WO2017154589A1 - 硬化性組成物及び光学部材 - Google Patents

硬化性組成物及び光学部材 Download PDF

Info

Publication number
WO2017154589A1
WO2017154589A1 PCT/JP2017/006768 JP2017006768W WO2017154589A1 WO 2017154589 A1 WO2017154589 A1 WO 2017154589A1 JP 2017006768 W JP2017006768 W JP 2017006768W WO 2017154589 A1 WO2017154589 A1 WO 2017154589A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
curable composition
mass
compounds
Prior art date
Application number
PCT/JP2017/006768
Other languages
English (en)
French (fr)
Inventor
依那 竹下
伸生 小林
泰子 小谷
松永 茂樹
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201780016438.0A priority Critical patent/CN108779313B/zh
Priority to KR1020187026139A priority patent/KR20180124863A/ko
Priority to JP2018504356A priority patent/JP7024706B2/ja
Publication of WO2017154589A1 publication Critical patent/WO2017154589A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a curable composition having a high refractive index and a low viscosity, a cured product thereof, and an optical member.
  • the brightness enhancement film is manufactured mainly by a method of shaping a resin material using a mold, the resin material for the brightness enhancement film does not contain a solvent and needs to have a low viscosity suitable for shaping. There is.
  • the resin material for the brightness enhancement film does not contain a solvent and needs to have a low viscosity suitable for shaping. There is.
  • it is also an important required performance that the cured product has a high refractive index and high transparency, and is hardly scratched.
  • a curable composition containing zirconium oxide fine particles, phenylphenol polyethoxyacrylate, and the like is known as a resin material for a brightness enhancement film (see Patent Document 1). While such inorganic fine-particle-containing resin materials have a high refractive index, there is a tendency to increase the viscosity by compounding inorganic fine particles, and the development of low-viscosity resin materials that contain inorganic fine particles Was demanded.
  • the problem to be solved by the present invention is to provide a curable composition having a high refractive index and a low viscosity, a cured product thereof, and an optical member.
  • the present inventors have found that a curable composition having a very excellent balance between viscosity and refractive index can be obtained by combining zirconium oxide particles and phenylbenzyl (meth) acrylate. As a result, the present invention was found.
  • the present invention contains zirconium oxide particles (A) and a (meth) acryloyl group-containing compound (B), and the (meth) acryloyl group-containing compound (B) converts phenylbenzyl (meth) acrylate (B1).
  • the present invention relates to a curable composition characterized by being an essential component.
  • the present invention further relates to a cured product obtained by curing the curable composition, and an optical member.
  • a curable composition having a high refractive index and a low viscosity, a cured product thereof, and an optical member.
  • the curable composition of the present invention contains zirconium oxide particles (A) and a (meth) acryloyl group-containing compound (B), and the (meth) acryloyl group-containing compound (B) is phenylbenzyl (meth) acrylate ( B1) is an essential component.
  • the zirconium oxide particles (A) contained in the curable composition of the present invention are obtained by dispersing the raw zirconium oxide particles (a) in a dispersion medium essentially comprising the (meth) acryloyl group-containing compound (B). Is.
  • the average particle diameter of the zirconium oxide particles (A) in the curable composition is preferably in the range of 20 to 100 nm because it becomes a cured product having a high refractive index and excellent light transmittance.
  • the average particle size of the zirconium oxide particles (A) is a value obtained by measuring the particle size in the curable composition under the following conditions.
  • Particle size measuring device “ELSZ-2” manufactured by Otsuka Electronics Co., Ltd.
  • Particle size measurement sample A curable composition prepared as a methyl isobutyl ketone solution having a nonvolatile content of 0.6% by mass.
  • the zirconium oxide particles (a) used as a raw material known ones such as those generally available on the market can be used.
  • the shape of the particles is not particularly limited, but may be any of spherical, hollow, porous, rod-like, plate-like, fiber-like, or indefinite shape. Among these, a spherical shape is preferable because a cured product having excellent dispersion stability and a high refractive index can be obtained.
  • the average primary particle diameter of the zirconium oxide particles (a) is preferably from 1 to 50 nm, particularly preferably from 1 to 30 nm because a cured product having excellent dispersion stability and high light transmittance and refractive index can be obtained. .
  • the crystal structure of the zirconium oxide particles (a) is not particularly limited, but a monoclinic system is preferable because a cured product having excellent dispersion stability and a high refractive index can be obtained. Moreover, in this invention, you may introduce
  • silane coupling agent (C) examples include the following.
  • Examples of (meth) acryloyloxy-based silane coupling agents include 3- (meth) acryloyloxypropyltrimethylsilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, 3- (meth) acryloyloxypropyltrimethoxysilane, 3 -(Meth) acryloyloxypropylmethyldiethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane are exemplified.
  • Examples of the acryloxy-based silane coupling agent include 3-acryloxypropyltrimethoxysilane.
  • vinyl silane coupling agents include allyltrichlorosilane, allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, trichlorovinylsilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2- Illustrative is methoxyethoxy) silane.
  • Epoxy silane coupling agents include diethoxy (glycidyloxypropyl) methylsilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyl. Examples include diethoxysilane and 3-brisidoxypropyltriethoxysilane. Examples of the styrene-based silane coupling agent include p-styryltrimethoxysilane.
  • amino silane coupling agents include N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, and N-2 (aminoethyl) 3-amino.
  • An example is methoxysilane.
  • Examples of the ureido silane coupling agent include 3-ureidopropyltriethoxysilane.
  • Examples of the chloropropyl silane coupling agent include 3-chloropropyltrimethoxysilane.
  • Examples of mercapto-based silane coupling agents include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethinesilane.
  • Examples of the sulfide-based silane coupling agent include bis (triethoxysilylpropyl) tetrasulfide.
  • Examples of the isocyanate-based silane coupling agent include 3-isocyanatopropyltriethoxysilane.
  • Examples of the aluminum coupling agent include acetoalkoxyaluminum diisopropylate.
  • silane coupling agents (C) may be used alone or in combination of two or more. Among them, those having a (meth) acryloyloxy group, a glycidyl group, and an epoxycyclohexyl group are preferable, and 3- (meth) acryloyloxypropyltrimethoxysilane is most preferable.
  • a dispersant (D) may be used in order to further enhance the dispersion stability of the zirconium oxide particles (A).
  • the dispersant (D) is not particularly limited as long as it is a compound containing a functional group having an affinity for the zirconium oxide particles (A), and examples thereof include carboxylic acid, sulfuric acid, sulfonic acid, phosphoric acid, and these acid compounds.
  • An anionic dispersant having an acid group such as a salt can be used.
  • group dispersing agent is preferable and what has a structure site
  • the acid value is more preferably in the range of 100 to 300 mgKOH / g, and the weight average molecular weight (Mw) is more preferably in the range of 1,000 to 3,000.
  • the weight average molecular weight (Mw) is a value measured under the following conditions using a gel permeation chromatograph (GPC).
  • Measuring device HLC-8220 manufactured by Tosoh Corporation Column: Guard column HXL-H manufactured by Tosoh Corporation + Tosoh Corporation TSKgel G5000HXL + Tosoh Corporation TSKgel G4000HXL + Tosoh Corporation TSKgel G3000HXL + Tosoh Corporation TSKgel G2000HXL Detector: RI (differential refractometer) Data processing: Tosoh Corporation SC-8010 Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (100 ⁇ l)
  • the amount of the dispersant (D) used is not particularly limited, but is 0.1 to 30 mass relative to the total mass of the zirconium oxide particles (a). % Is preferable, and a range of 0.5 to 15% by mass is more preferable.
  • the (meth) acryloyl group-containing compound (B) contained in the curable composition of the present invention contains phenylbenzyl (meth) acrylate (B1) as an essential component.
  • the phenylbenzyl (meth) acrylate (B1) may be any of orthophenylbenzyl (meth) acrylate, metaphenylbenzyl (meth) acrylate, and paraphenylbenzyl (meth) acrylate, each of which may be used alone or in two types. You may use the above mixture.
  • orthophenylbenzyl (meth) acrylate and metaphenylbenzyl (meth) acrylate have a liquid refractive index of 1.57 or more at 25 ° C.
  • Paraphenylbenzyl acrylate is solid at room temperature, but is preferable in that the refractive index of the liquid at 40 ° C. is as high as 1.59 or more.
  • orthophenyl benzyl (meth) acrylate, metaphenyl benzyl (meth) acrylate and paraphenyl benzyl (meth) acrylate are preferably used in combination, since a curable composition having a high refractive index and low viscosity is obtained.
  • the benzyl (meth) acrylate] ⁇ / [paraphenylbenzyl (meth) acrylate]] is preferably used in a range of 55/45 to 10/90.
  • orthophenylbenzyl (meth) acrylate and paraphenylbenzyl (meth) acrylate are also preferable because of easy production.
  • the compounding ratio in the case of using these two components is a curable composition having a high refractive index and a low viscosity. Therefore, the molar ratio of orthophenylbenzyl (meth) acrylate and paraphenylbenzyl (meth) acrylate [[ortho [Phenylbenzyl (meth) acrylate] / [paraphenylbenzyl (meth) acrylate]] is preferably in the range of 55/45 to 10/90.
  • the phenylbenzyl (meth) acrylate (B1) can be produced by, for example, a method of esterifying biphenylmethanol and (meth) acrylic acid (method 1), or a halogenation such as chloromethylbiphenyl or bromomethylbiphenyl.
  • a method of reacting methylbiphenyl with an alkali metal salt such as potassium, sodium, or lithium (meth) acrylic acid Method 2
  • Method 3 a method of reacting with acrylic acid or an alkali metal acrylate
  • the reaction ratio of biphenyl and formaldehyde is 1 to 25 mol of formaldehyde with respect to 1 mol of biphenyl.
  • Formaldehyde may be used in any form such as formalin aqueous solution, paraformaldehyde, trioxane.
  • the hydrogen halide include concentrated hydrochloric acid and hydrogen chloride gas, and it is preferably used in an excess molar ratio with respect to biphenyl.
  • the reaction is preferably performed under acid catalyst conditions.
