solution 1c, where 1 is the total molar amount of each metal ion contained in the mixed aqueous solution 1a.
  • step S10 the mixed solution obtained by mixing the solution 1a, the solution 1b, and the solution 1c is boiled at 120 ° C. for 48 hours. At this time, the mixed solution of the solution 1a, the solution 1b, and the solution 1c is heated with stirring. Thereby, the mixed solution of the solution 1a, the solution 1b, and the solution 1c is gelatinized.
  • step S12 a precursor of Fe (Al 1-x Mn x ) 2 O 4 is formed (step S12).
  • the dried Fe (Al 1-x Mn x ) 2 O 4 precursor is heat-treated (step S14).
  • the heat treatment is performed in the atmosphere at a temperature of 300 ° C. for 12 hours. Thereby, the organic component contained in the precursor is removed. Note that the precursor after the heat treatment is amorphous.
  • a precursor of Fe (Al 1-x Mn x ) 2 O 4 is calcined and crystallized.
  • calcination for example, atmospheric pressure atmosphere heat treatment is used.
  • a heat treated Fe (Al 1-x Mn x ) 2 O 4 precursor is put into a molding die and compressed. At this time, uniaxial molding is performed at a constant pressure of 98 MPa (step S16).
  • the compressed Fe (Al 1-x Mn x ) 2 O 4 precursor is calcined at 900 ° C. for 2 hours.
  • the precursor of compressed Fe (Al 1-x Mn x ) 2 O 4 is fired while flowing N 2 gas containing H 2 gas at a predetermined ratio (step S18).
  • the amorphous Fe (Al 1-x Mn x ) 2 O 4 precursor is crystallized.
  • the trivalent Fe ion Fe 3+ is reduced to the divalent Fe ion Fe 2+
  • the tetravalent Mn ion Mn 4+ is reduced to the trivalent Mn ion Mn 3+ . Therefore, the trivalent Mn ion Mn 3+ is likely to be disposed at the B site of the ferrite structure represented by the general structural formula AB 2 O 4 (A and B are arbitrary metal elements). Thereby, trivalent ions Al 3+ and Mn 3+ are arranged at the B site.
  • ferrite Fe (Al 1-x Mn x ) 2 O 4 powder having a structure in which a part of Al of the hercinite FeAl 2 O 4 is substituted with Mn is obtained.
  • the ferrite Fe (Al 1-x Mn x ) 2 O 4 powder is sintered (step S20).
  • the calcined powder is once again uniaxially molded, and then heat-treated at atmospheric pressure, or a hot press method or the like is used.
  • the hot press method refers to a method in which powder or a pre-formed raw material is placed in a mold and pressure-sintered while being heated at a high temperature.
  • the hot press method can control the microstructure of the sintered body, so it forms a sintered body with excellent mechanical and physical properties such as a high-strength sintered body. Is possible.
  • the x value of Fe (Al 1-x Mn x ) 2 O 4 was changed, and a plurality of types of Fe (Al 1-x Mn x ) 2 O 4 powders were molded.
  • FIG. 9 is a diagram showing an X-ray diffraction pattern of a gas atmosphere and Fe (Al 1-x Mn x ) 2 O 4 in the case of 9;
  • a 0, 0.01, 0.03, and 0.065
  • spinel-type Fe (Al 1-x Mn x ) 2 O 4 , Al 2 O 3, and Fe 2 A peak pattern consistent with the X-ray diffraction pattern of O 3 was observed. Therefore, it was confirmed that Al 2 O 3 and Fe 2 O 3 were formed in addition to Fe (Al 1-x Mn x ) 2 O 4 .
  • FIG. 9A is a diagram summarizing products when the value of x and the content ratio of H 2 are changed.
  • “S” indicates that a composite having a spinel crystal structure is formed.
  • the (x, a) combination column that is shaded indicates the combination of (x, a) in which the structure of single-phase spinel-type Fe (Al 1-x Mn x ) 2 O 4 was confirmed. Indicates.
  • PECPS pulsed electric-current pressure sintering
  • a precursor of Fe (Al 1-x Mn x ) 2 O 4 was formed at a pressure of 50 MPa, and further, pulsed current pressure sintering at 600 ° C./10 minutes / 50 MPa / vacuum. Went.
  • the X-ray diffraction pattern of the product at this time was measured, the X-ray diffraction pattern shown in FIG. 9B was obtained.
  • a peak pattern consistent with the diffraction pattern of single-phase spinel-type Fe (Al 1-x Mn x ) 2 O 4 was observed. Therefore, it was confirmed that single-phase spinel-type Fe (Al 1-x Mn x ) 2 O 4 was formed.
  • the sintering method is not limited to pulse-current pressurization and may be other sintering methods.
  • a single-phase spinel-type Fe (Al 1-x Mn x ) 2 O 4 powder produced by pulsed current pressure sintering was heat-treated at 900 ° C. for 2 hours in a normal pressure atmosphere.
  • the X-ray diffraction pattern of the product at this time was measured, the X-ray diffraction pattern shown in FIG. 9C was obtained.
  • FIG. 11 is a diagram showing the relationship between the value of x and the lattice constant of Fe (Al 1-x Mn x ) 2 O 4 .
  • the scales on the vertical axis and the horizontal axis are omitted for the sake of convenience, but the scale sizes are the same in FIGS. 12A to 12F.
  • the BH characteristic is a graph showing the change in magnetic flux density (B shown on the vertical axis) when an external magnetic field (H shown on the horizontal axis) is applied to the material. Proportional), in the case of a ferromagnetic material, a so-called hysteresis curve is obtained. In the hysteresis curve, the value of the external magnetic field H when the magnetic flux density B is 0 (coercive force H c), soft ones difference between the values of the positive and negative H is small (as the coercive force H c is smaller) , those in the positive or negative value of H is large (as coercive force H c is greater) that the hard magnetic.
  • the material that exhibits the characteristics of soft magnetism is a material having excellent magnetic properties.
  • Fe (Al 1-x Mn x ) 2 O 4 is a ferromagnetic material when x ⁇ 0.2.
  • FIG. 13 is a diagram showing the relationship between the value of x and mass magnetization ⁇ s in Fe (Al 1-x Mn x ) 2 O 4 .
  • Fe (Al 1-x Mn x ) 2 O 4 As shown in FIG. 13, in Fe (Al 1-x Mn x ) 2 O 4 , the value of mass magnetization ⁇ s increases as the value of x increases. Therefore, it can be said that as the value of x is larger, it is possible to obtain Fe (Al 1-x Mn x ) 2 O 4 having excellent magnetization per unit mass. Further, Fe (Al 1-x Mn x ) 2 O 4 is preferably a material having an excellent saturation magnetic flux density, particularly when used in a field requiring high magnetic properties such as a high frequency device. The saturation magnetic flux density is closely related to the mass magnetization, and the mass magnetization ⁇ s is preferably set to ⁇ s ⁇ 10, for example. Therefore, it is preferable to synthesize Fe (Al 1-x Mn x ) 2 O 4 such that the mass magnetization ⁇ s satisfies ⁇ s ⁇ 10.
  • FIG. 14 is a diagram showing the relationship between the value of x and the saturation magnetic flux density B s in Fe (Al 1-x Mn x ) 2 O 4 .
  • FIG. 15 is a diagram showing the relationship between the value of x and the coercive force H c in Fe (Al 1-x Mn x ) 2 O 4 .
  • the coercive force vertical axis is shown in logarithm.
  • Figure 16 shows a table showing the relationship between structure and magnetic properties of Fe (Al 1-x Mn x ) value of x of 2 O 4 and Fe (Al 1-x Mn x ) 2 O 4.
  • Fe (Al 1-x Mn x ) 2 O 4 produced by the above production method is a ferrite having a new composition and exhibits ferromagnetism.
  • the saturation magnetic flux density B s of Fe (Al 1-x Mn x ) 2 O 4 is, for example, about 0.06 to 0.11 [T]
  • the coercive force H c is, for example, 14 to 18 [Oe].
  • Mn can be arranged at the same site as the site where Al of Helsinite FeAl 2 O 4 is arranged, so Fe (Al 1-x Mn It is possible to easily synthesize a ferrite magnetic material having a configuration of x ) 2 O 4 . Therefore, the ferrite magnetic material Fe (Al 1-x Mn x ) 2 O 4 having high magnetic characteristics can be provided.
  • this indication is not limited to this embodiment.
  • the sintering method is not limited to the hot press method described above, and other methods such as pulsed current pressure sintering may be used.
  • the temperature and time in each step mentioned above are examples, and you may employ
  • the solution 1a, the solution 1b, and the solution 1c may be mixed at once.
  • a mixed solution in which the solution 1b and the solution 1c are mixed is prepared, and the solution 1a is further mixed with the mixed solution. It is good to do.
  • Fe (Al 1-x Mn x ) 2 O 4 is synthesized by a liquid phase method in which the solution 1a, the solution 1b, and the solution 1c are mixed. Synthesis of Fe (Al 1-x Mn x ) 2 O 4 may be performed by
  • the magnetic material according to the present disclosure can be applied to a high frequency inductor, a magnetic core material of a transformer, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 磁性材料は、Fe(Al1-xMn(0<x<1)という化学式で表される、強磁性を示す磁性材料であり、磁性材料の製造方法は、出発原料であるFeの硝酸塩、Alの硝酸塩および4価のMnを含む酸化物粉体を蒸留水に溶解して混合水溶液を調製する工程と、混合水溶液にクエン酸とエチレングリコールとを混合して金属-クエン酸錯体を調製する工程と、金属-クエン酸錯体をゲル状になるまで煮沸したのち乾燥することにより前駆体を得る工程と、前駆体を熱処理して磁性材料粉体を得る仮焼工程と、を含む。

