WO2017154772A1 - 経路生成装置 - Google Patents
経路生成装置 Download PDFInfo
- Publication number
- WO2017154772A1 WO2017154772A1 PCT/JP2017/008481 JP2017008481W WO2017154772A1 WO 2017154772 A1 WO2017154772 A1 WO 2017154772A1 JP 2017008481 W JP2017008481 W JP 2017008481W WO 2017154772 A1 WO2017154772 A1 WO 2017154772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- work
- route
- area
- region
- field
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 description 30
- 238000004891 communication Methods 0.000 description 22
- 230000005540 biological transmission Effects 0.000 description 15
- 238000012937 correction Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000003028 elevating effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B69/00—Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0253—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0255—Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
Definitions
- the present invention relates to a travel / work route generation device when an obstacle is present in a work area where work is performed by a work vehicle.
- a tractor includes a position detection unit and a direction detection unit, travels in a farm field, detects a corner position, performs so-called teaching travel, and sets a work path of the farm field.
- a tractor includes a position detection unit and a direction detection unit, travels in a farm field, detects a corner position, performs so-called teaching travel, and sets a work path of the farm field.
- the present invention has been made in view of the situation as described above, and sets an obstacle area around the obstacle so that a route is not generated, and the route set in the work area is the obstacle region. It is an object of the present invention to provide a route generation device that is set so as to be able to work efficiently while avoiding the above.
- the present invention is a route generation device including a control unit capable of generating a route that can autonomously travel and work in a field, and the control unit generates a work route for performing work in the field.
- An area, a second area that is set around the first area that does not generate a work route but can generate a travel route for traveling, and a third area that is prohibited from traveling in the field The fourth region set around the third region can be set so that a work route for traveling can be generated although a work route is not generated.
- control unit can set a fifth area in the first area where a work path connecting the fourth area and the second area is not generated.
- control unit can generate a work route in the remaining area excluding the third area, the fourth area, and the fifth area in the first area.
- control unit provides the fifth area in parallel with a work path generated in the first area.
- control unit when the control unit sets a third region in the first region, at least one side constituting the third region is set substantially parallel to a specific side constituting the first region. Is.
- the present invention is a route generation device including a control unit capable of generating a route that can autonomously travel and work in a field, and the control unit includes a first region in which a work route for performing work in the field is generated; A second region that is set around the first region that does not generate a work route but can generate a travel route for traveling, a third region that is prohibited from traveling in the field, When the fourth region set around the third region that can generate a travel route for traveling without generating a route can be set, and the second region and the fourth region overlap, The fourth area can be set including the second area.
- the present invention is a route generation device including a control unit capable of generating a route that can autonomously travel and work in a field, and the control unit includes a first region in which a work route for performing work in the field is generated; A second region that is set around the first region that does not generate a work route but can generate a travel route for traveling, a third region that is prohibited from traveling in the field, It is possible to set a fourth area that is set around the third area that does not generate a route but can generate a travel route for traveling, and the second area and the fourth area are less than a predetermined width.
- the fourth area and the sixth area are included in the second area and can be set when facing each other across the sixth area.
- the present invention provides the control unit according to the first aspect, wherein when there are a plurality of third regions and fourth regions in the field, the fourth regions face each other across a seventh region having a width less than a predetermined width.
- the seven areas can be set to be included in any one of the fourth areas.
- FIG. 1 Schematic side view of autonomous traveling work vehicle and traveling work vehicle Control block diagram Figure showing the initial screen Diagram showing field settings
- a diagram showing the field area Diagram showing the shape of the field The figure which shows a mode that the shape of the field edge is recognized Diagram showing field shape correction
- the figure which shows the position and direction of the environment recognition means which acquires surrounding information The figure which shows a mode that a boundary feature point is selected on a display apparatus
- the figure which shows a mode that the field edge is recognized with the distance sensor which acquires surrounding information
- the figure which shows the course in the case of working in order in two fields where an obstacle exists The figure which shows the course in the case of working separately in two fields with obstacles Diagram showing field where obstacle area overlaps with headland
- the figure which shows the farm field where the obstacle area was separated from the headland by a predetermined distance
- An autonomous traveling work vehicle (hereinafter sometimes referred to as an unmanned vehicle) 1 that can be autonomously traveled unmanned, and a manned traveling work vehicle that is operated by a worker (user) in cooperation with the autonomous traveling work vehicle 1
- 100 is a tractor (hereinafter may be referred to as a manned vehicle), and the autonomous tilling work vehicle 1 and the traveling work vehicle 100 are each equipped with a rotary tiller as a work implement.
- the work vehicle is not limited to a tractor, and may be a combine, etc.
- the work machine is not limited to a rotary tiller, but is a vertical stand, a mower, a rake, a seeder, a fertilizer, or the like. May be.
- autonomous traveling means that a tractor travels along a predetermined route by controlling a configuration related to traveling provided by a control unit (ECU) provided in the tractor.
- ECU control unit
- Executing farm work in a single farm with unmanned vehicles and manned vehicles may be referred to as cooperative work of farm work, follow-up work, accompanying work, and the like.
- cooperative work of farm work in addition to “performing farm work in a single farm field with unmanned vehicles and manned vehicles”, “farm work in different farm fields such as adjacent farm fields with unmanned vehicles and manned vehicles at the same time” Performing ”may be included.
- FIG. 1 is a side view showing a schematic configuration of an autonomous traveling work vehicle and a traveling work vehicle
- FIG. 2 is a control block diagram showing their control configuration. 1 and 2
- the vehicle body of the tractor has an engine 3 installed in the hood 2, a dashboard 14 provided in the cabin 11 at the rear of the hood 2, and a steering handle 4 serving as a steering operation means provided on the dashboard 14. It has been.
- the steering wheel 4 is rotated to rotate the front wheels 9 and 9 through the steering device.
- a steering actuator 40 that operates the steering device is connected to a steering controller 301 that constitutes the control unit 30.
- the steering direction of the autonomous traveling work vehicle 1 is detected by the steering sensor 20.
- the steering sensor 20 is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9.
- the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering handle 4 may be detected or the operation amount of the power steering may be detected.
- the detection value obtained by the steering sensor 20 is input to the steering controller 301 of the control unit 30.
- the control unit 30 includes a steering controller 301, an engine controller 302, a shift control controller 303, a horizontal control controller 304, a work control controller 305, a positioning control unit 306, an autonomous traveling control controller 307, and the like, each of which is a CPU (central processing unit). And a storage device such as a RAM and a ROM, an interface, and the like.
- the storage device stores programs, data, and the like for operation, and communication is possible so that information, data, and the like can be transmitted and received through CAN communication.
- a driver's seat 5 is disposed behind the steering handle 4 and a mission case 6 is disposed below the driver's seat 5.
- Rear axle cases 8 and 8 are connected to the left and right sides of the transmission case 6, and rear wheels 10 and 10 are supported on the rear axle cases 8 and 8 via axles.
- the power from the engine 3 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 6 so that the rear wheels 10 and 10 can be driven.
- the transmission is constituted by, for example, a hydraulic continuously variable transmission, and the movable swash plate of a variable displacement hydraulic pump is operated by a transmission means 44 such as a motor so that the transmission can be changed.
- the transmission means 44 is connected to the transmission control controller 303 of the control unit 30.
- the rotation speed of the rear wheel 10 is detected by the vehicle speed sensor 27 and is input to the shift control controller 303 as the traveling speed.
- the vehicle speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
- the transmission case 6 houses a PTO clutch and a PTO transmission, and the PTO clutch is turned on and off by the PTO on / off means 45.
- the PTO on / off means 45 is connected to the autonomous traveling control controller 307 of the control unit 30 via the display means 49. It is connected, and the connection / disconnection of power to the PTO shaft can be controlled.
- a sowing machine, a cocoon coater, or the like is mounted as a work machine, a work machine controller 308 is provided so that the work machine can perform its own control, and the work machine controller 308 is connected via information communication wiring (so-called ISOBUS).
- ISOBUS information communication wiring
- a front axle case 7 is supported on a front frame 13 that supports the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is configured.
- the front wheels 9 and 9 are steered wheels, which can be turned by turning the steering handle 4, and the front wheels 9 and 9 are steered left and right by a steering actuator 40 comprising a power steering cylinder as a driving means of the steering device. It can be turned.
- the steering actuator 40 is connected to and controlled by the steering controller 301 of the control unit 30.
- An engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like are connected to an engine controller 302 serving as an engine rotation control means so that the state of the engine can be detected.
- the engine controller 302 detects the load from the set rotational speed and the actual rotational speed and controls it so as not to be overloaded, and transmits the state of the engine 3 to the remote operation device 112 described later so that it can be displayed on the display device 113. ing.
- the fuel tank 15 disposed below the step is provided with a level sensor 29 for detecting the fuel level and is connected to the display means 49.
- the display means 49 is provided on the dashboard of the autonomous traveling work vehicle 1, The remaining amount of is displayed. Then, the remaining amount of fuel is calculated by the autonomous travel controller 307, the workable time is calculated, information is transmitted to the remote operation device 112 via the communication device 110, and the remaining fuel amount and work are displayed on the display device 113 of the remote operation device 112. Possible time can be displayed.
- the display means for displaying the tachometer, fuel gauge, hydraulic pressure, and abnormality and the display means capable of displaying the current position and the like may be configured separately.
- display means 49 for displaying an engine tachometer, a fuel gauge, a hydraulic pressure, etc., a monitor indicating an abnormality, a set value, and the like are arranged.
- the display means 49 is a touch panel type like the remote operation device 112, and data input, selection, switch operation, button operation, etc. are also possible.
- a rotary tiller 24 is mounted on the rear part of the vehicle body of the tractor as a work implement via a work implement mounting device 23 so as to be movable up and down.
- An elevating cylinder 26 is provided on the transmission case 6, and the elevating arm 26 constituting the work implement mounting device 23 is rotated by moving the elevating cylinder 26 to extend and lower the rotary tiller 24.
- the lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the horizontal control controller 304 of the control unit 30.
- an inclination cylinder is provided on the left and right lift links of the work implement mounting device 23, and an inclination actuator 47 that operates the inclination cylinder is connected to a horizontal control controller 304.
- the positioning control unit 306 serving as a position detector is connected to a mobile GPS antenna (positioning antenna) 34 and a data receiving antenna 38 for enabling detection of position information.
- the mobile GPS antenna 34 and the data receiving antenna 38 are connected to the cabin 11. Provided on top.
- the positioning control unit 306 is provided with a position calculating means for calculating the latitude and longitude so that the current position can be displayed on the display means 49 or the display device 113 of the remote operation device 112.
- GNSS satellite positioning system
- GPS is used. explain.
- the autonomous traveling work vehicle 1 includes a gyro sensor 31 for obtaining posture change information of the vehicle body, and an azimuth angle detection unit 32 for detecting a traveling direction, and is connected to the control unit 30. However, since the traveling direction can be calculated from the GPS position measurement, the azimuth angle detection unit 32 can be omitted.
- the gyro sensor 31 detects the angular velocity of the front-rear direction inclination (pitch) of the autonomous traveling work vehicle 1, the angular velocity of the left-right inclination (roll) of the vehicle body, and the angular velocity of turning (yaw).
- the gyro sensor 31 By integrating and calculating the three angular velocities, it is possible to obtain the front-rear and left-right inclination angles and the turning angle of the vehicle body portion of the autonomous traveling work vehicle 1.
- Specific examples of the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, and a vibration gyro sensor.
- the gyro sensor 31 is connected to the control unit 30 and inputs information related to the three angular velocities to the control unit 30.
- the azimuth angle detection unit 32 detects the direction (traveling direction) of the autonomous traveling work vehicle 1.
- a specific example of the azimuth angle detection unit 32 includes a magnetic azimuth sensor.
- the azimuth angle detection unit 32 inputs information to the autonomous traveling control controller 307 via the CAN communication means.
- the autonomous traveling control controller 307 calculates the signals acquired from the gyro sensor 31 and the azimuth angle detecting unit 32 by the attitude / azimuth calculating means, and calculates the attitude (direction, vehicle body front-rear direction and vehicle body left-right direction) of the autonomous traveling work vehicle 1.
- the position information of the autonomous traveling work vehicle 1 is acquired using a GPS (Global Positioning System) which is one of satellite positioning systems.
- GPS Global Positioning System
- Various positioning methods using GPS include single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematics-GPS) positioning, and any of these methods can be used.
- the RTK-GPS positioning method with high measurement accuracy is adopted.
- GPS is simultaneously observed by a reference station whose position is known and a mobile station whose position is to be obtained, and the data observed by the reference station is transmitted to the mobile station in real time by a method such as wireless, and the reference station
- a method such as wireless
- a positioning control unit 306, a mobile GPS antenna 34, and a data receiving antenna 38 that are mobile stations are arranged in the autonomous traveling work vehicle 1, and a fixed communication device 35, a fixed GPS antenna 36, and a data transmitting antenna that are reference stations. 39 is disposed at a predetermined position.
- phase measurement relative positioning
- data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39 to the data reception antenna 38. .
- the mobile GPS antenna 34 disposed in the autonomous traveling work vehicle 1 receives signals from GPS satellites 37, 37. This signal is transmitted to the positioning control unit 306 for positioning. At the same time, signals from GPS satellites 37, 37... Are received by the fixed GPS antenna 36 serving as a reference station, measured by the fixed communication device 35 and transmitted to the positioning control unit 306, and the observed data is analyzed and moved. Determine the station location.
- the autonomous traveling controller 307 is provided as an autonomous traveling means for autonomously traveling the autonomous traveling work vehicle 1. That is, the various information acquisition units connected to the autonomous traveling controller 307 acquire the traveling state of the autonomous traveling work vehicle 1 as various information, and the various control units connected to the autonomous traveling controller 307 allow the autonomous traveling work vehicle 1 to Control autonomous driving. Specifically, it receives radio waves transmitted from the GPS satellites 37, 37,... And obtains position information of the vehicle body at set time intervals in the positioning control unit 306, and the vehicle body from the gyro sensor 31 and the azimuth angle detection unit 32.
- Displacement information and azimuth information are obtained, and the steering actuator 40, speed change is performed so that the vehicle body travels along a route (travel route and work route) R set in advance based on the position information, displacement information, and azimuth information.
- the means 44, the lift actuator 25, the PTO on / off means 45, the engine controller 302, etc. are controlled so that they can autonomously run and work automatically.
- the obstacle sensor 41 is arranged in the autonomous traveling work vehicle 1 and connected to the control unit 30 so as not to collide with the obstacle.
- the obstacle sensor 41 is configured by a laser sensor, an ultrasonic sensor, or a camera, arranged at the front part, the side part, or the rear part of the vehicle body part and connected to the control unit 30. Whether or not there is an obstacle in the rear or the rear is detected, and control is performed to stop traveling when the obstacle approaches within a set distance.
- the autonomous traveling work vehicle 1 is mounted with a camera 42F that captures the front, a work implement behind the camera 42R, and a camera 42R that captures the state of the field after work, and is connected to the control unit 30.
- the cameras 42F and 42R are arranged on the front part and the rear part of the roof of the cabin 11.
- the arrangement positions are not limited, and one camera is arranged on the front part and the rear part in the cabin 11.
- the camera 42 may be arranged at the center of the vehicle body and rotated around the vertical axis to photograph the surroundings, or the camera 42 may be arranged at the four corners of the vehicle body to photograph the periphery of the vehicle body.
- the cameras 42F and 42R may be arranged on the back side of the emblem.
- a through-hole or a predetermined gap is set in the emblem, and the lens of the cameras 42F and 42R corresponds to the position of the through-hole or the gap, so that shooting is not hindered. Images captured by the cameras 42F and 42R are displayed on the display device 113 of the remote operation device 112 provided in the traveling work vehicle 100.