  • the acid catalyst used examples include sulfuric acid, phosphoric acid, polyphosphoric acid, trichloroacetic acid, dichloroacetic acid, monochloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, and zinc chloride. And Lewis acid. If necessary, the reaction may be carried out in an organic solvent such as dimethoxyethane, dioxane, cyclopentylmethyl ether, and acetic acid, and the reaction temperature is preferably in the range of 60 to 180 ° C.
  • phenylbenzyl (meth) acrylate (B1) is produced by such a method, in addition to the phenylbenzyl (meth) acrylate (B1), bis [(meth) acryloylmethyl] biphenyl (B1 ′) and the biphenyl structure are methylene. In some cases, a biphenyl compound (B1 ′′) having a molecular structure knotted via a by-product is by-produced.
  • the content of phenylbenzyl (meth) acrylate (B1) in 100 parts by mass of the reaction product is 30 It is preferably in the range of -95 parts by mass, more preferably in the range of 35-85 parts by mass, and the bis [(meth) acryloylmethyl] biphenyl (B1 ′) in 100 parts by mass of the reaction product.
  • the content is preferably in the range of 5 to 70 parts by mass, and more preferably in the range of 15 to 65 parts by mass.
  • the content of the biphenyl compound (B1 ′′) having a molecular structure in which the biphenyl structure is knotted through methylene in 100 parts by mass of the reaction product is preferably in the range of 0.5 to 30 parts by mass, A range of 1 to 25 parts by mass is more preferable.
  • the phenylbenzyl (meth) acrylate (B1) when the phenylbenzyl (meth) acrylate (B1) is produced by such a method, unreacted raw material biphenyl may remain in the reaction product.
  • the biphenyl content in 100 parts by mass of the reaction product is in the range of 0.5 to 15 parts by mass. Is preferable, and the range of 1 to 10 parts by mass is more preferable.
  • Examples of the method for measuring the content of each component in the reaction product include a gas chromatograph, a liquid chromatograph, a gel permeation chromatograph, and the like.
  • the bis [(meth) acryloylmethyl] biphenyl (B1 ′) is, for example, 2,2′-bis (acryloylmethyl) -1,1′-biphenyl, 3,3′-bis (acryloylmethyl) -1,1 '-Biphenyl, 4,4'-bis (acryloylmethyl) -1,1'-biphenyl, 2,4'-bis (acryloylmethyl) -1,1'-biphenyl, 2,4-bis (acryloylmethyl)- Examples include 1,1′-biphenyl, 2,6-bis (acryloylmethyl) -1,1′-biphenyl, and the like.
  • biphenyl compound (B1 ′′) having a molecular structure in which the biphenyl structure is knotted through methylene the number of biphenyl structural units contained in the molecular structure is preferably in the range of 2 to 5.
  • Biphenyl compound (B1 The method for identifying the polymerization degree of “)” is, for example, a component obtained by removing the phenylbenzyl (meth) acrylate (A) and the bis (acryloylmethyl) biphenyl (B1 ′) from the reaction product by silica gel column chromatography, Examples of the method include analysis using a gas chromatograph mass spectrometer (GC-MS) and a high performance liquid chromatograph mass spectrometer (LC-MS).
  • GC-MS gas chromatograph mass spectrometer
  • LC-MS high performance liquid chromatograph mass spectrometer
  • the (meth) acryloyl group-containing compound (B) other (meth) acryloyl group-containing compounds (B2) other than the phenylbenzyl (meth) acrylate (B1) may be used in combination.
  • the other (meth) acryloyl group-containing compound (B2) include, for example, epoxy (meth) acrylate, urethane (meth) acrylate, fluorene skeleton-containing (meth) acrylate, and other monofunctional type or polyfunctional type (meth).
  • An acrylate compound etc. are mentioned.
  • the epoxy (meth) acrylate is obtained by reacting an epoxy resin with (meth) acrylic acid or its anhydride, and the epoxy resin is, for example, a dihydric phenol such as hydroquinone or catechol.
  • biphenol compound bisphenol A, bisphenol B, bisphenol F, bisphenol S, naphthol compound, ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether, etc.
  • a polyglycidyl ether of a polyether-modified aromatic polyol obtained by ring-opening polymerization with a cyclic ether compound;
  • Examples include polyglycidyl ethers of lactone-modified aromatic polyols obtained by polycondensation of the biphenol compounds, bisphenol A, bisphenol B, bisphenol F, bisphenol S, naphthol compounds and lactone compounds such as ⁇ -caprolactone.
  • the bisphenol-type epoxy resin is particularly preferable because a cured coating film that exhibits a higher refractive index and exhibits high adhesion to a plastic film substrate even under high-temperature and high-humidity conditions can be obtained.
  • those having an epoxy equivalent in the range of 160 to 1,000 g / eq are preferable because a cured product having a higher refractive index and higher hardness can be obtained, and in the range of 165 to 600 g / eq. Is more preferable.
  • Examples of the urethane (meth) acrylate include those obtained by reacting various polyisocyanate compounds, hydroxyl group-containing (meth) acrylate compounds, and various polyol compounds as required.
  • Examples of the polyisocyanate compound include diisocyanate compounds such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and 4,4′-diphenylmethane diisocyanate, or nurate-modified products, adduct-modified products, and biuret-modified products. .
  • hydroxyl group-containing (meth) acrylate compound examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane diacrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and These polyoxyalkylene modified products, polylactone modified products and the like can be mentioned.
  • polyol compound examples include ethylene glycol, propylene glycol, butanediol, hexanediol, polyoxyethylene glycol, polyoxypropylene glycol, glycerin, trimethylolpropane, pentaerythritol, biphenol, and bisphenol.
  • the fluorene skeleton-containing (meth) acrylate has a particularly high refractive index. Specifically, a compound represented by any one of the following structural formulas 1 to 4 can be given.
  • X is a hydrogen atom or a hydroxyl group
  • R 1 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • R 3 Is a direct bond or a methylene group
  • m is 0 or an integer of 1 or more.
  • two Xs are each independently a hydrogen atom or a hydroxyl group
  • two R 1 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 is a hydrogen atom or a methyl group.
  • M and n are each independently 0 or an integer of 1 or more.
  • X is independently a hydrogen atom or a hydroxyl group
  • R 1 is independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 is independently a hydrogen atom or a methyl group
  • R 3 are each independently a direct bond or a methylene group
  • m and n are each independently 0 or an integer of 1 or more.
  • two X's are each independently a hydrogen atom or a hydroxyl group
  • two R 1's are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • two R 2's are each independently hydrogen.
  • m and n are each independently 0 or an integer of 1 or more.
  • Other monofunctional or polyfunctional (meth) acrylate compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl ( Aliphatic mono (meth) acrylate compounds such as meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl (meth) acrylate; alicyclic rings such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and adamantyl mono (meth) acrylate Type mono (meth) acrylate compounds; heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate and phenyl
  • Mono (meth) acrylate compounds such as compounds represented by: In the molecular structure of the various mono (meth) acrylate monomers, a polyoxyalkylene chain such as a polyoxyethylene chain, a polyoxypropylene chain, or a polyoxytetramethylene chain is added. An introduced polyoxyalkylene-modified mono (meth) acrylate compound; a lactone-modified mono (meth) acrylate compound in which a (poly) lactone structure is introduced into the molecular structure of the various mono (meth) acrylate compounds;
  • Aliphatic di (meth) acrylate compounds such as ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate 1,4-cyclohexanedimethanol di (meth) acrylate, norbornane di (meth) acrylate, norbornane dimethanol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate Alicyclic di (meth) acrylate compounds such as: aromatic di (meth) acrylate compounds such as biphenol di (meth) acrylate and bisphenol di (meth) acrylate; glycerol di (meth) acrylate Hydroxyl group-containing di (meth) acrylate compounds such as trimethylo
  • Aliphatic tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and glycerin tri (meth) acrylate; pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) Hydroxyl-containing tri (meth) acrylate compounds such as acrylates; polyoxyalkylene chains such as polyoxyethylene chains, polyoxypropylene chains, polyoxytetramethylene chains, etc. were introduced into the molecular structures of the various tri (meth) acrylate compounds.
  • a polyoxyalkylene-modified tri (meth) acrylate compound a lactone-modified tri (meth) acrylate compound in which a (poly) lactone structure is introduced into the molecular structure of the various tri (meth) acrylate compounds;
  • Tetra- or higher functional aliphatic poly (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; dipentaerythritol tetra (meth) acrylate, di A tetra- or higher functional hydroxyl group-containing poly (meth) acrylate compound such as pentaerythritol penta (meth) acrylate; a polyoxyethylene chain, a polyoxypropylene chain, a polyoxytetramethylene in the molecular structure of the various poly (meth) acrylate compounds Tetra- or higher functional polyoxyalkylene-modified poly (meth) acrylate compound into which a polyoxyalkylene chain such as a chain is introduced; (poly) lactone structure in the molecular structure of the various poly (me
  • X 1 and X 2 are each independently a hydrogen atom or a (meth) acryloyl group), and the like.
  • the proportion of the phenylbenzyl (meth) acrylate (B1) in the (meth) acryloyl group-containing compound (B) is a balance between refractive index and viscosity. Therefore, the amount is preferably 20 parts by mass or more, more preferably 40 parts by mass or more, and particularly preferably 50 parts by mass or more.
  • the above-mentioned (meth) acryloyl group-containing compound (B) may be less than 20 parts by mass. Even in this case, by containing phenylbenzyl (meth) acrylate (B1), a curable composition having a high refractive index and a high refractive index can be obtained.
  • the epoxy (meth) acrylate is used as the other (meth) acryloyl group-containing compound (B2), it is preferably used in the range of 5 to 35 parts by mass in the (meth) acryloyl group-containing compound (B).
  • the urethane (meth) acrylate is used as the other (meth) acryloyl group-containing compound (B2), it is preferably used in the range of 5 to 35 parts by mass in the (meth) acryloyl group-containing compound (B).
  • the fluorene skeleton-containing (meth) acrylate is used as the other (meth) acryloyl group-containing compound (B2), it is used in the range of 5 to 45 parts by mass in the (meth) acryloyl group-containing compound (B). preferable.
  • the monofunctional or polyfunctional (meth) acrylate compound is used as the (meth) acryloyl group-containing compound (B2), it is in the range of 5 to 60 parts by mass in the (meth) acryloyl group-containing compound (B). It is preferable to use it.
  • (meth) acrylate having a polyoxyalkylene structure in the molecular structure is used as the (meth) acryloyl group-containing compound (B2)
