WO2017154364A1 - 加熱調理器 - Google Patents

加熱調理器 Download PDF

Info

Publication number
WO2017154364A1
WO2017154364A1 PCT/JP2017/001643 JP2017001643W WO2017154364A1 WO 2017154364 A1 WO2017154364 A1 WO 2017154364A1 JP 2017001643 W JP2017001643 W JP 2017001643W WO 2017154364 A1 WO2017154364 A1 WO 2017154364A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
heating
heating chamber
ceiling wall
cooking device
Prior art date
Application number
PCT/JP2017/001643
Other languages
English (en)
French (fr)
Inventor
辻本 真佐治
早川 雄二
孝彦 山崎
愛 宿波
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780014262.5A priority Critical patent/CN108700305B/zh
Priority to EP17762710.6A priority patent/EP3428539B1/en
Publication of WO2017154364A1 publication Critical patent/WO2017154364A1/ja
Priority to HK18114932.2A priority patent/HK1255856A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/06Arrangement or mounting of electric heating elements
    • F24C7/067Arrangement or mounting of electric heating elements on ranges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6482Aspects related to microwave heating combined with other heating techniques combined with radiant heating, e.g. infrared heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/005Coatings for ovens

Definitions

  • the present disclosure relates to a heating cooker that cooks food that is a food to be cooked in a heating cabinet, and more particularly to a cooking device that heats the food to be cooked by a flat heater provided on the ceiling wall of the heating cabinet.
  • the heating cooking means in the heating cooker includes an infrared heater unit that directly heats food by radiating heat rays, a microwave heating unit that heats food by irradiating microwaves, a steam heating unit that heats food by steam, heating A hot air circulation unit that heats food by circulating hot air inside the cabinet is used.
  • the heating cooker is configured such that an appropriate heating cooking means is selected in order to perform optimum heating cooking according to cooking on the food that is to be cooked inside the heating chamber. ing.
  • an appropriate heating cooking means is selected in order to perform optimum heating cooking according to cooking on the food that is to be cooked inside the heating chamber. ing.
  • it is delicious that the inside of the heating cabinet reaches the set cooking temperature (set temperature) in a short time and the set temperature is kept constant for a predetermined time. It is important to make the food, and also important to shorten the cooking time.
  • the ceiling wall In the heating cooker, in the configuration using the flat heater provided on the ceiling wall as the heating cooking means, the ceiling wall is heated so that the inside of the heating chamber becomes the set temperature by the heat radiated from the heated ceiling wall. Heat to. For this reason, it is necessary to efficiently transfer the heat from the flat heater to the inside of the heating chamber. However, since the ceiling wall repeatedly expands and contracts due to the heat of the flat heater, it is difficult to keep the ceiling wall surface and the flat heater in close contact with each other. As a result, a gap (air layer) is generated between the ceiling wall surface and the flat heater, and heat transfer efficiency from the flat heater to the ceiling wall is deteriorated.
  • the heat source (heater wire) of the flat heater is covered with an electrical insulating member.
  • the heat from the heat source of the flat heater is transmitted to the ceiling wall via the electrical insulating member to heat the ceiling wall, and the inside temperature of the heating chamber is raised to the set temperature by the heat of the heated ceiling wall.
  • the temperature inside the cooking chamber is detected by the temperature detecting means, and on / off control is performed on the flat heater based on the detected temperature inside the cooking cabinet so that the inside of the heating cabinet becomes the set temperature. It was.
  • the flat heater when the internal temperature reaches the set temperature is lower than the set temperature.
  • the temperature is high, and in some cases, the heat resistance temperature of the flat heater may be exceeded. For this reason, in the conventional cooking device, in consideration of safety and reliability, the flat heater is temporarily turned off before the inside temperature reaches the set temperature, and thereafter the flat heater is turned on / off. By repeating the above, the inside temperature was gradually brought close to the set temperature. As described above, in the conventional cooking device, since the flat heater is controlled based on the detected internal temperature and reaches the set temperature, it is difficult to set the temperature accurately and set. It took time to reach the temperature.
  • the rated power is defined, and there is a problem that the input power is limited. For this reason, the heat source provided in the cooking device must be designed within the rated power.
  • a flat heater is used as a heating cooking means, it is difficult to heat and cook by rapidly starting up the inside of the heating chamber with a desired power in consideration of other heating cooking means.
  • the cooking temperature in which the temperature inside the heating cabinet rises quickly to the set temperature and the temperature inside the cooking cabinet can be maintained at the setting temperature.
  • the challenge is to provide a vessel.
  • a heating cooker includes a heating chamber that heats an object to be cooked, an inner heater and an inner heater that are provided on a ceiling wall of the heating chamber and are disposed directly above a central portion of the ceiling wall. And a control unit that controls each of the inner heater and the outer heater in the flat heater.
  • the ceiling wall of the heating chamber has a three-dimensional curved surface having a concave surface on the heating chamber side, and is fixed so that the entire surface of the flat heater is in close contact with the ceiling wall.
  • the inside temperature can reach the set temperature in a short time, and the inside temperature can be reliably maintained at the set temperature. It is possible to provide a cooking device that can perform desired cooking for a user in a short time.
  • FIG. 1 is a perspective view showing the appearance of the heating cooker according to the present embodiment.
  • FIG. 2 is a perspective view showing a state where the door is opened in the heating cooker of the present embodiment.
  • FIG. 3 is a perspective view showing a state where the outer cover of the heating cooker of the present embodiment is removed.
  • FIG. 4 is a front view showing the upper side of the heating cooker of the present embodiment in section.
  • FIG. 5 is an exploded perspective view of the flat heater unit in the cooking device of the present embodiment.
  • FIG. 6A is a plan view of a heating upper plate of the flat heater unit in the heating cooker of the present embodiment.
  • 6B is an end view taken along line 6B-6B of FIG. 6A.
  • 6C is an end view taken along line 6C-6C of FIG. 6A.
  • FIG. 7 is an exploded perspective view showing a flat heater in the cooking device of the present embodiment.
  • FIG. 8 is a plan view showing a heater in the cooking device of the present embodiment.
  • FIG. 9 is a plan view of a flat heater in the cooking device of the present embodiment.
  • FIG. 10 is a back view of the flat heater in the cooking device of the present embodiment.
  • FIG. 11 is a perspective view showing a state where the flat heater is mounted on the upper plate of the heating chamber in the cooking device of the present embodiment.
  • FIG. 12A is a plan view of a presser plate in the heating cooker of the present embodiment.
  • 12B is an end view taken along line 12B-12B of FIG. 12A.
  • 12C is an end view taken along line 12C-12C of FIG. 12A.
  • FIG. 13 is sectional drawing explaining the mounting method with respect to the heating upper plate of the press plate in the heating cooker of this embodiment.
  • FIG. 14 is sectional drawing which shows the mounting state with respect to the heating chamber upper board of the pressing plate when the heating chamber upper board becomes high temperature in the heating cooker of this embodiment.
  • FIG. 15 is an enlarged cross-sectional view illustrating a state where the heater temperature detection unit is mounted in the cooking device of the present embodiment.
  • FIG. 16 is a perspective view showing a flat heater unit in the cooking device of the present embodiment.
  • FIG. 17A is a plan view of a flat heater unit in the cooking device of the present embodiment.
  • 17B is a cross-sectional view taken along line 17B-17B of FIG. 17A.
  • FIG. 17C is a cross-sectional view taken along line 17C-17C of FIG. 17A.
  • FIG. 18 is a circuit diagram for controlling the cooking device in the cooking device of the present embodiment.
  • FIG. 19 is a perspective view showing a heating pan used in the heating cooker of the present embodiment.
  • 20 is a plan view of the heating tray shown in FIG.
  • a heating cooker includes a heating chamber that heats an object to be cooked, an inner heater that is provided on a ceiling wall of the heating chamber, and is disposed directly above a central portion of the ceiling wall.
  • a flat heater serving as one heat source by an outer heater surrounding the inner heater, and a control unit for controlling the inner heater and the outer heater in the flat heater are provided.
  • the ceiling wall of the heating chamber has a three-dimensional curved surface having a concave surface on the heating chamber side, and is fixed so that the entire surface of the flat heater is in close contact with the ceiling wall.
  • the heating cooker of the 1st aspect comprised in this way can use the flat heater as a heating cooking means, and can make the internal temperature (upper plate temperature) reach setting temperature in a short time, and also in the internal The temperature (upper plate temperature) can be reliably maintained at the set temperature.
  • the three-dimensional curved surface of the ceiling wall of the heating chamber in the first aspect is rectangular in plan view, and the curvature in the longitudinal direction is different from the curvature in the short direction. It may be configured.
  • the ceiling wall of the heating chamber in the first aspect may have a plurality of regions that absorb the deformation force of expansion / contraction due to the heat of the flat heater.
  • the ceiling wall of the heating chamber in the first aspect has a plurality of regions that absorb the deformation force of expansion / contraction due to the heat of the flat heater, and the plurality of regions Each may have the same shape.
  • the ceiling wall of the heating chamber in the first aspect has a plurality of polygonal regions that absorb the deformation force of expansion / contraction due to the heat of the flat heater. May be.
  • the ceiling wall of the heating chamber in the first aspect has a plurality of honeycomb-shaped regions that absorb the deformation force of expansion / contraction due to the heat of the flat heater. Also good.
  • the flat heater of the first aspect is interposed through a heat insulating material by a presser plate having a three-dimensional curved surface attached with a movable range to the ceiling wall.
  • maintained may be sufficient.
  • the pressing plate of the seventh aspect is formed with a pressing portion protruding in the direction of the inner heater and the outer heater in each region facing the inner heater and the outer heater.
  • the inner heater and the outer heater may be pressed by the pressing portion via a heat insulating material.
  • the heating cooker of the ninth aspect may have a configuration in which the total of the maximum heater outputs of the inner heater and the outer heater of the first aspect exceeds the rated power of the heating cooker.
  • the control unit may control the power input to the inner heater so that the sum of the heater outputs of the inner heater and the outer heater does not exceed the rated power of the cooking device.
  • the cooking device of the tenth aspect may include a heater temperature detector that detects the temperature of the region directly heated by the inner heater of the first aspect. Based on the heater temperature information detected by the heater temperature detector, the control unit may be configured to control the inner heater to start up to the set temperature of the heating chamber (including the vicinity of the set temperature).
  • the heating cooker of the eleventh aspect according to the present disclosure may be configured such that at least the surface on the flat heater side in the ceiling wall of the heating chamber of the first aspect has a black silicon film.
  • the cooking device of the twelfth aspect according to the present disclosure may be configured such that at least the surface of the heating wall side of the ceiling wall of the heating container of the first aspect has a self-cleaning film.
  • the cooking device of the present disclosure is not limited to the configuration of the cooking device described in the following embodiment, and includes the configuration of the cooking device equivalent to the technical idea described in the following embodiment. It is a waste.
  • Embodiment described below shows an example of this indication, and the composition, the function, operation, etc. which are shown in the embodiment are illustrations and do not limit this indication.
  • constituent elements in the following embodiments constituent elements that are not described in the independent claim indicating the highest concept are described as optional constituent elements.
  • FIG. 1 is a perspective view showing the appearance of the heating cooker according to the present embodiment.
  • FIG. 2 is a perspective view showing a state in which the door is opened in the cooking device of the present embodiment of FIG.
  • the cooking device is configured such that a front opening of a heating chamber 4 provided inside the main body 1 can be opened and closed by a door 2.
  • a handle 3 is provided at the upper end of the door 2, and the user grips the handle 3 to rotate the door 2 to open and close the front opening of the heating chamber 4 so as to open upward.
  • the inside of the heating chamber 4 is substantially sealed by closing the door 2, and the cooked food to be heated disposed inside the heating chamber 4 is cooked in a substantially sealed state.
  • a setting unit 5 for setting various cooking conditions such as cooking temperature setting and cooking time setting for heating cooking is provided on the front door 2 of the heating cooker.
  • the setting part 5 provided in the front of the heating cooker has a display part etc. which display various cooking conditions, the heating state during heating cooking, etc.
  • a microwave heating unit that irradiates microwaves to heat food
  • a steam heating unit that heats food by steam
  • a hot air circulation unit that heats food by circulating hot air is used.
  • an antenna that radiates microwaves is provided below the bottom wall of the heating chamber 4, and the microwave is radiated in a desired direction with respect to the inside of the heating chamber 4 by a directional antenna.
  • the steam heating unit has a water tank inside the main body 1 and has a configuration in which water vapor generated by heating water to a high temperature by a steam heater of a boiler is intensively injected into the inside of the heating chamber 4.