Description

磁性材料およびその製造方法
 本開示は、強磁性を有するフェライト磁性材料及びその製造方法に関する。
 従来、高周波領域で高い透磁率μを示す磁性材料の開発が期待され、このような材料として、近年、フェライトが注目されている。
 フェライトは、酸化鉄を主成分とするセラミックスであり、例えば、Mg(Fe1-xMn、FeAl(ヘルシナイト)等が知られている。また、フェライトには、磁性を示す磁性体と、磁性を示さない非磁性体とがあり、磁性体、特に、強磁性体のフェライトは、高周波用のインダクタ、トランスの磁芯材料、塗布用黒色顔料粉等、様々な分野に応用されている(例えば、特許文献1参照)。
 特許文献1では、フェライトを用いた技術として、セラミックバーナーが開示されている。
特開昭62-112907号公報
 特許文献1では、セラミックバーナーの材料として、MgAl、FeAl、CoAl等のスピネル構造を有するフェライトが開示されている。フェライトを利用する分野によっては、FeとAlを組成として含むヘルシナイトFeAlの使用が特に好まれる場合もある。
 しかし、ヘルシナイトFeAlは非磁性体であるため、フェライトの磁気特性を利用したい場合にはヘルシナイトFeAlを使用することができないといった問題も生じている。そこで、FeとAlを組成として含みつつ、高い磁気特性を有する磁性材料の開発が求められている。
 上述した課題に鑑み、本発明は、高い磁気特性を有する磁性材料及び磁性材料の製造方法を提供することを目的とする。
 本開示の一態様に係る磁性材料は、Fe(Al1-xMn(0<x<1)という構成で表される、強磁性を示す磁性材料である。
 本開示によれば、高い磁気特性を有する磁性材料及び磁性材料の製造方法を提供することができる。
図1は、実施の形態に係るFe(Al1-xMnの製造工程を示すフローチャートである。 図2は、x=0の場合のFe(Al1-xMnのX線回折パターンを示す図である。 図3は、x=0.2の場合の各種ガス雰囲気下で熱処理された生成物のX線回折パターンを示す図である。 図4は、x=0.4の場合の各種ガス雰囲気下で熱処理された生成物のX線回折パターンを示す図である。 図5は、x=0.5の場合の各種ガス雰囲気下で熱処理された生成物のX線回折パターンを示す図である。 図6は、x=0.6の場合の各種ガス雰囲気下で熱処理された生成物のX線回折パターンを示す図である。 図7は、x=0.8の場合の各種ガス雰囲気下で熱処理された生成物のX線回折パターンを示す図である。 図8は、スピネル構造を示すFe(Al1-xMnが生成するガス雰囲気下で得られた生成物のX線回折パターンを示す図である。 図9Aは、xの値およびHの含有割合を変化させたときの生成物についてまとめた図である。 図9Bは、x=0.5の場合のパルス通電加圧焼結により生成された生成物のX線回折パターンを示す図である。 図9Cは、x=0.5の場合のパルス通電加圧焼結および常圧雰囲気熱処理により生成された生成物のX線回折パターンを示す図である。 図10Aは、x=0の場合のFe(Al1-xMn粉体のSEM写真である。 図10Bは、x=0.2の場合のFe(Al1-xMn粉体のSEM写真である。 図10Cは、x=0.4の場合のFe(Al1-xMn粉体のSEM写真である。 図10Dは、x=0.5の場合のFe(Al1-xMn粉体のSEM写真である。 図10Eは、x=0.6の場合のFe(Al1-xMn粉体のSEM写真である。 図10Fは、x=0.8の場合のFe(Al1-xMn粉体のSEM写真である。 図10Gは、x=1.0の場合のFe(Al1-xMn粉体のSEM写真である。 図11は、xの値とFe(Al1-xMnの格子定数との関係を示す図である。 図12Aは、x=0の場合のFe(Al1-xMnのB-H特性を示す図である。 図12Bは、x=0.2の場合のFe(Al1-xMnのB-H特性を示す図である。 図12Cは、x=0.6の場合のFe(Al1-xMnのB-H特性を示す図である。 図12Dは、x=0.7の場合のFe(Al1-xMnのB-H特性を示す図である。 図12Eは、x=0.8の場合のFe(Al1-xMnのB-H特性を示す図である。 図12Fは、x=0.9の場合のFe(Al1-xMnのB-H特性を示す図である。 図13は、Fe(Al1-xMnにおけるxの値と質量磁化σとの関係を示す図である。 図14は、Fe(Al1-xMnにおけるxの値と飽和磁束密度Bとの関係を示す図である。 図15は、Fe(Al1-xMnにおけるxの値とlogHとの関係を示す図である。 図16は、Fe(Al1-xMnにおけるxの値と磁気特性との関係をまとめた図である。
 (本開示の基礎となった知見)
 本開示にかかる磁性材料及びその製造方法の実施の形態を説明する前に、本開示の基礎となった知見について説明する。
 上述のように、フェライトの一種であるヘルシナイトFeAlは、非磁性体であり、強磁性を示さない。そこで、高い磁気特性を示す磁性材料を作製するために、本願発明者らは、ヘルシナイトFeAlにFe、Al、O以外の第4番目の元素としてMnを添加することにより、強磁性を示す新組成のフェライト磁性材料の開発を試みている。しかし、従来の固相反応法、ゾル-ゲル法、クエン酸ゲル法では粉体調製が難しく、このような複合磁性材料を合成することができなかった。これらの実験結果から、本願発明者らは、以下のような知見を得ている。
 フェライトの構造をAB(A、Bは元素)と表すと、新組成のフェライトはFe(Al1-xMnと表される。ヘルシナイトFeAlでは、AサイトのFeは2価、BサイトのAlは3価であるため、新組成のフェライトでは、AサイトのFeは2価、BサイトのMnは3価を取らなければならない。
 ここで、ヘルシナイトFeAlを固相反応法で調製するには、出発原料としてα-Fe(Fe3+)と微細なγ-Alとを均一に混合した後、1%弱のHを含むNガス中において900℃で熱処理し、Fe3+をFe2+に還元して合成する方法が想定される。しかし、この固相反応法を、新組成のフェライトFe(Al1-xMnに適用すると、原料のMn酸化物中のMnは還元されてMn2+となるためAサイトに配置され、Fe(Al1-xMnのBサイトのAlの一部をMnに置換したFe(Al1-xMnを得ることは難しい。
 また、金属アルコキシドの加水分解を利用するゾル-ゲル法、および、金属硝酸塩の混合水溶液にクエン酸とエチレングリコールを添加して金属錯体を形成し、その後大気中で加熱して有機成分を除去した後、更に高温で加熱して粉体を合成するクエン酸ゲル法でも、Fe2+とMn3+とを同時に存在させる熱処理雰囲気の制御が難しく、目的とする新組成のフェライトFe(Al1-xMnを得ることは難しい。
 そこで、本開示の一態様に係る磁性材料は、Fe(Al1-xMn(0<x<1)という構成で表される、強磁性を示す磁性材料である。
 この構成によれば、高い磁気特性を有する磁性材料を提供することができる。
 また、前記磁性材料の質量磁化σ[emu/g]の値の範囲は、σ≧10でもよい。
 この構成によれば、高い磁気特性が要求されるデバイスの材料として適した磁性材料を得ることができる。
 また、前記磁性材料において、前記xの値の範囲は、x≧0.2でもよい。
 この構成によれば、磁気特性が要求されるデバイスの材料として適した磁性材料を得ることができる。
 また、前記磁性材料は、二酸化マンガンMnOを原料に含んでもよい。
 この構成によれば、ヘルシナイトFeAlのAlが配置されるサイトと同一のサイトにMnを配置することができるので、Fe(Al1-xMnという構成のフェライト磁性材料を容易に合成することができる。