- the remote control device 112 sets a route R, which will be described later, of the autonomous traveling work vehicle 1, remotely operates the autonomous traveling work vehicle 1, monitors the traveling state of the autonomous traveling work vehicle 1 and the operating state of the work implement. , And stores work data, and includes a control unit (CPU or memory) 130, a communication device 111, a display device 113, a storage device 114, and the like.
- a control unit CPU or memory
- the traveling work vehicle 100 which is a manned traveling vehicle, is driven and operated by an operator, and the traveling work vehicle 100 is equipped with a remote control device 112 so that the autonomous traveling work vehicle 1 can be operated. Since the basic configuration of the traveling work vehicle 100 is substantially the same as that of the autonomous traveling work vehicle 1, detailed description thereof is omitted. Note that the traveling work vehicle 100 (or the remote control device 112) may include a GPS control unit.
- the remote control device 112 can be attached to and detached from a mounting portion (an arm member (not shown), for example, the remote control device 112 that can be mounted and fixed) provided on the dashboard of the traveling work vehicle 100 and the autonomous traveling work vehicle 1, the pillar of the cabin 11, or the like. It is said.
- the remote control device 112 can be operated while attached to the mounting portion of the traveling work vehicle 100, or can be carried out by being taken out of the traveling work vehicle 100, or can be operated while being attached to the mounting portion of the autonomous traveling work vehicle 1. It is also possible to operate.
- the remote control device 112 can be configured by a wireless communication terminal such as a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
- the remote operation device 112 and the autonomous traveling work vehicle 1 are configured to be able to communicate with each other wirelessly, and the autonomous traveling work vehicle 1 and the remote operation device 112 are provided with communication devices 110 and 111 for communication, respectively.
- the communication device 111 is configured integrally with the remote operation device 112.
- the communication means is configured to be able to communicate with each other via a wireless LAN such as WiFi.
- the remote operation device 112 is provided with a display device 113 having a touch panel type operation screen that can be operated by touching the screen on the surface of the housing, and the communication device 111, the control unit 130, the storage device 114, a battery, and the like are accommodated in the housing. ing.
- FIG. 3 shows an initial screen displayed on the display device 113 of the remote operation device 112.
- the route R can be set by the control unit 30 included in the autonomous traveling work vehicle 1.
- the display device 113 of the remote operation device 112 is of a touch panel type, and an initial screen appears when the remote operation device 112 is activated by turning on the power.
- a tractor setting button 201, a field setting button 202, a route generation setting button 203, a data transfer button 204, a work start button 205, and an end button 206 are displayed.
- tractor setting will be described.
- the tractor setting button 201 When the tractor setting button 201 is touched, when a work is performed using the tractor by the remote operation device 112 in the past, that is, when there is a tractor set in the past, the tractor name (model) is displayed.
- a tractor name to be used this time is touched and selected from a plurality of displayed tractor names, it is possible to proceed to the field setting described later or return to the initial screen.
- newly setting a tractor specify the tractor model. In this case, enter the model name directly.
- a plurality of tractor models are displayed in a list on the display device 113 so that a desired model can be selected.
- a setting screen for the size, shape, and position of the work implement that is attached to the tractor appears.
- the position of the work implement is selected from the front, between the front and rear wheels, the rear, and the offset.
- a setting screen for the vehicle speed during work, the engine speed during work, the vehicle speed during turning, and the engine speed during turning appears. It is also possible for the vehicle speed during work to be different between the forward path and the return path.
- FIG. 4 shows a state of outer periphery travel performed by a user riding on an autonomous traveling work vehicle at the time of field setting.
- FIG. 5 shows areas set in the agricultural field, such as a work area and a headland area.
- the farm field setting button 202 is touched, the name of the farm field that has been set is displayed when work has been performed using the tractor by the remote operation device 112 in the past, that is, when there is a farm field that has been set in the past.
- a field name to be worked on is selected by touching the displayed field names from a plurality of displayed field names, it is possible to proceed to route generation setting described later or return to the initial screen. It is also possible to edit or newly set the set field.
- a new field is set.
- the tractor autonomous traveling work vehicle 1
- the tractor is positioned at one of the four corners A in the field H, as shown in FIG. Thereafter, the tractor is moved along the outer periphery of the field H to register the field shape.
- the operator registers the angular positions A, B, C, D and inflection points from the registered farm field shapes, and identifies the farm field shape.
- the work start position S, the work start direction F, and the work end position G are set as shown in FIG.
- the tractor is moved to the position of the obstacle, the “obstacle setting” button is touched, and the obstacle is set by traveling around the obstacle.
- a confirmation screen is displayed, and an OK (confirmation) button and an “edit / add” button are displayed.
- the “Edit / Add” button is touched.
- the route generation setting is made.
- the route generation setting can also be performed by touching the route generation setting button 203 on the initial screen.
- a selection screen on which position the traveling work vehicle 100 travels with respect to the autonomous traveling work vehicle 1 is displayed. That is, the positional relationship between the autonomous traveling work vehicle 1 and the traveling work vehicle 100 is set.
- the traveling work vehicle 100 is located at the left rear of the autonomous traveling work vehicle 1.
- the traveling work vehicle 100 is located on the right rear side of the autonomous traveling work vehicle 1.
- the traveling work vehicle 100 is located directly behind the autonomous traveling work vehicle 1.
- the traveling work vehicle 100 is not accompanied (the work is performed only by the autonomous traveling work vehicle 1). Are displayed and can be selected by touching.
- the width of the work machine of the traveling work vehicle 100 is set.
- the width of the work implement is input with numbers.
- the number of skips is set. That is, it sets how many routes are to be skipped when the autonomous mobile work vehicle 1 reaches the outer peripheral edge (headland) of the field and moves from the first route to the second route. Specifically, (1) Do not skip. (2) One column skip. (3) Skip two columns. Select one of the following.
- overlap is set. That is, the overlapping amount of the work width in the work route adjacent to the work route is set. Specifically, (1) There is no overlap. (2) overlap. Select. If “overlap” is selected, a numerical value input screen is displayed, and it is not possible to proceed to the next unless a numerical value is input.
- the periphery setting is performed. That is, as shown in FIG. 5, an area outside the work area HA in which work is performed by the autonomous traveling work vehicle 1 and the traveling work vehicle 100 or by the autonomous traveling work vehicle 1 is set.
- the width Wb of the headland HB and the width Wc of the side margin HC are not more than twice the width of the working machine attached to the traveling working vehicle 100, and the autonomous traveling working vehicle 1 and the traveling working vehicle 100 are After the accompanying work is completed, the operator gets into the traveling work vehicle 100 and finishes by making two rounds of the outer periphery by manual operation.
- the shape of the outer periphery of the field is not complicated, it is possible to work on the outer periphery with the autonomous traveling work vehicle 1.
- the width Wb of the headland HB and the width Wc of the side margin HC are automatically calculated to a predetermined width according to the width of the work implement, but the calculated width of the headland HB Wb and the width Wc of the side margin HC can be changed to arbitrary widths, and the user can change the width Wb and the width Wc after the change to the desired width, respectively, and the width and side of the headland HB. It can be set as the width of the part margin HC.
- the width can be changed to an arbitrary width, it cannot be set to be equal to or smaller than the minimum setting width calculated in consideration of traveling, work and safety in the field. For example, when the autonomous traveling work vehicle 1 travels or turns in the headland HB or the side margin HC, the width that guarantees that the work implement does not jump out of the field is calculated as the minimum set width.
- the route R includes a work route Ra and a travel route Rb, and the work route Ra is a route generated in the work area HA and travels while performing work, and is a straight route. However, when the work area HA is not rectangular, the work area HA may protrude beyond the work area HA (headland HB and side margin HC).
- the travel route Rb is a route generated in an area outside the work area HA and travels without performing work, and is a path that combines a straight line and a curve. Mainly, it turns on the headland HB.
- a route R between the autonomous traveling work vehicle 1 and the traveling work vehicle 100 is generated.
- a simulation image is displayed by touching the route generation setting button 203 and can be confirmed. Note that the route R is generated without touching the route generation setting button 203.
- the route generation setting is displayed, and a “route setting button”, “transfer data”, and “return to home” are selectably displayed below the route generation setting.
- This transfer includes (1) a method of transferring using a terminal and (2) a method of transferring wirelessly.
- a terminal when a terminal is used, it is autonomously connected to the remote control device 112 using a USB cable.
- the control device of the traveling work vehicle 1 is directly connected, or once stored in a USB memory, transferred to the USB terminal of the autonomous traveling work vehicle 1 for transfer.
- transfer is performed using WiFi (wireless LAN).
- a work route is set based on information on a field section and a reference traveling direction obtained from learning traveling data obtained by manually driving (teaching traveling) around the field, but an actual field
- the edge of the field that is, the boundary between the farm field and the shore, and the road is not necessarily a straight line depending on the characteristics of the land and the like, and it is difficult to travel faithfully along the boundary in teaching traveling.
- the positioning data obtained by teaching traveling does not include information on obstacles such as utility poles, intake valves, walls, etc. that have locally jumped out to the inside of the field, so autonomous heading and side margin finishing operations are performed.
- the work vehicle could not be made autonomous.
- FIG. 6 shows a field having a locally complicated shape change due to the presence of an obstacle at the boundary portion of the field edge, and in the present embodiment, the field DA protrudes on the side DA of the field H.
- An example in which a utility pole exists is shown.
- FIG. 7 shows a state of recognizing the shape of the field edge as peripheral information, and here shows a state of recognizing a utility pole.
- FIG. 8 shows a field shape that is registered after the travel locus is corrected based on the peripheral information.
- a field outer peripheral shape that takes into account the electric pole protruding inside the field H is shown.
- the autonomous traveling work vehicle 1 When touching the field setting button 202 on the display device 113 of the remote operation device 112 to newly set a field or editing an existing field and performing field setting again, after touching the “measurement start” button The autonomous traveling work vehicle 1 is caused to travel.
- the autonomous traveling work vehicle 1 is positioned at one of the four corners A of the field H, and the “measurement start” button is touched to cause the autonomous traveling work vehicle 1 to travel along the outer periphery of the field H.
- the positioning control unit 306 receives radio waves transmitted from the GPS satellites 37, 37... And acquires the position information of the vehicle body, and at the same time, the gyro sensor 31 and the azimuth angle detection unit 32 The displacement information and orientation information of the part are acquired.
- the travel locus information based on the position information, the displacement information, and the direction information of the vehicle body part acquired in this way is acquired.
- the autonomous traveling work vehicle 1 travels along the outer periphery of the field H, the autonomous traveling work is performed by the obstacle sensor 41 and / or the cameras 42F and 42R arranged to recognize the surrounding environment of the autonomous traveling work vehicle 1.
- the surrounding information (environment information) of the vehicle 1 is also acquired.
- the “peripheral information” is, for example, an image of the front and side of the vehicle body obtained by the obstacle sensor 41 configured as an imaging unit such as a camera, an image obtained by the camera 42F, or a laser sensor or a super This is information related to the boundary between the field edge and the outside of the field such as a shore by the obstacle sensor 41 configured as a distance sensor such as a sound wave sensor.
- an image obtained by the front camera 42F is acquired as peripheral information and displayed on the display device 113.
- the travel locus information is corrected based on the peripheral information thus obtained. Specifically, the actual outer peripheral edge of the field H is grasped based on the image obtained as the peripheral information, and the traveling locus information is corrected by correcting the traveling locus to the outside or the inside so as to match it. Register the outer shape of. And the driving
- the travel locus information is corrected based on the travel locus information and the surrounding information (environment information).
- the travel locus information may not be corrected, or the correction locus information is corrected. Whether or not to do so may be selectable.
- Examples of cases where the correction trajectory information is not corrected include, for example, external factors that affect the travel trajectory information in the peripheral information (for example, when an obstacle exists near the field edge or when the field edge has a curved shape). There may be cases where it does not exist. In this case, the presence / absence of an external factor is determined based on the peripheral information. If there is an external factor, the travel locus information is corrected, and if there is no external factor, the travel locus information is not corrected.
- the travel locus information when it is possible to select whether or not to correct the travel locus information, for example, when the travel locus information is acquired, an image for selecting whether or not to correct based on the surrounding information is displayed, and the user can When execution of correction is selected, correction is executed, and when non-execution of correction is selected, correction is not executed.
- the setting menu not shown or the like, it is possible to select and set whether or not to correct based on the peripheral information.
- the correction is “necessary”
- the travel locus information is automatically corrected and the correction is “unnecessary”. In some cases, the travel locus information may not be corrected.
- FIG. 9 shows the position and orientation of the environment recognition means for acquiring the peripheral information.
- the obstacle sensor 41 that acquires the peripheral information and the arrangement of the cameras 42F and 42R with respect to the moving GPS antenna 34 (with respect to the position where the traveling locus information is acquired).
- the positional relationship between the traveling locus at any position on the traveling locus, the obstacle sensor 41, the cameras 42F and 42R, and the recognized field edge is clarified, and based on these positional information and direction. Correction is performed.
- the distance between the running trajectory and the field edge or obstacle is calculated in consideration of the position and orientation information, and the position of the field edge is accurately determined.
- peripheral information with a relative positional relationship with the travel locus information, it is possible to more accurately use the information about the field edge recognized by the environment recognition means, and the field edge recognition process. Can be performed automatically.
- the correction of the travel locus information may be automatically performed, or may be performed in accordance with a user operation.
- a map image of an agricultural field is displayed on the display device 113, and the line shape indicating the agricultural field specified based on the traveling locus information on the map image or the traveling locus information corrected based on the peripheral information is displayed.
- the line shape indicating the specified farm field is displayed in a superimposed manner, the user can specify an accurate farm field end by touching the display device 113, and the traveling locus information is corrected according to the user's operation. Also good.
- the environmental information acquisition means (the general term for the environmental sensor 41 and the cameras 42F and 42R described above) may be used for displaying a map image of the farm field on the display device 113.
- a control point may be added to the line shape, and a part of the line shape may be corrected by operating the control point.
- the user may designate one or a plurality of boundary feature points in the line shape, and the travel locus information may be automatically corrected based on the boundary feature points.
- the boundary feature points will be described.
- FIG. 10 shows a state where the boundary feature point at the field edge is selected on the display device and the field shape is registered.
- the recognition of the outer peripheral edge of the field based on the peripheral information is performed by causing the display device 113 of the remote control device 112 to display an image acquired by the obstacle sensor 41 configured as a camera or the cameras 42F and 42R.
- the position to be registered as an edge is touched on the display device 113. That is, the feature point (that is, the boundary feature point) of the boundary between the field and the outside in the image displayed on the display device 113 is determined by the operator himself and specified on the display device 113.
- the display device 113 of the remote control device 112 functions as a display unit that displays the position information of the vehicle body part, the travel locus information, and the peripheral information, and designates boundary feature points for the peripheral information. It also functions as an operating unit to be operated.
- the travel locus information is corrected based on the boundary feature points designated by the user, and the changed line shape is registered as the field shape.
- the travel locus information may be further corrected based on the boundary feature points and the related feature points.
- the related feature point is a feature point having the same or similar feature as the boundary feature point. For example, on the map image (image data), the specified boundary feature point has the same or similar hue, saturation, and lightness. It is possible to specify a feature point (a difference between elements is within a predetermined threshold) as a related feature point.
- the travel locus information is corrected at the time of field registration.
- the operation for changing the position information of the field edge is performed afterwards. For example, it can be performed as a change in the field setting.
- a displacement point on the image data such as a difference in brightness is automatically determined as a boundary feature point.
- a distance sensor such as a laser sensor and an ultrasonic sensor
- the lower end of the step is used as a boundary feature point. It is also possible to automatically recognize the outer peripheral edge of the field (see FIG. 11).
- the remote control device 112 is used when setting the route R of the autonomous traveling work vehicle 1.