  • a range of 5 to 45 parts by mass in the (meth) acryloyl group-containing compound (B) It is preferable to use in.
  • the number of repeating units of the oxyalkylene structure possessed by the (meth) acrylate having a polyoxyalkylene structure in the molecular structure is preferably in the range of 10 to 30 in one molecule.
  • the blending ratio of the zirconium oxide particles (A) and the (meth) acryloyl group-containing compound (B) in the effective composition of the present invention can be appropriately adjusted depending on the desired viscosity and refractive index, but the dispersion stability
  • the mass ratio [(A) / (B)] is preferably in the range of 25/75 to 75/25. More preferably, it is in the range of ⁇ 70/30.
  • the curable composition of the present invention may contain a radical polymerization initiator.
  • the radical polymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy.
  • radical polymerization initiators include, for example, “Irgacure-184”, “Irgacure-149”, “Irgacure-261”, “Irgacure-369”, “Irgacure-500”, “Irgacure-651”, “Irgacure- -754 “,” Irgacure-784 “,” Irgacure-819 “,” Irgacure-907 “,” Irgacure-1116 “,” Irgacure-1664 “,” Irgacure-1700 “,” Irgacure-1800 “,” Irgacure-1850 “ ”,“ Irgacure-2959 ”,“ Irgacure-4043 ”,“ Darocur-1173 ”(manufactured by Ciba Specialty Chemicals),“ Lucirin TPO ”(manufactured by BASF),“ Kayacure-DETX ”,“ Kayacure-MBP
  • the amount of the radical polymerization initiator added is preferably in the range of 0.05 to 20 parts by mass with respect to 100 parts by mass of the curable composition of the present invention in order to develop sufficient curability. A range of 1 to 10 parts by mass is more preferable.
  • various photosensitizers may be added in combination with the radical polymerization initiator.
  • the photosensitizer include amines, ureas, sulfur-containing compounds, phosphorus-containing compounds, chlorine-containing compounds, nitriles or other nitrogen-containing compounds, and these can be used alone or in two types. You may use the above together.
  • the addition amount is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the curable composition of the present invention.
  • the curable composition of the present invention may contain various other additives as necessary.
  • various additives include ultraviolet absorbers, antioxidants, silicone additives, fluorine additives, rheology control agents, defoaming agents, antistatic agents, and antifogging agents.
  • the amount added is 0.01 to 40 parts by mass with respect to 100 parts by mass of the curable composition of the present invention as long as the effect of the additive is fully exhibited and ultraviolet curing is not inhibited. It is preferable that it is the range of these.
  • the viscosity of the curable composition of the present invention When used for, for example, a shaping application using a mold, it will pass through the mold without any defects even under high-speed coating conditions. It is preferably 6,000 mPa ⁇ s or less.
  • the refractive index of the curable composition of the present invention is preferably 1.57 or more, and more preferably 1.60 or more.
  • the method for producing the curable composition of the present invention is not particularly limited.
  • the dispersant (D) and other additives A method (Method 1) of dispersing raw materials including seats and the like in a lump, and the zirconium oxide particles (a) are dispersed in an organic solvent, and other components are added thereto and mixed. It can be prepared by a method of removing the solvent under reduced pressure (Method 2) or the like.
  • a commonly known one such as a media-type wet disperser can be used without limitation.
  • a bead mill (Ashizawa Finetech Co., Ltd. Star Mill LMZ-015, Kotobuki Kogyo Co., Ltd.). And Ultra Apex Mill UAM-015).
  • the medium used in the disperser is not particularly limited as long as it is a generally known bead, but preferably includes zirconia, alumina, silica, glass, silicon carbide, and silicon nitride.
  • the average particle size of the media is preferably 50 to 500 ⁇ m, more preferably 100 to 200 ⁇ m. When the particle diameter is 50 ⁇ m or more, the impact force on the raw material powder is appropriate, and an excessive time is not required for dispersion. On the other hand, if the particle diameter of the media is 500 ⁇ m or less, the impact force against the raw material powder is appropriate, so that an increase in the surface energy of the dispersed particles can be suppressed and reaggregation can be prevented.
  • the dispersion process time can be shortened.
  • the curable composition of the present invention can be cured by, for example, irradiating an active energy ray or heating.
  • examples of the active energy ray include an electron beam, ultraviolet rays, and visible rays.
  • generation of an electron beam such as a Cockloft Walton accelerator, a bandegraph electron accelerator, a resonant transformer accelerator, an insulated core transformer type, a dynamitron type, a linear filament type, and a high frequency type
  • the curable composition of the present invention can be cured using an apparatus.
  • ultraviolet rays When ultraviolet rays are used as the active energy ray, they can be cured by irradiation with a mercury lamp such as an ultra-high pressure mercury lamp, a high pressure mercury lamp or a low pressure mercury lamp, a xenon lamp, a carbon arc, a metal height lamp or the like.
  • a mercury lamp such as an ultra-high pressure mercury lamp, a high pressure mercury lamp or a low pressure mercury lamp, a xenon lamp, a carbon arc, a metal height lamp or the like.
  • the amount of ultraviolet light exposure is preferably in the range of 0.1 to 1000 mJ / cm 2 .
  • the curable composition of the present invention of the present invention exhibits an unprecedented high refraction and has a very low viscosity.
  • a plastic lens such as a spectacle lens, a digital camera lens, a Fresnel lens, and a prism lens, Optic overcoat agent, hard coat agent, antireflection film, optical fiber, optical waveguide, hologram, prism lens, LED sealing material, solar cell coating material, etc.
  • plastic lenses such as prism lenses for liquid crystal substrates.
  • the prism lens for a liquid crystal substrate has a plurality of fine prism-shaped portions on one side of a sheet-like molded body, and usually the prism surface faces the back side (light source side) of the liquid crystal display element and the element side. Further, a sheet-like lens used so that a light guide sheet is arranged on the back surface thereof, or a sheet-like lens in which the prism lens also functions as the light guide sheet.
  • the prism portion of the prism lens preferably has a prism apex angle ⁇ in the range of 70 to 110 ° from the viewpoint of excellent light-collecting properties and improved luminance, and particularly in the range of 75 to 100 °. In particular, the range of 80 to 95 ° is particularly preferable.
  • the prism pitch is preferably 100 ⁇ m or less, and particularly preferably in the range of 70 ⁇ m or less from the viewpoint of preventing the generation of moiré patterns on the screen and further improving the definition of the screen.
  • the height of the unevenness of the prism is determined by the value of the prism apex angle ⁇ and the prism pitch, but is preferably in the range of 50 ⁇ m or less.
  • the sheet thickness of the prism lens is preferably thick from the viewpoint of strength, but optically it is preferably thin in order to suppress light absorption. From the viewpoint of these balances, the sheet thickness is in the range of 50 ⁇ m to 1000 ⁇ m. preferable.
  • the method for producing the prism lens using the curable composition of the present invention includes, for example, applying the composition to a mold such as a mold having a prism pattern or a resin mold, and smoothing the surface of the composition.
  • a mold such as a mold having a prism pattern or a resin mold
  • cure is mentioned.
  • Examples of the transparent base material used here include a plastic base material made of acrylic resin, polycarbonate resin, polyester resin, polystyrene resin, fluororesin, polyimide resin, and glass.
  • the prism sheet obtained by the above method can be used as it is, or it can be used in the state of a prism lens alone after peeling the transparent substrate.
  • the surface of the transparent base material should be subjected to adhesion improvement treatment such as primer treatment for the purpose of improving the adhesion between the prism lens and the transparent base material. Is preferred.
  • the transparent substrate when the transparent substrate is peeled and used, it is preferable to treat the surface of the transparent substrate with silicone or a fluorine-based release agent so that the transparent substrate can be easily peeled off.
  • Zirconium Dispersion (1) 50 g of zirconium oxide particles (a1), 7.5 g of silane coupling agent (C1), and 183.0 g of methyl ethyl ketone were mixed and stirred for 30 minutes with a dispersion stirrer to perform coarse dispersion. It was. The obtained mixed solution was subjected to dispersion treatment using zirconia beads having a particle diameter of 100 ⁇ m with a media-type wet disperser. Dispersion treatment was performed for 100 minutes while confirming the particle diameter in the middle, and then 5 g of dispersant (D1) was added and mixed, and a zirconium dispersion liquid (1) was obtained by further dispersion treatment for 20 minutes.
  • D1 dispersant
  • the organic layer was concentrated to obtain 995 g of a liquid phenylbenzyl acrylate composition.
  • -Analysis of a phenylbenzyl acrylate composition The liquid refractive index in 25 degreeC of the obtained phenylbenzyl acrylate composition was 1.592, and the viscosity was 30 mPa * s.
  • the content of each component contained in 100 parts by mass of the phenylbenzyl acrylate composition was measured using a gas chromatogram, 65.2 parts by mass of phenylbenzyl acrylate and 18.6 parts by mass of bis (acryloylmethyl) biphenyl were measured.
  • Gas chromatogram analysis conditions for the phenylbenzyl acrylate composition are as follows. Equipment: “GC-2010” manufactured by Shimadzu Corporation Column: “Zebron ZB-5” manufactured by Shimadzu Corporation Conditions: He carrier gas, flow rate 1.47 mL / min, column oven 50 ° C., vaporization chamber 300 ° C., temperature rising range 50 ° C. to 300 ° C. (25 ° C./min)
  • Example 1 Preparation of Curable Composition (1) To the zirconium dispersion (1) obtained in Production Example 1, a (meth) acrylate compound was added at a ratio shown in Table 2, and volatile components were removed under reduced pressure using an evaporator. Furthermore, the polymerization initiator was added and the curable composition (1) was prepared.
  • Examples 2 to 8 and Comparative Examples 1 to 4 A curable composition and a cured product were prepared in the same manner as in Example 1, and various evaluations were performed. The results are shown in Table 2 or 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高屈折率でありながら粘度の低い硬化性組成物とその硬化物、及び前記硬化性組成物を用いてなる光学部材を提供すること。酸化ジルコニウム粒子(A)と(メタ)アクリロイル基含有化合物(B)とを含有し、前記(メタ)アクリロイル基含有化合物(B)がフェニルベンジル(メタ)アクリレート(B1)とを必須の成分とすることを特徴とする硬化性組成物、その硬化物、及び前記硬化性組成物を用いてなる光学部材。前記硬化性組成物は酸化ジルコニウム粒子(A)を含有しながらも粘度が低い特徴を有する。