 また、本開示の一態様に係る磁性材料の製造方法は、前記磁性材料は、Fe(Al1-xMn(0<x<1)という構成で表される強磁性を示す磁性材料であり、出発原料であるFeの硝酸塩、Alの硝酸塩およびMnを含む酸化物を蒸留水に溶解して混合水溶液を調製する工程と、前記混合水溶液にクエン酸とエチレングリコールとを混合して金属-クエン酸錯体を調製する工程と、前記金属-クエン酸錯体をゲル状になるまで煮沸したのち乾燥することにより前駆体を得る工程と、前記前駆体を焼結して前記磁性材料を得る焼結工程と、を含む。
 この構成によれば、高い磁気特性を有する磁性材料を容易に合成することができる。
 また、前記焼結工程において、3価のFeイオンは2価のFeイオンに、4価のMnイオンは3価のMnイオンに還元されてもよい。
 この構成によれば、ヘルシナイトFeAlのAlが配置されるサイトと同一のサイトにMnを配置することができるので、Fe(Al1-xMnという構成のフェライト磁性材料を容易に合成することができる。
 また、前記Feの硝酸塩は、硝酸鉄(III)九水和物Fe(NO・9HOであり、前記Alの硝酸塩は、硝酸アルミニウム(III)九水和物Al(NO・9HOであり、前記Mnを含む酸化物は、二酸化マンガンMnOでもよい。
 この構成によれば、ヘルシナイトFeAlのAlが配置されるサイトと同一のサイトにMnを配置することができるので、Fe(Al1-xMnという構成のフェライト磁性材料を容易に合成することができる。
 また、前記金属-クエン酸錯体を調製する工程において、前記混合水溶液中の金属イオンのモル、前記クエン酸のモル、前記エチレングリコールのモル比は、1:3:9でもよい。
 この構成によれば、単一相のFe(Al1-xMnという構成のフェライト磁性材料を容易に合成することができる。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置、接続形態、ステップ及びステップの順序などは一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態)
 [1.用語の定義]
 はじめに、本実施の形態で使用する用語の定義について説明する。
 クエン酸ゲル法(または錯体重合法)とは、以下のような材料製造方法をいう。はじめに、複数種の金属イオンとクエン酸とで、安定なキレート錯体(金属クエン酸錯体)を生成する。生成した金属クエン酸錯体にエチレングリコールを加え、金属クエン酸錯体をエチレングリコール中に溶解分散する。金属クエン酸錯体を分散したエチレングリコールを加熱重合エステル化し、金属クエン酸錯体(高分子金属錯体)を均一な状態でポリエステル中に閉じ込める。すなわち、生成した金属クエン酸錯体にエチレングリコールを加えて加熱重合エステル化させてゲルを得る。その後、ゲル化された金属クエン酸錯体を加熱焼成(仮焼および本焼)し、目的物質である酸化物を合成する。
 上述のクエン酸ゲル法(または錯体重合法)により得られた高分子金属錯体のネットワーク構造は、おもにエステル重合と共重合により形成されており、化学的に安定している。したがって、金属イオンの移動度は小さく、その後の加熱焼成過程における金属元素の凝集や偏析を抑え得る作用効果を奏する。
 固相法とは、以下のような材料製造方法をいう。出発原料となる複数種の原料粉体を所定量に秤量し、混合する。混合後、仮焼を経て本焼を行う。これにより、目的物質を合成する。なお、固相法は、固相反応法とも呼ばれる。
 格子定数とは、結晶データとして使用されるパラメータの1つであり、物質を特定するための重要な要素である。格子定数は、結晶格子の単位格子の稜の長さa、b、cと、相互の間の角度α、β、γで示される。
 また、磁性体に磁界を印加すると、磁気モーメントは磁界方向に向きを変え、磁化を生じる。すわなち、磁化とは、磁性体に磁界を印加して磁気モーメントの方向を一方向に揃えることをいう。また、磁性体の磁化特性は、一般的に非可逆的であり、曲線的に変化する。このような、磁性体の非可逆的特性をヒステリシスと呼ぶ。
 また、磁化することにより得られたその物質の磁気モーメントも磁化[emu]という。この場合の磁化は、ベクトルで示され、磁化の強さを示すものである。単位体積当たりの磁気モーメントを体積磁化[emu/cm]といい、単位質量当たりの磁気モーメントを質量磁化[emu/g]という。これらは、いずれも磁化の強さを指し示すものである。なお、以下に説明する実施の形態では、質量磁化σを、単に「磁化」と呼ぶこともある。
 また、磁性体に磁界を印加し飽和させたときの磁化の強さを、飽和磁化Jという。
 また、磁束密度B[T]とは、単位面積当たりの磁束の面密度のことをいい、単に磁場と呼ぶこともある。また、飽和磁化Jに対応する磁束密度Bを、飽和磁束密度B[T]という。なお、飽和磁束密度Bについて、磁化の強さが飽和に達したとする点をS点という。
 飽和磁化後、その磁界を取り去ると、ヒステリシスの存在により磁化の大きさはゼロにはならず、ある大きさの磁化が残存する。この磁化の大きさを残留磁化Jという。さらに、残留磁化状態の磁性体に逆方向の磁界を印加すると、ある大きさの印加磁界で磁化の大きさがゼロになる。このときの磁界の大きさを保磁力H[Oe]という。保磁力の小さい物質を軟磁性材料という。反対に保磁力の大きい物質を硬磁性材料(永久磁石等)という。保磁力の値は、磁性材料において大きく変化する。
 透磁率μとは、磁束が磁性物質の中をどれだけ容易に通過できるか、すなわち、ある大きさの磁界を印加した場合の磁束変化量の大きさを表す指標を言う。透磁率は磁化のしやすさを表わすものであり、磁性体の特性を評価する一つの因子である。
 上記透磁率と同様に、磁界と磁化との間の関係を指し示すものを磁化率(帯磁率)という。一般的に、磁化率χは次式で定義される。
 χ=J/H
 ここで、Hは磁場、Jは磁化の強さである。上式で表わされるとおり、磁性体に磁界が作用しているとき、その磁化は磁界の関数となる。
 さらに、外部から僅かな磁界を印加することにより大きな磁束密度が誘導される高透磁率特性を有する材料を、高透磁率材料または軟磁性材料という。高透磁率材料には、透磁率μが高く、保磁力Hが小さく、飽和磁束密度Bが高く、損失が小さいことが必要とされる。酸化物である軟磁性材料のフェライトは、一般に電気抵抗が高く、高周波用に通常用いられ得る。
 [2.フェライトFe(Al1-xMnの構成]
 本実施の形態に係る磁性材料は、Fe、Al、Mnを含む酸化物であるフェライトFe(Al1-xMnである。
 フェライトの構造は、一般にAB(A、Bは任意の金属元素)と表すことができる。本実施の形態に係るフェライトは、AサイトにFe、BサイトにAlおよびMnが配置された構造であり、フェライトの一種として知られているヘルシナイトFeAlのBサイトのAlの一部をMnに置換した構成である。
 本実施の形態にかかるフェライトFe(Al1-xMnは、FeとAlを組成として含むヘルシナイトと同様の特性を有するとともに、ヘルシナイトにはない強磁性の特性も備えている。
 [3.フェライトFe(Al1-xMnの製造方法]
 以下、本実施の形態にかかるフェライトFe(Al1-xMnの製造方法について説明する。
 本実施の形態にかかるフェライトFe(Al1-xMnの製造方法では、上述したクエン酸ゲル法の一部を変更したものである。上述したクエン酸ゲル法では、フェライトFe(Al1-xMnの金属元素のソース(源)として、金属硝酸塩である硝酸鉄(III)九水和物Fe(NO・9HOおよび硝酸アルミニウム(III)九水和物Al(NO・9HOと、Mnのソースとして硝酸マンガン(II)六水和物(Mn(NO・6HOとを採用する。