- Various settings necessary for setting the route R are set by appropriately operating the display device 113 of the remote operation device 112.
- the controller 30 (for example, the autonomous traveling control controller 307) may perform various settings necessary for setting the route R by appropriately operating the display unit 49 by the user.
- the remote operation device 112 may not be included in the system for registering the shape of the field, or the remote operation device 112 may be included but the remote operation device 112 may not be used in setting the route R.
- the travel locus information is corrected to specify and register the shape of the field.
- other regions autonomous traveling
- It may be used for specifying and registering the shape of a predetermined area (traveling area) where the work vehicle 1 travels.
- it may be used to specify / register the shape of the work area described above.
- it may be used to specify / register the shape of a predetermined area (non-traveling area) where traveling of the autonomous traveling work vehicle is prohibited.
- it may be used to specify / register the shape of the obstacle described above.
- the travel locus information is acquired in the travel region. While traveling for traveling inside the end of the traveling region, traveling for obtaining traveling locus information in the non-traveling region often travels outside the end of the traveling region. In this case, the correction of the travel trajectory information in the travel region is performed in the direction of expanding the area of the closed line shape specified by the travel trajectory information, while the correction of the travel trajectory information in the non-travel region is performed by the closed line. This is done in the direction of reducing the area of the shape.
- the present invention is a system for registering the shape of a traveling area (in this specification, realized by, for example, a field) on which a work vehicle travels, which includes satellite positioning.
- Position information acquisition means (which is realized by, for example, the positioning control unit 306 in this specification) that acquires position information of the traveling work vehicle 100 by a system (implemented by, for example, GNSS in this specification),
- An environment information acquisition means for acquiring surrounding environment information (in this specification, for example, realized by an environment recognition sensor) and a traveling work vehicle specified based on position information of the traveling work vehicle 100 acquired by a satellite positioning system
- Traveling locus information acquisition means for acquiring traveling locus information indicating the traveling locus of 100 (in this specification, for example, the traveling vehicle 100
- Control unit 130 provided in a wireless communication terminal (remote operation device 112) capable of wireless communication with control unit 30 or traveling work vehicle 100), the traveling locus information acquired by traveling locus information acquisition means, and the environment Based on the environment information
- the correction of the travel locus information by the registration unit is also performed based on the position information of the environment recognition unit and the direction in which the environment information is acquired.
- display means in this specification, for example, a work vehicle or a wireless communication terminal capable of wireless communication with the work vehicle
- An image display unit (implemented by the display means 49 or the display device 113) and an operation means (in this specification, for example, a touch panel provided in the display means) capable of changing the shape of the travel area displayed on the display means.
- the registration means is configured so that the shape of the travel area displayed on the display means is realized according to an operation on the operation means (in this specification, for example, by adding a control point or specifying a boundary feature point).
- the changed area after the change is registered as the shape of the traveling area.
- it may be changed according to the operation on the operation means before being registered by the registration means (that is, the shape of the travel area before correction). In this way, it is possible to more accurately identify the shape of the travel area in which the traveling work vehicle 100 travels and register the identified travel area.
- the case where the obstacle 400 such as a soft ground or a rock in which the traveling of the vehicle body is prohibited exists in the field H will be described in detail.
- the worker rides on the autonomous traveling work vehicle 1 to a position near the obstacle 400 and selects the obstacle setting. And travels around the obstacle 400.
- four points (points) 401, 402, 403, and 404 that are the vertices of the quadrangle are designated and the third area (hereinafter referred to as an entry prohibition area K) is registered.
- the quadrangular sides forming the outer periphery of the entry prohibition region K are substantially parallel to the outer peripheral sides of the field H.
- the entry prohibition area K can be made a polygon by increasing the number of points to be designated (401 to 405).
- the number of points is not limited.
- the position of the designated point can be moved or changed on the display device 113. In other words, vertices are usually set automatically, so there are actually cases where you want to make it a little wider or narrower, want to tilt, want to shift the position, or set it to a polygon, etc. Changes are possible.
- the entry prohibition area K is a polygon
- at least one specific side is set so as to be substantially parallel to the side of the first area (work area HA) in the field H, and unworked when a route is generated
- the ground is made as small as possible.
- the obstacle headland JB that becomes the fourth area outside the predetermined length (width) of the entry prohibition area K
- the obstacle side margin JC is set, and the obstacle area J is set in the work area HA.
- the obstacle area J includes an entry prohibited area K where travel is prohibited, an obstacle headland JB and an obstacle side portion which are the fourth area in which the work route Ra is not generated but the travel route Rb can be generated. This is an area to which a margin JC is added.
- the width of the fourth area of the obstacle headland JB and the obstacle side margin JC is set to a length equal to or less than twice the width of the work implement so that the work can be completed by making two turns.
- a fifth area in which no route is set between the second area (headland HB and side margin HC) and the fourth area (obstacle headland JB and obstacle side margin JC). ) Is set.
- the operator needs to manually work on the obstacle headland JB and the obstacle side margin JC. Therefore, it is necessary to enter the obstacle headland JB or the obstacle side margin JC from the headland HB or the side margin HC.
- the 5th area used as an approach path is set up so that it may connect between the 2nd field and the 4th field, and after completion of cooperation work, the obstacle headland JB and the obstacle side part margin are not destroyed without ruining the existing work place.
- I can enter JC and work. Therefore, the width of the fifth region is set to be not less than the width of the work implement (or the vehicle body) and not more than twice the width of the work implement.
- the width of the fifth area is equal to the width of the work implement, it is not necessary to work in the fifth area when entering the fourth area, but by working in the fifth area when leaving the fourth area, Uncultivated land can be eliminated.
- width of the fifth area is larger than the width of the work implement, uncultivated land can be eliminated by performing the work when entering the fourth area and when leaving the fourth area.
- width of the fifth area is made equal to twice the width of the work implement, it is possible to prevent duplication of work even if work is performed in the fifth area when entering or leaving the fourth area. be able to.
- the entry area HD (fifth area) is provided at a position where the distance between the second area and the fourth area is the shortest so that the work area when entering and leaving the fourth area is as small as possible.
- the entry area HD is a longitudinal path in the work area HA.
- the work efficiency is reduced. Therefore, if the entry area HD that is parallel to the route R is set in the area where the distance between the headland HB and the obstacle headland JB is short, the work efficiency will be reduced and the finish will be clean. Can do.
- the traveling area can be shortened by setting the entry area HD closer to the work end position G, and the work efficiency is improved. it can.
- the autonomous traveling work vehicle 1 that enables autonomous traveling and work using the satellite positioning system along the route R set in advance by the control unit 130, and the autonomous traveling working vehicle 1 in cooperation with each other.
- the control unit 30 of the autonomous traveling work vehicle 1 serving as a route generation device or the remote control device 112 that can communicate with the control unit 30 is used.
- the control unit 130 can generate a route R that can autonomously travel and work in the field H.
- the control unit 130 performs work in the field H (work area HA).
- a first region in which a work route Ra to be generated is generated; a second region set around the first region in which the work route Ra is not generated but a travel route Rb for traveling can be generated; and A third area within the field H where travel is prohibited, and a fourth area set around the third area where the work route Ra is not generated but the travel route Rb for traveling can be generated. Since the setting is possible, even when an obstacle 400 that is prohibited from traveling is present in the field H, the route is automatically set so that the work can be performed efficiently.
- control unit 130 (or the control unit 30) includes the fourth region (the obstacle headland JB and the obstacle side margin JC) and the second region (the pillow) in the first region (working region HA). Since the ground HB and the side margin HC) are connected and the fifth region (entrance region HD) where the work route Ra is not generated can be set, the autonomous traveling work vehicle 1 and the traveling work vehicle 100 are defined as the work region HA. After collaborative work by, you can enter the 4th area without damaging the work area, and you can leave while working on the 5th area after finishing the work, and finish the 4th area efficiently and cleanly be able to.
- control unit 130 sets the third region (entrance prohibition region K) in the first region (working region HA)
- at least one side constituting the third region is Since it is set to be substantially parallel to the specific side constituting the first region, the unworked area when the route is generated can be made as small as possible.
- control unit 130 (or the control unit 30) provides the fifth area in parallel with the work path Ra generated in the first area (work area HA), the fifth area after working the fourth area.
- the finish after leaving the work is almost the same as the finish on the other work path Ra, and the overall finish can be made clean.
- the work route Ra in the longitudinal direction where the obstacle region J exists is divided when viewed from the entire field H.
- the work area HA divided in the longitudinal direction includes the method of performing the other area after the work of one area is completed by the cooperative work of the autonomous running work vehicle 1 and the running work vehicle 100, and the autonomous running work vehicle 1 and the running work.
- the area located on the side of the obstacle area J in the work area HA and adjacent to the side margin HC is on the left side.
- a part work area HAL and a right part work area HAR are used, and areas adjacent to the headland HB other than the remaining obstacle area J are designated as a front work area HAF and a rear work area HAB, and autonomously run from the left work area HAL side. It is assumed that the work vehicle 1 and the traveling work vehicle 100 perform cooperative work.
- the work area HA divided in the longitudinal direction of the path R includes two autonomous traveling work vehicles 1 and 100. Work one area at a time. That is, when the work on the left side work area HAL is completed, the work on one of the front divided areas HAF (for example, if the left side work area HAL has four lines, HAB ⁇ HAR ⁇ HAF) is performed, and then the right side work The work in the area HAR is performed, and then the work in the other post-partitioning work area HAB is performed and the process ends.
- HAF front divided areas
- the work areas HA divided in the longitudinal direction of the path are two autonomous work vehicles 1 and 100.
- the area HAB is performed by the autonomous traveling work vehicle 1.
- the right side work area HAR is operated by the autonomous traveling work vehicle 1 and the traveling work vehicle 100.
- region HD according to the number of articles
- control unit 130 (or the control unit 30) can generate the work route Ra in the remaining area excluding the third area, the fourth area, and the fifth area in the first area. Therefore, the work efficiency can be improved by working all the work areas HA in order.
- the fourth area (obstacle headland JB or obstacle side margin JC) and the second area (headland HB or side margin HC) overlap, both areas are integrated.
- the control unit 130 can set the route R by regarding the obstacle headland JB and the obstacle side margin JC as the headland HB, and the obstacle headland JB and the obstacle side margin. Since it is not necessary to distinguish JC, the creation of the program can be simplified.
- the autonomous traveling work vehicle 1 that enables autonomous traveling and work using the satellite positioning system and the traveling working vehicle 100 that is operated by the operator in cooperation with the autonomous traveling work vehicle 1 are used.
- the control unit 30 of the autonomous traveling work vehicle 1 serving as a route generation device capable of autonomously traveling in the field H and generating a workable route, or a remote operation device capable of communicating with the control unit 30
- the control unit 130 of 112 includes a first region in which a work route Ra for performing work on the field H is generated and a first route in which the work route Ra is not generated but the travel route Rb for traveling can be generated.
- a second region set in the surroundings, a third region within the field H where travel is prohibited, and a third region in which the work route Ra is not generated but the travel route Rb for traveling can be generated.
- the fourth area set in the enclosure can be set, and the second area (headland HB or side margin HC) and the fourth area (obstacle headland JB or obstacle side margin JC) Since the fourth area is included (integrated) in the second area when it overlaps, it is not necessary to consider the work processing of the obstacle headland JB and the obstacle side margin JC. Generation is simplified, and post-processing of the headland HB, the side margin HC, and the obstacle region J can be easily performed.
- the fourth area and the sixth area HE can be included and set in the second area. For example, as shown in FIG.
- the obstacle headland JB when the obstacle headland JB is separated from the headland HB by a width Wj and the width Wj is less than a predetermined width T1, the obstacle headland JB and the headland HB
- the sixth area HE generated in the work area HA is integrated into the headland HB, and the work route Ra is not set and the autonomous traveling work vehicle 1 or the traveling work vehicle 100 is set not to perform the work.
- the width of the sixth region HE between the fourth region and the second region is, for example, such a distance that the work length by the work implement is about the entire length of the tractor, and the work efficiency is reduced when the turn is repeated frequently. It is.
- control unit 130 (or the control unit 30) is configured such that when the second region and the fourth region face each other across the sixth region HE having a width less than the predetermined width, Since HE can be set including the second region, it is necessary to work by repeatedly turning with the autonomous traveling work vehicle 1 or the traveling work vehicle 100 in the narrow sixth region HE between the second region and the fourth region. The work efficiency can be improved.
- the area where the fourth area is integrated with the second area does not need to be considered as separate work as the obstacle headland JB and the obstacle side margin JC, and the headland HB and the side margin HC
- the obstacle area J can be processed at a time.
- the control unit 130 has a seventh region HF in which the fourth regions are less than a predetermined width.
- the seventh region HF can be set so as to be included in any one of the fourth regions.
- the obstacle 400 and the obstacle 401 are separated from each other in the field H, and the fourth region (obstacle headland JB or obstacle side margin JC) and the fourth region (obstacle When the width Wk between the object headland JB or the obstacle side margin JC) is less than the predetermined distance T2, the seventh region HF is set to be included in any one of the fourth regions and integrated. .
- width Wk is less than predetermined width T2
- region are separated includes the case where the part overlaps.
- the route generation and the processing after the work area HA is simplified.
- there are a plurality of obstacles 400 in the field H and one or a plurality of fourth areas are shorter than the predetermined width T1 with respect to the second area they are integrated in the same manner as described above.
- FIG. 18 when a recessed area is formed between the fourth area and the second area of the obstacle 401, integration can be performed so as to eliminate the recessed area when a predetermined condition is satisfied.
- the area of the recess is less than a threshold
- the lateral width of the recess is less than a threshold (for example, the width of the tractor)
- the longitudinal length of the recess is less than the threshold (for example, the total length of the tractor).
- control unit 130 faces the fourth regions across the seventh region HF having a width less than a predetermined width.
- the seventh region HF can be set to be included in any one of the fourth regions, route generation can be simplified.
- the headland HB is a turning area for the tractor to move to the next work path Ra (strip) without performing work at the outer peripheral edge of the field, and has a predetermined headland width Wb.
- the headland width Wb is set to the distance L1 from the turning center O of the machine body to the rear end of the work machine and the minimum turning radius (the tractor at the machine center O) as shown in FIG.
- a double turn turn shown in FIG. 21 is employed.
- the side margin space Wc in this two-turn turn is determined by dividing the distance L1 from the turning center O of the machine body to the rear end of the work machine on the start side, and the 3/2 working width W2 from the minimum turning radius L2 at the machine center O.
- the length obtained by adding the reduced length and the safety margin width Lsm. That is, Wc L1 + L2 ⁇ 3 / 2W2 + Lsm.
- the length obtained by adding the distance L1 from the turning center O of the airframe to the rear end of the working machine and the minimum turning radius L2 at the airframe center O, the length obtained by subtracting the 3/2 work width W2, and This is a length obtained by adding a length L5 to the front end of the machine body and a safety margin Lsm. That is, the side margin space Wc L1 + L2 ⁇ 3 / 2W2 + L5 + Lsm.
- L1, L2, L3, and L5 are acquired in advance in the tractor setting, they are automatically calculated by inputting the safety margin Lsm in the outer periphery setting in the route generation.
- the input value is compared with the automatically calculated value, and the longer one is adopted so that it can be safely turned.