Description

硬化性組成物及び光学部材
 本発明は、高屈折率かつ低粘度の硬化性組成物とその硬化物、及び光学部材に関する。
 液晶表示装置などのバックライトには、輝度を向上させるためのプリズムフィルムやマイクロレンズフィルム等の輝度向上シートが設置されている。輝度向上フィルムは主に、金型を用いて樹脂材料を賦形する方法により製造されることから、輝度向上フィルム用樹脂材料は溶剤を含まず、かつ、賦形に適した低粘度である必要がある。また、輝度向上効果を高めるために硬化物における屈折率が高く透明性が高いこと、傷が付き難いことなども重要な要求性能となっている。
 輝度向上フィルム用樹脂材料として、酸化ジルコニウム微粒子とフェニルフェノールポリエトキシアクリレート等を含有する硬化性組成物が知られている(特許文献1参照)。このような無機微粒子配合型の樹脂材料は屈折率が高い特徴を有する一方で、無機微粒子を配合することにより高粘度化する傾向にあり、無機微粒子を含有しながらも粘度の低い樹脂材料の開発が求められていた。
特開2013-249439号公報
 したがって、本発明が解決しようとする課題は、高屈折率かつ低粘度の硬化性組成物とその硬化物、及び光学部材を提供することにある。
 本発明者らは上記課題を解決するため鋭意検討を行った結果、酸化ジルコニウム粒子とフェニルベンジル(メタ)アクリレートとを組み合わせることにより、粘度と屈折率とのバランスに非常に優れる硬化性組成物が得られることを見出し、本発明に至った。
 即ち、本発明は、酸化ジルコニウム粒子(A)と(メタ)アクリロイル基含有化合物(B)とを含有し、前記(メタ)アクリロイル基含有化合物(B)がフェニルベンジル(メタ)アクリレート(B1)を必須の成分とすることを特徴とする硬化性組成物に関する。
 本発明はさらに、前記硬化性組成物を硬化して得られる硬化物、及び光学部材に関する。
 本発明によれば、高屈折率かつ低粘度の硬化性組成物とその硬化物、及び光学部材を提供することができる。
 以下、本発明を詳細に説明する。
 本発明の硬化性組成物は、酸化ジルコニウム粒子(A)と(メタ)アクリロイル基含有化合物(B)とを含有し、前記(メタ)アクリロイル基含有化合物(B)がフェニルベンジル(メタ)アクリレート(B1)を必須の成分とすることを特徴とする。
 本発明の硬化性組成物が含有する酸化ジルコニウム粒子(A)は、原料の酸化ジルコニウム粒子(a)を(メタ)アクリロイル基含有化合物(B)を必須とする分散媒中に分散させて得られるものである。硬化性組成物中の酸化ジルコニウム粒子(A)の平均粒子径は、屈折率が高く光透過性にも優れる硬化物となることから、20~100nmの範囲であることが好ましい。
 なお、本願発明において前記酸化ジルコニウム粒子(A)の平均粒子径は硬化性組成物中の粒子径を以下の条件で測定した値である。
粒子径測定装置:大塚電子株式会社製「ELSZ-2」
粒子径測定サンプル:硬化性組成物を不揮発分0.6質量%のメチルイソブチルケトン溶液としたもの。
 原料として用いる酸化ジルコニウム粒子(a)は、一般に市販されているものなど公知のものが使用できる。粒子の形状は特に限定されるものではないが、例えば、球状、中空状、多孔質状、棒状、板状、繊維状、又は不定形のいずれでも良い。中でも、分散安定性に優れ、屈折率の高い硬化物が得られることから球状であることが好ましい。前記酸化ジルコニウム粒子(a)の平均一次粒子径は、分散安定性に優れ、光透過率及び屈折率の高い硬化物が得られることから1~50nmものが好ましく、特に1~30nmのものが好ましい。前記酸化ジルコニウム粒子(a)の結晶構造も特に限定されないが、分散安定性に優れ、屈折率の高い硬化物が得られることから単斜晶系が好ましい。また、本発明では、各種シランカップリング剤(C)等を用いて前記酸化ジルコニウム粒子(a)の微粒子表面に官能基を導入しても良い。
 前記シランカップリング剤(C)は、例えば下記のものを挙げることができる。
 (メタ)アクリロイルオキシ系のシランカップリング剤としては、3-(メタ)アクリロイルオキシプロピルトリメチルシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシランが例示される。アクリロキシ系のシランカップリング剤としては、3-アクリロキシプロピルトリメトキシシランが例示される。
 ビニル系のシランカップリング剤としては、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、トリクロロビニルシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シランが例示される。
 エポキシ系のシランカップリング剤としては、ジエトキシ(グリシディルオキシプロピル)メチルシラン、2-(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-ブリシドキシプロピルトリエトキシシランが例示される。スチレン系のシランカップリング剤としては、p-スチリルトリメトキシシランが例示される。
 アミノ系のシランカップリング剤としては、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1、3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシランが例示される。
 ウレイド系のシランカップリング剤としては、3-ウレイドプロピルトリエトキシシランが例示される。クロロプロピル系のシランカップリング剤としては、3-クロロプロピルトリメトキシシランが例示される。メルカプト系のシランカップリング剤としては、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキンシランが例示される。スルフィド系のシランカップリング剤としては、ビス(トリエトキシシリルプロピル)テトラスルファイドが例示される。イソシアネート系のシランカップリング剤としては、3-イソシアネートプロピルトリエトキシシランが例示される。アルミニウム系カップリング剤としては、アセトアルコキシアルミニウムジイソプロピレートが例示される。
 これらのシランカップリング剤(C)は1種類を単独で用いても良いし、2種類以上を併用しても良い。中でも、(メタ)アクリロイルオキシ基、グリシジル基、エポキシシクロヘキシル基を有するものが好ましく、特に3-(メタ)アクリロイルオキシプロピルトリメトキシシランが最も好ましい。
 本発明では、前記酸化ジルコニウム粒子(A)の分散安定性を一層高めるために、分散剤(D)を用いても良い。前記分散剤(D)は、前記酸化ジルコニウム粒子(A)と親和性を有する官能基を含む化合物であれば特に限定されず、例えば、カルボン酸、硫酸、スルホン酸、リン酸、これら酸化合物の塩など、酸基を有するアニオン系の分散剤を挙げることができる。中でも、分散安定性が一層高い硬化性組成物となることから、リン酸エステル系分散剤が好ましく、ラクトン化合物由来の構造部位を有するものがより好ましい。また、その酸価が100~300mgKOH/gの範囲であることがより好ましく、重量平均分子量(Mw)が1,000~3,000の範囲であることがより好ましい。
 尚、本発明において、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により測定される値である。
 測定装置 ; 東ソー株式会社製 HLC-8220
 カラム  ; 東ソー株式会社製ガードカラムHXL-H
       +東ソー株式会社製 TSKgel G5000HXL
       +東ソー株式会社製 TSKgel G4000HXL
       +東ソー株式会社製 TSKgel G3000HXL
       +東ソー株式会社製 TSKgel G2000HXL
 検出器  ; RI(示差屈折計)
 データ処理:東ソー株式会社製 SC-8010
 測定条件: カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    1.0ml/分
 標準   ;ポリスチレン
 試料   ;樹脂固形分換算で0.4質量量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 本発明の硬化性組成物の調製において、前記分散剤(D)の使用量は特に限定されるものではないが、前記酸化ジルコニウム粒子(a)の総質量に対して、0.1~30質量%の範囲であることが好ましく、0.5~15質量%の範囲であることがより好ましい。
 本発明の硬化性組成物が含有する(メタ)アクリロイル基含有化合物(B)は、フェニルベンジル(メタ)アクリレート(B1)を必須の成分とする。フェニルベンジル(メタ)アクリレート(B1)は、オルソフェニルベンジル(メタ)アクリレート、メタフェニルベンジル(メタ)アクリレート、パラフェニルベンジル(メタ)アクリレートの何れでも良く、それぞれ単独で用いても良いし、2種類以上の混合物を用いても良い。このうち、オルトフェニルベンジル(メタ)アクリレート及びメタフェニルベンジル(メタ)アクリレートは、25℃での液体の屈折率が1.57以上であり、かつ、粘度が30mPa・s以下であり、比較的高屈折率でありながら、低粘度を示す点で好ましい。また、パラフェニルベンジルアクリレートは常温で固体であるが、40℃での液体の屈折率が1.59以上と非常に高い値を示す点で好ましい。
