WO2017154685A1 - 排ガス浄化床下触媒及び触媒システム - Google Patents
排ガス浄化床下触媒及び触媒システム Download PDFInfo
- Publication number
- WO2017154685A1 WO2017154685A1 PCT/JP2017/007984 JP2017007984W WO2017154685A1 WO 2017154685 A1 WO2017154685 A1 WO 2017154685A1 JP 2017007984 W JP2017007984 W JP 2017007984W WO 2017154685 A1 WO2017154685 A1 WO 2017154685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- layer
- ceo
- lower layer
- upper layer
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 225
- 238000000746 purification Methods 0.000 title claims abstract description 38
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 45
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000010410 layer Substances 0.000 claims description 269
- 239000000463 material Substances 0.000 claims description 52
- 239000000758 substrate Substances 0.000 claims description 52
- 239000011248 coating agent Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 17
- 239000011247 coating layer Substances 0.000 claims description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract 6
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract 6
- 239000010948 rhodium Substances 0.000 description 58
- 239000007789 gas Substances 0.000 description 47
- 239000002585 base Substances 0.000 description 32
- 239000002131 composite material Substances 0.000 description 24
- 239000002245 particle Substances 0.000 description 21
- 238000002360 preparation method Methods 0.000 description 21
- 239000002002 slurry Substances 0.000 description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 17
- 241001417527 Pempheridae Species 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000000446 fuel Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- -1 rare earth compounds Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 150000001339 alkali metal compounds Chemical class 0.000 description 3
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 2
- 230000010718 Oxidation Activity Effects 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- WWLQXHVOIDQKRN-UHFFFAOYSA-N C(=O)=CC(=O)[Rh] Chemical compound C(=O)=CC(=O)[Rh] WWLQXHVOIDQKRN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HSSJULAPNNGXFW-UHFFFAOYSA-N [Co].[Zn] Chemical compound [Co].[Zn] HSSJULAPNNGXFW-UHFFFAOYSA-N 0.000 description 1
- 150000001553 barium compounds Chemical class 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 1
- 150000003112 potassium compounds Chemical class 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- ZTBGZLXHBMWLFN-UHFFFAOYSA-K sodium;trichlororhodium Chemical compound [Na].Cl[Rh](Cl)Cl ZTBGZLXHBMWLFN-UHFFFAOYSA-K 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000003438 strontium compounds Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
- B01D53/9468—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2807—Metal other than sintered metal
- F01N3/281—Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/65—Catalysts not containing noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/904—Multiple catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/908—O2-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9202—Linear dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9207—Specific surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
- B01D53/9472—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0684—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
Definitions
- the present invention relates to an exhaust gas purifying underfloor catalyst and a catalyst system. Specifically, the present invention relates to an underfloor catalyst that functions as a sweeper in an exhaust gas purification catalyst system, and a catalyst system that uses the underfloor catalyst.
- a three-way catalyst in which a noble metal is supported on an inorganic oxide is known.
- Three-way catalysts are widely used as catalysts that can efficiently remove hydrocarbons (HC), nitrogen oxides (NO x ), and carbon monoxide (CO) simultaneously.
- platinum (Pt) and palladium (Pd) which are excellent in oxidation activity and mainly contribute to purification of HC and CO, are excellent in reduction activity and mainly NO.
- Rhodium (Rh) that contributes to purification of x is often used in combination.
- Rh which is excellent in NO x purification activity
- Rh is low in output and expensive. Therefore, it is desirable to reduce the amount of Rh used in the exhaust gas purification catalyst as much as possible.
- Such a multi-stage catalyst is composed of a front-stage catalyst (startup catalyst, hereinafter referred to as “S / C catalyst”) disposed upstream and a downstream-stage catalyst (under the floor of an automobile) with respect to the exhaust gas flow path. Since it is often arranged, it is often referred to as “underfloor catalyst”).
- startup catalyst hereinafter referred to as “S / C catalyst”
- underfloor catalyst As such a two-stage exhaust gas purification catalyst, for example, the techniques of Patent Documents 1 to 3 are known.
- Patent Document 1 in an exhaust gas purification catalyst in which a catalyst layer containing Rh and Pd or Pt is arranged on the upstream side, and a catalyst layer containing only Rh as a noble metal is arranged on the downstream side, by defining a coating length of the catalyst layer, is described as the NO x purification performance is maintained high even after the endurance in the a / F variation conditions.
- Patent Document 2 in the exhaust gas purification catalyst in which the first three-way catalyst having oxygen storage capacity is arranged on the downstream side and the second three-way catalyst containing Rh is arranged on the upstream side, the oxygen of the second three-way catalyst by limiting the storage capacity, the restart time of the internal combustion engine, is described and the suppression and the NO x purification performance of the fuel economy is achieved.
- Patent Document 3 when an exhaust gas purification catalyst in which a catalyst containing only Rh as a noble metal is arranged on the upstream side and a catalyst having oxidation activity is arranged on the downstream side is compared with the gas containing the catalyst and the catalyst outgas. by varying the injected fuel value and higher the NO x purification performance by optimizing the air-fuel ratio is described as obtained.
- Patent Document 4 is known as a technique in which the noble metal species in the catalyst is limited to only Rh.
- the catalyst layer in the exhaust gas purification catalyst as described above has been formed on a base material that does not itself have an exhaust gas purification ability, for example, a cordierite honeycomb base material.
- a base material that does not itself have an exhaust gas purification ability for example, a cordierite honeycomb base material.
- Patent Document 5 an exhaust gas purification catalyst in which a noble metal is supported on a base material composed of inorganic oxide particles has been proposed.
- JP 2012-096201 A JP 2008-240622A JP 2006-205134 A JP 2009-255084 A Japanese Patent Laying-Open No. 2015-85241
- the distance from the engine to the catalyst is longer than that of a naturally aspirated car. Therefore, it takes a certain time for the catalyst temperature to rise after the engine is started. Therefore, the catalyst used in such a case is required to have a warm-up performance that can purify the exhaust gas immediately after starting the engine as soon as possible. Further, the latter catalyst (underfloor catalyst) in the two-stage catalyst is required to have a sweeper function for purifying exhaust gas components that could not be purified by the S / C catalyst.
- the present invention is intended to improve the above situation.
- the object is to provide an underfloor catalyst capable of developing a high level of sweeper performance with a minimum amount of noble metal species and amount, and a catalyst system that achieves both warm-up performance and sweeper performance by using the underfloor catalyst. That is.
- the present invention achieves the above-described problems by the following configuration.
- the lower layer contains alumina and CeO 2, and the content of the noble metal in the lower layer is 0.5% by mass or less based on the lower layer mass
- the upper layer, Rh, alumina, and contains CeO 2, and less than 1 mol% relative to the total noble metal content of the noble metal other than Rh is contained in the upper layer
- the total amount of CeO 2 contained in the lower layer and the upper layer is 14 g / L to 30 g / L
- the amount of CeO 2 contained in the upper layer is 7 g / L to 25 g / L
- the amount of CeO 2 contained in the lower layer is 20% or more of the amount of CeO 2 contained in the upper layer.
- Exhaust gas purification underfloor catalyst Exhaust gas purification underfloor catalyst.
- the coat length of the lower layer is 50% or more of the substrate length from the rear with respect to the gas flow direction
- the coating length of the upper layer is 70% or more of the substrate length from the front with respect to the gas flow direction.
- the coat length of the lower layer is 50% to 85% of the base length from the rear with respect to the gas flow direction, Having a region in which the upper layer is directly coated on the substrate in the range of 15% to 50% of the substrate length;
- an underfloor catalyst capable of exhibiting a high level of sweeper performance with a minimum necessary noble metal species and amount is provided. Since this underfloor catalyst may require less kinds and amounts of noble metals required to exhibit the sweeper performance, it is possible to arrange more noble metals in the S / C catalyst.