- the present invention can be used in a route generation device that can generate a traveling and working route of an agricultural work vehicle that enables autonomous traveling and automatic work in a field.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Soil Sciences (AREA)
- Environmental Sciences (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Acoustics & Sound (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Guiding Agricultural Machines (AREA)
Abstract
障害物が位置する周囲に障害物領域を設定して経路が生成されないようにするとともに、作業領域に設定される経路が障害物領域を避けて効率よく作業ができるように、圃場H内を自律走行及び作業可能な経路を生成可能な経路生成装置となる自律走行作業車両(1)の制御部(30)、または、該制御部(30)と通信可能な遠隔操作装置(112)の制御部(130)は、前記圃場Hで作業を行う作業経路Raが生成される第1領域と、作業経路Raは生成されないが走行するための走行経路Rbは生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場H内であって走行が禁止される第3領域と、作業経路Raは生成されないが走行するための走行経路Rbは生成可能とする第3領域の周囲に設定される第4領域とを設定可能とする。
Description
本発明は、作業車両により作業を行う作業領域内に障害物が存在する場合の走行・作業経路の生成装置に関する。
従来、トラクタに位置検出手段と方位検出手段を備えて、圃場内を走行させて、隅の位置を検出する、所謂、ティーチング走行を行い、圃場の作業経路を設定する技術が公知となっている。(例えば、特許文献1参照)。
前記技術において、圃場内に存在する電柱や岩や樹木等の障害物は考慮されていなかった。従って、障害物を避けるように作業経路を設定すると、障害物周囲に大きな未作業地部分が発生したり、障害物周囲で無人作業車両と有人作業車両が無駄に長い経路を走行したりするおそれがあった。
本発明は以上の如き状況に鑑みてなされたものであり、障害物が位置する周囲に障害物領域を設定して経路が生成されないようにするとともに、作業領域に設定される経路が障害物領域を避けて効率よく作業ができるように設定される経路生成装置を提供しようとする。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
即ち、本発明は、圃場内を自律走行及び作業可能な経路を生成可能な制御部を備える経路生成装置であって、前記制御部は、前記圃場で作業を行う作業経路が生成される第1領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場内であって走行が禁止される第3領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第3領域の周囲に設定される第4領域と、を設定可能とするものである。
即ち、本発明は、圃場内を自律走行及び作業可能な経路を生成可能な制御部を備える経路生成装置であって、前記制御部は、前記圃場で作業を行う作業経路が生成される第1領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場内であって走行が禁止される第3領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第3領域の周囲に設定される第4領域と、を設定可能とするものである。
本発明は、前記制御部は、前記第1領域において、前記第4領域と第2領域とを接続する作業経路が生成されない第5領域を設定可能とするものである。
本発明は、前記制御部は、前記第1領域において、前記第3領域、第4領域、第5領域、を除いた残りの領域で作業経路を生成可能とするものである。
本発明は、前記制御部は、前記第5領域を第1領域で生成される作業経路と平行に設けるものである。
本発明は、前記制御部は、前記第1領域内に第3領域を設定する場合、第3領域を構成する少なくとも一つの辺は、第1領域を構成する特定の辺と略平行に設定されるものである。
本発明は、圃場内を自律走行及び作業可能な経路を生成可能な制御部を備える経路生成装置であって、前記制御部は、前記圃場で作業を行う作業経路が生成される第1領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場内であって走行が禁止される第3領域と、作業経路は生成されないが走行するための走行経路は生成可能とする第3領域の周囲に設定される第4領域と、を設定可能とするとともに、第2領域と第4領域とが重複する場合、第4領域を第2領域に含めて設定可能とするものである。
本発明は、圃場内を自律走行及び作業可能な経路を生成可能な制御部を備える経路生成装置であって、前記制御部は、前記圃場で作業を行う作業経路が生成される第1領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場内であって走行が禁止される第3領域と、作業経路は生成されないが走行するための走行経路は生成可能とする第3領域の周囲に設定される第4領域と、を設定可能とするとともに、第2領域と第4領域とが所定幅未満の第6領域を隔てて対向している場合に、第4領域および第6領域を第2領域に含めて設定可能とするものである。
本発明は、前記制御部は、前記圃場内に第3領域及び第4領域が複数存在する場合において、第4領域同士が所定幅未満の第7領域を隔てて対向している場合に、第7領域を何れか一方の第4領域に含めて設定可能されるものである。
以上のような手段を用いることにより、走行が禁止されるような障害物が圃場内に存在する場合であっても、経路設定が行われて効率よく作業ができるようになる。
無人で自律走行可能な自律走行作業車両(以下、無人車両と称することがある)1、及び、この自律走行作業車両1に協調して作業者(ユーザ)が操向操作する有人の走行作業車両(以下、有人車両と称することがある)100をトラクタとし、自律走行作業車両1及び走行作業車両100には作業機としてロータリ耕耘装置がそれぞれ装着されている実施例について説明する。但し、作業車両はトラクタに限定するものではなく、コンバイン等でもよく、また、作業機はロータリ耕耘装置に限定するものではなく、畝立て機や草刈機やレーキや播種機や施肥機等であってもよい。
本明細書において「自律走行」とは、トラクタが備える制御部(ECU)によりトラクタが備える走行に関する構成が制御されて予め定められた経路に沿ってトラクタが走行することを意味する。
単一の圃場における農作業を、無人車両及び有人車両で実行することを、農作業の協調作業、追従作業、随伴作業などと称することがある。なお、農作業の協調作業としては、「単一圃場における農作業を、無人車両及び有人車両で実行すること」に加え、「隣接する圃場等の異なる圃場における農作業を同時期に無人車両及び有人車両で実行すること」が含まれてもよい。
単一の圃場における農作業を、無人車両及び有人車両で実行することを、農作業の協調作業、追従作業、随伴作業などと称することがある。なお、農作業の協調作業としては、「単一圃場における農作業を、無人車両及び有人車両で実行すること」に加え、「隣接する圃場等の異なる圃場における農作業を同時期に無人車両及び有人車両で実行すること」が含まれてもよい。
図1は、自律走行作業車両及び走行作業車両の概略構成を示す側面図であり、図2は、それらの制御構成を示す制御ブロック図である。図1、図2において、自律走行作業車両1となるトラクタの全体構成について説明する。トラクタの車体部は、ボンネット2内にエンジン3が内設され、該ボンネット2の後部のキャビン11内にダッシュボード14が設けられ、ダッシュボード14上に操向操作手段となるステアリングハンドル4が設けられている。該ステアリングハンドル4の回動により操舵装置を介して前輪9・9の向きが回動される。操舵装置を作動させる操舵アクチュエータ40は制御部30を構成するステアリングコントローラ301と接続される。自律走行作業車両1の操舵方向は操向センサ20により検知される。操向センサ20はロータリエンコーダ等の角度センサからなり、前輪9の回動基部に配置される。但し、操向センサ20の検知構成は限定するものではなく操舵方向が認識されるものであればよく、ステアリングハンドル4の回動を検知したり、パワーステアリングの作動量を検知してもよい。操向センサ20により得られた検出値は制御部30のステアリングコントローラ301に入力される。
制御部30は、ステアリングコントローラ301、エンジンコントローラ302、変速制御コントローラ303、水平制御コントローラ304、作業制御コントローラ305、測位制御ユニット306、自律走行制御コントローラ307等を備え、それぞれCPU(中央演算処理装置)やRAMやROM等の記憶装置やインターフェース等を備え、記憶装置には動作させるためのプログラムやデータ等が記憶され、CAN通信によりそれぞれ情報やデータ等を送受信できるように通信可能としている。
前記ステアリングハンドル4の後方に運転席5が配設され、運転席5下方にミッションケース6が配置される。ミッションケース6の左右両側にリアアクスルケース8・8が連設され、該リアアクスルケース8・8には車軸を介して後輪10・10が支承される。エンジン3からの動力はミッションケース6内の変速装置(主変速装置や副変速装置)により変速されて、後輪10・10を駆動可能としている。変速装置は例えば油圧式無段変速装置で構成して、可変容量型の油圧ポンプの可動斜板をモータ等の変速手段44により作動させて変速可能としている。変速手段44は制御部30の変速制御コントローラ303と接続されている。後輪10の回転数は車速センサ27により検知され、走行速度として変速制御コントローラ303に入力される。但し、車速の検知方法や車速センサ27の配置位置は限定するものではない。
ミッションケース6内にはPTOクラッチやPTO変速装置が収納され、PTOクラッチはPTO入切手段45により入り切りされ、PTO入切手段45は表示手段49を介して制御部30の自律走行制御コントローラ307と接続され、PTO軸への動力の断接を制御可能としている。また、作業機として播種機や畦塗機等を装着した場合、作業機独自の制御ができるように作業機コントローラ308が備えられ、該作業機コントローラ308は情報通信配線(所謂、ISOBUS)を介して作業制御コントローラ305と接続される。
前記エンジン3を支持するフロントフレーム13にはフロントアクスルケース7が支持され、該フロントアクスルケース7の両側に前輪9・9が支承され、前記ミッションケース6からの動力が前輪9・9に伝達可能に構成している。前記前輪9・9は操舵輪となっており、ステアリングハンドル4の回動操作により回動可能とするとともに、操舵装置の駆動手段となるパワステシリンダからなる操舵アクチュエータ40により前輪9・9が左右操舵回動可能となっている。操舵アクチュエータ40は制御部30のステアリングコントローラ301と接続されて制御される。
エンジン回転制御手段となるエンジンコントローラ302にはエンジン回転数センサ61や水温センサや油圧センサ等が接続され、エンジンの状態を検知できるようにしている。エンジンコントローラ302では設定回転数と実回転数から負荷を検出し、過負荷とならないように制御するとともに、後述する遠隔操作装置112にエンジン3の状態を送信して表示装置113で表示できるようにしている。
また、ステップ下方に配置した燃料タンク15には燃料の液面を検知するレベルセンサ29が配置されて表示手段49と接続され、表示手段49は自律走行作業車両1のダッシュボードに設けられ、燃料の残量を表示する。そして、燃料の残量は自律走行コントローラ307で作業可能時間が演算され、通信装置110を介して遠隔操作装置112に情報が送信されて、遠隔操作装置112の表示装置113に燃料残量と作業可能時間が表示可能とされる。なお、回転計、燃料計、油圧、異常を表示する表示手段と、現在位置等を表示可能な表示手段とは別構成でもよい。
前記ダッシュボード14上にはエンジンの回転計や燃料計や油圧等や異常を示すモニタや設定値等を表示する表示手段49が配置されている。表示手段49は遠隔操作装置112と同様にタッチパネル式として、データの入力や選択やスイッチ操作やボタン操作等も可能としている。
また、トラクタの車体部の後部に作業機装着装置23を介して作業機としてロータリ耕耘装置24が昇降可能に装設させている。前記ミッションケース6上に昇降シリンダ26が設けられ、該昇降シリンダ26を伸縮させることにより、作業機装着装置23を構成する昇降アームを回動させてロータリ耕耘装置24を昇降できるようにしている。昇降シリンダ26は昇降アクチュエータ25の作動により伸縮され、昇降アクチュエータ25は制御部30の水平制御コントローラ304と接続されている。また、前記作業機装着装置23の左右一側のリフトリンクには傾斜シリンダが設けられ、該傾斜シリンダを作動させる傾斜アクチュエータ47は水平制御コントローラ304と接続されている。
位置検出部となる測位制御ユニット306には位置情報を検出可能とするための移動GPSアンテナ(測位アンテナ)34とデータ受信アンテナ38が接続され、移動GPSアンテナ34とデータ受信アンテナ38は前記キャビン11上に設けられる。測位制御ユニット306には、位置算出手段を備えて緯度と経度を算出し、現在位置を表示手段49や遠隔操作装置112の表示装置113で表示できるようにしている。なお、GPS(米国)に加えて準天頂衛星(日本)やグロナス衛星(ロシア)等の衛星測位システム(GNSS)を利用することで精度の高い測位ができるが、本実施形態ではGPSを用いて説明する。
自律走行作業車両1は、車体部の姿勢変化情報を得るためにジャイロセンサ31、および進行方向を検知するために方位角検出部32を具備し制御部30と接続されている。但し、GPSの位置計測から進行方向を算出できるので、方位角検出部32を省くことができる。
ジャイロセンサ31は自律走行作業車両1の車体部前後方向の傾斜(ピッチ)の角速度、車体部左右方向の傾斜(ロール)の角速度、および旋回(ヨー)の角速度、を検出するものである。該三つの角速度を積分計算することにより、自律走行作業車両1の車体部の前後方向および左右方向への傾斜角度、および旋回角度を求めることが可能である。ジャイロセンサ31の具体例としては、機械式ジャイロセンサ、光学式ジャイロセンサ、流体式ジャイロセンサ、振動式ジャイロセンサ等が挙げられる。ジャイロセンサ31は制御部30に接続され、当該三つの角速度に係る情報を制御部30に入力する。
ジャイロセンサ31は自律走行作業車両1の車体部前後方向の傾斜(ピッチ)の角速度、車体部左右方向の傾斜(ロール)の角速度、および旋回(ヨー)の角速度、を検出するものである。該三つの角速度を積分計算することにより、自律走行作業車両1の車体部の前後方向および左右方向への傾斜角度、および旋回角度を求めることが可能である。ジャイロセンサ31の具体例としては、機械式ジャイロセンサ、光学式ジャイロセンサ、流体式ジャイロセンサ、振動式ジャイロセンサ等が挙げられる。ジャイロセンサ31は制御部30に接続され、当該三つの角速度に係る情報を制御部30に入力する。
方位角検出部32は自律走行作業車両1の向き(進行方向)を検出するものである。方位角検出部32の具体例としては磁気方位センサ等が挙げられる。方位角検出部32はCAN通信手段を介して自律走行制御コントローラ307に情報が入力される。
こうして自律走行制御コントローラ307は、上記ジャイロセンサ31、方位角検出部32から取得した信号を姿勢・方位演算手段により演算し、自律走行作業車両1の姿勢(向き、車体部前後方向及び車体部左右方向の傾斜、旋回方向)を求める。
次に、自律走行作業車両1の位置情報を衛星測位システムの一つであるGPS(グローバル・ポジショニング・システム)を用いて取得する。
GPSを用いた測位方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK-GPS(リアルタイムキネマティック-GPS)測位など種々の方法が挙げられ、これらいずれの方法を用いることも可能であるが、本実施形態では測定精度の高いRTK-GPS測位方式を採用する。
GPSを用いた測位方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK-GPS(リアルタイムキネマティック-GPS)測位など種々の方法が挙げられ、これらいずれの方法を用いることも可能であるが、本実施形態では測定精度の高いRTK-GPS測位方式を採用する。
RTK-GPS測位は、位置が判っている基準局と、位置を求めようとする移動局とで同時にGPS観測を行い、基準局で観測したデータを無線等の方法で移動局にリアルタイムで送信し、基準局の位置成果に基づいて移動局の位置をリアルタイムに求める方法である。
本実施形態においては、自律走行作業車両1に移動局となる測位制御ユニット306と移動GPSアンテナ34とデータ受信アンテナ38が配置され、基準局となる固定通信機35と固定GPSアンテナ36とデータ送信アンテナ39が所定位置に配設される。本実施形態のRTK-GPS測位は、基準局および移動局の両方で位相の測定(相対測位)を行い、基準局の固定通信機35で測位したデータをデータ送信アンテナ39からデータ受信アンテナ38に送信する。