 特に、高屈折率かつ低粘度の硬化性組成物となることから、オルトフェニルベンジル(メタ)アクリレート、メタフェニルベンジル(メタ)アクリレート及びパラフェニルベンジル(メタ)アクリレートを併用することが好ましく、その際の配合比は、オルトフェニルベンジル(メタ)アクリレート及びメタフェニルベンジル(メタ)アクリレートの合計と、パラフェニルベンジル(メタ)アクリレートとのモル比[{〔オルトフェニルベンジル(メタ)アクリレート〕+〔メタフェニルベンジル(メタ)アクリレート〕}/〔パラフェニルベンジル(メタ)アクリレート〕]が55/45~10/90の範囲となるように用いることが好ましい。
 また、オルトフェニルベンジル(メタ)アクリレートとパラフェニルベンジル(メタ)アクリレートは、製造が簡便である点でも好ましい。これら2成分を用いる場合の配合比は、高屈折率かつ低粘度の硬化性組成物となることから、オルトフェニルベンジル(メタ)アクリレートと、パラフェニルベンジル(メタ)アクリレートとのモル比[〔オルトフェニルベンジル(メタ)アクリレート〕/〔パラフェニルベンジル(メタ)アクリレート〕]が、55/45~10/90の範囲であることが好ましい。
 前記フェニルベンジル(メタ)アクリレート(B1)の製造方法は、例えば、ビフェニルメタノールと(メタ)アクリル酸とをエステル化反応させる方法(方法1)や、クロロメチルビフェニル、ブロモメチルビフェニルのようなハロゲン化メチルビフェニルと、(メタ)アクリル酸のカリウム、ナトリウム、リチウムなどのアルカリ金属塩とを反応させる方法(方法2)、ビフェニル、ハロゲン化水素、及びホルムアルデヒド誘導体を反応させて得られる反応混合物を、更に、アクリル酸又はアクリル酸アルカリ金属塩と反応させる方法(方法3)等が挙げられる。
 前記方法3について、ビフェニルとホルムアルデヒドとの反応割合は、ビフェニル1モルに対し、ホルムアルデヒドを1~25モルの範囲で用いることが好ましい。ホルムアルデヒドはホルマリン水溶液、パラホルムアルデヒド、トリオキサンなどいずれの形態で用いても良い。前記ハロゲン化水素は濃塩酸や塩化水素ガス等が挙げられ、ビフェニルに対して過剰のモル比で使用することが好ましい。反応は酸触媒条件下で行われることが好ましく、用いる酸触媒は、例えば、硫酸、リン酸、ポリリン酸、トリクロロ酢酸、ジクロロ酢酸、モノクロロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、塩化亜鉛などのルイス酸等が挙げられる。必要に応じてジメトキシエタン、ジオキサン、シクロペンチルメチルエーテル、酢酸等の有機溶媒中で反応させても良く、反応温度は60~180℃の範囲であることが好ましい。
 このような方法により前記フェニルベンジル(メタ)アクリレート(B1)を製造する場合、フェニルベンジル(メタ)アクリレート(B1)の他、ビス[(メタ)アクリロイルメチル]ビフェニル(B1’)やビフェニル構造がメチレンを介して結節された分子構造を有するビフェニル化合物(B1”)等が副生することがある。この場合、反応生成物100質量部中のフェニルベンジル(メタ)アクリレート(B1)の含有量は30~95質量部の範囲であることが好ましく、35~85質量部の範囲であることがより好ましい。また、反応生成物100質量部中のビス[(メタ)アクリロイルメチル]ビフェニル(B1’)の含有量は5~70質量部の範囲であることが好ましく、15~65質量部の範囲であることがより好ましい。更に、反応生成物100質量部中の前記ビフェニル構造がメチレンを介して結節された分子構造を有するビフェニル化合物(B1”)の含有量は0.5~30質量部の範囲であることが好ましく、1~25質量部の範囲であることがより好ましい。
 また、このような方法により前記フェニルベンジル(メタ)アクリレート(B1)を製造する場合、反応生成物中に未反応原料のビフェニルが残る場合がある。この場合、本願発明所望の効果である高屈折率かつ低粘度の組成物が得られることから、反応生成物100質量部中のビフェニルの含有量は0.5~15質量部の範囲であることが好ましく、1~10質量部の範囲であることがより好ましい。
 反応生成物中の各成分の含有率を測定する方法は、例えば、ガスクロマトグラフ、液体クロマトグラフ、ゲルパーミネーションクロマトグラフなどが挙げられる。
 前記ビス[(メタ)アクリロイルメチル]ビフェニル(B1’)は、例えば、2,2’-ビス(アクリロイルメチル)-1,1’-ビフェニル、3,3’-ビス(アクリロイルメチル)-1,1’-ビフェニル、4,4’-ビス(アクリロイルメチル)-1,1’-ビフェニル、2,4’-ビス(アクリロイルメチル)-1,1’-ビフェニル、2,4-ビス(アクリロイルメチル)-1,1’-ビフェニル、2,6-ビス(アクリロイルメチル)-1,1’-ビフェニル等が挙げられる。
 前記ビフェニル構造がメチレンを介して結節された分子構造を有するビフェニル化合物(B1”)は、分子構造中に含まれるビフェニル構造単位の数が2~5の範囲であることが好ましい。ビフェニル化合物(B1”)の重合度を同定する方法は、例えば、シリカゲルカラムクロマトグラフィーで反応生成物から前記フェニルベンジル(メタ)アクリレート(A)や前記ビス(アクリロイルメチル)ビフェニル(B1’)を除いた成分を、ガスクロマトグラフ質量分析計(GC-MS)や高速液体クロマトグラフ質量分析計(LC―MS)を用いて分析する方法が挙げられる。
 本発明では、前記(メタ)アクリロイル基含有化合物(B)として前記フェニルベンジル(メタ)アクリレート(B1)以外の、その他の(メタ)アクリロイル基含有化合物(B2)を併用しても良い。前記その他の(メタ)アクリロイル基含有化合物(B2)は、例えば、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、フルオレン骨格含有(メタ)アクリレート、これら以外の単官能型或いは多官能型(メタ)アクリレート化合物等が挙げられる。
 前記エポキシ(メタ)アクリレートは、具体的には、エポキシ樹脂に(メタ)アクリル酸又はその無水物を反応させて得られるものであり、前記エポキシ樹脂は、例えば、ヒドロキノン、カテコール等の2価フェノールのジグリシジルエーテル;3,3’-ビフェニルジオール、4,4’-ビフェニルジオール等のビフェノール化合物のジグリシジルエーテル;ビスフェノールA型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,6-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、ビナフトール、ビス(2,7-ジヒドロキシナフチル)メタン等のナフトール化合物のポリグリジシルエーテル;4,4’,4”-メチリジントリスフェノール等のトリグリシジルエーテル;フェノールノボラック型エポキシ樹脂、クレゾールノボラック樹脂等のノボラック型エポキシ樹脂
 前記ビフェノール化合物、ビスフェノールA、ビスフェノールB、ビスフェノールF、ビスフェノールS、ナフトール化合物と、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の種々の環状エーテル化合物との開環重合によって得られるポリエーテル変性芳香族ポリオールのポリグリシジルエーテル;
 前記ビフェノール化合物、ビスフェノールA、ビスフェノールB、ビスフェノールF、ビスフェノールS、ナフトール化合物と、ε-カプロラクトン等のラクトン化合物との重縮合によって得られるラクトン変性芳香族ポリオールのポリグリシジルエーテル等が挙げられる。
 これらの中でも、最終的に得られる組成物が高屈折率なものとなることから、分子構造中に芳香環骨格を有するものが好ましい。とりわけ、より高い屈折率を示し、かつ、高温高湿条件下であっても、プラスチックフィルム基材に対し高い付着性を示す硬化塗膜が得られることから、前記ビスフェノール型エポキシ樹脂が特に好ましい。
 また、ビスフェノール型エポキシ樹脂の中でも、より高屈折率かつ高硬度の硬化物が得られることから、エポキシ当量が160~1,000g/eqの範囲であるものが好ましく、165~600g/eqの範囲であるものがより好ましい。
 前記ウレタン(メタ)アクリレートは、例えば、各種のポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、及び必要に応じて各種のポリオール化合物を反応させて得られるものが挙げられる。前記ポリイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート等のジイソシアネート化合物或いはそのヌレート変性体、アダクト変性体、ビウレット変性体が挙げられる。前記水酸基含有(メタ)アクリレート化合物は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びこれらのポリオキシアルキレン変性体、ポリラクトン変性体等が挙げられる。前記ポリオール化合物は、例えば、エチレングリコール、プロプレングリコール、ブタンジオール、ヘキサンジオール、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ビフェノール、ビスフェノール等が挙げられる。
 前記フルオレン骨格含有(メタ)アクリレートは屈折率が特に高い特徴を有する。具体的には、下記構造式1~4の何れかで表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
[式中Xは水素原子又は水酸基であり、R及びRはそれぞれ独立に水素原子又は炭素原子数が1~3のアルキル基であり、Rは水素原子又はメチル基であり、Rは直接結合又はメチレン基であり、mは0又は1以上の整数である。]
Figure JPOXMLDOC01-appb-C000002
[式中2つのXはそれぞれ独立に水素原子又は水酸基であり、2つのRはそれぞれ独立に水素原子又は炭素原子数が1~3のアルキル基であり、Rは水素原子又はメチル基であり、m及びnはそれぞれ独立に0又は1以上の整数である。]