 これに対し、本実施の形態にかかるフェライトFe(Al1-xMnの製造方法では、フェライトFe(Al1-xMnの金属元素のソースとして、金属硝酸塩である硝酸鉄(III)九水和物Fe(NO・9HOと硝酸アルミニウム(III)九水和物Al(NO・9HOとを採用する。また、Mnのソースとして、二酸化マンガンMnO(Mn4+)を採用する。詳細には、上述した硝酸鉄(III)九水和物Fe(NO・9HOと硝酸アルミニウム(III)九水和物Al(NO・9HOとを混合した硝酸塩水溶液中に、二酸化マンガンMnOの微粒子を添加して均一に混合した混合水溶液を調製する。
 さらに、混合水溶液にクエン酸とエチレングリコールとを混合し、有機成分除去後に各種雰囲気下で熱処理する。これにより、3価のFeイオンFe3+、4価のMnイオンMn4+をそれぞれ還元して2価のFeイオンFe2+、3価のMnイオンMn3+にして、Fe(Al1-xMnを合成する。なお、以下において、新素材であるフェライトFe(Al1-xMnは、単にFe(Al1-xMnと、硝酸鉄(III)九水和物Fe(NO・9HOは、単にFe(NO・9HOと、硝酸アルミニウム(III)九水和物Al(NO・9HOは、単にAl(NO・9HOと、二酸化マンガンMnOは、単にMnOと示す。
 以下、詳細に説明する。
 図1は、本実施の形態に係るフェライト磁性材料の製造工程を示すフローチャートである。
 図1に示すように、はじめに溶液1a、溶液1bおよび溶液1cをそれぞれ調製する。
 溶液1aは、出発原料として、金属硝酸塩であるFe(NO・9HOおよびAl(NO・9HOと、MnのソースとしてのMnOとを含む溶液である。Fe(NO・9HOおよびAl(NO・9HOとは、いずれもHOを有するため、水に溶けやすく混合し易い性質を有している。また、Fe(NO・9HOにおけるFe、Al(NO・9HOにおけるAlは、いずれも水溶液中でイオンとなり、Fe3+、Al3+として存在する。Fe、Alはイオン化されることにより、水溶液中に均一に分散されている。なお、MnOについては、水溶液中に分散し易くするために、直径0.5μm以下の微粒子粉体のMnOを使用することが好ましい。
 溶液1bは、クエン酸C(OH)(COOH)の溶液である。なお、ここで使用するクエン酸は、無水クエン酸(C(CHCOOH)(OH)(COOH))であってもよいし、クエン酸一水和物C・HOであってもよい。
 また、溶液1cは、エチレングリコールHOCHCHOHの溶液である。
 次に、溶液1aと溶液1bと溶液1cとを混合する(ステップS1)。溶液1aと溶液1bとの混合割合は、混合水溶液1aに含まれる各金属イオンのモルの総量を1とすると、溶液1bを3、溶液1cを9とするのが好ましい。
 そして、溶液1aと溶液1bと溶液1cとを混合した混合溶液を、120℃で48時間煮沸する(ステップS10)。このとき、溶液1aと溶液1bと溶液1cとの混合溶液を攪拌しながら加熱する。これにより、溶液1aと溶液1bと溶液1cとの混合溶液は、ゲル化される。
 次に、ゲル化された混合溶液を、25℃の大気中で12時間乾燥させる。これにより、Fe(Al1-xMnの前駆体が形成される(ステップS12)。
 次に、乾燥させたFe(Al1-xMnの前駆体の熱処理を行う(ステップS14)。熱処理は、大気中で300℃の温度で12時間行う。これにより、前駆体に含まれる有機成分が除去される。なお、熱処理後の前駆体は、非晶質である。
 その後、Fe(Al1-xMnの前駆体を仮焼し、結晶化させる。仮焼には、例えば、常圧雰囲気熱処理を用いる。
 具体的には、まず、熱処理したFe(Al1-xMnの前駆体を、成形金型に入れて圧縮する。このとき、一定圧力98MPaで一軸成形を行う(ステップS16)。
 次に、圧縮したFe(Al1-xMnの前駆体を、900℃で2時間仮焼する。このとき、圧縮したFe(Al1-xMnの前駆体を、Hガスを所定の割合で含むNガスを流しながら焼成する(ステップS18)。Hガスの割合a%は、例えば、a=0、0.01、0.03、0.05、0.08、0.1とする。これにより、非晶質であったFe(Al1-xMnの前駆体は結晶化される。このとき、3価のFeイオンFe3+は2価のFeイオンFe2+に還元され、4価のMnイオンMn4+は3価のMnイオンMn3+に還元される。したがって、3価のMnイオンMn3+は、一般構造式AB(A、Bは任意の金属元素)で示されるフェライトの構造のBサイトに配置されやすくなる。これにより、Bサイトには、3価のイオンAl3+とMn3+とが配置される。以上の工程により、ヘルシナイトFeAlのAlの一部がMnに置換された構成であるフェライトFe(Al1-xMn粉体が得られる。
 その後、フェライトFe(Al1-xMn粉体を焼結する(ステップS20)。なお、焼結の方法については、仮焼した粉体を再度一軸金型成形した後、常圧雰囲気熱処理するか、ホットプレス法等を用いる。ここで,ホットプレス法とは、粉体或いは予め成形した原料を型に入れ、高温で加熱しながら加圧焼結させる方法をいう。ホットプレス法では、理論密度に近い緻密焼結体が得られるほか、焼結体の微細構造を制御できるので、高強度焼結体など機械的性質、物理的性質の優れた焼結体を形成することが可能である。さらに、異種材料間の界面接触がよくなるほか、結晶同士或いは異種材料を結合できる等の特長を有している。これらの方法に限らず、Fe(Al1-xMn粉体を焼結できる他の方法を用いてもよい。また、上述した各ステップにおける温度および時間は一例であって、他の温度および時間を採用してもよい。
 上述の製造方法により、Fe(Al1-xMnのxの値を変化させて、複数種類のFe(Al1-xMn粉体の成形を行った。xの値は、x=0、0.2、0.4、0.5、0.6、0.7、0.8の7種類とした。また、仮焼して合成したFe(Al1-xMn粉体の結晶構造および磁気特性について、以下のような評価を行った。
 [4.フェライトFe(Al1-xMnの結晶構造の評価]
 上述のように、xの値をx=0、0.2、0.4、0.5、0.6、0.7、0.8と変化させた場合のそれぞれのFe(Al1-xMnの結晶構造について評価を行った。
 図2~図7は、それぞれ、x=0、0.2、0.4、0.5、0.6、0.8組成に該当する粉体を各種ガス雰囲気下で熱処理した場合得られた試料のX線回折パターンを示す図である。図8は、熱処理後に結晶構造がスピネル単一相となったFe(Al1-xMnにおいて、x=0.2、0.6、0.7、0.8、0.9とした場合の、ガス雰囲気とFe(Al1-xMnのX線回折パターンを示す図である。
 x=0の場合のFe(Al1-xMnは、FeAl(ヘルシナイト)に相当する。図2に示すように、x=0の場合のFe(Al1-xMnのX線回折パターンは、スピネル型の結晶構造を有するFeAlのX線回折パターンと一致した。
 x=0.2の場合には、仮焼工程においてNガス雰囲気中に流入するHガスの割合a%を、a=0、0.01、0.03、0.05、0.08と変更してFe(Al1-xMnの製造を行った。図3に示すように、a=0、0.01、0.03の場合には、スピネル型のFe(Al1-xMn、AlおよびFeのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMn以外にAlおよびFeが生成していることが確認できた。また、a=0.05、0.08の場合には、スピネル型のFe(Al1-xMnのX線回折パターンと一致するピークパターンが見られた。したがって、スピネル単一相のFe(Al1-xMn粉体が合成されていることが確認できた。