自律走行作業車両1に配置された移動GPSアンテナ34はGPS衛星37・37・・・からの信号を受信する。この信号は測位制御ユニット306に送信され測位される。そして、同時に基準局となる固定GPSアンテナ36でGPS衛星37・37・・・からの信号を受信し、固定通信機35で測位し測位制御ユニット306に送信し、観測されたデータを解析して移動局の位置を決定する。
こうして、自律走行コントローラ307は自律走行作業車両1を自律走行させる自律走行手段として備えられる。つまり、自律走行コントローラ307と接続された各種情報取得ユニットによって、自律走行作業車両1の走行状態を各種情報として取得し、自律走行コントローラ307と接続された各種制御ユニットによって、自律走行作業車両1の自律走行を制御する。具体的には、GPS衛星37・37・・・から送信される電波を受信して測位制御ユニット306において設定時間間隔で車体部の位置情報を求め、ジャイロセンサ31及び方位角検出部32から車体部の変位情報および方位情報を求め、これら位置情報と変位情報と方位情報に基づいて車体部が予め設定した経路(走行経路と作業経路)Rに沿って走行するように、操舵アクチュエータ40、変速手段44、昇降アクチュエータ25、PTO入切手段45、エンジンコントローラ302等を制御して自律走行し自動で作業できるようにしている。
また、自律走行作業車両1には障害物センサ41が配置されて制御部30と接続され、障害物に衝突しないようにしている。例えば、障害物センサ41はレーザセンサや超音波センサやカメラで構成して車体部の前部や側部や後部に配置して制御部30と接続し、制御部30によって車体部の前方や側方や後方に障害物があるかどうかを検出し、障害物が設定距離以内に近づくと走行を停止させるように制御する。
また、自律走行作業車両1には前方を撮影するカメラ42Fや後方の作業機や作業後の圃場状態を撮影するカメラ42Rが搭載され制御部30と接続されている。カメラ42F・42Rは本実施形態ではキャビン11のルーフの前部上と後部上に配置しているが、配置位置は限定するものではなく、キャビン11内の前部上と後部上や一つのカメラ42を車体部中心に配置して鉛直軸を中心に回転させて周囲を撮影しても、複数のカメラ42を車体部の四隅に配置して車体部周囲を撮影する構成であってもよい。また、キャビン11やボンネット2等に自律走行作業車両1の製造社のエンブレムが取り付けられている場合、当該エンブレムの背面側にカメラ42F・42Rを配することとしてもよい。その場合、エンブレム内には貫通穴或いは所定の隙間が設定され、カメラ42F・42Rのレンズが当該貫通穴或いは隙間の位置に相当することで撮影が妨げられない。カメラ42F・42Rで撮影された映像は走行作業車両100に備えられた遠隔操作装置112の表示装置113に表示される。
遠隔操作装置112は前記自律走行作業車両1の後述する経路Rを設定したり、自律走行作業車両1を遠隔操作したり、自律走行作業車両1の走行状態や作業機の作動状態を監視したり、作業データを記憶したりするものであり、制御部(CPUやメモリ)130や通信装置111や表示装置113や記憶装置114等を備える。
有人走行車両となる走行作業車両100は作業者が乗車して運転操作するとともに、走行作業車両100に遠隔操作装置112を搭載して自律走行作業車両1を操作可能としている。走行作業車両100の基本構成は自律走行作業車両1と略同じ構成であるので詳細な説明は省略する。なお、走行作業車両100(または遠隔操作装置112)にGPS用の制御ユニットを備える構成とすることも可能である。
遠隔操作装置112は、走行作業車両100及び自律走行作業車両1のダッシュボードやキャビン11のピラー等に設けられる取付部(不図示の例えば遠隔操作装置112を取り付け固定可能なアーム部材)に着脱可能としている。遠隔操作装置112は走行作業車両100の取付部に取り付けたまま操作することも、走行作業車両100の外に持ち出して携帯して操作することも、自律走行作業車両1の取付部に取り付けたまま操作することも可能である。遠隔操作装置112は例えばノート型やタブレット型のパーソナルコンピュータ等の無線通信端末で構成することができる。本実施形態ではタブレット型のコンピュータで構成している。
さらに、遠隔操作装置112と自律走行作業車両1は無線で相互に通信可能に構成しており、自律走行作業車両1と遠隔操作装置112には通信するための通信装置110・111がそれぞれ設けられている。通信装置111は遠隔操作装置112に一体的に構成されている。通信手段は例えばWiFi等の無線LANで相互に通信可能に構成されている。遠隔操作装置112は画面に触れることで操作可能なタッチパネル式の操作画面とした表示装置113を筐体表面に設け、筐体内に通信装置111や制御部130や記憶装置114やバッテリ等を収納している。
次に、経路生成装置となる遠隔操作装置112により経路Rを設定する手順について説明する。図3は、遠隔操作装置112の表示装置113に表示される初期画面を示す。但し、自律走行作業車両1が備える制御部30によって経路Rを設定できるようにすることも可能である。
遠隔操作装置112の表示装置113はタッチパネル式としており、電源をオンして遠隔操作装置112を起動させると初期画面が現れるようにしている。初期画面では、図3に示すように、トラクタ設定ボタン201、圃場設定ボタン202、経路生成設定ボタン203、データ転送ボタン204、作業開始ボタン205、終了ボタン206が表示される。
遠隔操作装置112の表示装置113はタッチパネル式としており、電源をオンして遠隔操作装置112を起動させると初期画面が現れるようにしている。初期画面では、図3に示すように、トラクタ設定ボタン201、圃場設定ボタン202、経路生成設定ボタン203、データ転送ボタン204、作業開始ボタン205、終了ボタン206が表示される。
まず、トラクタ設定について説明する。
トラクタ設定ボタン201をタッチすると、過去にこの遠隔操作装置112によりトラクタを用いて作業を行った場合、つまり、過去に設定したトラクタが存在する場合、そのトラクタ名(機種)が表示される。表示された複数のトラクタ名から今回使用するトラクタ名をタッチして選択すると、その後、後述する圃場設定に進み、或いは、初期画面に戻ることが可能である。
新規にトラクタ設定を行う場合には、トラクタの機種を特定する。この場合、機種名を直接入力する。或いは、複数のトラクタの機種を表示装置113に一覧表示させて所望の機種を選択できるようにしている。
トラクタ設定ボタン201をタッチすると、過去にこの遠隔操作装置112によりトラクタを用いて作業を行った場合、つまり、過去に設定したトラクタが存在する場合、そのトラクタ名(機種)が表示される。表示された複数のトラクタ名から今回使用するトラクタ名をタッチして選択すると、その後、後述する圃場設定に進み、或いは、初期画面に戻ることが可能である。
新規にトラクタ設定を行う場合には、トラクタの機種を特定する。この場合、機種名を直接入力する。或いは、複数のトラクタの機種を表示装置113に一覧表示させて所望の機種を選択できるようにしている。
トラクタの機種が設定されると、トラクタに装着される作業機のサイズ、形状、作業機の位置の設定画面が現れる。作業機の位置は例えば前部か、前輪と後輪の間か、後部か、オフセットか、を選択する。
作業機の設定が終了すると、作業中の車速、作業中のエンジン回転数、旋回時の車速、旋回時のエンジン回転数の設定画面が現れる。作業中の車速は往路と復路で異なる車速とすることも可能である。
車速、及び、エンジン回転数の設定が終了すると、後述する圃場設定に進み、或いは、初期画面に戻ることが可能である。
作業機の設定が終了すると、作業中の車速、作業中のエンジン回転数、旋回時の車速、旋回時のエンジン回転数の設定画面が現れる。作業中の車速は往路と復路で異なる車速とすることも可能である。
車速、及び、エンジン回転数の設定が終了すると、後述する圃場設定に進み、或いは、初期画面に戻ることが可能である。
次に、圃場設定について、説明する。図4は、圃場設定時において自律走行作業車両にユーザが搭乗して行う外周走行の様子を示す。図5は、作業領域、枕地領域等、圃場内に設定される領域を示す。
圃場設定ボタン202をタッチすると、過去にこの遠隔操作装置112によりトラクタを用いて作業を行った場合、つまり、過去に設定した圃場が存在する場合、設定されている圃場の名前が表示される。表示された複数の圃場名から今回作業を行う圃場名をタッチして選択すると、その後、後述する経路生成設定に進み、或いは、初期画面に戻ることが可能である。なお、設定された圃場を編集又は新規に設定することも可能である。
圃場設定ボタン202をタッチすると、過去にこの遠隔操作装置112によりトラクタを用いて作業を行った場合、つまり、過去に設定した圃場が存在する場合、設定されている圃場の名前が表示される。表示された複数の圃場名から今回作業を行う圃場名をタッチして選択すると、その後、後述する経路生成設定に進み、或いは、初期画面に戻ることが可能である。なお、設定された圃場を編集又は新規に設定することも可能である。
登録された圃場がない場合には、新規の圃場設定となる。新規の圃場設定を選択すると、図4に示すように、トラクタ(自律走行作業車両1)を圃場H内の四隅のうちの一つの隅Aに位置させ、「測定開始」のボタンをタッチする。その後、トラクタを圃場Hの外周に沿って走行させて圃場形状を登録する。次に、作業者は、登録された圃場形状から、角位置A・B・C・Dや変曲点を登録して圃場形状を特定する。
圃場Hが特定されると、図5に示すように、作業開始位置Sと、作業開始方向Fと、作業終了位置Gを設定する。この圃場H内に障害物が存在する場合には、障害物の位置までトラクタを移動させ、「障害物設定」ボタンをタッチして、その周囲を走行して、障害物設定を行う。なお、表示装置113には圃場の地図画像を表示することが可能であり、当該地図画像に、上記特定された圃場形状が重畳表示される場合、表示装置113上で障害物の周囲を指定することで、障害物設定を行うことができてもよい。
上記作業が終了すると、または、過去に登録した圃場を選択すると、確認画面となり、OK(確認)ボタンと「編集/追加」ボタンが表示される。過去に登録した圃場に変更がある場合には、「編集/追加」ボタンをタッチする。
上記作業が終了すると、または、過去に登録した圃場を選択すると、確認画面となり、OK(確認)ボタンと「編集/追加」ボタンが表示される。過去に登録した圃場に変更がある場合には、「編集/追加」ボタンをタッチする。
前記圃場設定においてOKボタンをタッチすると、経路生成設定となる。経路生成設定は初期画面で経路生成設定ボタン203をタッチすることによっても経路生成設定が可能となる。
経路生成設定では、自律走行作業車両1に対して走行作業車両100がどの位置で走行するかの選択画面が表示される。つまり、自律走行作業車両1と走行作業車両100の位置関係を設定する。具体的には、(1)走行作業車両100が自律走行作業車両1の左後方に位置する。(2)走行作業車両100が自律走行作業車両1の右後方に位置する。(3)走行作業車両100が自律走行作業車両1の真後ろに位置する。(4)走行作業車両100は随伴しない(自律走行作業車両1のみで作業を行う)。の4種類が表示され、タッチすることにより選択できる。
経路生成設定では、自律走行作業車両1に対して走行作業車両100がどの位置で走行するかの選択画面が表示される。つまり、自律走行作業車両1と走行作業車両100の位置関係を設定する。具体的には、(1)走行作業車両100が自律走行作業車両1の左後方に位置する。(2)走行作業車両100が自律走行作業車両1の右後方に位置する。(3)走行作業車両100が自律走行作業車両1の真後ろに位置する。(4)走行作業車両100は随伴しない(自律走行作業車両1のみで作業を行う)。の4種類が表示され、タッチすることにより選択できる。
次に、走行作業車両100の作業機の幅を設定する。つまり、作業機の幅を数字で入力する。
次に、スキップ数を設定する。つまり、自律走行作業車両1が圃場外周端部(枕地)に至り第一の経路から第二の経路に移動する時に、経路を何本飛ばすかを設定する。具体的には、(1)スキップしない。(2)1列スキップ。(3)2列スキップ。のいずれかを選択する。
次に、オーバーラップの設定を行う。つまり、作業経路と隣接する作業経路における作業幅の重複量の設定を行う。具体的には、(1)オーバーラップしない。(2)オーバーラップする。を選択する。なお、「オーバーラップする」を選択すると、数値入力画面が表示され、数値を入力しないと次に進むことができない。
次に、スキップ数を設定する。つまり、自律走行作業車両1が圃場外周端部(枕地)に至り第一の経路から第二の経路に移動する時に、経路を何本飛ばすかを設定する。具体的には、(1)スキップしない。(2)1列スキップ。(3)2列スキップ。のいずれかを選択する。
次に、オーバーラップの設定を行う。つまり、作業経路と隣接する作業経路における作業幅の重複量の設定を行う。具体的には、(1)オーバーラップしない。(2)オーバーラップする。を選択する。なお、「オーバーラップする」を選択すると、数値入力画面が表示され、数値を入力しないと次に進むことができない。
次に、外周設定が行われる。つまり、図5に示すような、自律走行作業車両1と走行作業車両100とにより、または、自律走行作業車両1により作業を行う作業領域HAの外側の領域が設定される。言い換えれば、圃場端で非作業状態として旋回走行する枕地HBと、枕地HBと枕地HBとの間の左右両側の圃場外周に接する非作業領域とする側部余裕地HCが設定される。よって、圃場H=作業領域HA+枕地HB+枕地HB+側部余裕地HC+側部余裕地HCとなる。通常、枕地HBの幅Wbと側部余裕地HCの幅Wcは、走行作業車両100が装着した作業機の幅の二倍以下の長さとして、自律走行作業車両1と走行作業車両100とによる随伴作業が終了した後に、作業者が走行作業車両100に乗り込み、手動操作で外周を二周することで、仕上げることができるようにしている。但し、圃場外周の形状が複雑でない場合には、自律走行作業車両1で外周を作業することも可能である。なお、外周設定において、枕地HBの幅Wb及び側部余裕地HCの幅Wcは、作業機の幅に応じて自動的に所定の幅に算出されるが、算出された枕地HBの幅Wb及び側部余裕地HCの幅Wcは、任意の幅に変更可能であり、ユーザは所望の幅に変更した上で、変更後の幅Wb、幅Wcを夫々、枕地HBの幅、側部余裕地HCの幅として設定可能である。但し、任意の幅に変更可能である場合、圃場内における走行、作業並びに安全性を考慮して算出される最小設定幅以下に設定することはできない。例えば、枕地HBや側部余裕地HCにおいて自律走行作業車両1が走行や旋回した場合に、作業機が圃場外に飛び出ないことを保証する幅が最小設定幅として算出される。
上記の各種設定の入力が終了すると、確認画面が現れ、確認をタッチすると、自動で経路Rが生成される。経路Rは作業経路Raと走行経路Rbからなり、作業経路Raは作業領域HA内で生成される経路で、作業を行いながら走行する経路であり、直線の経路となる。但し、作業領域HAが矩形でない場合には作業領域HA外の領域(枕地HBと側部余裕地(サイドマージン)HC)にはみ出すこともある。走行経路Rbは作業領域HA外の領域で生成される経路で、作業を行わずに走行する経路であり、直線と曲線を組み合わせた経路となる。主に、枕地HBでの旋回走行となる。
前記経路Rは自律走行作業車両1と走行作業車両100の経路Rが生成される。
前記作業経路生成後にその作業経路を見たい場合は、経路生成設定ボタン203をタッチすることでシミユレーション画像が表示され、確認することができる。なお、経路生成設定ボタン203をタッチしなくても経路Rは生成されている。経路生成設定の各項目を設定すると、経路生成設定が表示され、その下部に、「経路設定ボタン」「データ転送する」「ホームへ戻る」が選択可能に表示される。
前記作業経路生成後にその作業経路を見たい場合は、経路生成設定ボタン203をタッチすることでシミユレーション画像が表示され、確認することができる。なお、経路生成設定ボタン203をタッチしなくても経路Rは生成されている。経路生成設定の各項目を設定すると、経路生成設定が表示され、その下部に、「経路設定ボタン」「データ転送する」「ホームへ戻る」が選択可能に表示される。
経路生成設定で生成された経路(経路R)に関する情報を転送するときは、初期画面において設けられたデータ転送ボタン204をタッチすることで転送できる。この転送は遠隔操作装置112で行われるため、これら設定した情報を自律走行作業車両1の制御装置に転送する必要がある。この転送は、(1)端子を用いて転送する方法と、(2)無線で転送する方法があり、本実施形態では、端子を用いる場合には、USBケーブルを用いて遠隔操作装置112と自律走行作業車両1の制御装置を直接つなぐ、あるいは、USBメモリに一旦記憶させてから、自律走行作業車両1のUSB端子に接続して転送する。また、無線で転送する場合は、WiFi(無線LAN)を用いて転送する。
以下、圃場形状を登録する圃場設定についてより詳しく説明する。
従来、圃場周辺部をマニュアル運転(ティーチング走行)することによって得られる学習走行データにより得られる圃場区画や基準走行方位の情報に基づいて作業経路を設定することは行われているが、実際の圃場における端、つまり、圃場と畔、道路の境界は、土地の特徴等によって必ずしも直線ではなく、ティーチング走行において忠実にその境界に沿って走行することは困難である。また、ティーチング走行によって得られた測位データには、局所的に圃場内側に飛び出した電柱、取水弁、壁等の障害物についての情報がないため、枕地作業やサイドマージンの仕上げ作業を自律走行作業車両に自律的に行わせることはできなかった。そこで、走行領域に関する各種情報を取得し、それら情報に基づいて作業車両100が走行する走行領域の形状を特定可能としている。