Figure JPOXMLDOC01-appb-C000003
[式中Xはそれぞれ独立に水素原子又は水酸基であり、Rはそれぞれ独立に水素原子又は炭素原子数が1~3のアルキル基であり、Rはそれぞれ独立に水素原子又はメチル基であり、Rはそれぞれ独立に直接結合又はメチレン基であり、m及びnはそれぞれ独立に0又は1以上の整数である。]
Figure JPOXMLDOC01-appb-C000004
[式中2つのXはそれぞれ独立に水素原子又は水酸基であり、2つのRはそれぞれ独立に水素原子又は炭素原子数が1~3のアルキル基であり、2つのRはそれぞれ独立に水素原子又はメチル基であり、m及びnはそれぞれ独立に0又は1以上の整数である。]
 その他の単官能型或いは多官能型(メタ)アクリレート化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有モノ(メタ)アクリレート化合物;下記構造式(5)
Figure JPOXMLDOC01-appb-C000005
で表される化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中にポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入したポリオキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物;
 エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;グリセロールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート等の水酸基含有ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中にポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物;
 トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート等の水酸基含有トリ(メタ)アクリレート化合物;前記各種のトリ(メタ)アクリレート化合物の分子構造中にポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入したポリオキシアルキレン変性トリ(メタ)アクリレート化合物;前記各種のトリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物;
 ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の4官能以上の水酸基含有ポリ(メタ)アクリレート化合物;前記各種のポリ(メタ)アクリレート化合物の分子構造中にポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した4官能以上のポリオキシアルキレン変性ポリ(メタ)アクリレート化合物;前記各種のポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物:下記構造式(6)
Figure JPOXMLDOC01-appb-C000006
(式中X及びXは、それぞれ独立に水素原子又は(メタ)アクリロイル基である。)で表されるビカルバゾール化合物等が挙げられる。
 前記その他の(メタ)アクリロイル基含有化合物(B2)の中でも、屈折率の高い硬化性組成物が得られることから、分子構造中に芳香環を有する化合物が好ましく、分子構造中にビスフェノール構造を有する化合物がより好ましい。
 前記その他の(メタ)アクリロイル基含有化合物(B2)を用いる場合、(メタ)アクリロイル基含有化合物(B)中の前記フェニルベンジル(メタ)アクリレート(B1)の割合は、屈折率と粘度とのバランスに優れる硬化性組成物となることから、20質量部以上であることが好ましく、40質量部以上であることがより好ましく、50質量部以上であることが特に好ましい。他方、硬化物における柔軟性を重視し、分子構造中にポリオキシアルキレン構造を有する(メタ)アクリレート等を比較的多く用いる等の場合には、(メタ)アクリロイル基含有化合物(B)中の前記フェニルベンジル(メタ)アクリレート(B1)は20質量部未満であってもよい。この場合であっても、フェニルベンジル(メタ)アクリレート(B1)を含有することにより、粘度が高すぎず、かつ、屈折率の高い硬化性組成物が得られる。
 前記その他の(メタ)アクリロイル基含有化合物(B2)として前記エポキシ(メタ)アクリレートを用いる場合には、(メタ)アクリロイル基含有化合物(B)中5~35質量部の範囲で用いることが好ましい。前記その他の(メタ)アクリロイル基含有化合物(B2)として前記ウレタン(メタ)アクリレートを用いる場合には、(メタ)アクリロイル基含有化合物(B)中5~35質量部の範囲で用いることが好ましい。前記その他の(メタ)アクリロイル基含有化合物(B2)として前記フルオレン骨格含有(メタ)アクリレートを用いる場合には、(メタ)アクリロイル基含有化合物(B)中5~45質量部の範囲で用いることが好ましい。前記(メタ)アクリロイル基含有化合物(B2)として前記単官能型或いは多官能型(メタ)アクリレート化合物を用いる場合には、(メタ)アクリロイル基含有化合物(B)中5~60質量部の範囲で用いることが好ましい。
 前記(メタ)アクリロイル基含有化合物(B2)として分子構造中にポリオキシアルキレン構造を有する(メタ)アクリレートを用いる場合には、(メタ)アクリロイル基含有化合物(B)中5~45質量部の範囲で用いることが好ましい。また、分子構造中にポリオキシアルキレン構造を有する(メタ)アクリレートが有するオキシアルキレン構造の繰り返し単位数は、一分子中10~30の範囲であることが好ましい。前記(メタ)アクリロイル基含有化合物(B2)として分子構造中にポリオキシアルキレン構造を有する(メタ)アクリレートを用いることにより、柔軟性が高く復元性等に優れる硬化物を得ることができる。
 本発明の効果性組成物において前記酸化ジルコニウム粒子(A)前記(メタ)アクリロイル基含有化合物(B)との配合割合は、所望の粘度や屈折率により適宜調整することができるが、分散安定性に優れ、屈折率が十分に高い硬化性組成物となることから、両者の質量比[(A)/(B)]が25/75~75/25の範囲であることが好ましく、40/60~70/30の範囲であることがより好ましい。
 本発明の硬化性組成物は、ラジカル重合開始剤を含有してもよい。該ラジカル重合開始剤は、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン等が挙げられる。
 これらラジカル重合開始剤の市販品は、例えば、「イルガキュア-184」、「イルガキュア-149」、「イルガキュア-261」、「イルガキュア-369」、「イルガキュア-500」、「イルガキュア-651」、「イルガキュア-754」、「イルガキュア-784」、「イルガキュア-819」、「イルガキュア-907」、「イルガキュア-1116」、「イルガキュア-1664」、「イルガキュア-1700」、「イルガキュア-1800」、「イルガキュア-1850」、「イルガキュア-2959」、「イルガキュア-4043」、「ダロキュア-1173」(チバスペシャルティーケミカルズ社製)、「ルシリンTPO」(ビーエーエスエフ社製)、「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」(日本化薬株式会社製)、「バイキュア-10」、「バイキュア-55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」(ワードブレンキンソップ社製)等が挙げられる。
 前記ラジカル重合開始剤の添加量は、十分な硬化性を発現するために、本願発明の硬化性組成物100質量部に対し、0.05~20質量部の範囲であることが好ましく、0.1~10質量部の範囲であることがより好ましい。
 本発明の硬化性組成物を光重合にて硬化させる場合には、前記ラジカル重合開始剤に併せて種々の光増感剤を添加しても良い。前記光増感剤は、例えば、アミン類、尿素類、含硫黄化合物、含燐化合物、含塩素化合物またはニトリル類もしくはその他の含窒素化合物等が挙げられ、これらは単独で使用しても二種類以上を併用しても良い。これら光増感剤を添加する場合の添加量は、本願発明の硬化性組成物100質量部に対し、0.01~10質量部の範囲であることが好ましい。
 本発明の硬化性組成物は、必要に応じてその他各種の添加剤を含有しても良い。各種の添加剤としては、紫外線吸収剤、酸化防止剤、シリコーン系添加剤、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、帯電防止剤、防曇剤等が挙げられる。これら添加剤を添加する場合の添加量は、添加剤の効果を十分発揮し、また紫外線硬化を阻害しない範囲で、本発明の硬化性組成物100質量部に対し、0.01~40質量部の範囲であることが好ましい。
 本発明の硬化性組成物の粘度は、例えば金型を用いた賦形用途に用いる場合に、高速塗工条件下であっても金型の細部にまで欠点なく行渡るものとなることから、6,000mPa・s以下であることが好ましい。
 本発明の硬化性組成物の屈折率は1.57以上であることが好ましく、1.60以上であることがより好ましい。
 本発明の硬化性組成物の製造方法は特に限定されないが、例えば、前記酸化ジルコニウム粒子(a)、前記(メタ)アクリロイル基含有化合物(B)の他、前記分散剤(D)やその他の添加座等を含む原料を一括で分散する方法(方法1)や、前記酸化ジルコニウム粒子(a)を有機溶媒中に分散し、これにその他の成分を添加して混合した後、必要に応じて有機溶媒を減圧除去する方法(方法2)等により調製することができる。