- a catalyst system in which the S / C catalyst and the above-mentioned underfloor catalyst are combined is provided. Since this system can arrange more kinds and amounts of precious metals in the S / C catalyst than in the prior art, both warm-up performance and sweeper performance are compatible.
- FIG. 1 is a schematic diagram for explaining the configuration of the catalyst system of the present invention.
- the underfloor catalyst of the present invention includes a catalyst layer having a lower layer and an upper layer.
- the underfloor catalyst of the present invention may have a substrate.
- the catalyst layer in the underfloor catalyst of the present invention may be present as a coat layer on a different substrate, or the lower layer of the catalyst layer constitutes a part of the substrate, and the upper layer is the substrate. It may be present as an upper coat layer.
- the base material in the underfloor catalyst of the present invention those generally used as the base material of exhaust gas purifying catalysts can be used.
- a monolith honeycomb substrate can be mentioned.
- This base material may have a monolith structure only in the underfloor catalyst portion or a monolith structure including an underfloor catalyst and a pre-stage catalyst described later.
- Examples of the material constituting the base material include cordierite, SiC, stainless steel, metal oxide particles, and the like.
- the capacity of the base material can be about 1 L, for example.
- the base material only needs to satisfy the following requirements for the lower layer.
- the catalyst layer in the underfloor catalyst of the present invention has a lower layer and an upper layer.
- the lower layer contains alumina and CeO 2, and the content of the noble metal in the lower layer is 1% by mass or less based on the lower layer mass
- the upper layer contains Rh, alumina, and CeO 2 , and the content of noble metals other than Rh is 1% by mass or less based on the total number of noble metals contained in the upper layer.
- -Underlayer- Lower catalyst layer in underfloor catalyst of the present invention contains alumina and CeO 2.
- this lower layer is substantially free of noble metals. That a lower layer does not contain a noble metal substantially means that content of the noble metal in a lower layer is 0.5 mass% or less with respect to the lower layer mass.
- the content of the base metal in the lower layer is preferably 0.3% by mass or less, more preferably 0.1% by mass or less, still more preferably 0.01% by mass or less, based on the lower layer mass. Particularly preferably, no precious metal is contained.
- the BET specific surface area of the alumina contained in the lower layer of the catalyst layer is preferably 10 m 2 / g or more, more preferably 50 m 2 / g or more, and further preferably 100 m 2 / g or more; Preferably 1,000 m 2 / g or less, more preferably 500 meters 2 / g or less, still more preferably 250 meters 2 / g or less.
- the average particle diameter of alumina is preferably 0.001 ⁇ m or more, more preferably 0.02 ⁇ m or more, and further preferably 0.1 ⁇ m or more; It is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 25 ⁇ m or less.
- CeO 2 may be contained in the lower layer as single particles of CeO 2 , or may be contained in the lower layer as composite oxide particles containing Ce (cerium) and another metal element. CeO 2 is preferably in the form of a complex oxide.
- Other metal elements include, for example, Zr (zirconium), rare earth elements (excluding Ce; hereinafter, the symbol [Ln] may be used when referring to rare earth elements excluding Ce). Can do.
- rare earth elements other than Ce include Y (yttrium), La (lanthanum), Pr (praseodymium), Nd (neodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Er (erbium), Examples thereof include Yb (ytterbium) and Lu (lutetium). Among these, one or more selected from Y, La, Pr, Nd, and Eu are preferable.
- the composite oxide is preferably a ceria-zirconia composite oxide (hereinafter referred to as “CZ-based composite oxide”) containing Ce and Zr (zirconium).
- CZ-based composite oxide a ceria-zirconia composite oxide containing Ce and Zr (zirconium).
- This CZ-based composite oxide It is preferably a composite oxide containing Zr and Ce and a rare earth element excluding Ce; A composite oxide containing Zr and Ce and one or more rare earth elements selected from Y, La, Pr, Nd, and Eu is preferable.
- CeO 2 in the underfloor catalyst of the present invention is preferably contained in the lower layer of the catalyst layer in a form contained in a CZ-based composite oxide having the following composition.
- the ratio of each metal element in the following is an oxide conversion value when the total mass of the CZ-based composite oxide is 100% by mass.
- the total of the Zr content in terms of ZrO 2 and the Ce content in terms of CeO 2 is 80% by mass or more when the total mass of the CZ-based composite oxide is 100% by mass.
- the Ce content in terms of CeO 2 is preferably 5% by mass or more, more preferably 15% by mass or more, and particularly preferably 25% by mass. Or more; 80 mass% or less is more preferable, 70 mass% or less is still more preferable, Especially preferably, it is 60 mass% or less.
- the content of Zr in terms of ZrO 2 is more preferably 2% by mass or more, further preferably 10% by mass or more, and particularly preferably 20% by mass. Or more; 85 mass% or less is more preferable, 75 mass% or less is still more preferable, Especially preferably, it is 60 mass% or less.
- the content of rare earth elements except Ce of the Ln 2 O 3 in terms is more preferably more than 3 wt%, more preferably at least 5 wt%, Particularly preferably 8% by mass or more; 18 mass% or less is more preferable, 15 mass% or less is still more preferable, Especially preferably, it is 12 mass% or less.
- BET specific surface area of CeO 2 particles or CZ-based composite oxide particles contained in the lower layer of the catalyst layer is preferably 10 m 2 / g or more, more preferably 50 m 2 / g or more, 100 m 2 / more preferably g or more; It is preferably 1,000 m 2 / g or less, more preferably 500 m 2 / g or less, and further preferably 250 m 2 / g or less.
- the average particle diameter of CeO 2 particles or CZ-based composite oxide particles contained in the lower layer of the catalyst layer is preferably 0.001 ⁇ m or more, more preferably 0.02 ⁇ m or more, and 0.1 ⁇ m or more. More preferably it is; It is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 25 ⁇ m or less.
- the use ratio of alumina and CeO 2 in the lower layer of the catalyst layer in the underfloor catalyst of the present invention can be, for example, 5% by mass or more as a mass ratio of alumina with respect to the total, and 10% by mass or more.
- it can be 95% by mass or less, preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, and 75% by mass or less. Is particularly preferred.
- the mass of the composite oxide is adopted as the mass of CeO 2 in calculating the use ratio of the alumina and CeO 2 .
- the lower layer of the catalyst layer in the underfloor catalyst of the present invention may contain components other than the above-described alumina and CeO 2 as necessary in the technical field.
- examples of such other components include binders, transition metals, alkali metal compounds, alkaline earth metal compounds, and rare earth compounds.
- the above binder has a function of imparting mechanical strength to the catalyst layer in the underfloor catalyst of the present invention by adhering between the components and between each component and the base material or another layer.
- a binder include alumina sol, zirconia sol, silica sol, and titania sol.
- the use ratio of the binder in the lower layer of the catalyst layer in the underfloor catalyst of the present invention is preferably 20% by mass or less, more preferably 10% by mass or less, when the total mass of the lower layer is 100% by mass. preferable.
- the lower limit of this value is arbitrary, it can be 0.5 mass% or more, for example.
- transition metal examples include nickel, copper, manganese, iron, and cobalt zinc. Among these, when nickel is used in combination, the effect of suppressing the generation of hydrogen sulfide can be obtained.
- alkali metal compounds include potassium compounds and lithium compounds; examples of alkaline earth metal compounds include calcium compounds, barium compounds, and strontium compounds; examples of rare earth compounds include lanthanum oxide. , Praseodymium oxide, neodymium oxide and the like. These have the effect of improving the heat resistance of the resulting catalyst.