  • the hot air circulation unit is configured to heat the air sucked from the heating chamber 4 by a back heater provided on the back side of the heating chamber 4 and supply hot air to the inside of the heating chamber 4.
  • a plurality of heating cooking means are provided, and when the user selects a desired heating cooking means, or when the user selects cooking contents, appropriate heating cooking is performed.
  • the means is selected.
  • the user arranges food to be cooked in the heating chamber 4 of the heating cooker, closes the door 2, sets the heating cooking means, cooking contents, etc. in the setting unit 5, and cooks by pressing the start button. Operation starts.
  • the heating cooker according to the present embodiment is configured so that a heating tray 6 on which an object to be heated is placed can be stored inside the heating chamber 4.
  • the heating tray 6 is slidable on the side walls on both sides of the heating chamber 4 so as to be arranged in the upper, middle, or lower stages inside the heating chamber 4, and supports the heating tray 6.
  • a step that can be formed is formed.
  • a heating element (not shown) is embedded in the mounting surface 33 of the heating tray 6. The heating element absorbs microwaves and generates heat, and ferrite or the like is used.
  • the heating tray 6 as a heating element
  • the heating element only needs to absorb microwaves and generate heat. You may comprise and apply
  • foot which protrudes below is provided in the hanging structure from a ceiling wall, and the heating tray 6.
  • the structure mounted in the bottom wall of the heating chamber 4 may be sufficient.
  • an antenna (not shown) that radiates microwaves inside the heating chamber 4 is disposed directly below the center of the bottom wall of the heating chamber 4.
  • the antenna according to the present embodiment has directivity in the microwave radiation direction and has a configuration capable of radiating circularly polarized waves directly above the antenna. Therefore, the antenna in the present embodiment is provided with a rotation mechanism so as to radiate microwaves uniformly inside the heating chamber 4, and is configured such that the radiation opening of the antenna rotates.
  • the antenna in the present embodiment is configured to radiate circularly polarized waves to the heating element of the heating tray 6 disposed immediately above the antenna to perform dielectric heating.
  • the bottom wall of the heating chamber 4 is formed of a material that allows microwaves from the antenna to pass therethrough, and the side wall, the back wall, and the ceiling wall, which are other wall surfaces in the heating chamber 4, are made of steel or stainless steel ( SUS) aluminized steel sheet is used. Further, a non-adhesive film layer such as a fluororesin or a silicon resin may be formed on each wall surface. By forming such a coating layer, it is possible to prevent adhesion of dirt such as oil and fat scattered during cooking, cooking residue, etc., and even if dirt is attached, the dirt is easily wiped off.
  • a coating layer having a self-cleaning function may be formed by decomposing oil and fat scattered during cooking by heating during cooking and automatically cleaning.
  • the method for providing the coating layer with a self-cleaning function include a method in which a manganese oxide-based catalyst species that promotes oxidative decomposition action is added to the coating layer, platinum that exhibits a remarkable effect on oxidative decomposition action at low temperature, or You may use the method of adding palladium etc. with high activity in a medium-high temperature range. Furthermore, a method of adding cerium or the like having an adsorbing action may be used.
  • the object to be heated (food) placed on the heating tray 6 housed in the heating chamber 4 is heated to a high temperature by the heat of the heating element dielectrically heated by the microwave.
  • the upper surface of the object to be heated (food item) placed on the heating tray 6 is heated by the flat heater unit 8 provided on the upper part of the ceiling wall of the heating chamber 4. It has a configuration.
  • FIG. 3 is a perspective view showing a state where an outer cover is removed from the main body 1 of the heating cooker according to the present embodiment.
  • a flat heater unit 8 is provided on the ceiling side of the main body 1 of the heating cooker, that is, on the portion including the ceiling wall of the heating chamber 4.
  • FIG. 4 is a front view showing the upper side of the heating cooker of the present embodiment in section. As shown in FIG. 4, it is shown that the upper portion of the heating chamber 4 in the heating cooker is configured by a flat heater unit 8.
  • an internal temperature detection means for detecting the internal temperature of the inside of the heating chamber 4 an internal temperature detection unit 9, for example, a thermistor, is provided in the corner portion at the right back of the heating chamber 4.
  • the internal temperature information detected by the internal temperature detection unit 9 is transmitted to the control unit 7 (see FIG. 18) described later, and is used for control in various cooking operations.
  • FIG. 5 is an exploded perspective view showing the flat heater unit 8 in an exploded manner.
  • the flat heater unit 8 includes, from the lower side in FIG. 5, a heating chamber upper plate 10 that forms the ceiling wall of the heating chamber 4, and a planar heater 11 that is in close contact with the upper surface of the heating chamber upper plate 10.
  • a presser 12 as a backing plate made of mica, a first heat insulating material 13 that blocks heat conduction upward from the flat heater 11, and the flat heater 11 on the heating cabinet upper plate 10.
  • a presser plate 14 that is pressed via Further, the flat heater unit 8 receives heat from the insulating sheet 15 that electrically insulates the terminal portions 24 (see FIG.
  • the flat heater unit 8 has a stacked assembly structure, and all parts can be replaced during maintenance, so that maintainability is improved. Further, the flat heater unit 8 is provided with a heater temperature detector 18 which is a heater temperature detecting means for detecting the temperature of the heating region directly heated by the flat heater 11.
  • a heater temperature detector 18 which is a heater temperature detecting means for detecting the temperature of the heating region directly heated by the flat heater 11.
  • FIG. 6 is a view showing the heating cabinet upper plate 10 constituting the ceiling wall of the heating cabinet 4 in the flat heater unit 8.
  • FIG. 6A is a plan view of the heating cabinet upper plate 10.
  • 6B is an end view taken along line 6B-6B of the heating chamber upper plate 10 shown in FIG. 6A.
  • 6C is an end view taken along line 6C-6C in the heating chamber upper plate 10 shown in FIG. 6A.
  • the heating chamber upper plate 10 constitutes the ceiling wall of the heating chamber 4, and the central portion other than the outer peripheral edge of the heating chamber upper plate 10 has a rectangular shape (10a) in plan view.
  • This rectangular shape has a curved surface shape in which the heating chamber side (lower side) is a concave surface, and becomes a heat generating region 10a in which the flat heater 11 is disposed in close contact.
  • the heating chamber 4 of the present embodiment has a rectangular parallelepiped shape with the front side being the longitudinal side, and the heat generating area 10 a covers substantially the entire ceiling wall of the heating chamber 4.
  • a rectangular flat heater 11 corresponding to the shape of the heating chamber 4 is disposed in close contact with the curved heat generating area 10a. For this reason, the substantially entire surface of the heating cabinet upper plate 10 constituting the ceiling wall of the heating cabinet 4 becomes a heating element heated by the flat heater 11.
  • the cross section in the longitudinal direction (left-right direction in FIG. 6A) of the heat generating region 10 a in the heating chamber upper plate 10 is configured by a curve.
  • the cross section in the short direction (vertical direction in FIG. 6A) of the heat generating region 10 a in the heating chamber upper plate 10 is also configured with a curve. Therefore, the heat generating area 10a in the heating chamber upper plate 10 has a three-dimensional curved surface having a concave surface on the heating chamber side.
  • the curvature of the curve in the longitudinal direction of the heat generating region 10a is different from the curvature of the curve in the short direction of the heat generating region 10a, and the curvature in the longitudinal direction is larger than the curvature in the short direction.
  • the present invention is not limited to this, and the curvature in the longitudinal direction of the heat generating region 10a may be smaller than the curvature in the short direction.
  • the heating region 10a to which the flat heater 11 is closely attached has a plurality of regular hexagonal (honeycomb-shaped) regions (honeycomb regions) 10b.
  • the boundary of the honeycomb region 10b in the heating chamber upper plate 10 is formed by a groove protruding to the heating chamber side, and each honeycomb region 10b has substantially the same area.
  • the heating cabinet upper plate 10 thus configured is formed by press working.
  • the heat generating area 10a in the heating chamber upper plate 10 is formed to have a plurality of honeycomb areas 10b. For this reason, the heat generating region 10a expands due to the heat of the flat heater 11, or contracts when the flat heater 11 is in an off state in which power is cut off. This is a configuration that can be absorbed in the honeycomb region 10b. Although the heat generating area 10a is heated by the flat heater 11 in close contact, the entire surface of the heat generating area 10a is not uniformly heated by the flat heater 11, and the heat generation distribution in the heat generating area 10a becomes non-uniform. For this reason, there is a possibility that the deformation force of expansion / contraction in the heat generating region 10a will be different in each region.
  • the top plate of the heating cabinet which is the ceiling wall of the heating cabinet 4
  • the ceiling wall is locally heated and deformed unevenly. Distortion, a gap is formed between the heating chamber upper plate and the flat heater so that heat from the flat heater is difficult to be transmitted.
  • a plurality of regions (honeycomb regions) 10b divided by grooves are formed in the heat generating region 10a of the heating chamber upper plate 10. For this reason, the deformation force of expansion / contraction is dispersed and absorbed for each of these honeycomb regions, and as the ceiling wall, the heat generation region 10a is not greatly deformed and distorted locally, and the curved surface whose concave side is the heating chamber side The shape is in a state where it rises smoothly as a whole. As a result, the heat generating region 10a is kept in close contact with the flat heater 11, and heat from the flat heater 11 can be received efficiently and reliably.
  • the heat generation area 10a in the heating chamber upper plate 10 is prevented from being locally deformed, and the heat generation area 10a is generally lifted while maintaining the same shape as a whole. Therefore, the state in which the flat heater 11 is in close contact with the heat generating region 10a is reliably maintained.
  • the heat generating area 10a in the heating chamber upper plate 10 has been described as being divided by a plurality of regular hexagonal (honeycomb-shaped) honeycomb areas 10b.
  • the area 10b is specified to have a honeycomb shape. Instead, it is only necessary to be constituted by a plurality of regions that can disperse and absorb the local expansion / contraction deformation force in the heat generation region 10a.
  • the plurality of regions that absorb the expansion / contraction deformation force may be a polygonal region such as a triangle or a square, or a region formed of a curve.
  • a pressing plate locking portion 10c for mounting a pressing plate 14 described later so as to be freely movable in the vertical direction is provided at a substantially center of the heating chamber upper plate 10.
  • a presser plate 14 is attached to the presser plate locking portion 10c by screwing a stepped screw as the locking tool 19.
  • a plurality of fasteners 10d for closely attaching the flat heater 11 are projected from the heating chamber upper plate 10.
  • the fastener 10d is a small piece that protrudes upward from the upper surface of the heat generating area 10a, and a plate that can be bent is fixed to the upper surface of the heat generating area 10a.
  • the heating chamber upper plate 10 in this embodiment is made of an aluminum-plated steel plate of steel or stainless steel (SUS). Black film bodies made of, for example, silicon resin are formed on both surfaces of the heating chamber upper plate 10. By forming the black film body on the surface on the flat heater side as described above, the heat from the flat heater 11 can be efficiently absorbed.
  • disassembles the fats and oils scattered at the time of cooking by the heating at the time of cooking on the surface at the side of the heating chamber upper plate 10 and cleaning automatically. Is formed. Since the method for forming the coating layer having the self-cleaning function has been described above, it is omitted here. In the present embodiment, a coating layer having a self-cleaning function is also formed on both side walls and the back wall of the heating chamber 4.
  • FIG. 7 is an exploded perspective view showing the flat heater 11 that is mounted in close contact with the heat generating area 10 a of the heating cabinet upper plate 10.
  • the heater 25 which is a heat source in the planar heater 11 is divided into an inner heater (inner heater) 20 and an outer heater (outer heater) 21.
  • FIG. 8 is a plan view showing a heater 25 composed of an inner heater 20 and an outer heater 21 which are heat sources.
  • the inner heater 20 and the outer heater 21 are disposed on substantially the same plane, the outer heater 21 is disposed so as to surround the inner heater 20, and each is individually driven and controlled.
  • the inner heater 20 is variably controlled steplessly in the range of 300 W to 900 W
  • the outer heater 21 is configured to be on / off controlled at 700 W.
  • the inner heater 20 and the outer heater 21 are formed by winding a heater wire around mica, which is an insulating plate, and the heater output per unit area is set to 1. 6 times larger. In the present embodiment, for example, a heater output of 3.0 W / cm 2 (inner heater) is possible. In the present embodiment, a strip heater wire having a thickness of 0.144 mm is used as the heater wire of the inner heater 20, and a strip heater wire having a thickness of 0.10 mm is used as the heater wire of the outer heater 21. By forming the heater wire by winding it at a high density, the temperature rise of the heating cabinet upper plate 10 can be made uniform.