 x=0.4の場合には、仮焼の工程においてNガス中に含まれるHガスの割合a%を、a=0、0.01、0.03、0.05、0.065、0.08と変更してFe(Al1-xMnの合成を行った。図4に示すように、a=0、0.01、0.03、0.065の場合には、スピネル型のFe(Al1-xMn、AlおよびFeのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMn以外にAlおよびFeが生成していることが確認できた。また、a=0.05の場合には、スピネル型のFe(Al1-xMn、FeおよびFeAlのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMn以外にFeおよびFeAlが生成していることが確認できた。また、a=0.08の場合には、スピネル型のFe(Al1-xMn、Fe、FeAlおよびMnOのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMn以外にFe、FeAlおよびMnOが生成していることが確認できた。
 x=0.5の場合には、仮焼の工程においてNガス中に含まれるHガスの割合a%を、a=0.01、0.03、0.05、0.08、0.1と変更してFe(Al1-xMnの合成を行った。図5に示すように、a=0.01、0.03、0.05の場合には、スピネル型のFe(Al1-xMn、AlのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMn以外にAlが生成していることが確認できた。また、a=0.08の場合には、スピネル型のFe(Al1-xMn、MnOのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMnとMnOが生成していることが確認できた。また、a=0.1の場合には、スピネル型のFe(Al1-xMn(理論値)、MnOのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMnとMnOが生成していることが確認できた。
 x=0.6の場合には、焼結の工程においてNガス中に含まれるHガスの割合a%を、a=0、0.01、0.03、0.05、0.08と変更してFe(Al1-xMnの製造を行った。図6に示すように、a=0の場合には、スピネル型のFe(Al1-xMn、MnFeのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMn以外にMnFeが形成されていることが確認できた。また、a=0.01の場合には、スピネル型のFe(Al1-xMnのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMnが生成していることが確認できた。
 また、a=0.03、0.05、0.08の場合には、スピネル型のFe(Al1-xMn、MnOのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMnとMnOが生成していることが確認できた。
 x=0.8の場合には、仮焼結の工程においてNガス中に含まれるHガスの割合a%を、a=0、0.01、0.03、0.05、0.08と変更してFe(Al1-xMnの製造を行った。図7に示すように、a=0、0.01の場合には、スピネル型のFe(Al1-xMnのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMnが形成されていることが確認できた。また、a=0.03、0.05、0.08の場合には、スピネル型のFe(Al1-xMn、MnOのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMnとMnOが生成していることが確認できた。
 ここで、スピネル型のFe(Al1-xMnのみ(単一相)が生成した場合についてまとめると、図8に示すように、Fe(Al1-xMnにおけるxの値と仮焼の工程においてNガス中に含まれるHガスの割合a%について、(x,a)=(0.2,0.08)、(0.6,0)、(0.7,0)、(0.8,0)、(0.9,0)とした場合には、スピネル型のFe(Al1-xMnのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMnが生成していることが確認できた。また、(x,a)=(0.2,0.08)の場合には、スピネル型のFe(Al1-xMn、FeAlのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMn以外にFeAlが生成していることが確認できた。また、(x,a)=(0.9,0)の場合には、スピネル型のFe(Al1-xMn、MnFeのX線回折パターンと一致するピークパターンが見られた。したがって、Fe(Al1-xMn以外にMnFeが生成していることが確認できた。
 図9Aは、xの値およびHの含有割合を変化させたときの生成物についてまとめた図である。なお、図9Aにおいて、「S」はスピネル型の結晶構造を有する合成物が形成されていることを示す。また、斜線が施された(x,a)の組み合わせの欄は、単一相のスピネル型のFe(Al1-xMnの構成が確認された(x,a)の組み合わせを示す。
 以上をまとめると、図9Aに示すように、単一相のスピネル型のFe(Al1-xMnの生成が確認されたのは、(x,a)=(0.2,0.05)、(0.2,0.08)、(0.6,0)、(0.6,0.01)、(0.7,0)、(0.7,0.01)、(0.8,0)、(0.8,0.01)、(0.9,0)、(0.9,0.01)の場合であることがわかった。
 なお、図9Aに示したように、x=0.5の組成の前駆体を常圧雰囲気で熱処理するのみでは単一相のスピネル型のFe(Al1-xMnの粉体の生成は確認されなかったが、以下の場合には、x=0.5においても、単一相のスピネル型のFe(Al1-xMnの生成が確認された。
 図9Bは、x=0.5の場合にパルス通電加圧焼結(Pulsed Electric-Current Pressure Sintering:PECPS)により生成された生成物のX線回折パターンを示す図である。図9Cは、x=0.5の場合にパルス通電加圧焼結および常圧雰囲気の熱処理により生成された生成物のX線回折パターンを示す図である。
 x=0.5の場合において、Fe(Al1-xMnの前駆体を圧力50MPaで成形し、さらに、600℃/10分/50MPa/真空下でパルス通電加圧焼結を行った。このときの生成物のX線回折パターンを計測したところ、図9Bに示すX線回折パターンが得られた。図9Bに示すX線回折パターンでは、単一相のスピネル型のFe(Al1-xMnの回折パターンと一致するピークパターンが見られた。したがって、単一相のスピネル型のFe(Al1-xMnが生成していることが確認できた。なお、焼結の方法は、パルス通電加圧焼結に限らず、他の焼結法であってもよい。
 さらに、パルス通電加圧焼結により生成された単一相のスピネル型のFe(Al1-xMnの粉体を900℃で2時間、常圧雰囲気で熱処理を行った。このときの生成物のX線回折パターンを計測したところ、図9Cに示すX線回折パターンが得られた。図9Cに示すX線回折パターンでは、XRDの強度は、図9Bに示したX線回折パターンよりも強くなったが、結晶相の一部が分離することが分かった。よって、x=0.5の場合において、単一相のスピネル型のFe(Al1-xMnの粉体を生成するためには、PECPSのみの処理が最適であるといえる。
 図10A~図10Gは、x=0、0.2、0.4、0.5、0.6、0.8、1.0の場合のFe(Al1-xMn粉体の凝集粒子のSEM写真である。図10A~図10Gに示すように、Fe(Al1-xMn凝集粒子を構成する一次粒子の粒径は、xの値をx=0、0.2、0.4、0.5、0.6、0.8、1.0と大きくするにつれて粒径が大きくなっている。