- the lower layer of the catalyst layer in the underfloor catalyst of the present invention preferably contains an alkaline earth metal sulfate from the viewpoint of suppressing stabilization of the oxide state of the upper layer Rh.
- the alkaline earth metal sulfate is preferably selected from barium sulfate and strontium sulfate.
- the content of alkaline earth metal sulfate in the lower layer is preferably 5% by mass or more, more preferably 10% by mass or more, and more preferably 15% by mass or more with respect to the total mass of alumina and CeO 2. And more preferably; It is preferably 100% by mass or less, more preferably 50% by mass or less, and further preferably 30% by mass or less.
- the amount of the lower layer is preferably 10 g / L or more, more preferably 25 g / L or more, as the mass of the lower layer per 1 L of the substrate capacity. More preferably 50 g / L or more, particularly preferably 75 g / L or more; It is preferably 1,000 g / L or less, more preferably 500 g / L or less, still more preferably 300 g / L or less, and particularly preferably 200 g / L or less.
- the upper layer of the catalyst layer in the underfloor catalyst of the present invention contains Rh, alumina, and CeO 2 , and the content of noble metals other than Rh is 1 mol% or less with respect to the total of noble metals contained in the upper layer.
- Alumina and CeO 2 are contained, and besides these, only Rh is contained as a noble metal.
- This upper layer is substantially free of noble metals other than Rh, typically Pd and Pt, which are usually used for exhaust gas purification catalysts. “Substantially free of” noble metals other than Rh means that the content of these noble metal elements is 1 mol% or less of the metal contained in the upper layer, preferably 0.5 mol% or less. More preferably, it is 0.1 mol% or less, and still more preferably 0.05 mol% or less. Most preferably, it is 0 mol%.
- alumina and CeO 2 As the alumina and CeO 2 contained in the upper layer, those described above as the alumina and CeO 2 contained in the lower layer can be preferably used.
- the use ratio of alumina and CeO 2 in the upper layer of the catalyst layer in the underfloor catalyst of the present invention can be, for example, 5% by mass or more as a mass ratio of alumina with respect to the total thereof, Preferably 15% by mass or more, particularly preferably 20% by mass or more; For example, it may be 90% by mass or less, preferably 80% by mass or less, more preferably 50% by mass or less, and particularly preferably 40% by mass or less.
- the mass of the complex oxide is employed as the mass of CeO 2 when calculating the use ratio of the above alumina and CeO 2 .
- Rh The upper layer of the catalyst layer in the underfloor catalyst of the present invention contains Rh together with the alumina and CeO 2 .
- the Rh is supported on at least one of alumina and CeO 2.
- Rh is preferably present in the form of particles.
- the average particle size of the Rh particles is preferably 0.001 nm or more, more preferably 0.01 nm or more, and further preferably 0.1 nm or more; It is preferably 250 nm or less, more preferably 100 nm or less, and further preferably 25 nm or less.
- the content (supported amount) of Rh in the upper layer in the underfloor catalyst of the present invention is preferably 0.001% by mass or more and 0.005% by mass or more with respect to the total mass of alumina and CeO 2. More preferably, it is more preferably 0.01% by mass or more, and particularly preferably 0.05% by mass or more; It is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.
- the underfloor catalyst of the present invention has a high sweeper performance even when the amount of Rh contained in the upper layer thereof is limited to 0.5% by mass or less, further 0.3% by mass or less, particularly 0.1% by mass or less. Can be expressed.
- the upper layer of the catalyst layer in the underfloor catalyst of the present invention may contain components other than the above-mentioned alumina, CeO 2 , and Rh as necessary in the technical field.
- the other components that can be used here are the same as those described above as the other components in the lower layer.
- the amount of the upper layer is preferably 10 g / L or more, more preferably 25 g / L or more, still more preferably 50 g / L or more, particularly 75 g / L as the upper layer mass per liter of the substrate capacity.
- the total amount of CeO 2 contained in the lower layer and the upper layer is 14 g / L to 30 g / L. With an amount in this range, it is possible to achieve both good atmosphere relaxation and high Rh NO x purification performance.
- This value is preferably at least 16 g / L, more preferably at least 18 g / L, even more preferably at least 20 g / L; Preferably it is 28 g / L or less, More preferably, it is 27 g / L or less, More preferably, it is 26 g / L or less.
- the above CeO 2 amount is an oxide equivalent value of the amount of Ce atoms contained in the composite oxide.
- CeO 2 contained in the exhaust gas purifying catalyst of the present invention is contained is distributed to upper and lower layers.
- the atmosphere can be relaxed without impairing the reduction performance of Rh existing in the upper layer.
- the upper layer contained the 7g / L ⁇ 25g / L.
- CeO 2 present in the vicinity of a noble metal exhibits an oxygen storage capacity even in a low temperature region. Therefore, CeO 2 contained in the upper layer together with Rh exhibits sufficient warm-up performance if it is 7 g / L or more.
- CeO 2 contained in the upper layer is not more than 25 g / L, there is no compromising reduction performance of Rh.
- the CeO 2 content of the upper layer is preferably 8 g / L or more, more preferably 10 g / L or more, still more preferably 12.5 g / L or more; Preferably it is 22.5 g / L or less, More preferably, it is 20 g / L or less, More preferably, it is 17.5 g / L or less.
- the lower layer contains 20% or more of the CeO 2 amount contained in the upper layer.
- the amount of CeO 2 in the lower layer is 20% or more of the amount of upper layer CeO 2 , the reduction performance of Rh can be improved.
- the amount of CeO 2 in the lower layer is preferably 25% or more, preferably 30% or more, particularly preferably 40% or more with respect to the amount of upper layer CeO 2 ; It is preferably 80% or less, more preferably 70% or less, and particularly preferably 60% or less.
- this lower layer may be formed over the entire length of the substrate (the length of the substrate with respect to the gas flow direction) or the substrate length. It may be formed only in a part of them.
- the upper layer may be formed on the entire length of the base material, or may be formed only on a part of the base material length.
- the total length of the base material means the length of the portion planned as a region on which the catalyst layer is to be formed on the base material, and the lid portion for blocking the catalyst layer from the outside air,
- the length does not include a portion that is not normally involved in the formation of the catalyst layer, such as a joint portion for connecting the catalyst system to the exhaust path.
- the catalyst layer having an upper layer and a lower layer is a coat layer on a different substrate
- the lower layer constitutes a part of the substrate
- the upper layer exists as a coat layer on the substrate.
- the coating lengths of the upper layer and the lower layer will be described separately for each case.
- the lower layer coat length is preferably 50% or more of the substrate length, and the upper layer coat length is 70% of the substrate length. The above is preferable.
- the lower layer coat length in the catalyst layer is set to a value less than 100% of the substrate length from the rear with respect to the gas flow direction, leaving a region where no lower layer is formed forward, and the upper layer from the front By coating, it is preferable to provide the area
- the reason why the region having only the upper layer without having the lower layer on the substrate is arranged in front of the catalyst is as follows.
- the amount of CeO 2 per Rh contained in the upper layer is relatively small. Then, for example, at the time of re-acceleration after fuel cutoff, Rh can be returned to an active reduction state with a small amount of reducing agent. Therefore, it is preferable to dispose such a region in front of the catalyst from the viewpoint of further improving the sweeper performance of the underfloor catalyst of the present invention.
- the lower layer coat length is preferably 50% or more, more preferably 60% or more, and more preferably 70% or more of the substrate length from the rear with respect to the gas flow direction. Is more preferable.
- the upper limit of this value is arbitrary, but is preferably 85% or less.