  • the flat heater 11 includes a heater 25 configured as one heat source by the inner heater 20 and the outer heater 21 from both sides by two mica plate members of an upper insulating material 22 and a lower insulating material 23. It is formed between.
  • FIG. 9 is a plan view of the flat heater 11 and shows the upper insulating material 22.
  • FIG. 10 is a rear view of the flat heater 11 and shows the lower insulating material 23.
  • the region where the heater wires of the inner heater 20 and the outer heater 21 are sandwiched is divided by slits 22 a and 23 a. Yes. Therefore, in the mutual area
  • the effect of dividing by the slits 22a and 23a is that when the inner heater 20 and the outer heater 21 are energized at the same time, they expand each other, so that the adhesion of the heating chamber upper plate 10 can be prevented from being impaired.
  • a presser plate locking portion 10c and a plurality of fasteners 10d provided on the heating chamber upper plate 10 are inserted into each of the upper insulating material 22 and the lower insulating material 23 sandwiching the heater 25. Openings 22b and 23b are formed.
  • the planar heater 11 has a terminal portion 24, and terminals connected to the heater wires of the inner heater 20 and the outer heater 21 are provided on the terminal portion 24.
  • FIG. 11 is a perspective view showing a state in which the flat heater 11 is mounted on the upper surface of the heating cabinet upper plate 10 described above. As shown in FIG. 11, the flat heater 11 is mounted in close contact with the curved heat generation area 10 a of the heating chamber upper plate 10. The fastener 10d formed on the heating cabinet upper plate 10 is bent, and the flat heater 11 is attached in close contact with a predetermined position on the heat generating area 10a. At this time, the fastener 10d of the heating cabinet upper plate 10 has openings (22b, 23b) formed so as to penetrate the flat heater 11 up and down, and a hole of the presser 12 serving as a backing plate formed of mica.
  • the flat heater 11 is mounted so as to be in close contact with the upper surface of the heat generating region 10a. Further, the presser plate locking portion 10c provided in the center of the heating chamber upper plate 10 is disposed in an opening (22b, 23b) formed in the center of the flat heater 11.
  • the first heat insulating material 13 is disposed so as to cover the flat heater 11.
  • the 1st heat insulating material 13 has a function which interrupts
  • the first heat insulating material 13 has a shape that can cover at least the entire surface of the heating region 10a in the heating chamber upper plate 10, has substantially the same thickness, and has an elastic force (restoring force) at least in the thickness direction. Have.
  • the first heat insulating material 13 has a plurality of openings.
  • the opening formed in the center of the first heat insulating material 13 is an engaging portion opening 13a in which a presser plate engaging portion 10c protruding from the heating chamber upper plate 10 is accommodated.
  • the first heat insulating material 13 includes a fastener opening 13b in which a fastener 10d provided on the heating chamber upper plate 10 is accommodated, a terminal opening 13c through which the heater wire of the flat heater 11 passes, and a flat heater described later.
  • 11 includes a temperature detection opening 13d in which a detection end portion 18a (see FIG. 15) of a heater temperature detection unit 18 serving as a heater temperature detection means for detecting the temperature of a heating region directly heated by 11 is housed.
  • FIG. 12 is a view showing the presser plate 14 that covers the upper portion of the first heat insulating material 13 and is attached to the heating chamber upper plate 10.
  • FIG. 12A is a plan view of the presser plate 14.
  • 12B is an end view taken along the line 12B-12B of the presser plate 14 shown in FIG. 12A.
  • 12C is an end view taken along line 12C-12C of the presser plate 14 shown in FIG. 12A.
  • the holding plate 14 attached to the heating chamber upper plate 10 has a curved surface region 14 a having a curved surface similar to the heat generation region 10 a formed by the curved surface of the heating chamber upper plate 10. .
  • the holding plate 14 has a function of pressing the flat heater 11 against the heat generating area 10a of the heating chamber upper plate 10 via the first heat insulating material 13, and the entire surface of the flat heater 11 is in close contact with the heat generating area 10a without any gap. I am letting.
  • a pressing portion 14 b is formed at a position facing the inner heater 20 and the outer heater 21 of the flat heater 11.
  • the pressing portion 14 b is formed by a continuous convex portion that protrudes toward the flat heater 11, and presses the inner heater 20 and the outer heater 21 of the flat heater 11 through the first heat insulating material 13. Moreover, since the press part 14b is formed in the presser plate 14 as mentioned above, the rigidity as the presser plate 14 is improved. Moreover, if there exists a part with bad adhesiveness, it can aim at improvement by providing the press part 14b in that part, and can aim at the uniform temperature rise of the heating chamber upper board 10. FIG.
  • the cross section in the longitudinal direction (the left-right direction of FIG. 12A) of the curved surface region 14a of the presser plate 14 is substantially composed of a curve.
  • the cross section of the curved surface area 14a of the presser plate 14 in the short direction (vertical direction in FIG. 12A) is also substantially curved. Therefore, the curved surface area 14a in the presser plate 14 has a three-dimensional curved surface in which the heating chamber side (lower side) is a concave surface.
  • the curvature of the curved surface area 14a in the longitudinal direction is different from the curvature of the curved surface area 14a in the short direction, and the curvature in the longitudinal direction is smaller than the curvature in the short direction.
  • the present invention is not limited to this, and the curvature in the longitudinal direction of the curved region 14a may be larger than the curvature in the short direction.
  • the curved surface region 14 a of the presser plate 14 has a curved surface similar to the heat generating region 10 a of the heating chamber upper plate 10.
  • a locking tool (stepped screw) 19 for screwing the presser plate locking portion 10 c protruding from the heating chamber upper plate 10 is provided at the center of the presser plate 14.
  • a locking portion mounting hole 14c through which the screw portion 19c (see FIG. 13) passes is formed.
  • a stepped screw 19 which is a locking tool, is screwed to the presser plate locking portion 10 c of the heating cabinet upper plate 10, so that the presser plate 14 can move freely with respect to the heating cabinet upper plate 10.
  • 13A shows a state in the middle of screwing the stepped screw 19 into the presser plate locking portion 10c
  • FIG. 13B shows the stepped screw 19 screwed into the presser plate locking portion 10c. It shows the state of being worn and assembled.
  • the stepped screw 19 includes a head portion 19a, a cylindrical portion 19b, and a screw portion 19c. The diameter of the cylindrical portion 19b is larger than the diameter of the screw portion 19c. Yes.
  • the head 19a of the stepped screw 19 is in contact with the presser plate 14 while the stepped screw 19 is being screwed into the presser plate locking portion 10c.
  • the cylindrical portion of the stepped screw 19 is provided.
  • 19b comes into contact with the presser plate locking portion 10c of the heating chamber upper plate 10, and the screwing of the stepped screw 19 to the presser plate locking portion 10c is completed to complete the assembly.
  • FIG. 14 shows a state in which when the heating cooker is used and the heat generating area 10a of the heating cabinet upper plate 10 is heated by the flat heater 11 to a high temperature, the heat generating area 10a expands and rises. Yes.
  • the cylindrical portion 19 b of the stepped screw 19 can slide upward in the locking portion mounting hole 14 c of the presser plate 14.
  • the presser plate 14 does not lift up in the same manner, and the flat heater 11 is always pressed against the heat generating area 10a by the presser plate 14 at a predetermined pressure or higher. State is maintained.
  • the flat heater 11 is always pressed against the heat generating area 10a by the presser plate 14, the flat heater 11 is spaced from the heat generating area 10a in the cooking operation. The state of close contact is maintained.
  • the presser plate 14 is provided with a temperature detection mounting portion 14d and a terminal mounting portion 14e.
  • the temperature detection mounting part 14d is a part where a heater temperature detection part 18, for example, a thermistor, which detects the temperature of the region directly heated by the heat from the flat heater 11 is mounted.
  • the terminal mounting portion 14e is mounted with a terminal portion 24 having respective terminals of the inner heater 20 and the outer heater 21 in the flat heater 11. Each terminal of the terminal unit 24 is connected to a power supply unit that is driven and controlled by the control unit 7 in the cooking device.
  • FIG. 15 is an enlarged cross-sectional view showing a state in which the heater temperature detection unit 18 (thermistor) is mounted on the temperature detection mounting unit 14d of the presser plate 14. Note that the cross-sectional view shown in FIG. 15 is an enlarged view of the region indicated by the symbol XV in FIG. 4 described above.
  • the detection end 18 a of the heater temperature detection unit 18 is disposed inside a temperature detection opening 13 d formed in the first heat insulating material 13.
  • the temperature detection opening 13 d forms a heating region (heating space) that is directly heated by the flat heater 11. Therefore, the detection end 18 a of the heater temperature detection unit 18 is disposed in a heating region (heating space) that is directly heated by the flat heater 11.
  • the heating region (heating space) is formed immediately above the inner heater 20 in the flat heater 11 and is heated directly by the inner heater 20.
  • the heater temperature detection unit 18 detects the temperature of the heating region directly heated by the inner heater 20, so that the heater temperature information and the internal temperature detection unit 9 that detects the temperature inside the heating chamber 4 are detected.
  • the control unit 7 drives and controls the heat sources of various heating cooking means used in the cooking device such as the flat heater 11.
  • FIG. 16 is a perspective view showing the flat heater unit 8 in which the flat heater 11, the first heat insulating material 13, the presser plate 14 and the like are mounted on the above-described heating chamber upper plate 10.
  • the flat heater unit 8 is provided with a presser plate 14 so as to cover the heat generating area 10 a of the heating chamber upper plate 10.
  • FIG. 17 is a view showing the flat heater unit 8.
  • FIG. 17A is a plan view of the flat heater unit 8.
  • FIG. 17B is a cross-sectional view taken along line 17B-17B in the flat heater unit 8 shown in FIG. 17A.
  • FIG. 17C is a sectional view taken along line 17C-17C in the flat heater unit 8 shown in FIG. 17A.
  • the planar heater unit 8 is configured to be substantially integrated, and the planar heater unit 8 constitutes the ceiling wall of the heating chamber 4.
  • the cross section of the flat heater unit 8 in the longitudinal direction (left-right direction in FIG. 17A) is formed of a curved surface having substantially the same thickness (length in the vertical direction).
  • the cross section of the flat heater unit 8 in the short direction (vertical direction in FIG. 17A) is also configured by a curved surface having substantially the same thickness (length in the vertical direction). ing.
  • the flat heater unit 8 has a three-dimensional curved surface having a concave surface on the heating chamber side (lower side) as a whole.
  • the region surrounded by the symbol A indicates a portion where the stepped screw 19 which is the locking tool shown in FIGS. 13 and 14 is screwed.
  • a magnetron that forms a microwave is provided, and the microwave formed by the magnetron is used as a waveguide.
  • a microwave heating unit radiating from the antenna is provided.
  • the antenna that radiates microwaves to the heating chamber 4 is disposed below the bottom wall of the heating chamber 4 and has a configuration that radiates microwaves such as circularly polarized waves from below to the heating chamber 4. Yes.
  • the antenna has a configuration capable of radiating directional microwaves, and can rotate the inside of the heating chamber 4 uniformly by rotating the antenna.
  • a steam heating unit that intensively jets steam into the heating chamber and cooks and cooks food by circulating hot air inside the heating chamber 4
  • a hot air circulation unit is provided for cooking the food.
  • the steam heating unit has a water tank inside the main body 1 and has a configuration in which water vapor generated by heating water to a high temperature by a steam heater of a boiler is intensively injected into the inside of the heating chamber 4.
  • the hot air circulation unit is configured to heat the air sucked from the heating chamber 4 by a back heater provided on the back side of the heating chamber 4 and supply hot air to the inside of the heating chamber 4.
  • the flat heater unit 8 As described above, as the heating cooking means in the heating cooker of the present embodiment, the flat heater unit 8, the microwave heating unit, the steam heating unit, and the hot air circulation unit are provided, and each heating is performed according to the cooking content.
  • a cooking unit is selected, and in some cases, a plurality of heating cooking units are driven or controlled simultaneously or in combination.
  • heating control by the flat heater unit 8 will be mainly described.
  • the detection end 18 a of the heater temperature detection unit 18 is accommodated in the temperature detection opening 13 d formed in the first heat insulating material 13, and is detected by the heater temperature detection unit 18.
  • the end portion 18 a is disposed in a heating region (heating space) that is directly heated by the inner heater 20 of the flat heater 11.