 図11は、xの値とFe(Al1-xMnの格子定数との関係を示す図である。
 図11に示すように、xの値が大きくなるにつれてFe(Al1-xMnの格子定数も大きくなっている。このことは、図10A~図10Gにおいて、xの値をx=0、0.2、0.4、0.5、0.6、0.8、1.0と大きくするにつれて一次粒子の粒径が大きくなるという結果と一致しているといえる。
 [5.フェライトFe(Al1-xMnの磁気特性の評価]
 次に、Fe(Al1-xMnの磁気特性について説明する。
 図12A~図12Fは、それぞれ、x=0、0.2、0.6、0.7、0.8、0.9の場合のFe(Al1-xMnのB-H特性を示す図である。なお、図12A~図12Fでは、便宜上縦軸および横軸のスケールの表示を省略しているが、スケールの大きさは図12A~図12Fで統一している。
 B-H特性は、材料に外部磁場(横軸に示すH)を印加したときの磁束密度(縦軸に示すB)の変化を表した図であり、常磁性体の場合には、直線(比例)、強磁性体の場合には、いわゆるヒステリシス曲線となる。また、ヒステリシス曲線においては、磁束密度Bが0の場合の外部磁場Hの値(保磁力H)について、正負のHの値の差が小さいもの(保磁力Hが小さいもの)を軟磁性、正負のHの値の差が大きいもの(保磁力Hが大きいもの)を硬磁性という。正負のHの値の差が小さいほど(保磁力Hが小さいほど)外部磁場に対する磁化が速い。したがって、軟磁性の特徴を示す材料であるほど磁気特性の優れた材料であるといえる。
 x=0すなわちFeAl(ヘルシナイト)粉体では、図12Aに示すように、Hの値が増加するとBの値も増加し、B-H特性は直線となっている。FeAlは常磁性体であるため、B-H特性は直線となっている結果は妥当であるといえる。
 また、x=0.2の場合のFe(Al1-xMnでは、図12Bに示すように、B-H特性についてはヒステリシス曲線が見られた。したがって、x=0.2の場合のFe(Al1-xMnは、強磁性体であることがわかった。なお、xの値が0<x<0.2の範囲については、図12Aおよび図12BからはFe(Al1-xMnが強磁性体であると判断することはできないが、図12Bより、少なくともx=0.2ではFe(Al1-xMnは強磁性体であるといえる。
 また、x=0.6、0.7、0.8、0.9の場合のFe(Al1-xMnについても、図12C~図12Fに示すように、B-H特性についてはヒステリシス曲線が見られた。したがって、x=0.6、0.7、0.8、0.9の場合のFe(Al1-xMnは、強磁性体であることがわかった。
 また、x=0.2、0.6、0.7、0.8、0.9とxの値が増加するにつれて、ヒステリシス曲線において、磁束密度Bが0の場合の外部磁場Hの値について、正負のHの値の差が小さくなり(保磁力Hが小さくなり)、軟磁性を示していることがわかった。したがって、Fe(Al1-xMnについてxの値が大きいほど、磁気特性の優れているFe(Al1-xMnが得られることが分かった。
 以上より、x≧0.2以上の場合に、Fe(Al1-xMnは強磁性体であるといえる。
 図13は、Fe(Al1-xMnにおけるxの値と質量磁化σとの関係を示す図である。
 図13に示すように、Fe(Al1-xMnにおいて、xの値が増加するにつれて質量磁化σの値は増加している。したがって、xの値が大きいほど単位質量当たりの磁化が優れたFe(Al1-xMnを得ることができるといえる。また、Fe(Al1-xMnは、特に高周波デバイスなどの高い磁気特性の要求される分野で使用される場合、飽和磁束密度が優れている材料であることが好ましい。飽和磁束密度は質量磁化と密接な関係があり、質量磁化σは例えばσ≧10とすることが好ましい。したがって、質量磁化σがσ≧10を満たすようなFe(Al1-xMnを合成することが好ましい。
 図14は、Fe(Al1-xMnにおけるxの値と飽和磁束密度Bの関係を示す図である。
 図14に示すように、Fe(Al1-xMnにおいて、xの値が増加するにつれて飽和磁束密度Bの値は増加している。したがって、xの値が大きいほど飽和磁束密度Bの優れたFe(Al1-xMnを得ることができるといえる。
 図15は、Fe(Al1-xMnにおけるxの値と保磁力Hとの関係を示す図である。なお、図15では、保磁力(縦軸)については対数で示している。
 図15に示すように、Fe(Al1-xMnにおいて、xの値0が増加するにつれて保磁力Hは小さくなっている。これは、xの値が増加するにつれてFe(Al1-xMnが軟磁性化していることを示しているといえる。そして、xの値がx=0.8程度で保磁力Hの値は最小値を示し、x=0.8を超えると保磁力Hは再び増加している。したがって、xの値がx=0.8程度の場合に、Fe(Al1-xMnは最も軟磁性を示し、最も保磁力Hの優れたFe(Al1-xMnを得ることができるといえる。
 図16は、Fe(Al1-xMnにおけるxの値とFe(Al1-xMnの構造および磁気特性との関係をまとめた図である。
 図16に示すように、x=0.2において、上述した製造方法によりFe(Al1-xMnの固溶体を初めて合成することができた。
 また、x=0.4および0.5では、常温熱処理では単一相は得られなかったものの、例えばパルス通電加圧焼結により、x=0.5の場合には単一相の粉体を合成することができた。さらに、x=0.6、0.7、0.8、0.9においても、上述した製造方法によりFe(Al1-xMnの固溶体を初めて合成することができた。
 このように、上述の製造方法により製造されたFe(Al1-xMnは、新組成のフェライトであり、強磁性を示すものである。Fe(Al1-xMnの飽和磁束密度Bは、一例として0.06~0.11[T]程度、保磁力Hは、一例として14~18[Oe]である。また、最も磁気特性が優れている場合のFe(Al1-xMnのxの値は、例えばx=0.8であり、このときの飽和磁束密度Bは0.098[T]、保磁力Hは14[Oe]という評価が得られた。
 以上、本実施の形態にかかる磁性材料およびその製造方法によると、ヘルシナイトFeAlのAlが配置されるサイトと同一のサイトにMnを配置することができるので、Fe(Al1-xMnという構成のフェライト磁性材料を容易に合成することができる。したがって、高い磁気特性を有するフェライト磁性材料Fe(Al1-xMnを提供することができる。
 以上、本開示の実施の形態に係る磁性材料およびその製造方法について説明したが、本開示は、この実施の形態に限定されるものではない。
 例えば、焼結の方法については、上述したホットプレス法に限らず、パルス通電加圧焼結などの他の方法を用いてもよい。また、上述した各ステップにおける温度および時間は一例であって、他の温度および時間を採用してもよい。
 また、溶液1a、溶液1b、溶液1cの混合は、これらを一度に混合してもよいし、例えば、溶液1bと溶液1cとを混合した混合溶液を調製し、混合溶液にさらに溶液1aを混合することとしてもよい。
 また、上述した実施の形態では、溶液1a、溶液1b、溶液1cとを混合するという、液相法によりFe(Al1-xMnの合成を行っているが、固相法によりFe(Al1-xMnの合成を行ってもよい。
 また、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本開示にかかる磁性材料は、高周波用のインダクタ、トランスの磁芯材料などに適用できる。
 1a 溶液(混合水溶液)
 1b 溶液(クエン酸)
 1c 溶液(エチレングリコール)