- the coating length of the upper layer is preferably 70% or more of the base material length from the front with respect to the gas flow direction, more preferably 80% or more, and further preferably 90% or more. Particularly preferably, it is 90% or more, and may be 100%.
- the length of the region in which the lower layer is not directly coated on the base material and the upper layer is directly coated on the base material is preferably 15% or more, and preferably 30% or more with respect to the length of the base material. More preferably; It is preferably 50% or less, and more preferably 40% or less.
- the coating length of the upper layer can be 70% or more of the substrate length from the front with respect to the gas flow direction.
- the underfloor catalyst of the present invention may be produced by any method as long as it has the catalyst layer as described above.
- any of the following methods can be exemplified.
- a raw material mixture containing alumina and CeO 2 is fired to form a base material that is a lower layer, and an upper layer containing Rh, alumina, and CeO 2 is formed on the base material to form a base layer that is a lower layer A catalyst layer having a material and an upper layer.
- an underfloor catalyst having a catalyst layer on a substrate can be obtained.
- an underfloor catalyst having a lower layer constituting a part of the base material and having an upper layer on the base material is obtained.
- the content of the noble metal in the lower layer, the content of noble metals other than Rh in the upper layer, and the amount of CeO 2 contained in each of the lower layer and the upper layer are within the specified range of the present invention. May be adjusted to be
- the desired base material which an underfloor catalyst should have can be selected and used.
- it is a monolith honeycomb substrate composed of cordierite, metal oxide particles and the like as described above.
- the lower layer and the upper layer are formed by preparing a slurry for the lower layer or the upper layer, respectively, applying the slurry on the substrate or the lower layer formed on the substrate, and drying as necessary. It can be performed by a firing method.
- the lower layer slurry used to form the lower layer on the substrate contains alumina and CeO 2 and other components (especially alkaline earth metal sulfate) used as required in a desired ratio.
- the CeO 2 may be contained in the slurry, for example, in the form of a CZ-based composite oxide, depending on the form in which it is contained in the lower layer.
- the solvent of the lower layer slurry is, for example, water.
- a known method such as a dipping method or a pouring method can be employed without limitation.
- a drying step may be performed as necessary. This step can be performed, for example, by heating at a temperature of 60 to 300 ° C., preferably 120 to 250 ° C., for example, for 5 to 120 minutes, preferably 10 to 60 minutes.
- the heating temperature in the calcination can be, for example, more than 300 ° C. and 1,000 ° C. or less, and preferably 400 ° C. to 1,000 ° C.
- the heating time can be, for example, 0.1 to 10 hours, and preferably 0.5 to 5 hours.
- the upper layer slurry used to form the upper layer on the base material or the lower layer formed on the base material contains an Rh precursor in addition to alumina and CeO 2 , and is further used as necessary. Contains other ingredients.
- the form of CeO 2 in the upper layer slurry is the same as that of the lower layer slurry.
- the solvent of the upper layer slurry is, for example, water.
- Rh precursor a water-soluble Rh salt can be preferably used.
- rhodium nitrate rhodium chloride, sodium rhodium chloride, rhodium chloride pentaamine, carbonylacetyl rhodium and the like can be mentioned. From the viewpoint of water solubility, rhodium nitrate is preferable.
- the formation of the upper layer in the present invention can be performed in the same manner as the formation of the lower layer except that the above slurry for the upper layer is used.
- Second Manufacturing Method formation of the base material as the lower layer uses oxide particles containing alumina and CeO 2 as part or all of the metal oxide particles constituting the base material. Can be performed according to the method described in Patent Document 5, for example.
- the substrate can be obtained, for example, by firing a raw material mixture obtained by adding water and a binder to oxide particles containing alumina and CeO 2 according to the present invention.
- the raw material mixture may be kneaded and then extruded into a predetermined shape, or may be dried prior to firing.
- an upper layer containing Rh, alumina, and CeO 2 is formed on the obtained base material.
- the formation of the upper layer on the substrate may be performed in the same manner as the formation of the upper layer in the first manufacturing method.
- the underfloor catalyst of the present invention having the lower layer substrate and the upper layer is obtained.
- the underfloor catalyst of the present invention is an OSC material having an upper layer in which only Rh is disposed as a noble metal and a lower layer not having Rh on the base material and having an oxygen storage / discharge capability. CeO 2 is divided into an upper layer and a lower layer. With such a configuration, the reduction reactivity of Rh is improved, so that extremely high sweeper performance is exhibited even with a small amount of Rh.
- the underfloor catalyst of the present invention can be suitably applied as an exhaust gas purification catalyst system combined with a pre-stage catalyst containing Pd as an active noble metal.
- the exhaust gas purification catalyst system of the present invention is It is preferably composed of a pre-stage catalyst having a base material, a coating layer containing Pd on the base material, and the underfloor catalyst of the present invention described above.
- the pre-stage catalyst in the exhaust gas purification catalyst system of the present invention preferably has a base material and a coat layer containing Pd on the base material.
- This coat layer can contain carrier particles and other components as required in addition to Pd.
- metal oxide particles can be preferably used as the carrier particles. Specific examples include particles made of alumina, titania, rare earth element oxides, CZ (ceria-zirconia composite oxide), and mixtures thereof.
- Examples of the other components in the pre-stage catalyst include binders, transition metals, alkali metal compounds, alkaline earth metal compounds, rare earth compounds, and the like. Of these, it is preferable to contain an alkaline earth metal sulfate.
- Such a pre-stage catalyst can be produced by a known method using a desired component or a precursor thereof.
- the exhaust gas purifying catalyst system of the present invention includes a pre-stage catalyst containing Pd as an active noble metal and an underfloor catalyst of the present invention that exhibits extremely high sweeper performance with a small amount of Rh. Since the amount of noble metal (Rh) disposed in the underfloor catalyst of the present invention may be extremely small, a large amount of noble metal can be disposed in the upstream catalyst.
- Rh noble metal
- the exhaust gas purification catalyst system of the present invention can exhibit both warm-up performance and sweeper performance at a high level by adopting the above configuration.
- a monolith honeycomb substrate having a capacity of 1 L was used as a substrate in the following catalyst preparation examples.
- the slurry is coated on a monolith honeycomb substrate in an amount of 100% (100 mm) of the total length of the substrate as 123 g as a solid value, dried at 250 ° C. for 1 hour, and then fired at 500 ° C. for 1 hour.
- catalyst F1P lower layer coated product
- catalyst F1 (upper layer coated product)
- CZ composite oxide having the same composition as above: 75 g (15 g in terms of CeO 2 ), Al 2 O 3 : 25 g, and rhodium nitrate (0 in terms of Rh metal equivalent) 0.1 g) was mixed with ion exchanged water: 300 g, and wet pulverized using a ball mill to obtain an upper layer slurry.
- the slurry is coated on the catalyst F1P in an area of 100% (100 mm) of the total length of the catalyst as 100.1 g in terms of solid matter, dried at 250 ° C. for 1 hour, and then calcined at 500 ° C. for 1 hour.
- catalyst F1 (upper layer coated product) was prepared.
- Preparation Example F2 In “Preparation of catalyst F1P (lower layer coated product)” in Preparation Example F1, the same procedure as Preparation Example F1, except that the amount of palladium nitrate used was 2 g in terms of Pd metal and the coating amount was 122 g. Thus, catalyst F2 was prepared.
- the slurry was coated on a monolith honeycomb substrate in an area of 100% (100 mm) of the total length of the substrate as 220.1 g as a solid substance, dried at 250 ° C. for 1 hour, and then at 500 ° C. for 1 hour.
- catalyst R2 single-layer coated product
- Preparation Examples R3 to R13 Catalysts R3 to R13 were prepared in the same manner as in Preparation Example F1 except that the composition and coating amount of the lower layer slurry and upper layer slurry, and the coating lengths of both layers were as shown in Table 1, respectively.