図6は、圃場端の境界部分に障害物が存在する等に起因して局所的に複雑な形状変化を有する圃場を示しており、本実施形態では圃場Hの辺DAに圃場内側に突出する電柱が存在する例を示している。図7は、圃場端の形状を周辺情報として認識する様子を示しており、ここでは電柱を認識する様子を示している。図8は、周辺情報に基づいて走行軌跡を補正した後に登録される圃場形状を示しており、ここでは圃場Hの内側に突起した電柱を考慮した圃場外周形状を登録する様子を示している。
従来、圃場周辺部をマニュアル運転(ティーチング走行)することによって得られる学習走行データにより得られる圃場区画や基準走行方位の情報に基づいて作業経路を設定することは行われているが、実際の圃場における端、つまり、圃場と畔、道路の境界は、土地の特徴等によって必ずしも直線ではなく、ティーチング走行において忠実にその境界に沿って走行することは困難である。また、ティーチング走行によって得られた測位データには、局所的に圃場内側に飛び出した電柱、取水弁、壁等の障害物についての情報がないため、枕地作業やサイドマージンの仕上げ作業を自律走行作業車両に自律的に行わせることはできなかった。そこで、走行領域に関する各種情報を取得し、それら情報に基づいて作業車両100が走行する走行領域の形状を特定可能としている。
図6は、圃場端の境界部分に障害物が存在する等に起因して局所的に複雑な形状変化を有する圃場を示しており、本実施形態では圃場Hの辺DAに圃場内側に突出する電柱が存在する例を示している。図7は、圃場端の形状を周辺情報として認識する様子を示しており、ここでは電柱を認識する様子を示している。図8は、周辺情報に基づいて走行軌跡を補正した後に登録される圃場形状を示しており、ここでは圃場Hの内側に突起した電柱を考慮した圃場外周形状を登録する様子を示している。
遠隔操作装置112の表示装置113上で圃場設定ボタン202をタッチして、新規に圃場設定を行う場合又は既存の圃場を編集して再度圃場設定を行う場合、「測定開始」ボタンをタッチした後に、自律走行作業車両1を走行させる。本実施形態では、自律走行作業車両1を圃場Hの四隅のうちの一つの隅Aに位置させ、「測定開始」ボタンをタッチして自律走行作業車両1を圃場Hの外周に沿って走行させた場合について説明する。このとき、測位制御ユニット306において、GPS衛星37・37・・・から送信される電波を受信して車体部の位置情報が取得されると同時に、ジャイロセンサ31及び方位角検出部32により、車体部の変位情報および方位情報が取得される。このように取得される車体部の位置情報、変位情報および方位情報に基づいた走行軌跡情報が取得される。
自律走行作業車両1を圃場Hの外周に沿って走行させるときに、自律走行作業車両1の周辺環境を認識するために配置された障害物センサ41及び/又はカメラ42F・42Rによって、自律走行作業車両1の周辺情報(環境情報)が併せて取得される。「周辺情報」とは、例えばカメラ等の撮像手段として構成される障害物センサ41によって得られた車体部の前部及び側部の映像、カメラ42Fによって得られた映像、若しくは、レーザセンサ又は超音波センサ等の距離センサとして構成される障害物センサ41による圃場端と畔等の圃場外との境界に関する情報である。本実施形態では、前方カメラ42Fによる映像を周辺情報として取得し、表示装置113に表示している。
そのようにして得られた周辺情報に基づいて走行軌跡情報を補正する。具体的には、周辺情報として得られる映像等に基づいて圃場Hの実際の外周端を把握し、それに合わせるように走行軌跡を外側又は内側に修正することで走行軌跡情報を補正して圃場Hの外周形状を登録する。そして、その外周形状に基づいて圃場Hの外周の走行経路を設定する。つまり、圃場Hの外周を走行するときには、障害物を適宜避けるように走行するが、障害物の性質に応じて、そのとき回避した経路よりも内側又は外側に圃場外周を登録する必要があるところ、本実施形態のように周辺情報として取得された映像等から障害物の形状、空中にせり出した大きさ等を用いて、障害物に応じた適正な回避量を設定し、経路生成設定における走行経路の設定に利用することも可能である。
なお、本実施形態では走行軌跡情報と周辺情報(環境情報)に基づいて走行軌跡情報を補正することとしたが、走行軌跡情報を補正しないことがあってもよく、或いは、補正軌跡情報を補正するか否かを選択可能であってもよい。補正軌跡情報を補正しない場合としては、例えば、周辺情報において走行軌跡情報に影響を与える外的要因(例えば、圃場端の付近に障害物が存在する場合や圃場端が曲線形状である場合)が存在しない場合が考えられる。この場合、周辺情報に基づいて外的要因の有無を判定し、外的要因がある場合は走行軌跡情報を補正し、外的要因がない場合は走行軌跡情報を補正しない。
また、走行軌跡情報を補正するか否かを選択可能とする場合、例えば、走行軌跡情報が取得された際に、周辺情報に基づいて補正するか否かを選択させる画像を表示し、ユーザにより補正の実行が選択された場合には補正を実行し、補正の非実行が選択された場合には補正を実行しない。或いは、不図示の設定メニュー等において周辺情報に基づく補正の要否を選択設定可能であって、補正が「要」である場合は自動的に走行軌跡情報を補正し、補正が「不要」である場合は走行軌跡情報を補正しないものであってもよい。
以上のように、周辺情報を取得して走行軌跡情報を補正することで、圃場端を正確に把握して登録することができ、圃場Hの外周が曲線状である場合、又は圃場Hの内側に障害物が突出している場合等、圃場Hの外周形状が複雑な場合でも、圃場領域としてより正確な圃場領域を登録することができる。
図9は、周辺情報を取得する環境認識手段の位置及び向きを示す。走行軌跡情報を補正する場合は、より正確に圃場端を認識するために、周辺情報を取得する障害物センサ41及びカメラ42F・42Rの移動GPSアンテナ34に対する配置(走行軌跡情報を取得する位置に対する相対位置)を考慮し、走行軌跡上の任意位置における走行軌跡と障害物センサ41及びカメラ42F・42R、認識された圃場端の位置関係を明確にした上で、これらの位置情報及び向きに基づいて補正が行われる。具体的には、センサ又はカメラの取り付け位置の高さ、水平位置に関する位置情報、それらと移動GPSアンテナ34との相対位置関係、及び、カメラの撮影方向又はセンサの検出方向に関する情報を用いて、カメラによって取得された画像又はセンサによって検出された検出値に対して、位置及び向きに関する情報を考慮して、走行軌跡と圃場端又は障害物との距離を算出し、圃場端の位置を正確に把握する。
以上のように、周辺情報に走行軌跡情報との相対的位置関係を持たせることで、環境認識手段によって認識される圃場端に関する情報をより正確に利用することができるとともに、圃場端の認識処理を自動で行うことが可能となる。
上述したように走行軌跡情報の補正は自動的に行われることとしてもよいが、ユーザの操作に応じて行われることとしてもよい。例えば、表示装置113に圃場の地図画像が表示され、当該地図画像上に走行軌跡情報に基づいて特定される圃場を示す線形状、或いは、周辺情報に基づいて補正された走行軌跡情報に基づいて特定される圃場を示す線形状が重畳表示される場合、ユーザが表示装置113をタッチすることで正確な圃場端を指定可能であって、ユーザの操作に応じて走行軌跡情報を補正することとしてもよい。その場合、環境情報取得手段(上述した環境センサ41、カメラ42F・42Rの総称)は表示装置113に圃場の地図画像を表示するために用いられるものであってよい。圃場端を指定する場合、例えば上記線形状に対してコントロールポイントを追加し、コントロールポイントを操作することで、線形状の一部について補正可能であってよい。また、線形状においてユーザが1又は複数の境界特徴点を指定し、当該境界特徴点に基づいて自動的に走行軌跡情報が補正されてよい。以下、境界特徴点について説明する。
図10は、表示装置上で圃場端の境界特徴点を選択して、圃場形状を登録する様子を示す。本例において周辺情報に基づいた圃場の外周端の認識は、カメラとして構成される障害物センサ41又はカメラ42F・42Rによって取得された画像を遠隔操作装置112の表示装置113に表示させて、外周端として登録する位置を表示装置113上でタッチすることで行っている。つまり、表示装置113に表示される画像における圃場とその外部との境界の特徴点(即ち境界特徴点)を作業者自身で判別して、表示装置113上で指定する。この場合、遠隔操作装置112の表示装置113は、車体部の位置情報、走行軌跡情報、及び、周辺情報を表示する表示部として機能するとともに、周辺情報に対して境界特徴点を指定するために操作される操作部としても機能する。そして、走行軌跡情報はユーザによって指定された境界特徴点に基づいて補正されて、変更後の線形状が圃場形状として登録される。走行軌跡情報の補正は更に、境界特徴点と関連特徴点に基づいて行われてもよい。関連特徴点とは、境界特徴点と同一又は類似する特徴を有する特徴点であり、例えば、地図画像(画像データ)上において、指定された境界特徴点と色相、彩度、明度が同一又は類似する(各要素の差異が所定閾値内であること)特徴点を関連特徴点として特定することが可能である。
上記では圃場登録時に走行軌跡情報を補正することとしたが、走行軌跡情報及び周辺情報を対応付けて遠隔操作装置112に記憶させた上で、圃場端の位置情報の変更操作を事後的に、例えば、圃場設定の変更として行うことも可能である。
周辺情報に基づいた圃場の外周端の認識方法としては、上述のようにカメラによって取得された映像上で作業者による視認で行う以外に、例えばカメラによって取得された画像データ上の色彩の差異又は明度の差異等、画像データ上の変位点を自動的に境界特徴点として判別する等が考えられる。また、レーザセンサ及び超音波センサ等の距離センサを用いる場合は、圃場端と畔との境界に存在する段差を距離の変化として検出して、その段差の下端を境界特徴点とすることで、圃場の外周端を自動的に認識することもできる(図11参照)。
本明細書で、遠隔操作装置112は、自律走行作業車両1の経路Rを設定する際に用いられることとした。そして、経路Rの設定に必要な各種設定(上記トラクタ設定、圃場設定、経路生成設定)は遠隔操作装置112の表示装置113を適宜操作することで設定されることとしたが、経路Rの設定を制御部30(例えば自律走行制御コントローラ307)が行い、経路Rの設定に必要な各種設定はユーザが表示手段49を適宜操作することで設定可能であってもよい。言い換えれば圃場の形状を登録するシステムにおいて遠隔操作装置112が含まれないこととしてもよいし、遠隔操作装置112は含まれるが経路Rの設定において遠隔操作装置112が用いられないこととしてもよい。
また、本明細書において走行軌跡情報の補正は圃場の形状を特定・登録するために行われることとしたが、圃場の形状に加え、或いは、圃場の形状に代えて、他の領域(自律走行作業車両1が走行する所定の領域(走行領域))の形状を特定・登録するために用いられてもよい。例えば上述した、作業領域の形状を特定・登録するために用いられてもよい。更には、自律走行作業車両の走行が禁止される所定の領域(非走行領域)の形状を特定・登録するために用いられてもよく。例えば上述した、障害物の形状を特定・登録するために用いられてもよい。特定・登録の対象が走行領域であっても、非走行領域であっても、周辺情報に基づいて走行軌跡情報を補正する点に差異はないが、一般に、走行領域において走行軌跡情報を取得するための走行は走行領域の端部の内側を走行するのに対して、非走行領域において走行軌跡情報を取得するための走行は走行領域の端部の外側を走行することが多い。この場合、走行領域における走行軌跡情報の補正は、走行軌跡情報により特定される閉じた線形状の面積を拡大する方向に行われる一方、非走行領域における走行軌跡情報の補正は、上記閉じた線形状の面積を縮小する方向に行われる。
以上に記載された本明細書に基づく発明を考慮すると、本願発明は、作業車両が走行する走行領域(本明細書では例えば圃場により実現される)の形状を登録するシステムであって、衛星測位システム(本明細書では例えばGNSSにより実現される)により走行作業車両100の位置情報を取得する位置情報取得手段(本明細書では例えば測位制御ユニット306により実現される)と、走行作業車両100の周辺の環境情報を取得する環境情報取得手段(本明細書では例えば環境認識センサにより実現される)と、衛星測位システムによって取得される走行作業車両100の位置情報に基づいて特定される走行作業車両100の走行軌跡を示す走行軌跡情報を取得する走行軌跡情報取得手段(本明細書では例えば走行作業車両100の制御部30又は走行作業車両100と無線通信可能な無線通信端末(遠隔操作装置112)が備える制御部130により実現される)と、走行軌跡情報取得手段によって取得された前記走行軌跡情報及び前記環境認識手段によって取得された前記環境情報に基づいて前記走行軌跡情報を補正して特定される特定領域(本明細書では例えば走行領域を補正することによって得られる領域により実現される)を走行領域の形状として登録する登録手段(本明細書では例えば走行作業車両100の制御部30又は走行作業車両100と無線通信可能な無線通信端末が備える制御部130により実現される)とを備えることを特徴とするものである。
また、本願発明において登録手段による走行軌跡情報の補正は、環境認識手段の位置情報及び環境情報を取得する方向にも基づいて行われる。また本願発明において、登録手段により登録された走行領域の形状(即ち補正後の走行領域の形状)を表示可能な表示手段(本明細書では例えば作業車両又は作業車両と無線通信可能な無線通信端末が備える画像表示部(表示手段49または表示装置113)により実現される)と、表示手段に表示された走行領域の形状を変更操作可能な操作手段(本明細書では例えば表示手段が備えるタッチパネルにより実現される)とを備え、登録手段は表示手段に表示された走行領域の形状が操作手段に対する操作(本明細書では例えばコントロールポイントの追加や境界特徴点の指定により実現される)に応じて変更された変更後の領域を走行領域の形状として登録する。なお、登録手段により登録される前(即ち補正前の走行領域の形状)について操作手段に対する操作に応じて変更可能であってもよいことはいうまでもない。
このようにして、走行作業車両100が走行する走行領域の形状をより正確に特定し、特定された走行領域を登録することができる。
このようにして、走行作業車両100が走行する走行領域の形状をより正確に特定し、特定された走行領域を登録することができる。
前記圃場設定において、圃場H内に車体部の走行が禁止される軟弱地や岩等の障害物400が存在する場合について、詳述する。
図12に示すように、圃場H内に障害物400が存在する場合、圃場設定時に、作業者は自律走行作業車両1に乗って障害物400の近傍位置まで移動し、障害物設定を選択して、障害物400の外周を走行する。このとき、四角形の頂点となる4点(ポイント)401・402・403・404を指定して第3領域(以下、進入禁止領域K)を登録する。この進入禁止領域Kの外周を形成する四角形の辺は圃場Hの外周の辺と略平行とされる。但し、遠隔操作装置112に表示される地図のみを用いて登録することも可能である。例えば、外観上は確認できないが進入を禁止したいような場合であり、軟弱地等で実際に周囲を走行すると深みにはまり脱出できないような事態が発生する場所や、大きな石が埋まっているような場所であり、このような障害は、走行せずに簡単に進入禁止領域Kとして登録できるようにする。
図12に示すように、圃場H内に障害物400が存在する場合、圃場設定時に、作業者は自律走行作業車両1に乗って障害物400の近傍位置まで移動し、障害物設定を選択して、障害物400の外周を走行する。このとき、四角形の頂点となる4点(ポイント)401・402・403・404を指定して第3領域(以下、進入禁止領域K)を登録する。この進入禁止領域Kの外周を形成する四角形の辺は圃場Hの外周の辺と略平行とされる。但し、遠隔操作装置112に表示される地図のみを用いて登録することも可能である。例えば、外観上は確認できないが進入を禁止したいような場合であり、軟弱地等で実際に周囲を走行すると深みにはまり脱出できないような事態が発生する場所や、大きな石が埋まっているような場所であり、このような障害は、走行せずに簡単に進入禁止領域Kとして登録できるようにする。
前記障害物400の形状が円形や尖った形状を有する場合、四角形で登録すると、余白部分(作業は可能であるが、進入が禁止される部分)が大きくなることがある。このような場合には、図13に示すように、進入禁止領域Kは指定する点を増加して(401~405)多角形とすることも可能である。但し、点の数は限定しない。また、指定する点の位置は、表示装置113上で移動や変更を可能としている。つまり、通常自動で頂点が設定されるため、実際はもう少し広くしたい場合や狭くしたい場合や傾斜させたい場合や位置をズラしたい場合や多角形に設定したい場合等があるため、マニュアルで点の移動や変更を可能としている。なお、進入禁止領域Kが多角形の場合、少なくとも一つの特定の辺は圃場H内の第1領域(作業領域HA)の辺と略平行となるように設定し、経路生成したときの未作業地ができるだけ小さくなるようにしている。