  • the heater temperature detector 18 detects the temperature of the space directly heated by the inner heater 20, and transmits the detected temperature to the controller 7 (see FIG. 18) as heater temperature information.
  • the heating cooking operation is performed according to the cooking content set by the user, based on the inside temperature information from the inside temperature detecting unit 9 that detects the inside temperature of the heating compartment 4 together with the heater temperature information.
  • the heat source and drive source in the are controlled.
  • the control unit 7 detects the temperature from the heater temperature detection unit 18. Based on accurate heater temperature information, temperature control in the cooking operation by the inner heater 20 can be performed. In the present embodiment, as will be described later, since the speed heating operation for rapidly increasing the temperature of the heating chamber 4 by the inner heater 20 having a large heater output is performed, the heater temperature information is effective in this speed heating operation. .
  • the control unit 7 performs temperature control in the cooking operation based on the heater temperature information and the internal temperature information from the heater temperature detection unit 18.
  • the control operation is performed based on the heater temperature information indicating the temperature of the heating region heated by the inner heater 20. It is a structure to be called.
  • the control unit 7 can rapidly heat the temperature of the heating region heated by the inner heater 20 to the set temperature, and can rapidly increase the temperature inside the heating chamber 4. .
  • the inner heater 20 in the present embodiment is configured to control the input current to a desired value, and the heater output can be set to a desired value.
  • the internal temperature is accurately determined by performing input current control on the inner heater 20 based on the internal temperature information and the heater temperature information. It becomes possible to maintain a high set temperature. As a result, in the cooking device of the present embodiment, it is possible to significantly reduce the time until the inside temperature reaches the set temperature, and to maintain the inside temperature at the set temperature with high accuracy for a predetermined time. It becomes possible.
  • FIG. 18 is a part of a circuit diagram for controlling the cooking device in the cooking device of the present embodiment.
  • the inner heater 20 and the outer heater 21 in the flat heater unit 8 the steam heater 26 in the steam heating unit, the back heater 27 in the hot air circulation unit, and the microwave heating unit
  • a magnetron 28 In the hot air circulation unit, a circulation fan motor 29 is used.
  • the inner heater 20, the outer heater 21, the steam heater 26, the back heater 27, and the circulation fan motor 29 are connected to corresponding switching elements so as to be on / off controlled.
  • the magnetron 28 which is a microwave generation means in the microwave heating unit is connected to an inverter circuit which is a driving power source.
  • the triac 30 is used as a switching element for the drive control of the inner heater 20, and the current input to the inner heater 20 can be controlled to a desired value.
  • the outer heater 21 uses a relay 31 as a switching element that simply switches on / off.
  • the outer heater 21 in the present embodiment will be described with a configuration using the relay 31 as a switching element for simply switching on / off.
  • the input power is continuously stepped using a triac as a switching element. It may be configured to be variably controllable.
  • the cooking device there is a predetermined rated power, and it is not possible to use power that exceeds the rated power.
  • the heating cooker of this embodiment it is the structure which can be cooked using a some heating cooking means, and is controlled in the control part 7 so that power consumptions, such as a heat source to start, are always less than rated power.
  • the planar heater unit 8 in the heating cooker of the present embodiment performs characteristic control.
  • the heater 25 in the flat heater unit 8 constitutes one heat source by the inner heater 20 and the outer heater 21.
  • the maximum heater output of the inner heater 20 is 900 W, for example.
  • the inner heater 20 is driven and controlled by the triac 30 as a switching element. For this reason, the inner heater 20 can be driven with a heater output that can be changed steplessly within a range of 300 to 900 W by a control signal input to the triac 30.
  • the inner heater 20 of the flat heater 11 is driven and controlled to a heater output of 700 W, and the outer heater 21 is controlled.
  • the heating chamber 4 can be heated by the heater output of 1400 W in total as the flat heater 11.
  • the inner heater 20 of the flat heater 11 is set to 900 W.
  • the outer heater 21 is turned off (0 W), and the heating chamber 4 is heated from above by the heater output of 900 W in total as the flat heater 11.
  • 450 W is used as the power consumption of the magnetron 28 or the like to heat the heating tray 6 stored in the heating chamber 4, and to the heating tray 6. The placed food can be cooked by heating.
  • the outer heater 21 is turned off (0 W)
  • the inner heater 20 is set to a heater output of 430 W
  • 550 W is used as the power consumption of the magnetron 28 or the like in the microwave heating unit.
  • the cooked food can be cooked.
  • a desired cooking operation can be executed.
  • the central heating of the heating chamber 4 can be intensively heated by using the flat heater unit 8 and the microwave heating unit.
  • the heater output per unit area is increased 1.6 times by setting the heater output, which was 650W in the past, to 900W.
  • the inner heater 20 has a higher heater output than the outer heater 21. Therefore, in the configuration of the present embodiment, since the central portion of the ceiling wall surface of the heating chamber 4 can be rapidly heated by the inner heater 20 having a large heater output, the central portion of the ceiling wall surface becomes a heating element. Can radiate heat intensively to the central portion of the heating chamber 4. Moreover, the temperature rise of the heating chamber upper plate 10 can be made uniform by forming the heater wires by winding them at high density.
  • the configuration of the present embodiment has a configuration in which microwaves (circularly polarized waves) can be radiated in a concentrated manner from the bottom of the heating chamber 4 toward the central portion of the heating chamber 4 from the antenna of the microwave heating unit. ing.