- Preparation examples R4, R7, and R9 are comparative preparation examples.
- Example 1 A catalyst F1 and a catalyst R3 were respectively mounted on the front and rear stages of the monolith honeycomb catalyst system shown in FIG.
- the internal temperature of the catalyst bed (1 inch) is set to 1,000 ° C, and the fuel efficiency is equivalent to 150,000 km while changing the air fuel efficiency within a range of 11 to ⁇ (infinite) by fuel increase and fuel cutoff. Durability for minutes.
- the underfloor catalyst of the present invention is used as a subsequent catalyst in the catalyst system.
- the NO x removal performance was improved. This is because CeO 2 as an OSC material having oxygen storage / exhaust ability was divided into an upper layer containing Rh and a lower layer substantially containing no noble metal, thereby improving the reduction reactivity of Rh. It is assumed that
- Example 1 From the comparison between Example 1 and Comparative Example 1, further, the underfloor catalyst of the present invention, while maintaining the NO x removal performance in a higher level, HC removal performance is understood to have been improved.
- the NO x removal performance as an underfloor catalyst can be exhibited even in the absence of Pd, and Pd that is no longer necessary in the underfloor catalyst is disposed in the upstream catalyst. Therefore, it is assumed that the HC removal performance is improved.
- Examples 2 to 4 and Comparative Examples 3 to 5 The catalyst was evaluated in the same manner as in Example 1 except that the front catalyst and the rear catalyst were as shown in Table 3. The evaluation results are shown in Table 3 together with the results of Example 1.
- a total of the CeO 2 amount is insufficient amount of CeO 2 of the lower layer be in the range described above and found to be inferior to the NO x removal performance. This is presumably because the amount of lower layer CeO 2 is insufficient, and thus the reduction of Rh by dividing the OSC material into both layers is not sufficiently exhibited.
- the lower CeO 2 content is preferably 20% or more of the upper CeO 2 content.
- Examples 5 to 8 The catalyst was prepared in the same manner as in Example 1 except that the front catalyst and the rear catalyst were as shown in Table 4. The evaluation results are shown in Table 4 together with the results of Example 1.
- Example 7 Comparing Example 1 and Example 7, a 80% lower coating length, by setting the area upper over 20% of the total length is a single layer, further improving the NO x removal performance did. This is because part of the reduction reaction of Rh is preferentially generated because the CeO 2 amount is partially reduced, while the total amount of CeO 2 in both layers is equal, so that the two-layer part is sufficient. This is thought to be due to the realization of a moderate atmosphere. However, when the length of the region where the upper layer is a single layer is large (Example 8) and when the length of the upper layer itself is short (Examples 5 and 6), the region where the upper layer is a single layer is set. the effect of do not express, a further improvement of the nO x removal performance is not observed.
- the length of the region in which the upper layer is a single layer is preferably 50% or less of the substrate length, and the length of the upper layer is preferably 70% or more of the substrate length.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
前記下層は、アルミナ及びCeO2を含有し、下層における貴金属の含有量が下層質量に対して0.5質量%以下であり、
前記上層は、Rh、アルミナ、及びCeO2を含有し、Rh以外の貴金属の含有量が上層に含有される貴金属の合計に対して1モル%以下であり、
前記下層及び上層に含有される合計のCeO2量が14g/L~30g/Lであり、
前記上層に含有されるCeO2量が7g/L~25g/Lであり、そして
前記下層に含有されるCeO2量が、前記上層に含有されるCeO2量の20%以上であることを特徴とする、
排ガス浄化床下触媒。
前記上層のコート長さが、ガス流れ方向に対して前方から基材長さの70%以上である、
[2]に記載の床下触媒。
基材長さの15%~50%の範囲で前記上層が基材上に直接コートされている領域を有する、
[3]に記載の床下触媒。
[1]~[6]のいずれか一項に記載の床下触媒
から構成されることを特徴とする、
排ガス浄化触媒システム。
本発明の床下触媒は、下層及び上層を有する触媒層を含む。
本発明の床下触媒は、基材を有していてよい。本発明の床下触媒における触媒層は、これとは別の基材上のコート層として存在していてよく、又は触媒層のうちの下層が基材の一部を構成し、上層が該基材上のコート層として存在していてよい。
本発明の床下触媒における触媒層は下層及び上層を有する。
前記上層は、Rh、アルミナ、及びCeO2を含有し、Rh以外の貴金属の含有量が上層に含有される貴金属の合計に対して1質量%以下である。
本発明の床下触媒における触媒層の下層は、アルミナ及びCeO2を含有する。しかしながらこの下層は貴金属を実質的に含有しない。下層が貴金属を実質的に含有しないとは、下層における貴金属の含有量が下層質量に対して0.5質量%以下であることを意味する。下層における基金属の含有量は、下層質量に対して、好ましくは0.3質量%以下であり、より好ましくは0.1質量%以下であり、更に好ましくは0.01質量%以下であり、特に好ましくは貴金属を含有しないことである。
触媒層の下層に含有されるアルミナのBET比表面積は、10m2/g以上であることが好ましく、50m2/g以上であることがより好ましく、100m2/g以上であることが更に好ましく;
1,000m2/g以下であることが好ましく、500m2/g以下であることがより好ましく、250m2/g以下であることが更に好ましい。
200μm以下であることが好ましく、100μm以下であることがより好ましく、25μm以下であることが更に好ましい。