そして、障害物400が収まる四角形(または多角形)の進入禁止領域Kが設定されると、次に、進入禁止領域Kの所定長さ(幅)外側に第4領域となる障害物枕地JBと障害物側部余裕地JCを設定して、作業領域HAの中に障害物領域Jが設定される。つまり、障害物領域Jは、走行が禁止される進入禁止領域Kと、作業経路Raは生成されないが走行経路Rbは生成可能とされる第4領域となる障害物枕地JBと障害物側部余裕地JCとを加えた領域である。障害物枕地JBと障害物側部余裕地JCの第4領域の幅は作業機の幅の2倍以下の長さとすることで2周回ることで作業を終了できる。
また、第2領域(枕地HBと側部余裕地HC)と第4領域(障害物枕地JBと障害物側部余裕地JC)の間には経路が設定されない第5領域(進入領域HD)が設定される。つまり、自律走行作業車両1と走行作業車両100とによる協調作業で作業領域HAの作業を行った後に、障害物枕地JBと障害物側部余裕地JCを作業者が手動で作業を行う必要があるため、枕地HBあるいは側部余裕地HCから障害物枕地JB或いは障害物側部余裕地JCに入る必要がある。このため第2領域と第4領域の間を繋ぐように進入路となる第5領域を設定して、協調作業終了後に、既作業地を荒らすことなく障害物枕地JBと障害物側部余裕地JCに入り作業ができるようにしている。従って、第5領域の幅は作業機(または車体部)の幅以上、作業機の幅の2倍以下の長さとする。第5領域の幅が作業機の幅に等しい場合、第4領域へ進入するときには第5領域で作業を行う必要がないが、第4領域から出るときに第5領域で作業を行うことで、未耕地をなくすことができる。一方、第5領域の幅が作業機の幅より大きい場合、第4領域へ進入するとき及び第4領域から出るときに作業を行うことで、未耕地をなくすことができる。第5領域の幅を作業機の幅の2倍に等しい大きさとすることで、第4領域へ進入するとき及び第4領域から出るときに第5領域で作業を行っても作業の重複を防ぐことができる。
前記進入領域HD(第5領域)は、第2領域と第4領域の間の距離が最も短い位置に設けて、第4領域に入るとき及び出るときの作業面積ができるだけ小さくなるようにする。しかし、側部余裕地HCと障害物側部余裕地JCの間の距離が最も短い場合、その間を繋ぐように進入領域HDを設けると、この進入領域HDは作業領域HAにおける長手方向の経路を分断することになり、作業効率を低下させる場合がある。そこで、枕地HBと障害物枕地JBとの間の距離が短い領域で経路Rと平行となる進入領域HDを設定することとすれば、作業効率を低下させることなく、仕上がりもきれいにすることができる。また、第1領域(作業領域HA)の作業終了後に第4領域の作業を行うので、進入領域HDは作業終了位置Gに近い側に設定することで走行移動距離を短くでき、作業効率を向上できる。
以上のように、制御部130において予め設定した経路Rに沿って、衛星測位システムを利用して自律走行及び作業を可能とする自律走行作業車両1と、該自律走行作業車両1に協調して作業者が操作して作業を行う走行作業車両100により作業を行う作業システムにおいて、経路生成装置となる自律走行作業車両1の制御部30、または、該制御部30と通信可能な遠隔操作装置112の制御部130は、圃場H内を自律走行及び作業可能な経路Rを生成可能とし、圃場設定時に、圃場H内に障害物400が存在する場合、前記圃場H(作業領域HA)で作業を行う作業経路Raが生成される第1領域と、作業経路Raは生成されないが走行するための走行経路Rbは生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場H内であって走行が禁止される第3領域と、作業経路Raは生成されないが走行するための走行経路Rbは生成可能とする前記第3領域の周囲に設定される第4領域とを設定可能とするので、走行が禁止されるような障害物400が圃場H内に存在する場合であっても、自動的に経路設定が行われて効率よく作業ができるようになる。
また、前記制御部130(または制御部30)は、前記第1領域(作業領域HA)において、前記第4領域(障害物枕地JBと障害物側部余裕地JC)と第2領域(枕地HBと側部余裕地HC)とを接続し、作業経路Raが生成されない第5領域(進入領域HD)を設定可能とするので、作業領域HAを自律走行作業車両1と走行作業車両100とによる協調作業で作業を行った後に、既作業地を荒らすことなく第4領域に進入して作業を行い、その作業終了後に第5領域を作業しながら退出でき、第4領域を効率良くきれいに仕上げることができる。
また、前記制御部130(または制御部30)は、前記第1領域(作業領域HA)内に第3領域(進入禁止領域K)を設定する場合、第3領域を構成する少なくとも一つの辺は、第1領域を構成する特定の辺と略平行に設定されるので、経路生成したときの未作業地をできるだけ小さくすることができる。
また、前記制御部130(または制御部30)は、前記第1領域(作業領域HA)内に第3領域(進入禁止領域K)を設定する場合、第3領域を構成する少なくとも一つの辺は、第1領域を構成する特定の辺と略平行に設定されるので、経路生成したときの未作業地をできるだけ小さくすることができる。
また、前記制御部130(または制御部30)は、前記第5領域を第1領域(作業領域HA)で生成される作業経路Raと平行に設けるので、第4領域を作業した後に第5領域を作業して退出した後の仕上がりは、他の作業経路Raを作業した仕上がりとほぼ同じとなり、全体の仕上がりをきれいにできる。
このように、障害物領域Jが設定され、経路Rに沿って作業を行うと、障害物領域Jが存在する長手方向の作業経路Raは圃場H全体から見ると分断されることになる。この長手方向で分断された作業領域HAは、自律走行作業車両1と走行作業車両100とによる協調作業で一方の領域の作業終了後に他方の領域を行う方法と、自律走行作業車両1と走行作業車両100が別々の領域を作業する方法がある。どちらを選択するかは、地形や障害物領域Jの位置によって異なり、効率が良いほうを自動で選択するようにしている。ただし、手動で(作業者が)任意に選択することも可能である。
具体的に説明すると、図12において、作業領域HA内に障害物領域Jが存在する場合、作業領域HA内の障害物領域Jの側方に位置し側部余裕地HCに隣接する領域を左側部作業領域HALと右側部作業領域HARとし、残りの障害物領域J以外の枕地HBに隣接する領域を前分断作業領域HAFと後分断作業領域HABとし、左側部作業領域HAL側から自律走行作業車両1と走行作業車両100とにより協調作業を行うものとする。
図14に示すように、左側部作業領域HALが偶数条の経路Rを備える場合、経路Rの長手方向を分断された作業領域HAは、自律走行作業車両1と走行作業車両100の2台で片方の領域ずつ作業を行う。つまり、左側部作業領域HALの作業が終了すると、一方の前分断領域HAF(左側部作業領域HALが例えば4条の場合は、HAB→HAR→HAF)の作業を行い、次に、右側部作業領域HARの作業を行い、次に、他方の後分断作業領域HABの作業を行って終了する。
また、図15に示すように、左側部作業領域HALが奇数条の経路Rを備える場合、経路の長手方向を分断された作業領域HAは、自律走行作業車両1と走行作業車両100の2台がそれぞれ別々の領域の作業を行う。つまり、左側部作業領域HALの作業が終了すると、一方の前分断領域HAF(左側部作業領域HALが例えば3条の場合後分断作業領域HAB)の作業を走行作業車両100が行い、後分断作業領域HABは自律走行作業車両1が行う。次に、右側部作業領域HARを自律走行作業車両1と走行作業車両100とにより作業を行う。なお、進入領域HDを設ける場合は、条数に応じてその条を空けたり、作業せずに空走させたりする。
上記のように、前記制御部130(または制御部30)は、前記第1領域において、前記第3領域、第4領域、第5領域、を除いた残りの領域で作業経路Raを生成可能とするので、全ての作業領域HAを順に作業して、作業効率を向上できる。
また、第4領域(障害物枕地JBまたは障害物側部余裕地JC)と第2領域(枕地HBまたは側部余裕地HC)が重複している場合には、両領域を統合するように設定される。例えば、図16に示すように、枕地HBと障害物枕地JBが重複している場合には、枕地HBと障害物枕地JBを統合する。この状態で、制御部130は、障害物枕地JBと障害物側部余裕地JCは枕地HBとみなして経路Rを設定することができ、障害物枕地JBと障害物側部余裕地JCを区別する必要がないため、プログラムの作成上簡略化ができる。
このように、衛星測位システムを利用して自律走行及び作業を可能とする自律走行作業車両1と、該自律走行作業車両1に協調して作業者が操作して作業を行う走行作業車両100により作業を行う作業システムにおいて、圃場H内を自律走行及び作業可能な経路を生成可能な経路生成装置となる自律走行作業車両1の制御部30、または、該制御部30と通信可能な遠隔操作装置112の制御部130は、前記圃場Hで作業を行う作業経路Raが生成される第1領域と、作業経路Raは生成されないが走行するための走行経路Rbは生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場H内であって走行が禁止される第3領域と、作業経路Raは生成されないが走行するための走行経路Rbは生成可能とする第3領域の周囲に設定される第4領域とを設定可能とするとともに、第2領域(枕地HBまたは側部余裕地HC)と第4領域(障害物枕地JBまたは障害物側部余裕地JC)とが重複する場合、第4領域を第2領域に含めて(統合して)設定可能とするので、障害物枕地JBと障害物側部余裕地JCの作業処理を考慮する必要がなくなり、経路生成が簡単になり、枕地HBと側部余裕地HCと障害物領域Jの後処理も簡単に行えるようになる。
また、第2領域(枕地HBと側部余裕地HC)と第4領域(障害物枕地JBまたは障害物側部余裕地JC)とが所定幅未満の第6領域HEを隔てて対向している場合に、第4領域および第6領域HEを第2領域に含めて設定可能としている。例えば、図17に示すように、枕地HBに対向して障害物枕地JBが幅Wj離れており、その幅Wjが所定幅T1未満の場合には、障害物枕地JBと枕地HBの間の作業領域HAに生じる第6領域HEを枕地HBに含めて統合し、作業経路Raは設定されず自律走行作業車両1または走行作業車両100とにより作業は行わないように設定される。この第4領域と第2領域の間の第6領域HEの幅は、例えば、作業機による作業長さがトラクタの全長程度であり、頻繁に旋回を繰り返すと却って作業効率を低下させるような距離である。
このように、前記制御部130(または制御部30)は、第2領域と第4領域とが所定幅未満の第6領域HEを隔てて対向している場合に、第4領域および第6領域HEを第2領域に含めて設定可能とするので、第2領域と第4領域の間の狭い第6領域HEを自律走行作業車両1または走行作業車両100とにより旋回を繰り返して作業する必要がなくなり、作業効率を向上できる。また、第4領域が第2領域に統合される領域は、障害物枕地JBと障害物側部余裕地JCとして別の作業として考慮する必要がなくなり、枕地HBと側部余裕地HCと障害物領域Jが一度に処理ができるようになる。
また、前記制御部130(または制御部30)は、圃場H内に障害物400を含む第3領域及び第4領域が複数存在する場合において、第4領域同士が所定幅未満の第7領域HFを隔てて対向している場合に、第7領域HFは何れか一方の第4領域に含めて設定可能される。例えば、図18に示すように、圃場H内に障害物400と障害物401が離れて存在し、第4領域(障害物枕地JBまたは障害物側部余裕地JC)と第4領域(障害物枕地JBまたは障害物側部余裕地JC)との間の幅Wkが所定距離T2未満の場合、第7領域HFは何れか一方の第4領域に含めて統合されるように設定される。なお、幅Wkが所定幅T2未満の場合、第4領域と第4領域が離れている場合も、その一部が重複する場合も含む。このように、第4領域同士が統合されることによって、障害物枕地JBと障害物側部余裕地JCが一体的となり、経路生成及び作業領域HAの作業後の処理が簡単となる。
また、圃場H内に障害物400が複数存在し、その一つまたは複数の第4領域が第2領域に対して所定幅T1よりも短い場合には前記同様に統合される。図18に示すように、障害物401の第4領域と第2領域との間に凹部領域が形成される場合には、所定の条件を満たす場合に凹部をなくすように統合することもできる。所定の条件として、例えば、凹部の面積が閾値未満、凹部の横幅が閾値(例えばトラクタの幅)未満、凹部の縦方向の長さが閾値(例えばトラクタの全長×2)未満等である。この場合、経路生成及び作業領域HAの作業後の処理が簡単となる。
また、圃場H内に障害物400が複数存在し、その一つまたは複数の第4領域が第2領域に対して所定幅T1よりも短い場合には前記同様に統合される。図18に示すように、障害物401の第4領域と第2領域との間に凹部領域が形成される場合には、所定の条件を満たす場合に凹部をなくすように統合することもできる。所定の条件として、例えば、凹部の面積が閾値未満、凹部の横幅が閾値(例えばトラクタの幅)未満、凹部の縦方向の長さが閾値(例えばトラクタの全長×2)未満等である。この場合、経路生成及び作業領域HAの作業後の処理が簡単となる。
このように、前記制御部130は、前記圃場H内に第3領域及び第4領域が複数存在する場合において、第4領域同士が所定幅未満の第7領域HFを隔てて対向している場合に、第7領域HFを何れか一方の第4領域に含めて設定可能とされるので、経路生成を簡単にすることができる。
次に、自律走行作業車両1または走行作業車両100が枕地で旋回するときの長さについて説明する。
枕地HBは、トラクタが圃場外周端において作業を行わずに次の作業経路Ra(条)へ移るための旋回領域であり、所定の枕地幅Wbを有する。枕地幅Wbは、圃場Hが矩形の場合、図19に示すように、機体の旋回中心Oから作業機後端までの距離L1と、機体中心Oにおける最小旋回半径(トラクタに対して設定された設定旋回半径)L2と、作業機幅若しくは機体幅の内大きい方の半分の長さL3と、安全余裕幅Lsmとを加えた長さとなる。つまり、枕地幅Wb=L1+L2+L3+Lsmとなる。
枕地HBは、トラクタが圃場外周端において作業を行わずに次の作業経路Ra(条)へ移るための旋回領域であり、所定の枕地幅Wbを有する。枕地幅Wbは、圃場Hが矩形の場合、図19に示すように、機体の旋回中心Oから作業機後端までの距離L1と、機体中心Oにおける最小旋回半径(トラクタに対して設定された設定旋回半径)L2と、作業機幅若しくは機体幅の内大きい方の半分の長さL3と、安全余裕幅Lsmとを加えた長さとなる。つまり、枕地幅Wb=L1+L2+L3+Lsmとなる。
また、図20に示すように、圃場Hの形状が変形した四角形で、枕地HBが進行方向に対して角度θ傾斜している場合には、機体の旋回中心Oから作業機後端までの距離L1と、機体中心Oにおける最小旋回半径L2は傾斜方向となるので、傾斜した枕地HBにおける機体の旋回中心Oから作業機後端までの距離L1’は、L1cos(θ-90)=L1sinθとなり、傾斜した枕地HBにおける機体中心Oにおける最小旋回半径L2’は、L2-L2cosθとなる。L3とL4は前記と同じ長さとなる。つまり、枕地幅Wb’=L1’+L2’ +L3+Lsm=L1sinθ+(L2-L2cosθ)+L3+Lsmとなる。
また、側部余裕地HCの幅Wcをできるだけ狭くして作業領域HAを大きくしたい場合には、図21に示す二回切り返しターンが採用される。この二回切り返しターンにおける側部余裕地幅Wcは、スタート側で、機体の旋回中心Oから作業機後端までの距離L1と、機体中心Oにおける最小旋回半径L2から3/2作業幅W2を減じた長さと、安全余裕幅Lsmとを加えた長さとなる。つまり、Wc=L1+L2-3/2W2+Lsmとなる。
終了側では、機体の旋回中心Oから作業機後端までの距離L1と機体中心Oにおける最小旋回半径L2とを加えた長さから3/2作業幅W2を減じた長さと、機体中心Oから機体先端までの長さL5と、安全余裕幅Lsmとを加えた長さとなる。つまり、側部余裕地幅Wc=L1+L2-3/2W2+L5+Lsmとなる。
終了側では、機体の旋回中心Oから作業機後端までの距離L1と機体中心Oにおける最小旋回半径L2とを加えた長さから3/2作業幅W2を減じた長さと、機体中心Oから機体先端までの長さL5と、安全余裕幅Lsmとを加えた長さとなる。つまり、側部余裕地幅Wc=L1+L2-3/2W2+L5+Lsmとなる。
前記L1、L2、L3、L5の長さはトラクタ設定において、予め、取得されているため、経路生成における外周設定において、安全余裕幅Lsmを入力することで、自動で計算される。枕地幅Wbおよび側部余裕地幅Wcを作業者が手動で設定した場合、その入力値は自動で計算された値と比較され、安全に旋回できるように、長い方が採用される。
本発明は、圃場内を自律走行及び自動作業を可能とする農用作業車の走行及び作業経路を生成可能とする経路生成装置に利用可能である。
1 自律走行作業車両
30 制御部
110・111 通信装置
112 遠隔操作装置
130 制御部
H 圃場
R 経路
Ra 作業経路
Rb 走行経路
HA 作業領域
30 制御部
110・111 通信装置
112 遠隔操作装置
130 制御部
H 圃場
R 経路
Ra 作業経路
Rb 走行経路
HA 作業領域
Claims (8)
- 圃場内を自律走行及び作業可能な経路を生成可能な制御部を備える経路生成装置であって、前記制御部は、前記圃場で作業を行う作業経路が生成される第1領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場内であって走行が禁止される第3領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第3領域の周囲に設定される第4領域と、を設定可能とすることを特徴とする経路生成装置。