Claims (8)

  1.  Fe(Al1-xMn(0<x<1)という構成で表される、強磁性を示す
     磁性材料。
  2.  前記磁性材料の質量磁化σ[emu/g]の値の範囲は、σ≧10である
     請求項1に記載の磁性材料。
  3.  前記磁性材料において、前記xの値の範囲は、x≧0.2である
     請求項1または2に記載の磁性材料。
  4.  前記磁性材料は、二酸化マンガンMnOを原料に含む
     請求項1~3のいずれか1項に記載の磁性材料。
  5.  磁性材料の製造方法であって、
     前記磁性材料は、Fe(Al1-xMn(0<x<1)という構成で表される、強磁性を示す磁性材料であり、
     出発原料であるFeの硝酸塩、Alの硝酸塩およびMnを含む酸化物を蒸留水に溶解して混合水溶液を調製する工程と、
     前記混合水溶液にクエン酸とエチレングリコールとを混合して金属-クエン酸錯体を調製する工程と、
     前記金属-クエン酸錯体をゲル状になるまで煮沸したのち乾燥することにより前駆体を得る工程と、
     前記前駆体を焼結して前記磁性材料を得る焼結工程と、
    を含む
     磁性材料の製造方法。
  6.  前記焼結工程において、3価のFeイオンは2価のFeイオンに、4価のMnイオンは3価のMnイオンに還元される
     請求項5に記載の磁性材料の製造方法。
  7.  前記Feの硝酸塩は、硝酸鉄(III)九水和物Fe(NO・9HOであり、
     前記Alの硝酸塩は、硝酸アルミニウム(III)九水和物Al(NO・9HOであり、
     前記Mnを含む酸化物は、二酸化マンガンMnOである
     請求項5または6に記載の磁性材料の製造方法。
  8.  前記金属-クエン酸錯体を調製する工程において、前記混合水溶液中の金属イオンのモル、前記クエン酸のモル、前記エチレングリコールのモル比は、1:3:9である
     請求項5~7のいずれか1項に記載の磁性材料の製造方法。
PCT/JP2016/000433 2015-02-04 2016-01-28 磁性材料およびその製造方法 WO2016125466A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/547,681 US11056258B2 (en) 2015-02-04 2016-01-28 Magnetic material and production method therefor
DE112016000609.8T DE112016000609T8 (de) 2015-02-04 2016-01-28 Magnetisches Material und Verfahren zu dessen Herstellung
JP2016573219A JP6550586B2 (ja) 2015-02-04 2016-01-28 磁性材料およびその製造方法
CN201680007779.7A CN107408439B (zh) 2015-02-04 2016-01-28 磁性材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-020664 2015-02-04
JP2015020664 2015-02-04