上記CeO2は、CeO2の単独粒子として下層に含有されていてもよいし、Ce(セリウム)と他の金属元素とを含有する複合酸化物の粒子として下層に含有されていてもよい。CeO2は複合酸化物の形態にあることが好ましい。他の金属元素としては、例えば、Zr(ジルコニウム)、希土類元素(ただし、Ceを除く。以下、Ceを除く希土類元素を総称するときに記号[Ln」を用いることがある。)等を挙げることができる。Ceを除く希土類元素としては、例えば、Y(イットリウム)、La(ランタン)、Pr(プラセオジム),Nd(ネオジム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)、Er(エルビウム)、Yb(イッテルビウム)、Lu(ルテチウム)等を挙げることができ、これらのうち、Y、La、Pr、Nd、及びEuから選択される1種以上が好ましい。
Zr及びCeと、Ceを除く希土類元素とを含む複合酸化物であることが好ましく;
Zr及びCeと、Y、La、Pr、Nd、及びEuから選択される1種以上の希土類元素と、を含む複合酸化物であることが好ましい。
Ce:CeO2換算値として1質量%以上90質量%以下
Zr:ZrO2換算値として90質量%以下
Ceを除く希土類元素:Ln2O3換算値として1質量%以上20質量%以下
80質量%以下がより好ましく、70質量%以下が更に好ましく、特に好ましくは60質量%以下である。
85質量%以下がより好ましく、75質量%以下が更に好ましく、特に好ましくは60質量%以下である。
18質量%以下がより好ましく、15質量%以下が更に好ましく、特に好ましくは12質量%以下である。
1,000m2/g以下であることが好ましく、500m2/g以下であることがより好ましく、250m2/g以下であることが更に好ましい。
200μm以下であることが好ましく、100μm以下であることがより好ましく、25μm以下であることが更に好ましい。
本発明の床下触媒における触媒層の下層中の、アルミナとCeO2との使用割合としては、これらの合計に対するアルミナの質量割合として、例えば5質量%以上であることができ、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、40質量%以上であることが特に好ましく;
例えば95質量%以下であることができ、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましく、75質量%以下であることが特に好ましい。下層におけるアルミナの割合をこの範囲に設定することにより、下層に有意量のCeO2が分配配置されることが担保される。そしてこのことにより、上層のRhのNOx浄化性能を維持しつつ、Rhの触媒活性の維持(又は回復)に必要な雰囲気緩和性を確保することができ、好ましい。
本発明の床下触媒における触媒層の下層は、技術上の必要に応じて、上記のアルミナ及びCeO2以外の成分を含有していてもよい。このようなその他の成分としては、例えば、バインダー、遷移金属、アルカリ金属化合物、アルカリ土類金属化合物、希土類化合物等を挙げることができる。
100質量%以下とすることが好ましく、50質量%以下とすることがより好ましく、30質量%以下とすることが更に好ましい。
下層が基材上のコート層である場合、この下層の量は、基材容量1L当たりの下層の質量として、10g/L以上とすることが好ましく、25g/L以上とすることがより好ましく、50g/L以上とすることが更に好ましく、特に75g/L以上とすることが好ましく;
1,000g/L以下とすることが好ましく、500g/L以下とすることがより好ましく、300g/L以下とすることが更に好ましく、特に200g/L以下とすることが好ましい。
本発明の床下触媒における触媒層の上層は、Rh、アルミナ、及びCeO2を含有し、Rh以外の貴金属の含有量が上層に含有される貴金属の合計に対して1モル%以下である。アルミナ及びCeO2を含有し、これら以外に貴金属としてRhのみを含有する。
上層に含有されるアルミナ及びCeO2としては、下層に含有されるアルミナ及びCeO2として上記に説明したのと同様のものを好ましく使用することができる。
本発明の床下触媒における触媒層の上層中の、アルミナとCeO2との使用割合としては、これらの合計に対するアルミナの質量割合として、例えば5質量%以上であることができ、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが特に好ましく;
例えば90質量%以下であることができ、80質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが特に好ましい。上層におけるアルミナの割合をこの範囲に設定することにより、上層に有意量のCeO2が存在することとなる。このことにより、Rhの高いNOx除去性能を維持しつつ、雰囲気緩和効果を発現することができることとなり、好ましい。
本発明の床下触媒における触媒層の上層は、上記のアルミナとCeO2とともに、Rhを含有する。このRhは、アルミナ及びCeO2のうちの少なくとも一方に担持されている。
250nm以下であることが好ましく、100nm以下であることがより好ましく、25nm以下であることが更に好ましい。
5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、0.5質量%以下であることが特に好ましい。本発明の床下触媒は、その上層に含有されるRh量を、0.5質量%以下、更には0.3質量%以下、特に0.1質量%以下に制限した場合でも、高度のスイーパー性能を発現することができるとの利点を有する。
本発明の床下触媒における触媒層の上層は、技術上の必要に応じて、上記のアルミナ、CeO2、及びRh以外の成分を含有していてもよい。ここで使用可能なその他の成分は、下層におけるその他の成分として上記した成分と同様である。
上層の量は、基材容量1L当たりの上層質量として、10g/L以上とすることが好ましく、25g/L以上とすることがより好ましく、50g/L以上とすることが更に好ましく、特に75g/L以上とすることが好ましく;
1,000g/L以下とすることが好ましく、500g/L以下とすることがより好ましく、300g/L以下とすることが更に好ましく、特に200g/L以下とすることが好ましい。
(CeO2の総量)
本発明の床下触媒において、前記下層及び上層に含有されるCeO2量の合計は、14g/L~30g/Lである。この範囲の量とすることにより、Rhの高いNOx浄化性能と良好な雰囲気緩和性を両立することができる。この値は、好ましくは16g/L以上であり、より好ましくは18g/L以上であり、更に好ましくは20g/L以上であり;
好ましくは28g/L以下であり、より好ましくは27g/L以下であり、更に好ましくは26g/L以下である。
本発明の排ガス浄化触媒に含有されるCeO2は、上層及び下層に分配されて含有される。CeO2を上下層に分配して配置することにより、上層に存在するRhの還元性能を損なうことなく、雰囲気の緩和を実現することができるのである。
好ましくは22.5g/L以下であり、より好ましくは20g/L以下であり、更に好ましくは17.5g/L以下である。
80%以下であることが好ましく、70%以下であることが好ましく、特に好ましくは60%以下である。
触媒層における下層が、基材上のコート層である場合、この下層は、基材長さ(ガス流れ方向に対する基材の長さ)の全部に形成されていてもよいし、基材長さのうちの一部にのみ形成されていてもよい。上層は、基材長さの全部に形成されていてもよいし、基材長さのうちの一部にのみ形成されていてもよい。
この場合、上層及び下層それぞれの機能を有効に発現するために、下層のコート長さは基材長さの50%以上とすることが好ましく、上層のコート長さは基材長さの70%以上とすることが好ましい。
50%以下とすることが好ましく、40%以下とすることがより好ましい。
この場合、上層のコート長さは、ガス流れ方向に対して前方から基材長さの70%以上とすることができる。
本発明の床下触媒は、上記のような触媒層を有するものである限り、どのような方法によって製造されたものであってもよい。本発明の床下触媒の製造方法としては、以下のいずれかの方法を例示することができる。
基材を準備すること、並びに
該基材上に、アルミナ及びCeO2を含有する下層と、Rh、アルミナ、及びCeO2を含有する上層とを順次に形成して触媒層とすること
を含む方法。
アルミナ及びCeO2を含む原料混合物を焼成して、下層である基材を形成すること、並びに
前記基材上に、Rh、アルミナ、及びCeO2を含有する上層を形成して、下層である基材及び上層を有する触媒層とすること
を含む方法。
第1の製造方法における基材としては、床下触媒が有すべき所望の基材を選択して用いることができる。例えば上述したような、コージェライト、金属酸化物粒子等から構成されるモノリスハニカム基材である。
基体上に下層を形成するために用いる下層用スラリーは、アルミナ及びCeO2、並びに必要に応じて使用されるその他の成分(特にアルカリ土類金属の硫酸塩)を、所望の割合で含有する。上記CeO2は、これが下層に含有される形態に応じて、例えばCZ系複合酸化物の形態として、スラリーに含有されていてよい。下層用スラリーの溶媒は例えば水である。
基材上、又は該基材上に形成された下層上に上層を形成するために用いる上層用スラリーは、アルミナ及びCeO2の他にRh前駆体を含有し、更に、必要に応じて使用されるその他の成分を含有する。上層用スラリーにおけるCeO2の形態については、下層用スラリーの場合と同様である。上層用スラリーの溶媒は例えば水である。
第2の製造方法における、下層である基材の形成は、基材を構成する金属酸化物粒子の一部又は全部として、アルミナ及びCeO2を含む酸化物粒子を用い、これらを原料として、例えば特許文献5に記載の方法に準じて行うことができる。
以上説明してきたような本発明の床下触媒は、基材上に、貴金属としてRhのみが配置された上層と、Rhを有さない下層とを有し、酸素貯蔵排出能を有するOSC材としてのCeO2を上層と下層とに分割配置したものである。このような構成により、Rhの還元反応性が向上されているから、少ない量のRhによっても極めて高いスイーパー性能を示す。
本発明の排ガス浄化触媒システムは、
基材と、該基材上のPdを含むコート層と、を有する前段触媒、及び
上記に説明した本発明の床下触媒
から構成されることが好ましい。