 前記方法1や2で用いる分散機は、メディア式湿式分散機等、通常公知のものを制限なく使用することができ、例えば、ビーズミル(アシザワファインテック株式会社製スターミルLMZ-015、寿工業(株)製ウルトラアペックスミルUAM-015等)が挙げられる。
 分散機で使用されるメディアは、通常公知のビーズであれば特に制限はないが、好ましくは、ジルコニア、アルミナ、シリカ、ガラス、炭化珪素、窒化珪素が挙げられる。メディアの平均粒径は50~500μmが好ましく、100~200μmのメディアがより好ましい。粒子径が50μm以上であれば、原料粉に対する衝撃力が適正であり、分散に過度な時間を要しない。一方、メディアの粒子径が500μm以下であれば、原料粉に対する衝撃力が適正であることから、分散された粒子の表面エネルギーの増大を抑制でき、再凝集を防止できる。
 また、分散の初工程では衝撃力の大きい大粒径のメディアを使用し、分散された粒子の粒径が小さくなってから、再凝集が生じ難い小粒径のメディアを使用する2段階の方法により、分散工程時間を短くすることもできる。
 本発明の硬化性組成物は、例えば、活性エネルギー線を照射する、加熱する等により硬化させることができる。前記活性エネルギー線にて硬化させる場合、該活性エネルギー線は、例えば、電子線、紫外線、可視光線等が挙げられる。活性エネルギー線として電子線を用いる場合には、コックロフトワルトン型加速器、バンデグラフ型電子加速器、共振変圧器型加速器、絶縁コア変圧器型、ダイナミトロン型、リニアフィラメント型および高周波型などの電子線発生装置を用いて本発明の硬化性組成物を硬化させることができる。また、活性エネルギー線として紫外線を用いる場合は、超高圧水銀灯、高圧水銀灯、低圧水銀灯等の水銀灯、キセノンランプ、カーボンアーク、メタルハイトランプ等により照射し、硬化させることができる。この際の紫外線の露光量は0.1~1000mJ/cmの範囲であることが好ましい。
 一方、加熱によって硬化させる場合には、60~250℃の温度領域に加熱することによって硬化させることができる。
 本発明の本発明の硬化性組成物は、これまでにない高い屈折を示し、粘度も非常に低いことから、例えば、眼鏡レンズ、デジタルカメラ用レンズ、フレネルレンズ、及びプリズムレンズ等のプラスチックレンズ、光学用オーバーコート剤、ハードコート剤、反射防止膜、光ファイバー、光導波路、ホログラム、プリズムレンズ、LED封止材料、太陽光電池用コーティング材等の各種光学部材用途に好適に使用することができ、これらのなかでも特に、液晶基板用プリズムレンズ等のプラスチックレンズ用に適している。
 前記液晶基板用プリズムレンズとは、シート状成形体の片面に微細なプリズム形状部を複数有するものであって、通常、液晶表示素子の背面(光源側)に、該素子側にプリズム面が向くように配設され、更に、その背面に導光シートが配設されるように用いられるシート状レンズ、或いは前記プリズムレンズがこの導光シートの機能を兼ねているシート状レンズである。
 ここで該プリズムレンズのプリズム部の形状は、プリズム頂角の角度θが70~110°の範囲であることが、集光性に優れ輝度が向上する点から好ましく、特に75~100°の範囲、中でも80~95°の範囲であることが特に好ましい。
 また、プリズムのピッチは、100μm以下であることが好ましく、特に70μm以下の範囲であることが、画面のモアレ模様の発生防止や、画面の精細度がより向上する点から好ましい。また、プリズムの凹凸の高さは、プリズム頂角の角度θとプリズムのピッチの値によって決定されるが、好ましくは50μm以下の範囲であることが好ましい。さらに、プリズムレンズのシート厚さは、強度面からは厚い方が好ましいが、光学的には光の吸収を抑えるため薄い方が好ましく、これらのバランスの点から50μm~1000μmの範囲であることが好ましい。
 本発明の硬化性組成物を用いて前記プリズムレンズを製造する方法は、例えば、該組成物をプリズムパターンが形成された金型あるいは樹脂型等の成形型に塗布し、組成物の表面を平滑化した後に透明基材を重ね合わせ、該透明基材側から活性エネルギー線を照射し、硬化させる方法が挙げられる。
 ここで用いる透明基材は、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスチレン樹脂、フッ素樹脂、ポリイミド樹脂からなるプラスチック基材や、ガラス等が挙げられる。
 前記方法で得たプリズムシートは、そのまま使用することもできるし、透明基材を剥離してプリズムレンズ単独の状態で使用してもよい。透明基材上にプリズム部を形成したまま使用する場合には、プリズムレンズと透明基材との接着性を高める目的で、透明基材表面にプライマー処理等の接着性向上処理を施しておくことが好ましい。
 一方、透明基材を剥離して使用する場合には、該透明基材が容易に剥離できるように、透明基材の表面をシリコーンやフッ素系の剥離剤で処理をしておくことが好ましい。
 以下に、実施例および比較例をもって本発明をより詳しく説明する。
 製造例や実施例で用いた各成分及び分散機の詳細は以下の通り。
Figure JPOXMLDOC01-appb-T000007
 製造例1 ジルコニウム分散液(1)の製造
 酸化ジルコニウム粒子(a1)50g、シランカップリング剤(C1)7.5g、メチルエチルケトン183.0gを混合し、分散攪拌機で30分間攪拌し、粗分散を行った。得られた混合液を、メディア式湿式分散機で粒子径100μmのジルコニアビーズを用いて分散処理した。途中の粒子径を確認しながら、滞留時間100分の分散処理を行った後、分散剤(D1)5gを添加混合して、更に20分間の分散処理によりジルコニウム分散液(1)を得た。
製造例2 フェニルベンジルアクリレート組成物の製造
・クロロ中間体の合成
 攪拌機、冷却管、温度計、塩化水素ガス導入装置を具備した5L4つ口フラスコに、ジフェニル709g、パラホルムアルデヒド276g、酢酸1381g、濃塩酸958gを仕込み、80℃まで昇温した。仕込み溶液が80℃であることを確認後、木下式ガラスボールフィルターを使って塩化水素ガスを20g/hr速度で仕込み溶液に導入した。仕込み溶液への塩化水素ガスの溶解が飽和であることを確認後、リン酸1061gを1時間かけて滴下し、更に、30時間反応を行った。反応終了後、直ちに反応溶液から下層を取り除き、有機層にトルエン2.3kgを添加し、有機層を400gの12.5%水酸化ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、蒸留水で洗浄した。有機層を留去後、クロロ中間体を白色固体として908g得た。
・アクリレート化
 上記で得られた中間体908gを反応溶媒であるジメチルホルムアミド1603gに溶解し、炭酸カリウム372gおよびメトキノンを全量に対して300ppmになるように添加した。中間体溶液を40℃に昇温後、アクリル酸323gを1.5時間で中間体溶液に滴下した。滴下終了後、2時間かけて80℃まで昇温し、80℃にて3時間加熱撹拌した。得られた溶液に水3.4kgおよびトルエン1.8kgを添加し抽出を行った後、有機層を水層が中性になるまで洗浄した。有機層を濃縮して液状のフェニルベンジルアクリレート組成物を995g得た。
・フェニルベンジルアクリレート組成物の分析
 得られたフェニルベンジルアクリレート組成物の25℃における液屈折率は1.592であり、粘度は30mPa・sであった。フェニルベンジルアクリレート組成物100質量部中に含まれる各成分の含有量を、ガスクロマトグラムを用いて測定したところ、フェニルベンジルアクリレートが65.2質量部、ビス(アクリロイルメチル)ビフェニルが18.6質量部、ビフェニル構造がメチレンを介して結節された分子構造を有するビフェニル化合物が2.3質量部、ビフェニルが5.8質量部含まれており、残りの8.1質量部にはビフェニル以外の未反応原料等が含まれていた。また、フェニルベンジルアクリレートの異性体の質量比(モル比も同等)[〔オルトフェニルベンジルアクリレート〕/〔メタフェニルベンジルアクリレート〕/〔パラフェニルベンジルアクリレート〕]は20/1/79であった。
 フェニルベンジルアクリレート組成物のガスクロマトグラム分析条件は以下の通り。
機器:島津社製「GC-2010」
カラム:島津社製「Zebron ZB-5」
条件:Heキャリアガス、流量1.47mL/min、カラムオーブン50℃、気化室300℃、昇温範囲50℃から300℃(25℃/min)
 実施例1
◆硬化性組成物(1)の調製
 製造例1で得られたジルコニウム分散液(1)に、表2に示す割合で(メタ)アクリレート化合物を添加し、エバポレーターで揮発成分を減圧除去した。更に重合開始剤を添加し、硬化性組成物(1)を調製した。
◆酸化ジルコニウム粒子の粒子径測定
 先で得た硬化性組成物(1)中の酸化ジルコニウム粒子の平均粒子径を下記条件で測定した。
粒子径測定装置:大塚電子株式会社製「ELSZ-2」
粒子径測定サンプル:硬化性組成物を不揮発分0.6質量%のメチルイソブチルケトン溶液としたもの。
◆屈折率の測定
 先で得た硬化性組成物について、アッベ屈折率計によって屈折率を測定した。結果を表2に示した。
◆粘度の測定
 硬化性組成物の粘度を、E型回転粘度計(東機産業株式会社製「RE80U」)を使用し、25℃条件下で測定した。
 実施例2~8及び比較例1~4
 実施例1と同じ要領で硬化性組成物及び硬化物を作成し、各種評価を行った。結果を表2又は3に示した。
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009