- 前記制御部は、前記第1領域において、前記第4領域と第2領域とを接続する作業経路が生成されない第5領域を設定可能とすることを特徴とする請求項1に記載の経路生成装置。
- 前記制御部は、前記第1領域において、前記第3領域、第4領域、第5領域、を除いた残りの領域で作業経路を生成可能とすることを特徴とする請求項1に記載の経路生成装置。
- 前記制御部は、前記第5領域を第1領域で生成される作業経路と平行に設けることを特徴とする請求項2または請求項3に記載の経路生成装置。
- 前記制御部は、前記第1領域内に第3領域を設定する場合、第3領域を構成する少なくとも一つの辺は、第1領域を構成する特定の辺と略平行に設定されることを特徴とする請求項1に記載の経路生成装置。
- 圃場内を自律走行及び作業可能な経路を生成可能な制御部を備える経路生成装置であって、前記制御部は、前記圃場で作業を行う作業経路が生成される第1領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場内であって走行が禁止される第3領域と、作業経路は生成されないが走行するための走行経路は生成可能とする第3領域の周囲に設定される第4領域と、を設定可能とするとともに、第2領域と第4領域とが重複する場合、第4領域を第2領域に含めて設定可能とすることを特徴とする経路生成装置。
- 圃場内を自律走行及び作業可能な経路を生成可能な制御部を備える経路生成装置であって、前記制御部は、前記圃場で作業を行う作業経路が生成される第1領域と、作業経路は生成されないが走行するための走行経路は生成可能とする前記第1領域の周囲に設定される第2領域と、前記圃場内であって走行が禁止される第3領域と、作業経路は生成されないが走行するための走行経路は生成可能とする第3領域の周囲に設定される第4領域と、を設定可能とするとともに、第2領域と第4領域とが所定幅未満の第6領域を隔てて対向している場合に、第4領域および第6領域を第2領域に含めて設定可能とすることを特徴とする経路生成装置。
- 前記制御部は、前記圃場内に第3領域及び第4領域が複数存在する場合において、第4領域同士が所定幅未満の第7領域を隔てて対向している場合に、第7領域を何れか一方の第4領域に含めて設定可能されることを特徴とする請求項6または請求項7に記載の経路生成装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187021945A KR102113414B1 (ko) | 2016-03-07 | 2017-03-03 | 경로 생성 장치 |
CN201780010586.1A CN108780318A (zh) | 2016-03-07 | 2017-03-03 | 路径生成装置 |
KR1020197029410A KR102144244B1 (ko) | 2016-03-07 | 2017-03-03 | 경로 생성 장치 |
CN202210499259.XA CN114859915A (zh) | 2016-03-07 | 2017-03-03 | 行驶区域形状登记系统 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-043415 | 2016-03-07 | ||
JP2016043415A JP6507109B2 (ja) | 2016-03-07 | 2016-03-07 | 作業車両の走行領域形状登録システム |
JP2016-048462 | 2016-03-11 | ||
JP2016-048461 | 2016-03-11 | ||
JP2016048462A JP6557622B2 (ja) | 2016-03-11 | 2016-03-11 | 経路生成装置 |
JP2016048461A JP6557621B2 (ja) | 2016-03-11 | 2016-03-11 | 経路生成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017154772A1 true WO2017154772A1 (ja) | 2017-09-14 |
Family
ID=59790294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008481 WO2017154772A1 (ja) | 2016-03-07 | 2017-03-03 | 経路生成装置 |
Country Status (3)
Country | Link |
---|---|
KR (2) | KR102144244B1 (ja) |
CN (2) | CN108780318A (ja) |
WO (1) | WO2017154772A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019097532A (ja) * | 2017-12-07 | 2019-06-24 | 株式会社クボタ | 圃場作業支援端末、圃場作業機、および、圃場作業支援プログラム |
WO2019124217A1 (ja) * | 2017-12-20 | 2019-06-27 | 株式会社クボタ | 作業車、作業車のための走行経路選択システム、及び、走行経路算出システム |
JP2019106975A (ja) * | 2017-12-20 | 2019-07-04 | 株式会社クボタ | 作業車 |
JP2021184292A (ja) * | 2018-03-27 | 2021-12-02 | ヤンマーパワーテクノロジー株式会社 | 走行経路管理システム |
JP2022022653A (ja) * | 2020-06-30 | 2022-02-07 | 株式会社クボタ | 農作業車のための自動操舵管理システム |
GB2600101A (en) * | 2020-10-16 | 2022-04-27 | Micropply Ltd | Method and system for identifying suitable zones for autonomous vehicle operation |
US20220413504A1 (en) * | 2019-11-26 | 2022-12-29 | Yanmar Power Technology Co., Ltd. | Area Registration System |
EP4252510A1 (en) * | 2022-03-30 | 2023-10-04 | Yanmar Holdings Co., Ltd. | Control device and work vehicle |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019201297B4 (de) * | 2019-02-01 | 2021-03-18 | Zf Friedrichshafen Ag | Autonomer Betrieb eines Fahrzeugs innerhalb eines sicheren Arbeitsbereichs |
EP4386507A1 (en) * | 2019-02-25 | 2024-06-19 | DEKA Products Limited Partnership | System and method for surface feature detection and traversal |
CN109828584A (zh) * | 2019-03-01 | 2019-05-31 | 重庆润通智能装备有限公司 | 待割草坪移除、添加障碍物后的路径规划方法及系统 |
CN111854744A (zh) * | 2020-07-17 | 2020-10-30 | 无锡卡尔曼导航技术有限公司 | 一种gnss单点定位和惯性导航割草机的运行方法 |
CN114305202B (zh) * | 2020-09-30 | 2023-06-20 | 好样科技有限公司 | 一种自行走装置及其控制方法 |
TWI826777B (zh) * | 2021-03-19 | 2023-12-21 | 國立陽明交通大學 | 畦田式無人載具自動導航系統及其方法 |
KR102592085B1 (ko) * | 2023-02-02 | 2023-10-20 | 주식회사 긴트 | 농업용 차량의 정밀한 자율주행을 위한 ab주행 기준선 이동 가이드 시스템 및 이의 운용방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS641012A (en) * | 1987-06-24 | 1989-01-05 | Matsushita Electric Ind Co Ltd | Unattended working vehicle |
JPH09212238A (ja) * | 1996-01-31 | 1997-08-15 | Shizukou Kk | 自律走行清掃車両の走行経路設定装置 |
US20160159391A1 (en) * | 2014-12-09 | 2016-06-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Steering system for an agricultural vehicle |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07253815A (ja) * | 1994-03-15 | 1995-10-03 | Minolta Co Ltd | 自律走行作業車 |
JP3656332B2 (ja) | 1996-08-28 | 2005-06-08 | 独立行政法人農業・生物系特定産業技術研究機構 | 作業車両の無人走行による無人作業方法 |
CN102167038B (zh) * | 2010-12-03 | 2013-09-04 | 北京农业信息技术研究中心 | 农田地块全区域覆盖最优作业路径生成方法及装置 |
CN103673937B (zh) * | 2013-11-11 | 2017-06-20 | 安徽赛为信息技术有限责任公司 | 一种双重算法模式农机田作业面积的计算系统及其方法 |
JP2015146748A (ja) * | 2014-02-05 | 2015-08-20 | ヤンマー株式会社 | 電動作業車両 |
KR20160139019A (ko) | 2014-03-28 | 2016-12-06 | 얀마 가부시키가이샤 | 자율 주행 작업 차량 |
JP6078025B2 (ja) * | 2014-06-30 | 2017-02-08 | ヤンマー株式会社 | 併走作業システム |
CN105045280B (zh) * | 2015-08-03 | 2019-01-01 | 中国农业大学 | 一种基于卫星系统的自走式喷施机导航系统以及方法 |
-
2017
- 2017-03-03 WO PCT/JP2017/008481 patent/WO2017154772A1/ja active Application Filing
- 2017-03-03 KR KR1020197029410A patent/KR102144244B1/ko active IP Right Grant
- 2017-03-03 CN CN201780010586.1A patent/CN108780318A/zh active Pending
- 2017-03-03 KR KR1020187021945A patent/KR102113414B1/ko active IP Right Grant
- 2017-03-03 CN CN202210499259.XA patent/CN114859915A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS641012A (en) * | 1987-06-24 | 1989-01-05 | Matsushita Electric Ind Co Ltd | Unattended working vehicle |
JPH09212238A (ja) * | 1996-01-31 | 1997-08-15 | Shizukou Kk | 自律走行清掃車両の走行経路設定装置 |
US20160159391A1 (en) * | 2014-12-09 | 2016-06-09 | Claas Selbstfahrende Erntemaschinen Gmbh | Steering system for an agricultural vehicle |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019097532A (ja) * | 2017-12-07 | 2019-06-24 | 株式会社クボタ | 圃場作業支援端末、圃場作業機、および、圃場作業支援プログラム |
WO2019124217A1 (ja) * | 2017-12-20 | 2019-06-27 | 株式会社クボタ | 作業車、作業車のための走行経路選択システム、及び、走行経路算出システム |
JP2019106975A (ja) * | 2017-12-20 | 2019-07-04 | 株式会社クボタ | 作業車 |
JP2021184292A (ja) * | 2018-03-27 | 2021-12-02 | ヤンマーパワーテクノロジー株式会社 | 走行経路管理システム |
US20220413504A1 (en) * | 2019-11-26 | 2022-12-29 | Yanmar Power Technology Co., Ltd. | Area Registration System |
JP2022022653A (ja) * | 2020-06-30 | 2022-02-07 | 株式会社クボタ | 農作業車のための自動操舵管理システム |
JP7387544B2 (ja) | 2020-06-30 | 2023-11-28 | 株式会社クボタ | 農作業車のための自動操舵管理システム |
GB2600101A (en) * | 2020-10-16 | 2022-04-27 | Micropply Ltd | Method and system for identifying suitable zones for autonomous vehicle operation |
GB2600101B (en) * | 2020-10-16 | 2023-03-01 | Micropply Ltd | Method and system for identifying suitable zones for autonomous vehicle operation |
EP4252510A1 (en) * | 2022-03-30 | 2023-10-04 | Yanmar Holdings Co., Ltd. | Control device and work vehicle |
Also Published As
Publication number | Publication date |
---|---|
KR20190119150A (ko) | 2019-10-21 |
CN108780318A (zh) | 2018-11-09 |
KR20180100355A (ko) | 2018-09-10 |
CN114859915A (zh) | 2022-08-05 |
KR102144244B1 (ko) | 2020-08-12 |
KR102113414B1 (ko) | 2020-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017154772A1 (ja) | 経路生成装置 | |
JP6507109B2 (ja) | 作業車両の走行領域形状登録システム | |
JP6557622B2 (ja) | 経路生成装置 | |
KR102698059B1 (ko) | 작업 차량 및 주행 영역 특정 장치 | |
JP6594805B2 (ja) | 作業車両 | |
JP6267626B2 (ja) | 走行経路設定装置 | |
JP6557621B2 (ja) | 経路生成装置 | |
JP6531055B2 (ja) | 経路生成装置 | |
WO2016076319A1 (ja) | 操作端末 | |
JP6675135B2 (ja) | 経路生成装置 | |
JP7142597B2 (ja) | 走行領域形状登録システム | |
JP6437479B2 (ja) | 経路生成装置 | |
JP6499605B2 (ja) | 走行領域特定装置 | |
JP6854312B2 (ja) | 走行領域特定装置 | |
WO2017159615A1 (ja) | 経路生成装置 | |
JP6605375B2 (ja) | 自律走行作業車両 | |
JP6605364B2 (ja) | 作業車両の経路生成方法 | |
JP2022160546A (ja) | 作業車両の自律走行方法および自律走行システム | |
JP7397919B2 (ja) | 経路生成装置 | |
JP7179891B2 (ja) | 走行領域特定システム、走行領域特定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187021945 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17763112 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17763112 Country of ref document: EP Kind code of ref document: A1 |