本発明の排ガス浄化触媒システムにおける前段触媒は、上記のとおり、基材と、該基材上のPdを含むコート層と、を有することが好ましい。このコート層は、Pdの他に、担体粒子及び必要に応じてその他の成分を含有することができる。
本発明の排ガス浄化触媒システムは、活性貴金属としてPdを含有する前段触媒と、少ない量のRhによって極めて高いスイーパー性能を示す本発明の床下触媒と、を具備する。本発明の床下触媒に配置される貴金属(Rh)量は、極めて少なくてもよいから、その分、前段触媒に多くの貴金属を配置することができることとなる。
調製例F1
(1)触媒F1P(下層コート品)の調製
CeO2/ZrO2/La2O3/Nd2O3=20/70/5/5(質量比)の組成を有するCZ複合酸化物50g(CeO2換算10g)、Al2O3:50g、硫酸バリウム(酸化物換算値として20g)、及び硝酸パラジウム(Pd金属換算値として3g)をイオン交換水:300gに混合し、ボールミルを用いて湿式粉砕して、下層用スラリーを得た。このスラリーを、モノリスハニカム基材上に、該基材全長の100%(100mm)の領域に固形物換算値として123gコートし、250℃において1時間乾燥した後、500℃において1時間焼成することにより、触媒F1P(下層コート品)を調製した。
次に、上記と同じ組成のCZ複合酸化物:75g(CeO2換算15g)、Al2O3:25g、及び硝酸ロジウム(Rh金属換算値として0.1g)をイオン交換水:300gに混合し、ボールミルを用いて湿式粉砕して、上層用スラリーを得た。このスラリーを、上記触媒F1P上に、該触媒全長の100%(100mm)の領域に固形物換算値として100.1gコートし、250℃において1時間乾燥した後、500℃において1時間焼成することにより、触媒F1(上層コート品)を調製した。
上記調製例F1の「(1)触媒F1P(下層コート品)の調製」において、硝酸パラジウムの使用量をPd金属換算値として2gとし、コート量を122gとした以外は調製例F1と同様の手順により、触媒F2を調製した。
調製例R1(比較調製例)
上記調製例F1の「(1)触媒F1P(下層コート品)の調製」において、硝酸パラジウムの使用量をPd金属換算値として1g(コート後の下層質量に対して0.83質量%に相当)とし、コート量を121gとした以外は調製例F1と同様の手順により、触媒R1を調製した。
CeO2/ZrO2/La2O3/Nd2O3=20/70/5/5(質量比)の組成を有するCZ複合酸化物:125g(CeO2換算25g)、Al2O3:75g、硫酸バリウム(酸化物換算値として20g)、及び硝酸ロジウム(Rh金属換算値として0.1g)をイオン交換水:300gに混合し、ボールミルを用いて湿式粉砕して、スラリーを得た。このスラリーを、モノリスハニカム基材上に、該基材全長の100%の(100mm)の領域に固形物換算値として220.1gコートし、250℃において1時間乾燥した後、500℃において1時間焼成することにより、触媒R2(単層コート品)を調製した。
下層用スラリー及び上層用スラリーの組成及びコート量、並びに両層のコート長さを、それぞれ、表1に記載のとおりとした他は上記調製例F1と同様にして、触媒R3~R13を調製した。調製例R4、R7、及びR9は比較調製例である。
(1)先ず、本発明の排ガス浄化触媒の典型的な一例について、その効果の実証実験を行った。
図1に示したモノリスハニカム触媒システムの前段に触媒F1を、後段に触媒R3を、それぞれ装着した。触媒床(1インチ)の内温を1,000℃に設定し、燃料増量及び燃料遮断によって空燃費を11~∞(無限大)の範囲内で一定周期で変化させながら、15万km走行相当分の耐久を行った。
前段触媒及び後段触媒を、それぞれ、表2に記載のとおりとした他は上記実施例1と同様に触媒の評価を行った。評価結果は表2に示した。
前段触媒及び後段触媒を、それぞれ、表3に記載のとおりとした他は上記実施例1と同様に触媒の評価を行った。評価結果は、実施例1の結果とともに表3に示した。
前段触媒及び後段触媒を、それぞれ、表4に記載のとおりとした他は上記実施例1と同様に触媒のを行った。評価結果は、実施例1の結果とともに表4に示した。
Claims (7)
- 下層及び上層を有する触媒層を含み、
前記下層は、アルミナ及びCeO2を含有し、下層における貴金属の含有量が下層質量に対して0.5質量%以下であり、
前記上層は、Rh、アルミナ、及びCeO2を含有し、Rh以外の貴金属の含有量が上層に含有される貴金属の合計に対して1モル%以下であり、
前記下層及び上層に含有される合計のCeO2量が14g/L~30g/Lであり、
前記上層に含有されるCeO2量が7g/L~25g/Lであり、そして
前記下層に含有されるCeO2量が、前記上層に含有されるCeO2量の20%以上であることを特徴とする、
排ガス浄化床下触媒。 - 前記触媒層が、基材上のコート層である、請求項1に記載の排ガス浄化床下触媒。
- 前記下層のコート長さが、ガス流れ方向に対して後方から基材長さの50%以上であり、
前記上層のコート長さが、ガス流れ方向に対して前方から基材長さの70%以上である、
請求項2に記載の床下触媒。 - 前記下層のコート長さが、ガス流れ方向に対して後方から基材長さの50%~85%であり、
基材長さの15%~50%の範囲で前記上層が基材上に直接コートされている領域を有する、
請求項3に記載の床下触媒。 - 前記下層が基材の一部を構成し、前記上層が前記基材上のコート層である、請求項1に記載の排ガス浄化床下触媒。
- 前記上層のコート長さが、ガス流れ方向に対して前方から基材長さの70%以上である、請求項5に記載の床下触媒。
- 基材と、該基材上のPdを含むコート層と、を有する前段触媒、及び
請求項1~6のいずれか一項に記載の床下触媒
から構成されることを特徴とする、
排ガス浄化触媒システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018504402A JP6573711B2 (ja) | 2016-03-09 | 2017-02-28 | 排ガス浄化床下触媒及び触媒システム |
CN201780014478.1A CN108698023B (zh) | 2016-03-09 | 2017-02-28 | 尾气净化底板下催化剂和催化剂系统 |
US16/082,039 US11154842B2 (en) | 2016-03-09 | 2017-02-28 | Exhaust gas purification underfloor catalyst and catalyst system |
EP17763025.8A EP3427823B1 (en) | 2016-03-09 | 2017-02-28 | Use of an exhaust gas purification underfloor catalyst and catalyst system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016045608 | 2016-03-09 | ||
JP2016-045608 | 2016-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017154685A1 true WO2017154685A1 (ja) | 2017-09-14 |
Family
ID=59789412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007984 WO2017154685A1 (ja) | 2016-03-09 | 2017-02-28 | 排ガス浄化床下触媒及び触媒システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11154842B2 (ja) |
EP (1) | EP3427823B1 (ja) |
JP (1) | JP6573711B2 (ja) |
CN (1) | CN108698023B (ja) |
WO (1) | WO2017154685A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022102582A1 (ja) * | 2020-11-10 | 2022-05-19 | ||
WO2022209154A1 (ja) * | 2021-03-31 | 2022-10-06 | 三井金属鉱業株式会社 | 排ガス浄化用触媒及び排ガス浄化システム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7195995B2 (ja) * | 2019-03-27 | 2022-12-26 | 株式会社キャタラー | 排ガス浄化用触媒 |
JP2022042140A (ja) * | 2020-09-02 | 2022-03-14 | 株式会社キャタラー | 排ガス浄化触媒装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000502602A (ja) * | 1995-12-21 | 2000-03-07 | エンゲルハード・コーポレーシヨン | エンジン排気処理装置および使用方法 |
JP2009220100A (ja) * | 2008-02-19 | 2009-10-01 | Mazda Motor Corp | 排気ガス浄化用触媒 |
JP2011125839A (ja) * | 2009-11-18 | 2011-06-30 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2012035206A (ja) * | 2010-08-09 | 2012-02-23 | Johnson Matthey Japan Inc | 排ガス浄化触媒 |
WO2013065421A1 (ja) * | 2011-10-31 | 2013-05-10 | エヌ・イー ケムキャット株式会社 | 排気ガス浄化用触媒 |
JP2014151306A (ja) * | 2013-02-13 | 2014-08-25 | Toyota Motor Corp | 触媒コンバーター |
JP2015085241A (ja) * | 2013-10-29 | 2015-05-07 | トヨタ自動車株式会社 | 排ガス浄化触媒 |