  • a heating tray 6 on which food to be heated is placed is housed in the heating chamber 4, and a heating element that absorbs microwaves and generates heat is embedded in the placement surface 33 of the heating tray 6.
  • the food on the mounting surface of the heating tray 6 is heated from below by the heating tray 6 heated by the heating element by the microwave heating unit, and the ceiling heater unit 8
  • the central part is heated and receives heat radiation from the central part from above to be heated intensively. That is, in the cooking device of the present embodiment, the food in the heating tray 6 stored in the heating chamber 4 can be rapidly heated at a high temperature from above and below.
  • FIG. 19 is a perspective view showing the heating pan 6 used in the heating cooker of the present embodiment.
  • FIG. 20 is a plan view of the heating tray 6 shown in FIG. As shown in FIG. 19 and FIG. 20, the plan view has a rectangular shape, and the outer edge portion 34 has a flange shape spreading outward. A central portion surrounded by the outer edge portion 34 has a concave shape, and a bottom surface thereof serves as a placement surface 33.
  • the mounting surface 33 has an uneven shape. In the uneven shape on the mounting surface 33, valleys and ridges that are inclined with respect to the horizontal direction of the mounting surface 33 (the horizontal direction of the cooking device) are alternately formed. In the present embodiment, the oblique valley and peak are extended at an angle of approximately 45 degrees with respect to the left-right direction.
  • a region boundary mark 32 indicating a rectangular shape is provided at the center portion of the mounting surface 33 of the heating tray 6.
  • the inside of the region boundary mark 32 is a speed heating region B, and the cooking is performed by intensive speed heating with respect to an object to be cooked by using the microwave heating by the inner heater 20 and the microwave heating unit of the flat heater unit 8 described above. Indicates the area. Accordingly, the user can place food to be cooked on the speed heating region B inside the region boundary mark 32 in the heating tray 6 and cook by speed heating.
  • the region boundary mark 32 may have a convex shape, a concave shape, or a configuration that can be easily confirmed visually and tactilely by printing or the like.
  • the cooking device of the present embodiment in the configuration in which cooking is performed using at least a flat heater as a heating cooking means, it is possible to speed up the rise of the inside temperature and at the same time, It becomes the structure which can maintain temperature (heating board upper plate temperature) at fixed temperature.
  • the cooking device of the present embodiment can accurately set the internal temperature (heating plate upper plate temperature) to the set temperature and shorten the time until the internal temperature reaches the set temperature. It becomes the structure which can achieve shortening of time.
  • the rated power is specified, but a plurality of power devices whose total power consumption exceeds the rated power are used.
  • the inside of the heating chamber is configured to be able to rapidly start up with a desired high heating power and rapidly cook.
  • the cooking device according to the present disclosure has a configuration capable of quickly raising the internal temperature to a desired temperature, can shorten the cooking time, and becomes a cooking device with high market value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Stoves And Ranges (AREA)
  • Electric Ovens (AREA)
  • Baking, Grill, Roasting (AREA)

Abstract

本開示に係る加熱調理器は、被調理物を加熱する加熱庫と、加熱庫の天井壁の上に設けられ、天井壁の中央部分の直上に配設された内側ヒーター、および、内側ヒーターを取り囲む外側ヒーターにより1つの熱源となる平面ヒーターと、平面ヒーターにおける内側ヒーターと外側ヒーターとをそれぞれ制御する制御部と、を備えている。加熱庫の天井壁は、加熱庫側が凹面となる3次元曲面を有し、平面ヒーターの全面が天井壁に対して密接するよう固定されている。

Description

加熱調理器
 本開示は、加熱庫内の被調理物である食品を加熱調理する加熱調理器に関し、特に加熱庫の天井壁上に設けた平面ヒーターにより被調理物を加熱する加熱調理器に関する。
 加熱調理器における加熱調理手段としては、熱線を放射して食品を直接加熱する赤外線ヒーターユニット、マイクロ波を照射して食品を加熱するマイクロ波加熱ユニット、水蒸気により食品を加熱するスチーム加熱ユニット、加熱庫の内部に熱風を循環させて食品を加熱する熱風循環ユニットなどが用いられている。
 また、加熱調理器における加熱調理手段としては、直方体形状の加熱庫の天井壁上に平面ヒーターを設けて、天井壁を加熱し、当該天井壁により加熱庫内部を間接的に加熱する構成がある(特許文献1および2参照)。
特開平3-103206号公報 特開2010-54124号公報
 上記のように、加熱調理器においては、加熱庫内部の被調理物である食品に対して料理に応じた最適な加熱調理を行うために、適切な加熱調理手段が選択されるように構成されている。加熱調理器を用いて加熱調理を行う場合、加熱庫内部が設定された調理温度(設定温度)に短時間で到達して、その設定温度が所定の時間一定に保持されることが、美味しい料理を作る上で重要であり、また調理時間を短縮する上でも重要な点である。
 加熱調理器において、加熱調理手段として天井壁上に設けた平面ヒーターを用いた構成では、天井壁を加熱して、加熱された天井壁から放射される熱により加熱庫内部を設定温度となるように加熱する。このため、平面ヒーターからの熱を加熱庫内部に対して効率高く伝熱させる必要がある。しかしながら、天井壁は平面ヒーターの熱による膨張と収縮を繰り返すため、天井壁面と平面ヒーターとを常に密接状態を維持させることが困難である。これにより、天井壁面と平面ヒーターとの間には隙間(空気層)が生じて、平面ヒーターから天井壁への伝熱効率が悪化するという問題を有していた。
 また、平面ヒーターの熱源(ヒーター線)は電気絶縁部材で覆われている。平面ヒーターの熱源からの熱は電気絶縁部材を介して天井壁に伝わって天井壁を加熱し、加熱された天井壁の熱により加熱庫の庫内温度を設定温度まで上昇させている。また、従来の加熱調理器においては、庫内温度を温度検出手段により検出して、その検出した庫内温度に基づいて、加熱庫内部が設定温度となるように平面ヒーターに対するオンオフ制御を行っていた。もし、このような従来の加熱調理器において、平面ヒーターにより庫内温度を設定温度に到達するまで加熱庫を加熱した場合、庫内温度が設定温度に到達したときの平面ヒーターは、設定温度より高い温度となっており、場合によっては平面ヒーターの耐熱温度を超えるおそれがある。このため、従来の加熱調理器においては、安全性および信頼性を考慮して庫内温度が設定温度に到達するより遙か前に平面ヒーターを一旦オフ状態として、それ以降は平面ヒーターのオンオフ動作を繰り返すことにより、庫内温度を徐々に設定温度に近づける構成であった。このように従来の加熱調理器においては、検出された庫内温度に基づいて平面ヒーターが制御されて設定温度に到達する構成であるため、精度高く設定温度とすることが困難であり、また設定温度に到達するまでに時間を要するものであった。
 また、従来の加熱調理器においては、庫内温度を設定温度に維持するために、平面ヒーターに対して単純に入り切りを行うオンオフ動作を繰り返す制御であるため、庫内温度が上下にふらつき、一定温度に維持することが困難であった。
 さらに、例えば一般家庭で用いられる加熱調理器においては、定格電力が規定されており、入力電力が制限されるという課題を有する。このため、加熱調理器に設ける熱源としては定格電力内で設計しなければならない。特に平面ヒーターを加熱調理手段として用いた場合には、他の加熱調理手段を考慮して加熱庫内部を所望の電力で急激に立ち上げて加熱調理することが困難であった。
 本開示は、少なくとも平面ヒーターを加熱調理手段として用いて加熱調理を行う構成において、加熱庫の庫内温度が設定温度まで立ち上がりが早く、且つ庫内温度を設定温度に維持することができる加熱調理器の提供を課題とする。
 本開示に係る一態様の加熱調理器は、被調理物を加熱する加熱庫と、加熱庫の天井壁の上に設けられ、天井壁の中央部分の直上に配設された内側ヒーターおよび内側ヒーターを取り囲む外側ヒーターにより1つの熱源となる平面ヒーターと、平面ヒーターにおける内側ヒーターと外側ヒーターとをそれぞれ制御する制御部と、を備えている。加熱庫の天井壁は、加熱庫側が凹面となる3次元曲面を有し、平面ヒーターの全面が天井壁に対して密接するよう固定されている。
 本開示によれば、少なくとも加熱調理手段として平面ヒーターを用いて、庫内温度を設定温度まで短時間で到達させることができると共に、庫内温度を設定温度に確実に維持することができるため、使用者にとって所望の加熱調理を短時間で行うことが可能な加熱調理器を提供することができる。
図1は、本実施形態の加熱調理器の外観を示す斜視図である。 図2は、本実施形態の加熱調理器における扉が開いた状態を示す斜視図である。 図3は、本実施形態の加熱調理器の外カバーを外した状態を示す斜視図である。 図4は、本実施形態の加熱調理器の上側を断面で示した正面図である。 図5は、本実施形態の加熱調理器における平面ヒーターユニットの分解斜視図である。 図6Aは、本実施形態の加熱調理器における平面ヒーターユニットの加熱庫上板の平面図である。 図6Bは、図6Aの6B-6B線による端面図である。 図6Cは、図6Aの6C-6C線による端面図である。 図7は、本実施形態の加熱調理器における平面ヒーターを示す分解斜視図である。 図8は、本実施形態の加熱調理器におけるヒーターを示す平面図である。 図9は、本実施形態の加熱調理器における平面ヒーターの平面図である。 図10は、本実施形態の加熱調理器における平面ヒーターの裏面図である。 図11は、本実施形態の加熱調理器において、加熱庫上板に平面ヒーターが装着された状態を示す斜視図である。 図12Aは、本実施形態の加熱調理器における押え板の平面図である。 図12Bは、図12Aの12B-12B線による端面図である。 図12Cは、図12Aの12C-12C線による端面図である。 図13は、本実施形態の加熱調理器における押え板の加熱庫上板に対する装着方法を説明する断面図である。 図14は、本実施形態の加熱調理器において、加熱庫上板が高温度となったときの押え板の加熱庫上板に対する装着状態を示す断面図である。 図15は、本実施形態の加熱調理器におけるヒーター温度検出部が装着された状態を拡大して示す断面図である。 図16は、本実施形態の加熱調理器における平面ヒーターユニットを示す斜視図である。 図17Aは、本実施形態の加熱調理器における平面ヒーターユニットの平面図である。 図17Bは、図17Aの17B-17B線による断面図である。 図17Cは、図17Aの17C-17C線による断面図である。 図18は、本実施形態の加熱調理器における加熱調理手段を制御する回路図である。 図19は、本実施形態の加熱調理器において用いられる発熱皿を示す斜視図である。 図20は、図19に示した発熱皿の平面図である。