Claims (4)

  1. 酸化ジルコニウム粒子(A)と(メタ)アクリロイル基含有化合物(B)とを含有し、前記(メタ)アクリロイル基含有化合物(B)がフェニルベンジル(メタ)アクリレート(B1)を必須の成分とすることを特徴とする硬化性組成物。
  2. 硬化性組成物中の前記酸化ジルコニウム粒子(A)の粒子径が20~100nmの範囲である請求項1記載の硬化性組成物。
  3. 請求項1又は2記載の硬化性組成物の硬化物。
  4. 請求項1又は2記載の硬化性組成物を用いてなる光学部材。
PCT/JP2017/006768 2016-03-10 2017-02-23 硬化性組成物及び光学部材 WO2017154589A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780016438.0A CN108779313B (zh) 2016-03-10 2017-02-23 固化性组合物及光学构件
KR1020187026139A KR20180124863A (ko) 2016-03-10 2017-02-23 경화성 조성물 및 광학 부재
JP2018504356A JP7024706B2 (ja) 2016-03-10 2017-02-23 硬化性組成物及び光学部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046962 2016-03-10
JP2016046962 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154589A1 true WO2017154589A1 (ja) 2017-09-14

Family

ID=59789493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006768 WO2017154589A1 (ja) 2016-03-10 2017-02-23 硬化性組成物及び光学部材

Country Status (5)

Country Link
JP (1) JP7024706B2 (ja)
KR (1) KR20180124863A (ja)
CN (1) CN108779313B (ja)
TW (1) TWI708803B (ja)
WO (1) WO2017154589A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004861A1 (ja) * 2022-06-30 2024-01-04 Dic株式会社 活性エネルギー線硬化性組成物およびその硬化物
KR20240010696A (ko) 2022-07-15 2024-01-24 디아이씨 가부시끼가이샤 활성 에너지선 경화성 수지 조성물, 경화 도막 및 적층체

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220017371A (ko) * 2020-08-04 2022-02-11 삼성에스디아이 주식회사 점착 필름, 이를 포함하는 광학 부재 및 이를 포함하는 광학표시장치
CN112964798A (zh) * 2021-02-05 2021-06-15 山东国瓷功能材料股份有限公司 一种纳米氧化锆分散液的分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116625A1 (ja) * 2006-04-10 2007-10-18 Sony Chemical & Information Device Corporation 硬化性樹脂組成物
JP2008133379A (ja) * 2006-11-29 2008-06-12 Osaka Gas Co Ltd 酸化ジルコニウム含有樹脂組成物及びその成形体
JP2008156390A (ja) * 2006-12-21 2008-07-10 Sony Corp 硬化性樹脂材料−微粒子複合材料及びその製造方法、光学材料、並びに発光装置
JP2012082386A (ja) * 2010-09-14 2012-04-26 Dic Corp 光学材料用高屈折組成物およびその硬化物
WO2012157324A1 (ja) * 2011-05-18 2012-11-22 Dic株式会社 ラジカル重合性組成物、硬化物及びプラスチックレンズ
WO2012172841A1 (ja) * 2011-06-13 2012-12-20 Dic株式会社 ラジカル重合性組成物、硬化物及びプラスチックレンズ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5625281B2 (ja) * 2009-08-07 2014-11-19 Dic株式会社 硬化性樹脂組成物、その硬化物、及びプラスチックレンズ
US8742022B2 (en) * 2010-12-20 2014-06-03 3M Innovative Properties Company Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
US9150680B2 (en) * 2012-03-12 2015-10-06 Dic Corporation Radically polymerizable composition, cured product thereof, and plastic lens
CN104768978B (zh) * 2012-10-31 2017-10-27 Dic株式会社 成型用光聚合性树脂组合物、及多层成型品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116625A1 (ja) * 2006-04-10 2007-10-18 Sony Chemical & Information Device Corporation 硬化性樹脂組成物
JP2008133379A (ja) * 2006-11-29 2008-06-12 Osaka Gas Co Ltd 酸化ジルコニウム含有樹脂組成物及びその成形体
JP2008156390A (ja) * 2006-12-21 2008-07-10 Sony Corp 硬化性樹脂材料−微粒子複合材料及びその製造方法、光学材料、並びに発光装置
JP2012082386A (ja) * 2010-09-14 2012-04-26 Dic Corp 光学材料用高屈折組成物およびその硬化物
WO2012157324A1 (ja) * 2011-05-18 2012-11-22 Dic株式会社 ラジカル重合性組成物、硬化物及びプラスチックレンズ
WO2012172841A1 (ja) * 2011-06-13 2012-12-20 Dic株式会社 ラジカル重合性組成物、硬化物及びプラスチックレンズ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004861A1 (ja) * 2022-06-30 2024-01-04 Dic株式会社 活性エネルギー線硬化性組成物およびその硬化物
KR20240010696A (ko) 2022-07-15 2024-01-24 디아이씨 가부시끼가이샤 활성 에너지선 경화성 수지 조성물, 경화 도막 및 적층체

Also Published As

Publication number Publication date
TWI708803B (zh) 2020-11-01
JPWO2017154589A1 (ja) 2019-01-31
CN108779313B (zh) 2021-04-13
JP7024706B2 (ja) 2022-02-24
CN108779313A (zh) 2018-11-09
KR20180124863A (ko) 2018-11-21
TW201803926A (zh) 2018-02-01

Similar Documents

Publication Publication Date Title
US10358572B2 (en) Curable composition, cured product thereof, and optical member
TWI551645B (zh) 自由基聚合性組成物、硬化物及塑膠透鏡
JP7024706B2 (ja) 硬化性組成物及び光学部材
JP2015078339A (ja) 有機無機複合体の製造方法、硬化性組成物、硬化性組成物の製造方法、硬化性組成物の硬化物、ハードコート材、及びハードコート膜
JP6075514B2 (ja) ウレタン(メタ)アクリレート樹脂、硬化性樹脂組成物、その硬化物、及びプラスチックレンズ
JP5230902B2 (ja) 含フッ素硬化性塗液、含フッ素硬化皮膜及び含フッ素硬化皮膜を用いた減反射材
JP7322710B2 (ja) 無機微粒子分散体、硬化性組成物及び光学部材
JP6187847B1 (ja) 活性エネルギー線硬化型組成物及びプラスチックレンズ
JP6844111B2 (ja) 光硬化性組成物
TW201821555A (zh) 噴墨印墨組成物
JP2014065785A (ja) 光重合性組成物、その硬化物、及びプラスチックレンズシート
TW201802172A (zh) 光學物品用活性能量射線硬化型樹脂組成物、硬化物及光學片
JP2024057753A (ja) 活性エネルギー線硬化性組成物、硬化物、及び積層体
TW202415683A (zh) 活性能量線硬化性組成物、硬化物及層疊體
JP6187846B1 (ja) 活性エネルギー線硬化型組成物及びプラスチックレンズ
JP2015120676A (ja) 含フッ素ウレタン(メタ)アクリレート、硬化性組成物及び反射防止フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504356

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187026139

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762929

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762929

Country of ref document: EP

Kind code of ref document: A1