Publications (1)

Publication Number Publication Date
WO2016125466A1 true WO2016125466A1 (ja) 2016-08-11

Family

ID=56563821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000433 WO2016125466A1 (ja) 2015-02-04 2016-01-28 磁性材料およびその製造方法

Country Status (5)

Country Link
US (1) US11056258B2 (ja)
JP (1) JP6550586B2 (ja)
CN (1) CN107408439B (ja)
DE (1) DE112016000609T8 (ja)
WO (1) WO2016125466A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019576A1 (ja) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 複合磁性材料とこれを用いたコイル部品ならびに電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112907A (ja) 1985-11-11 1987-05-23 Matsushita Electric Ind Co Ltd セラミツクバ−ナ
US5648015A (en) * 1995-01-26 1997-07-15 Ferronics Incorporated Process for preparing a ferromagnetic material
US7074336B1 (en) * 2001-06-20 2006-07-11 Sandia Corporation Inorganic ion sorbents and methods for using the same
CN101189371B (zh) 2005-02-07 2012-01-18 海珀里昂催化国际有限公司 单壁碳纳米管催化剂
JP5491941B2 (ja) * 2010-04-21 2014-05-14 株式会社東芝 不揮発性記憶装置
CN103668343B (zh) * 2013-12-03 2016-08-17 中南大学 一种提高金属陶瓷惰性阳极表面致密层电导率的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019576A1 (ja) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 複合磁性材料とこれを用いたコイル部品ならびに電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIRO UEDA ET AL.: "Pulsed Electric-current Pressure Sintering of Spinel Type (Fe, Mn)A1204 Ferrites and their Physical Property Evaluation", JOURNAL OF THE JAPAN SOCIETY OF POWDER AND POWDER METALLURGY, vol. 61, no. 4, 2 August 2014 (2014-08-02), pages 171 - 178 *

Also Published As

Publication number Publication date
US11056258B2 (en) 2021-07-06
DE112016000609T8 (de) 2017-11-30
JPWO2016125466A1 (ja) 2017-12-07
CN107408439A (zh) 2017-11-28
US20180033531A1 (en) 2018-02-01
JP6550586B2 (ja) 2019-07-31
CN107408439B (zh) 2019-09-27
DE112016000609T5 (de) 2017-10-12

Similar Documents

Publication Publication Date Title
Mugutkar et al. Magneto-structural behaviour of Gd doped nanocrystalline Co-Zn ferrites governed by domain wall movement and spin rotations
Angadi et al. Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles
Shirsath et al. Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion
Kaur et al. Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties
Gabal et al. Cr-substituted Ni–Zn ferrites via oxalate decomposition. Structural, electrical and magnetic properties
Kuruva et al. Effect of Ni–Zr codoping on dielectric and magnetic properties of SrFe12O19 via sol–gel route
Praveena et al. Structural and magnetic properties of Mn-Zn ferrites synthesized by microwave-hydrothermal process
Rashad et al. Controlling the composition, microstructure, electrical and magnetic properties of LiFe5O8 powders synthesized by sol gel auto-combustion method using urea as a fuel
Rodrigues et al. Nanoferrites of nickel doped with cobalt: Influence of Co2+ on the structural and magnetic properties
Rosnan et al. Effects of Mg substitution on the structural and magnetic properties of Co0. 5Ni0. 5− x MgxFe2O4 nanoparticle ferrites
Mozaffari et al. The effect of cobalt substitution on magnetic hardening of magnetite
Rahaman et al. Investigation of structural, morphological and electromagnetic properties of Mg0. 25Mn0. 25Zn0. 5− xSrxFe2O4 ferrites
JP6860285B2 (ja) Ca−La−Co系フェライト焼結磁石の製造方法及びCa−La−Co系フェライト焼結磁石
JP4858941B2 (ja) 磁性体材料の製造方法
Yang et al. Preparation of Al3+-Co2+ co-substituted M-type SrCaNd hexaferrites and their controlled magnetic properties
Gurav et al. Less magnetic and larger Zr4+–Zn2+ ions co-substituted structural and magnetic properties of ordered Li0. 5Fe2. 5O4 nanoparticles
Nag et al. Influence of particle size on magnetic and electromagnetic properties of hexaferrite synthesised by sol-gel auto combustion route
Ismail et al. Dependence of magnetic properties and microstructure of mechanically alloyed Ni0. 5Zn0. 5Fe2O4 on soaking time
Kumar et al. Structural and magnetic properties of zinc doped copper ferrite synthesized by sol-gel and hydrothermal route
JP6550586B2 (ja) 磁性材料およびその製造方法
Tawfik et al. Structural and magnetocaloric properties of nano Zn ferrite doped with Ni under hydrothermal conditions
Zhao et al. Magnetic transformation of Zn‑substituted Ni–Co ferrite nanoparticles
US20160322142A1 (en) Development of nanocrystalline magnesium ferrites and methods for preparing same from steel rolling mill by-product millscale
An et al. High magnetic performance in Al‐substituted BaFe12O19 by a wet chemical process
Zhao et al. Effects of Gd 2 O 3 on structure and magnetic properties of Ni-Mn ferrite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573219

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000609

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746299

Country of ref document: EP

Kind code of ref document: A1