 本開示に係る第1の態様の加熱調理器は、被調理物を加熱する加熱庫と、加熱庫の天井壁の上に設けられ、天井壁の中央部分の直上に配設された内側ヒーターおよび内側ヒーターを取り囲む外側ヒーターにより1つの熱源となる平面ヒーターと、平面ヒーターにおける内側ヒーターと外側ヒーターとをそれぞれ制御する制御部と、を備えている。加熱庫の天井壁は、加熱庫側が凹面となる3次元曲面を有し、平面ヒーターの全面が天井壁に対して密接するよう固定されている。
 このように構成された第1の態様の加熱調理器は、加熱調理手段として平面ヒーターを用いて、庫内温度(上板温度)を設定温度まで短時間で到達させることができると共に、庫内温度(上板温度)を設定温度に確実に維持することができる構成となる。
 本開示に係る第2の態様の加熱調理器は、第1の態様における加熱庫の天井壁面が有する3次元曲面が、平面視が長方形であり、長手方向の曲率が短手方向の曲率と異なる構成でもよい。
 本開示に係る第3の態様の加熱調理器は、第1の態様における加熱庫の天井壁が、平面ヒーターの熱による膨張/収縮の変形力を吸収する複数の領域を有してもよい。
 本開示に係る第4の態様の加熱調理器は、第1の態様における加熱庫の天井壁が、平面ヒーターの熱による膨張/収縮の変形力を吸収する複数の領域を有し、複数の領域のそれぞれが同じ形状を有してもよい。
 本開示に係る第5の態様の加熱調理器は、第1の態様における加熱庫の天井壁が、平面ヒーターの熱による膨張/収縮の変形力を吸収する複数の多角形形状の領域を有してもよい。
 本開示に係る第6の態様の加熱調理器は、第1の態様における加熱庫の天井壁が、平面ヒーターの熱による膨張/収縮の変形力を吸収する複数のハニカム形状の領域を有してもよい。
 本開示に係る第7の態様の加熱調理器は、第1の態様の平面ヒーターが、天井壁に対して可動範囲を有して取り付けられた3次元曲面を有する押え板により断熱材を介して保持される構成でもよい。
 本開示に係る第8の態様の加熱調理器は、第7の態様の押え板が、内側ヒーターと外側ヒーターに対向するそれぞれの領域に内側ヒーターと外側ヒーターの方向に突出する押圧部が形成されており、当該押圧部により断熱材を介して内側ヒーターと外側ヒーターを押圧するよう構成されてもよい。
 本開示に係る第9の態様の加熱調理器は、第1の態様の内側ヒーターと外側ヒーターの最大ヒーター出力の合計が当該加熱調理器の定格電力を超える構成を有していてもよい。制御部が、内側ヒーターに入力する電力を制御して、内側ヒーターと外側ヒーターのヒーター出力の合計が当該加熱調理器の定格電力を越えないように構成されてもよい。
 本開示に係る第10の態様の加熱調理器は、第1の態様の内側ヒーターにより直接加熱される領域の温度を検出するヒーター温度検出器を備えていてもよい。制御部が、ヒーター温度検出器により検出されたヒーター温度情報に基づいて、内側ヒーターを加熱庫の設定温度(設定温度近傍を含む)まで立ち上げるよう制御するよう構成してもよい。
 本開示に係る第11の態様の加熱調理器は、第1の態様の加熱庫の天井壁における少なくとも平面ヒーター側の面は、黒色シリコン膜を有するよう構成してもよい。
 本開示に係る第12の態様の加熱調理器は、第1の態様の加熱庫の少なくとも天井壁の加熱庫側の面は、セルフクリーニング膜を有するよう構成してもよい。
 以下、本開示の加熱調理器に係る実施形態として、加熱調理手段として少なくとも平面ヒーターを用いた加熱調理器について、添付の図面を参照しながら説明する。なお、本開示の加熱調理器は、以下の実施形態に記載した加熱調理器の構成に限定されるものではなく、以下の実施形態において説明する技術的思想と同等の加熱調理器の構成を含むものである。以下で説明する実施形態は、本開示の一例を示すものであって、実施形態において示される構成、機能、動作などは、例示であり、本開示を限定するものではない。以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 以下、本開示に係る本実施形態の加熱調理器について添付の図面を参照して説明する。図1は、本実施形態の加熱調理器の外観を示す斜視図である。図2は、図1の本実施形態の加熱調理器における扉が開いた状態を示す斜視図である。
 図1および図2に示すように、加熱調理器は、本体1の内部に設けられた加熱庫4の正面開口が扉2により開閉可能に構成されている。扉2の上方端部には把手3が設けられており、把手3を使用者が握持して扉2を回動し、加熱庫4の正面開口を上開きに開閉する。加熱庫4の内部は扉2の閉成により実質的に密閉状態となり、加熱庫4の内部に配置された被加熱物である調理物が実質的な密閉状態で加熱調理される。
 図1に示すように、加熱調理器の正面には、上開きの扉2に加熱調理の調理温度設定、調理時間設定、などの各種調理条件を設定するための設定部5が設けられている。また、加熱調理器の正面に設けられた設定部5は、各種調理条件および加熱調理中の加熱状態などを表示する表示部などを有している。
 本実施形態の加熱調理器における加熱調理手段としては、平面ヒーターの他にマイクロ波を照射して食品を加熱するマイクロ波加熱ユニット、水蒸気により食品を加熱するスチーム加熱ユニット、および加熱庫4の内部に熱風を循環させて食品を加熱する熱風循環ユニットが用いられている。マイクロ波加熱ユニットは、マイクロ波を放射するアンテナが加熱庫4の底面壁下に設けられており、指向性を有するアンテナによりマイクロ波が加熱庫4内部に対して所望の方向に放射される構成である。スチーム加熱ユニットは、本体1の内部に水タンクを有し、水をボイラーのスチームヒーターにより高温度に加熱して生成された水蒸気を加熱庫4の内部に集中的に噴射する構成である。熱風循環ユニットは、加熱庫4の背面側に設けられた背面ヒーターにより加熱庫4から吸引した空気を加熱し、熱風を加熱庫4の内部に給気する構成である。
 本実施形態の加熱調理器においては複数の加熱調理手段が設けられており、使用者が所望の加熱調理手段を選択することにより、または使用者が調理内容を選択することにより、適切な加熱調理手段が選択される構成である。使用者が加熱調理器の加熱庫4内に被調理物である食品を配置して扉2を閉じ、設定部5において加熱調理手段や調理内容などを設定して開始ボタンを押圧することにより調理動作が開始される。
 図2に示すように、本実施形態の加熱調理器においては、加熱庫4の内部に被加熱物が載置される発熱皿6を収納できるように構成されている。発熱皿6は、加熱庫4の内部において上段、中段、または下段に配置されるように、加熱庫4の両側の側面壁には発熱皿6が摺動可能であり、発熱皿6を支持することができる段差が形成されている。発熱皿6における載置面33には発熱体(図示なし)が埋設されている。発熱体は、マイクロ波を吸収して、発熱するものであり、フェライトなどが用いられている。
 なお、本実施形態においては、発熱体としてフェライトを発熱皿6に埋設した例で説明するが、発熱体としてはマイクロ波を吸収して発熱するものであればよく、発熱体を発熱皿の裏面に塗布して構成してもよい。また、発熱皿6の主要な材料としては、熱伝導が優れたものであればよく、金属またはセラミックで構成してもよい。
 また、本実施形態においては、発熱皿6が加熱庫4の側面壁の段差により支持される構成で説明するが、天井壁からの吊り下げ構成、発熱皿6に下方に突出する足を設けて加熱庫4の底面壁に載置する構成でもよい。
 なお、加熱庫4の内部にマイクロ波を放射するアンテナ(図示なし)は、加熱庫4の底面壁の略中央の直下に配設されている。本実施形態におけるアンテナは、マイクロ波の放射方向に指向性を有すると共に、アンテナの直上に円偏波を放射できる構成を有している。従って、本実施形態におけるアンテナには、加熱庫4の内部にマイクロ波を均一に放射するように回転機構が設けられており、アンテナの放射口が回転するよう構成されている。また、本実施形態におけるアンテナは、アンテナの直上に配置される発熱皿6の発熱体に対しても円偏波を放射して誘電加熱するよう構成されている。
 加熱庫4の底面壁は、アンテナからのマイクロ波が透過する材料で形成されており、加熱庫4におけるその他の壁面である、側面壁、背面壁、および天井壁は、鉄鋼、またはステンレス鋼(SUS)のアルミニウムメッキ鋼板が用いられる。また、それぞれの壁面には、例えばフッ素樹脂、シリコン樹脂などの非粘着性を有する被膜層が形成されていてもよい。このような被膜層を形成することにより、調理時に飛散した油脂分、調理かすなどの汚れの付着を防止することができるとともに、汚れが付着したとしても、汚れを拭き取りやすい構成となる。さらに、加熱庫4のそれぞれの壁面においては、調理時の加熱により、調理時に飛散した油脂分を分解し、自動的に清掃するセルフクリーニング機能を持つ被覆層を形成してもよい。被覆層にセルフクリーニング機能を持たす方法としては、例えば酸化分解作用を促進する酸化マンガン系の触媒種などを被膜層に配合する方法、低温度での酸化分解作用に顕著な効果を発揮する白金または中高温域での活性が高いパラジウムなどを添加する方法を用いてもよい。さらに、吸着作用のあるセリウムなどを添加する方法を用いてもよい。
 上記のように、加熱庫4の内部に収納された発熱皿6に載置された被加熱物(食品)は、マイクロ波により誘電加熱された発熱体の熱により高温度となった発熱皿6により加熱調理されるが、本実施形態においては、加熱庫4の天井壁の上部に設けられた平面ヒーターユニット8により発熱皿6に載置された被加熱物(食品)の上面が加熱される構成を有する。
 図3は、本実施形態の加熱調理器の本体1における外カバーを外した状態を示す斜視図である。図3に示すように、加熱調理器の本体1の天井側には、即ち加熱庫4の天井壁を含む部分には平面ヒーターユニット8が設けられている。図4は、本実施形態の加熱調理器の上側を断面で示した正面図である。図4に示すように、加熱調理器における加熱庫4の上部が平面ヒーターユニット8で構成されていることが示されている。加熱庫4の内部の庫内温度を検出するための庫内温度検出手段として庫内温度検出部9、例えばサーミスタが加熱庫4の右奥のコーナー部分に設けられている。庫内温度検出部9が検出した庫内温度情報は、後述する制御部7(図18参照)に伝送されて、各種加熱調理動作における制御に用いられる。
 [平面ヒーターユニット]
 図5は、平面ヒーターユニット8を分解して示す分解斜視図である。図5に示すように、平面ヒーターユニット8は、図5の下側から、加熱庫4の天井壁を構成する加熱庫上板10と、加熱庫上板10の上面に密着される平面ヒーター11と、マイカで形成された当て板となる押え具12と、平面ヒーター11から上方への熱伝導を遮断する第1断熱材13と、平面ヒーター11を加熱庫上板10に第1断熱材13を介して押圧する押え板14とを有している。また、平面ヒーターユニット8には、平面ヒーター11の端子部24(図16参照)などを電気的に絶縁する絶縁シート15と、平面ヒーターユニット8の熱が本体1の外カバーへ伝熱されるのを遮断する遮熱板16と、第2断熱材17とが設けられている。このように、平面ヒーターユニット8は、積み上げ方式の組み立て構造であり、保守時には、各部品をすべて交換できるため、保守性の向上が図られている。さらに、平面ヒーターユニット8には、平面ヒーター11により直接的に加熱された加熱領域の温度を検出するヒーター温度検出手段であるヒーター温度検出部18が設けられている。以下、平面ヒーターユニット8における各構成物について詳細に説明する。
 [加熱庫上板]
 図6は、平面ヒーターユニット8において加熱庫4の天井壁を構成する加熱庫上板10を示す図である。図6Aは加熱庫上板10の平面図である。図6Bは図6Aに示した加熱庫上板10における6B-6B線による端面図である。図6Cは図6Aに示した加熱庫上板10における6C-6C線による端面図である。
 加熱庫上板10は加熱庫4の天井壁を構成するものであり、加熱庫上板10の外周縁以外の中央部分が平面視で長方形形状(10a)を有している。この長方形形状は加熱庫側(下側)が凹面となる曲面形状を有しており、平面ヒーター11が密着して配設される発熱領域10aとなる。本実施形態の加熱庫4は正面側が長手となる直方体形状を有しており、発熱領域10aが加熱庫4の天井壁の略全面を覆っている。加熱庫4の形状に対応する長方形形状の平面ヒーター11は、曲面形状の発熱領域10aに密着して全面に配設されている。このため、加熱庫4の天井壁を構成する加熱庫上板10の実質的に全面が、平面ヒーター11により加熱される発熱体となる。
 図6Bの端面図に示すように、加熱庫上板10における発熱領域10aの長手方向(図6Aの左右方向)の断面は、曲線で構成されている。同様に、図6Cの端面図に示すように、加熱庫上板10における発熱領域10aの短手方向(図6Aの上下方向)の断面も、曲線で構成されている。従って、加熱庫上板10における発熱領域10aは、加熱庫側が凹面となる3次元曲面を有している。本実施形態においては、発熱領域10aの長手方向の曲線の曲率は、発熱領域10aの短手方向の曲線の曲率と異なっており、長手方向の曲率が短手方向の曲率より大きくなっている。これに限られず、発熱領域10aの長手方向の曲率が短手方向の曲率より小さくなっていてもよい。
 図6Aの平面図に示すように、加熱庫上板10において、平面ヒーター11が密接して装着される発熱領域10aは、複数の正六角形形状(ハニカム形状)の領域(ハニカム領域)10bを有する。本実施形態においては、加熱庫上板10におけるハニカム領域10bの境界が加熱庫側に突出する溝により形成されており、それぞれのハニカム領域10bが実質的に同じ面積を有している。このように構成された加熱庫上板10はプレス加工により形成される。
 上記のように加熱庫上板10における発熱領域10aは、複数のハニカム領域10bを有して形成されている。このため、発熱領域10aは、平面ヒーター11の熱により膨張し、または平面ヒーター11が電力が遮断されたオフ状態のとき収縮するが、そのとき生じる膨張/収縮の全方向の変形力がそれぞれのハニカム領域10b内において吸収され得る構成である。発熱領域10aは密着した平面ヒーター11により加熱されるが、発熱領域10aの全面が平面ヒーター11により均一に加熱されることはなく、発熱領域10aにおける発熱分布は不均一となる。このため、発熱領域10aにおける膨張/収縮の変形力はそれぞれの領域において異なる大きさとなる可能性がある。もし、加熱庫4の天井壁である加熱庫上板が平坦な形状であり、膨張/収縮の変形力を吸収できる領域がなければ、天井壁が局所的に加熱されて不均一に変形して歪み、加熱庫上板と平面ヒーターとの間に隙間ができて、平面ヒーターからの熱が伝わり難い構造となる。
 本実施形態の加熱調理器においては、加熱庫上板10における発熱領域10aに溝により区切られた複数の領域(ハニカム領域)10bが形成されている。このため、これらのハニカム領域毎に膨張/収縮の変形力が分散されて吸収され、天井壁としては、発熱領域10aが局所的に大きく変形して歪むことがなく、加熱庫側が凹面となる曲面形状が全体的に滑らかに盛り上がる状態となる。この結果、発熱領域10aは平面ヒーター11と密接した状態を維持し、平面ヒーター11からの熱を効率高く、確実に受け取ることができるものとなる。
 上記のように、本実施形態においては、加熱庫上板10における発熱領域10aが局所的に変形することが防止され、発熱領域10aが全体的に同様の形状を維持して全体的に持ち上がる構成であるため、平面ヒーター11が発熱領域10aに密接した状態が確実に維持される構成となる。