JP2016112489A (ja) * | 2014-12-12 | 2016-06-23 | トヨタ自動車株式会社 | 排ガス浄化触媒 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1018638A (en) * | 1904-07-09 | 1912-02-27 | United Shoe Machinery Ab | Shoe-support for pounding-up machines. |
CN1205652A (zh) * | 1995-12-21 | 1999-01-20 | 恩格尔哈德公司 | 发动机废气处理装置及应用方法 |
US6294140B1 (en) * | 1999-04-23 | 2001-09-25 | Degussa Ag | Layered noble metal-containing exhaust gas catalyst and its preparation |
US20090124494A1 (en) | 2005-01-31 | 2009-05-14 | Hiromasa Suzuki | Catalyst For Purifying Exhaust Gases and Exhaust-Gas Purification Controller Using the Same |
JP4506487B2 (ja) | 2005-01-31 | 2010-07-21 | トヨタ自動車株式会社 | 排ガス浄化用触媒及びそれを用いた排ガス浄化制御装置 |
JP5021188B2 (ja) * | 2005-08-01 | 2012-09-05 | 株式会社キャタラー | 排ガス浄化用触媒 |
JP2008240622A (ja) | 2007-03-27 | 2008-10-09 | Toyota Motor Corp | 排気ガス浄化用触媒装置およびそれを備える内燃機関の制御装置 |
JP4674264B2 (ja) | 2009-07-31 | 2011-04-20 | 株式会社キャタラー | 排ガス浄化用触媒 |
US20110309789A1 (en) * | 2010-06-21 | 2011-12-22 | Kyocera Wireless Corp | Charger with data storage |
JP5195873B2 (ja) | 2010-11-05 | 2013-05-15 | トヨタ自動車株式会社 | 自動車排ガス浄化用触媒 |
JP2012154259A (ja) * | 2011-01-26 | 2012-08-16 | Mazda Motor Corp | 排気ガス浄化用触媒装置 |
JP5376261B2 (ja) * | 2011-03-10 | 2013-12-25 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
EP2982434A1 (de) * | 2014-08-05 | 2016-02-10 | Umicore AG & Co. KG | Katalysator zur Reduktion von Stickoxiden |
-
2017
- 2017-02-28 EP EP17763025.8A patent/EP3427823B1/en active Active
- 2017-02-28 JP JP2018504402A patent/JP6573711B2/ja active Active
- 2017-02-28 US US16/082,039 patent/US11154842B2/en active Active
- 2017-02-28 CN CN201780014478.1A patent/CN108698023B/zh active Active
- 2017-02-28 WO PCT/JP2017/007984 patent/WO2017154685A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000502602A (ja) * | 1995-12-21 | 2000-03-07 | エンゲルハード・コーポレーシヨン | エンジン排気処理装置および使用方法 |
JP2009220100A (ja) * | 2008-02-19 | 2009-10-01 | Mazda Motor Corp | 排気ガス浄化用触媒 |
JP2011125839A (ja) * | 2009-11-18 | 2011-06-30 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2012035206A (ja) * | 2010-08-09 | 2012-02-23 | Johnson Matthey Japan Inc | 排ガス浄化触媒 |
WO2013065421A1 (ja) * | 2011-10-31 | 2013-05-10 | エヌ・イー ケムキャット株式会社 | 排気ガス浄化用触媒 |
JP2014151306A (ja) * | 2013-02-13 | 2014-08-25 | Toyota Motor Corp | 触媒コンバーター |
JP2015085241A (ja) * | 2013-10-29 | 2015-05-07 | トヨタ自動車株式会社 | 排ガス浄化触媒 |
JP2016112489A (ja) * | 2014-12-12 | 2016-06-23 | トヨタ自動車株式会社 | 排ガス浄化触媒 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3427823A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022102582A1 (ja) * | 2020-11-10 | 2022-05-19 | ||
JP7343718B2 (ja) | 2020-11-10 | 2023-09-12 | 株式会社キャタラー | 排ガス浄化用触媒 |
WO2022209154A1 (ja) * | 2021-03-31 | 2022-10-06 | 三井金属鉱業株式会社 | 排ガス浄化用触媒及び排ガス浄化システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017154685A1 (ja) | 2018-11-29 |
EP3427823A1 (en) | 2019-01-16 |
EP3427823A4 (en) | 2019-10-16 |
JP6573711B2 (ja) | 2019-09-11 |
US11154842B2 (en) | 2021-10-26 |
EP3427823B1 (en) | 2021-03-31 |
US20190151829A1 (en) | 2019-05-23 |
CN108698023B (zh) | 2021-06-29 |
CN108698023A (zh) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4787704B2 (ja) | 自動車用排気ガス浄化装置に用いられる触媒系、それを用いた排気ガス浄化装置、及び排気ガス浄化方法 | |
WO2010007826A1 (ja) | 自動車から排出される排気ガスを浄化するためのハニカム構造型触媒及びその製造方法、並びに、その触媒を使用した排気ガス浄化方法 | |
JP6132324B2 (ja) | リーンバーンエンジン用排ガス浄化触媒 | |
JP6573711B2 (ja) | 排ガス浄化床下触媒及び触媒システム | |
JP5014845B2 (ja) | 排ガス浄化用触媒、その製造方法、およびかかる触媒を用いた排ガスの浄化方法 | |
JP6027241B2 (ja) | 窒素酸化物除去用触媒 | |
JP5876436B2 (ja) | 排ガス浄化触媒及び排ガス浄化方法 | |
JP5526502B2 (ja) | 排気ガス浄化用触媒及びその製造方法 | |
JP2021507804A (ja) | 排気ガス浄化触媒 | |
WO2018216817A1 (ja) | 排ガス浄化触媒装置 | |
JP5987519B2 (ja) | 排ガス浄化触媒構造体 | |
JP3640130B2 (ja) | 排ガス浄化用触媒及びその製造方法 | |
WO2012144098A1 (ja) | 内燃機関排気ガス浄化用触媒のための担体 | |
WO2014123232A1 (ja) | NOx吸蔵還元型排ガス浄化用触媒および当該触媒を用いた排ガス浄化方法 | |
JP6627813B2 (ja) | 触媒付きパティキュレートフィルタの製造方法 | |
WO2006115239A1 (ja) | 排気ガス浄化用触媒 | |
JP2015047518A (ja) | 触媒付パティキュレートフィルタ及びその製造方法 | |
WO2023153116A1 (ja) | 排ガス浄化触媒装置 | |
WO2022065188A1 (ja) | メタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法 | |
JP2008215359A (ja) | 希薄燃焼エンジン排気ガスの浄化方法 | |
JP2024000368A (ja) | 排ガス浄化用触媒 | |
CN114269472A (zh) | 柴油机氧化催化剂 | |
CN114423521A (zh) | 在支撑体上掺杂锰的氧化催化剂组合物 | |
JP2004058001A (ja) | 排気ガス浄化用触媒及びその製造方法 | |
JP2000237589A (ja) | 排気ガス浄化用触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018504402 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017763025 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017763025 Country of ref document: EP Effective date: 20181009 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17763025 Country of ref document: EP Kind code of ref document: A1 |