 なお、本実施形態においては、加熱庫上板10における発熱領域10aを複数の正六角形形状(ハニカム形状)のハニカム領域10bで区切った構成で説明したが、その領域10bとしてはハニカム形状に特定されるものではなく、発熱領域10aにおける局所的な膨張/収縮の変形力を分散して吸収できる複数の領域で構成されていればよい。膨張/収縮の変形力を吸収する複数の領域としては、三角、四角など多角形形状の領域や、曲線で構成された領域などでも対応可能である。
 本実施形態における加熱庫上板10には、後述する押え板14を上下方向に遊動可能に装着するための押え板係止部10cが加熱庫上板10における略中央に設けられている。この押え板係止部10cには、係止具19である段付きビスがねじ込まれて押え板14が装着される。また、加熱庫上板10には、平面ヒーター11を密接して装着するための複数の留め具10dが突設されている。留め具10dは、発熱領域10aの上面から上方に突出した小片であり、屈曲可能な板材を発熱領域10aの上面に固着したものである。
 本実施形態における加熱庫上板10は、鉄鋼、またはステンレス鋼(SUS)のアルミニウムメッキ鋼板が用いられている。加熱庫上板10の両面には、例えばシリコン樹脂などによる黒色の膜体が形成されている。このように黒色の膜体を平面ヒーター側の面に形成することにより、平面ヒーター11からの熱を効率高く吸収できる構成となる。なお、本実施形態においては、加熱庫上板10の加熱庫側の面には、調理時の加熱により、調理時に飛散した油脂分を分解し、自動的に清掃するセルフクリーニング機能を持つ被覆層が形成されている。セルフクリーニング機能を有する被覆層の形成方法としては、前述したのでここでは省略する。なお、本実施形態においては、セルフクリーニング機能を持つ被覆層が、加熱庫4における両側面壁および背面壁にも形成されている。
 [平面ヒーター]
 図7は、加熱庫上板10の発熱領域10aに密着して装着される平面ヒーター11を示す分解斜視図である。図7に示すように、平面ヒーター11における熱源であるヒーター25は、内側のヒーター(内側ヒーター)20と、外側のヒーター(外側ヒーター)21とに分かれている。図8は、熱源である内側ヒーター20と外側ヒーター21とにより構成されたヒーター25を示す平面図である。内側ヒーター20と外側ヒーター21は、実質的に同一平面上に配置され、外側ヒーター21が内側ヒーター20を取り囲むように配置され、それぞれが個別に駆動制御される。本実施形態においては、内側ヒーター20が300Wから900Wの範囲で無段階で可変制御される構成であり、外側ヒーター21が700Wでオンオフ制御される構成である。
 内側ヒーター20および外側ヒーター21は、絶縁板であるマイカに対してヒーター線を巻き付けて形成されており、従来650Wであったヒーター出力を900Wにすることで、単位面積あたりのヒーター出力が1.6倍に大きくなっている。本実施形態においては、例えば、3.0W/cm(内側ヒーター)のヒーター出力が可能な構成となっている。なお、本実施形態においては、内側ヒーター20のヒーター線として厚み0.144mmの帯状のヒーター線を用い、外側ヒーター21のヒーター線として厚み0.10mmの帯状のヒーター線を用いた。ヒーター線を高密度に巻きつけて形成することにより、加熱庫上板10の温度上昇の均一化を図ることができる。
 図7に示すように、平面ヒーター11は、内側ヒーター20と外側ヒーター21により1つの熱源として構成されたヒーター25を上側絶縁材22と下側絶縁材23の2枚のマイカの板材により両側から挟んで形成されている。図9は平面ヒーター11の平面図であり、上側絶縁材22が示されている。図10は平面ヒーター11の裏面図であり、下側絶縁材23が示されている。
 図9および図10に示すように、上側絶縁材22と下側絶縁材23においては、内側ヒーター20と外側ヒーター21のそれぞれのヒーター線を挟着した領域が、スリット22a、23aにより区切られている。従って、内側ヒーター20と外側ヒーター21のそれぞれのヒーター線により加熱された上側絶縁材22と下側絶縁材23における互いの領域においては、他の領域からの伝熱が遮断される構成である。スリット22a、23aにより区切っている効果は、内側ヒーター20と外側ヒーター21を同時に通電した場合、お互いに膨張するため、加熱庫上板10の密着性が損なわれることを防止できることである。なお、ヒーター25を挟着した上側絶縁材22と下側絶縁材23のそれぞれには、前述の加熱庫上板10に設けられた押え板係止部10cおよび複数の留め具10dが挿入される開口22b、23bが形成されている。平面ヒーター11は端子部24を有しており、内側ヒーター20および外側ヒーター21のそれぞれのヒーター線に接続された端子が端子部24に設けられている。
 図11は、前述の加熱庫上板10の上面に平面ヒーター11が装着された状態を示す斜視図である。図11に示すように、平面ヒーター11は、加熱庫上板10における曲面の発熱領域10a上に密接して装着されている。加熱庫上板10に形成された留め具10dが折り曲げられて、平面ヒーター11は発熱領域10a上の所定位置に密着して装着される。このとき、加熱庫上板10の留め具10dは、平面ヒーター11を上下に貫通するように形成された開口(22b、23b)、およびマイカで形成された当て板となる押え具12の孔を貫通して折り曲げられて、平面ヒーター11を発熱領域10aの上面に密接するように装着される。また、加熱庫上板10における中央に設けられた押え板係止部10cは、平面ヒーター11を中央に形成された開口(22b、23b)内に配置される。
 [第1断熱材]
 図5に示したように、平面ヒーター11を覆うように第1断熱材13が配設されている。第1断熱材13は、平面ヒーター11の上面からの熱を遮断する機能を有しており、例えば、ガラスウールにより形成されている。第1断熱材13は、加熱庫上板10における少なくとも発熱領域10aの全面を覆うことができる形状を持ち、実質的に同一の厚みを有して、少なくとも厚み方向に弾性力(復元力)を有する。
 前述の図5に示したように、第1断熱材13には複数の開口が形成されている。第1断熱材13の中央に形成された開口は、加熱庫上板10に突設された押え板係止部10cが収納される係止部用開口13aである。また、第1断熱材13には、加熱庫上板10に設けられた留め具10dが収納される留め具用開口13b、平面ヒーター11のヒーター線が通る端子用開口13c、および後述する平面ヒーター11により直接的に加熱される加熱領域の温度を検出するヒーター温度検出手段であるヒーター温度検出部18の検出端部18a(図15参照)が収納される温度検出用開口13dを含んでいる。
 [押え板]
 図12は、第1断熱材13の上部を覆い、加熱庫上板10に装着される押え板14を示す図である。図12Aは押え板14の平面図である。図12Bは図12Aに示した押え板14における12B-12B線による端面図である。図12Cは図12Aに示した押え板14における12C-12C線による端面図である。
 図12に示すように、加熱庫上板10に装着される押え板14には、加熱庫上板10における曲面で形成された発熱領域10aと同様の曲面を有する曲面領域14aが形成されている。押え板14は、平面ヒーター11を第1断熱材13を介して加熱庫上板10の発熱領域10aに押し付ける機能を有しており、平面ヒーター11の全面を発熱領域10aに対して隙間なく密着させている。押え板14においては、平面ヒーター11の内側ヒーター20および外側ヒーター21と対向する位置に押圧部14bが形成されている。押圧部14bは、平面ヒーター11側に突出する連続する凸部で形成されており、平面ヒーター11の内側ヒーター20と外側ヒーター21を第1断熱材13を介して押圧している。また、上記のように押え板14に押圧部14bが形成されているため、押え板14としての剛性が高められている。また、密着性が悪い部分があれば、その部分に、押圧部14bを設けることで改善を図ることができ、加熱庫上板10の均一な温度上昇を図ることができる。
 図12Bの端面図に示すように、押え板14における曲面領域14aの長手方向(図12Aの左右方向)の断面は、実質的に曲線で構成されている。同様に、図12Cの端面図に示すように、押え板14における曲面領域14aの短手方向(図12Aの上下方向)の断面も、実質的に曲線で構成されている。従って、押え板14における曲面領域14aは、加熱庫側(下側)が凹面となる3次元曲面を有している。本実施形態においては、曲面領域14aの長手方向の曲線の曲率は、曲面領域14aの短手方向の曲線の曲率とは異なっており、長手方向の曲率が短手方向の曲率より小さくなっている。これに限られず、曲面領域14aの長手方向の曲率が短手方向の曲率より大きくなっていてもよい。上記のように、押え板14の曲面領域14aは、加熱庫上板10の発熱領域10aと同様の曲面を有している。
 また、図12Aに示すように、押え板14の中央には、加熱庫上板10に突設された押え板係止部10cに対してネジ止めするための係止具(段付きビス)19のネジ部19c(図13参照)が貫通する係止部装着孔14cが形成されている。
 図13は、係止具である段付きビス19を加熱庫上板10の押え板係止部10cに螺着して、押え板14を加熱庫上板10に対して上下方向に遊動可能に装着する方法について説明する断面図である。図13において、(a)は段付きビス19を押え板係止部10cに螺合させていく途中の状態を示しており、(b)は段付きビス19が押え板係止部10cに螺着されて組み立て完了した状態を示している。図13に示すように、段付きビス19は、頭部19aと円筒部19bとネジ部19cとを有して構成されており、円筒部19bの直径がネジ部19cの直径より大きく形成されている。
 図13の(a)に示すように、段付きビス19を押え板係止部10cに螺合させていく途中において、段付きビス19の頭部19aが押え板14に当接している。本実施形態の構成においては、図13の(a)に示すように段付きビス19の頭部19aが押え板14に当接した後、所定のピッチだけネジ込み、段付きビス19の円筒部19bが加熱庫上板10の押え板係止部10cに当接して、段付きビス19の押え板係止部10cに対する螺着が完了して組立が完成する。
 図14は、当該加熱調理器が使用されて、加熱庫上板10の発熱領域10aが平面ヒーター11により加熱されて高温度となったとき、発熱領域10aが膨張して盛り上がった状態を示している。図14に示すように、発熱領域10aが膨張して盛り上がったとしても、段付きビス19の円筒部19bが押え板14の係止部装着孔14cの内部を上方に摺動可能である。このため、発熱領域10aが膨張して盛り上がっても、押え板14が同様に上方に持ち上がることがなく、平面ヒーター11は発熱領域10aに対して押え板14により常に所定の圧力以上で押圧された状態が維持される。このように、本実施形態の加熱調理器においては、平面ヒーター11が発熱領域10aに対して常に押え板14により押圧された状態であるため、調理動作においては平面ヒーター11が発熱領域10aと隙間なく密着した状態が維持される。
 図12Aの押え板14の平面図に示したように、押え板14には温度検出装着部14dおよび端子装着部14eが設けられている。温度検出装着部14dは、平面ヒーター11からの熱により直接的に加熱される領域の温度を検出するヒーター温度検出部18、例えばサーミスタが装着される部位である。端子装着部14eは、平面ヒーター11における内側ヒーター20と外側ヒーター21のそれぞれの端子を有する端子部24が装着される。端子部24の各端子は、当該加熱調理器における制御部7により駆動制御される電源部に接続されている。
 図15は、押え板14の温度検出装着部14dにヒーター温度検出部18(サーミスタ)が装着された状態を拡大して示す断面図である。なお、図15に示す断面図は、前述の図4において符号XVで示した領域を拡大して示したものである。図15に示すように、ヒーター温度検出部18の検出端部18aが第1断熱材13に形成された温度検出用開口13dの内部に配置されている。温度検出用開口13dは、平面ヒーター11により直接的に加熱される加熱領域(加熱空間)を形成する。従って、ヒーター温度検出部18の検出端部18aは平面ヒーター11により直接的に加熱される加熱領域(加熱空間)に配置されている。本実施形態においては、加熱領域(加熱空間)が平面ヒーター11における内側ヒーター20の直上に形成されており、内側ヒーター20により直接的に加熱されている。ヒーター温度検出部18は、内側ヒーター20により直接的に加熱された加熱領域の温度を検出するため、このヒーター温度情報、および加熱庫4の内部の温度を検出する庫内温度検出部9からの庫内温度情報に基づいて、制御部7は平面ヒーター11などの当該加熱調理器に用いられている各種加熱調理手段の熱源を駆動制御する。
 図16は、前述の加熱庫上板10に平面ヒーター11、第1断熱材13、押え板14などが装着された平面ヒーターユニット8を示す斜視図である。図16に示すように、平面ヒーターユニット8は、加熱庫上板10における発熱領域10aを覆うように押え板14が装着されている。
 図17は、平面ヒーターユニット8を示す図である。図17Aは平面ヒーターユニット8の平面図である。図17Bは図17Aに示した平面ヒーターユニット8における17B-17B線による断面図である。図17Cは図17Aに示した平面ヒーターユニット8における17C-17C線による断面図である。
 図17に示すように、平面ヒーターユニット8としては実質的に一体化されて構成されており、この平面ヒーターユニット8により加熱庫4の天井壁が構成される。図17Bの断面図に示すように、平面ヒーターユニット8の長手方向(図17Aの左右方向)の断面は、実質的に同じ厚み(上下方向の長さ)を有する曲面で構成されている。同様に、図17Cの断面図に示すように、平面ヒーターユニット8の短手方向(図17Aの上下方向)の断面も、実質的に同じ厚み(上下方向の長さ)を有する曲面で構成されている。従って、平面ヒーターユニット8としては、全体的に加熱庫側(下側)が凹面となる3次元曲面を有している。なお、図17Bに示す断面図において、符号Aで囲む領域は、前述の図13および図14に示した係止具である段付きビス19が螺着されている部分を示している。
 [加熱制御]
 本実施形態の加熱調理器においては、上記のように構成された平面ヒーターユニット8の他の加熱調理手段として、マイクロ波を形成するマグネトロンを備え、マグネトロンで形成されたマイクロ波を導波管を介してアンテナから放射するマイクロ波加熱ユニットが設けられている。マイクロ波を加熱庫4に放射するアンテナは、加熱庫4の底面壁の下方に配設されており、加熱庫4に対して下方から円偏波などのマイクロ波を放射する構成を有している。また、アンテナは指向性を有するマイクロ波を放射することが可能な構成を有しており、アンテナを回転させることにより加熱庫4の内部を均一に加熱することが可能な構成である。
 また、本実施形態の加熱調理器における他の加熱調理手段としては、加熱庫内に水蒸気を集中的に噴射して加熱調理するスチーム加熱ユニット、および加熱庫4の内部に熱風を循環させて食品を加熱調理する熱風循環ユニットが設けられている。スチーム加熱ユニットは、本体1の内部に水タンクを有し、水をボイラーのスチームヒーターにより高温度に加熱して生成された水蒸気を加熱庫4の内部に集中的に噴射する構成である。熱風循環ユニットは、加熱庫4の背面側に設けられた背面ヒーターにより加熱庫4から吸引した空気を加熱し、熱風を加熱庫4の内部に供給する構成である。
 上記のように、本実施形態の加熱調理器における加熱調理手段としては、平面ヒーターユニット8、マイクロ波加熱ユニット、スチーム加熱ユニット、および熱風循環ユニットが設けられており、調理内容に応じて各加熱調理手段が選択され、場合によっては複数の加熱調理手段を同時に、または組み合わせて駆動制御される。なお、本実施形態においては、平面ヒーターユニット8による加熱制御を主として説明する。
 前述の図15に示したように、ヒーター温度検出部18の検出端部18aが第1断熱材13に形成された温度検出用開口13dの内部に収納されており、ヒーター温度検出部18の検出端部18aが平面ヒーター11の内側ヒーター20により直接的に加熱される加熱領域(加熱空間)に配置されている。ヒーター温度検出部18は、内側ヒーター20により直接的に加熱された空間の温度を検出して、検出した温度をヒーター温度情報として制御部7(図18参照)に送信する。制御部7においては、ヒーター温度情報と共に加熱庫4の庫内温度を検出する庫内温度検出部9からの庫内温度情報に基づいて、使用者が設定した調理内容などに応じて加熱調理動作における熱源および駆動源などを制御する。
 本実施形態においては、ヒーター温度検出部18が内側ヒーター20により直接的に加熱される加熱領域(加熱空間)の温度を検出する構成であるため、制御部7はヒーター温度検出部18からの高精度のヒーター温度情報に基づいて内側ヒーター20による加熱調理動作における温度制御を行うことができる。本実施形態においては、後述するように、ヒーター出力の大きな内側ヒーター20により加熱庫4を急激に温度上昇させるスピード加熱動作を行っているため、このスピード加熱動作においてはヒーター温度情報が有効となる。
 前述の[発明の概要]の欄で説明したように、従来の加熱調理器においては、検出された庫内温度に基づいて、加熱庫内部が設定温度となるように、平面ヒーターに対するオンオフ制御を行う構成であった。このため、従来の加熱調理器においては、庫内温度が設定温度に到達するより遙かに前に平面ヒーターを一旦オフ状態として、それ以降は平面ヒーターのオンオフ動作を繰り返すことにより、庫内温度を徐々に設定温度に近づける構成であった。従って、平面ヒーターを用いて庫内温度を精度高く設定温度とすることが困難であり、また設定温度に到達するまでに時間を要していた。
 本実施形態の加熱調理器においては、制御部7がヒーター温度検出部18からのヒーター温度情報および庫内温度情報に基づいて加熱調理動作における温度制御を行う構成である。特に、加熱庫4を急激に温度上昇させて、設定温度に短時間で到達させるスピード加熱動作においては、内側ヒーター20により加熱された加熱領域の温度を示すヒーター温度情報に基づいて制御動作が行われる構成である。このため、制御部7は、内側ヒーター20により加熱される加熱領域の温度を設定温度まで急激に加熱することが可能となり、加熱庫4の庫内温度を急激に温度上昇させることが可能となる。また、後述するように、本実施形態における内側ヒーター20は、入力する電流を所望の値に制御できる構成であり、ヒーター出力を所望の値とすることができる。このため、制御部7においては、庫内温度が設定温度に到達した後においては、庫内温度情報およびヒーター温度情報に基づいて内側ヒーター20に対する入力電流制御を行うことにより、庫内温度を精度高く設定温度に維持することが可能となる。その結果、本実施形態の加熱調理器においては、庫内温度が設定温度に到達するまでの時間を大幅に短縮することができると共に、庫内温度を精度高く設定温度に所定時間維持することが可能となる。
 [加熱調理動作]
 図18は、本実施形態の加熱調理器における加熱調理手段を制御する回路図の一部である。本実施形態の加熱調理器における加熱調理手段における熱源としては、平面ヒーターユニット8における内側ヒーター20および外側ヒーター21、スチーム加熱ユニットにおけるスチームヒーター26、熱風循環ユニットにおける背面ヒーター27、およびマイクロ波加熱ユニットにおけるマグネトロン28がある(図18参照)。また、熱風循環ユニットにおいては循環ファンモータ29が用いられている。
 図18の回路図に示すように、内側ヒーター20、外側ヒーター21、スチームヒーター26、背面ヒーター27、および循環ファンモータ29がオンオフ制御されるように、それぞれ対応するスイッチング素子に接続されている。また、マイクロ波加熱ユニットにおけるマイクロ波生成手段であるマグネトロン28が駆動電源であるインバータ回路に接続されている。本実施形態においては、内側ヒーター20の駆動制御をスイッチング素子としてトライアック30を用いており、内側ヒーター20に入力する電流を所望の値に制御できる構成を有している。外側ヒーター21は、単純にオン/オフを切り替えるスイッチング素子としてリレー31が用いられている。なお、本実施形態における外側ヒーター21は、単純にオン/オフを切り替えるスイッチング素子としてリレー31を用いた構成で説明するが、内側ヒーター20と同様にスイッチング素子としてトライアックを用いて入力電力を無段階に可変制御できる構成でもよい。
 加熱調理器においては、予め決められた定格電力があり、その定格電力以上の電力を使用することはできない。本実施形態の加熱調理器において、複数の加熱調理手段を用いて加熱調理することが可能な構成であり、起動する熱源などの消費電力が常に定格電力以内となりように制御部7において制御される。特に、本実施形態の加熱調理器における平面ヒーターユニット8においては特徴的な制御を行っている。
 平面ヒーターユニット8におけるヒーター25は、内側ヒーター20と外側ヒーター21により1つの熱源を構成しているが、本実施形態においては内側ヒーター20の最大ヒーター出力が、例えば900Wであり、外側ヒーター21の最大ヒーター出力が、例えば700Wである。そのため、内側ヒーター20と外側ヒーター21の最大ヒーター出力の合計は、一般的な家庭における定格電力(1500W=15A(定格電流)×100V)を越えている。本実施形態の加熱調理器においては、図18に示したように、内側ヒーター20がスイッチング素子としてトライアック30により駆動制御される構成を有している。このため、内側ヒーター20は、トライアック30に入力する制御信号により300~900Wの範囲内で無段階で可変できるヒーター出力で駆動することが可能である。
 以下、本実施形態の加熱調理器における加熱調理手段を用いた具体的な加熱調理動作について例示を用いて説明する。
 平面ヒーターユニット8のみを用いて加熱庫4を天井壁の略全面を発熱体として加熱調理する場合には、例えば、平面ヒーター11の内側ヒーター20を700Wのヒーター出力に駆動制御し、外側ヒーター21をオン状態として700Wのヒーター出力とすることにより、平面ヒーター11として合計1400Wのヒーター出力により加熱庫4を加熱することができる。
 平面ヒーターユニット8およびマイクロ波加熱ユニットを用いて加熱庫4に対して天井壁面および底面壁の下側からのマイクロ波により加熱調理する場合には、例えば、平面ヒーター11の内側ヒーター20を900Wの最大ヒーター出力とし、外側ヒーター21をオフ状態(0W)として、平面ヒーター11として合計900Wのヒーター出力により加熱庫4を上方から加熱する。一方、他の加熱調理手段として用いるマイクロ波加熱ユニットにおいては、マグネトロン28などの消費電力として、例えば450Wを使用して、加熱庫4に収納された発熱皿6を加熱して、発熱皿6に載置された食品を加熱調理することができる。
 別の例示としては、外側ヒーター21をオフ状態(0W)、内側ヒーター20を430Wのヒーター出力とし、マイクロ波加熱ユニットにおけるマグネトロン28などの消費電力として550Wを使用して、発熱皿6に載置された食品を加熱調理することができる。上記のように、平面ヒーターユニット8およびマイクロ波加熱ユニットを用いて加熱調理を行う場合であっても、一般的な家庭における定格電力(1500W=15A(定格電流)×100V)以下の消費電力により、所望の調理動作を実行することができる。
 本実施形態の加熱調理器においては、平面ヒーターユニット8およびマイクロ波加熱ユニットを用いることにより、加熱庫4の中央部分に対して集中的な加熱が可能となる。平面ヒーター11においては、従来650Wであったヒーター出力を900Wにすることで、単位面積当たりのヒーター出力が1.6倍になっている。特に内側ヒーター20は外側ヒーター21に比べてヒーター出力が高く構成されている。従って、本実施形態の構成においては、ヒーター出力が大きな内側ヒーター20により加熱庫4の天井壁面の中央部分を急激に加熱することができるため、天井壁面の中央部分が発熱体となり、この発熱体が加熱庫4の中央部分に対して集中的に熱放射することができる。また、ヒーター線を高密度に巻きつけて形成することにより、加熱庫上板10の温度上昇の均一化を図ることができる。
 一方、本実施形態の構成においては、加熱庫4の下方からはマイクロ波加熱ユニットのアンテナからマイクロ波(円偏波)を加熱庫4の中央部分に向かって集中的に放射できる構成を有している。加熱庫4の内部には被加熱物である食品が載置される発熱皿6が収納されており、この発熱皿6の載置面33にはマイクロ波を吸収して発熱する発熱体が埋設されている。この結果、発熱皿6の載置面上の食品に対しては、マイクロ波加熱ユニットにより、発熱体により加熱された発熱皿6により下方から加熱されると共に、平面ヒーターユニット8により、天井壁の中央部分が加熱されて、この中央部分からの熱放射を上方から受けて集中的に加熱される。即ち、本実施形態の加熱調理器においては、加熱庫4に収納された発熱皿6の食品に対して、上方および下方から急激に高温度で加熱することが可能な構成となっている。
 図19は本実施形態の加熱調理器において用いられる発熱皿6を示す斜視図である。図20は図19に示した発熱皿6の平面図である。図19および図20に示すように、平面視が長方形形状であり、外縁部34が外方向に広がったフランジ形状となっている。外縁部34で囲まれた中央部分が凹形状であり、その底面が載置面33となっている。載置面33は凹凸形状を有している。載置面33における凹凸形状は、載置面33の左右方向(当該加熱調理器の左右方向)に対して斜行した谷部と峰部が交互に形成されている。本実施形態においては、斜行した谷部と峰部が左右方向に対して略45度の角度を有して延設されている。
 また、発熱皿6の載置面33の中央部分には、長方形形状を示す領域境界マーク32が設けられている。領域境界マーク32の内側は、スピード加熱領域Bであり、前述の平面ヒーターユニット8の内側ヒーター20およびマイクロ波加熱ユニットによるマイクロ波加熱を用いて被調理物に対して集中的にスピード加熱調理する領域を示している。従って、使用者は、被調理物である食品を発熱皿6における領域境界マーク32の内側のスピード加熱領域Bに載置して、スピード加熱調理することができる。なお、領域境界マーク32としては、凸形状、凹形状、または印刷などにより、視覚および触覚により容易に確認できる構成であればよい。
 上記のように、本実施形態の加熱調理器においては、少なくとも平面ヒーターを加熱調理手段として用いて加熱調理を行う構成において、庫内温度の立ち上がりを早くすることが可能であると同時に、庫内温度(加熱庫上板温度)を一定温度に維持することができる構成となる。
 本実施形態の加熱調理器は、庫内温度(加熱庫上板温度)を精度高く設定温度とすることでき、庫内温度が設定温度に到達するまでの時間を短くすることができるため、調理時間の短縮を達成することができる構成となる。
 さらに、本実施形態の加熱調理器においては、特に、一般家庭で用いられる加熱調理器においては、定格電力が規定されているが、合計の消費電力が定格電力を超える複数の電力機器を用いて、加熱庫内部を所望の高火力で急激に立ち上げて急速に加熱調理することが可能な構成を有している。
 本開示の加熱調理器は、庫内温度を所望の温度に素早く立ち上げることが可能な構成を有して、調理時間を短縮をすることができ、市場価値の高い調理機器となる。
 1 本体
 2 扉
 3 把手
 4 加熱庫
 5 設定部
 6 発熱皿
 7 制御部
 8 平面ヒーターユニット
 9 庫内温度検出部
 10 加熱庫上板(天井壁)
 10a 発熱領域
 10b ハニカム領域
 10c 押え板係止部
 10d 留め具
 11 平面ヒーター
 12 押え具
 13 第1断熱材
 14 押え板
 15 絶縁シート
 16 遮熱板
 17 第2断熱材
 18 ヒーター温度検出部(サーミスタ)
 18a 検出端部
 19 係止具(段付きビス)
 20 内側ヒーター
 21 外側ヒーター
 22 上側絶縁材
 23 下側絶縁材
 24 端子部
 25 ヒーター
 26 スチームヒーター
 27 背面ヒーター
 28 マグネトロン
 29 循環ファンモータ
 30 トライアック
 31 リレー
 32 領域境界マーク
 33 載置面
 34 外縁部

Claims (12)

  1.  被調理物を加熱する加熱庫と、
     前記加熱庫の天井壁の上に設けられ、前記天井壁の中央部分の直上に配設された内側ヒーター、および、前記内側ヒーターを取り囲む外側ヒーターにより1つの熱源となる平面ヒーターと、
     前記平面ヒーターにおける前記内側ヒーターと前記外側ヒーターとをそれぞれ制御する制御部と、を備え、
     前記加熱庫の前記天井壁は、加熱庫側が凹面となる3次元曲面を有し、前記平面ヒーターの全面が前記天井壁に対して密接するよう固定された加熱調理器。
  2.  前記加熱庫の天井壁面が有する前記3次元曲面は、平面視が長方形であり、長手方向の曲率が短手方向の曲率と異なる請求項1に記載の加熱調理器。
  3.  前記加熱庫の前記天井壁は、前記平面ヒーターの熱による膨張/収縮の変形力を吸収する複数の領域を有する請求項1に記載の加熱調理器。
  4.  前記加熱庫の前記天井壁は、前記平面ヒーターの熱による膨張/収縮の変形力を吸収する複数の領域を有し、前記複数の領域のそれぞれが同じ形状を有する請求項1に記載の加熱調理器。
  5.  前記加熱庫の前記天井壁は、前記平面ヒーターの熱による膨張/収縮の変形力を吸収する複数の多角形形状の領域を有する請求項1に記載の加熱調理器。
  6.  前記加熱庫の前記天井壁は、前記平面ヒーターの熱による膨張/収縮の変形力を吸収する複数のハニカム形状の領域を有する請求項1に記載の加熱調理器。
  7.  前記平面ヒーターは、前記天井壁に対して可動範囲を有して取り付けられた3次元曲面を有する押え板により断熱材を介して保持された請求項1に記載の加熱調理器。
  8.  前記押え板は、前記内側ヒーターと前記外側ヒーターに対向するそれぞれの領域に前記内側ヒーターと前記外側ヒーターの方向に突出する押圧部が形成されており、前記押圧部により前記断熱材を介して前記内側ヒーターと前記外側ヒーターを押圧するよう構成された請求項7に記載の加熱調理器。
  9.  前記内側ヒーターと前記外側ヒーターの最大ヒーター出力の合計が前記加熱調理器の定格電力を超える構成を有し、
     前記制御部は、前記内側ヒーターに入力する電力を制御して、前記内側ヒーターと前記外側ヒーターのヒーター出力の合計が前記加熱調理器の前記定格電力を越えないように構成された請求項1に記載の加熱調理器。
  10.  前記内側ヒーターにより直接加熱される領域の温度を検出するヒーター温度検出器を備え、
     前記制御部は、前記ヒーター温度検出器により検出されたヒーター温度情報に基づいて、前記内側ヒーターを前記加熱庫の設定温度まで立ち上げるよう制御する請求項1に記載の加熱調理器。
  11.  前記加熱庫の前記天井壁における少なくとも平面ヒーター側の面は、黒色シリコン膜を有するよう構成された請求項1に記載の加熱調理器。
  12.  前記加熱庫の少なくとも前記天井壁の前記加熱庫側の面は、セルフクリーニング膜を有するよう構成された請求項1に記載の加熱調理器。
PCT/JP2017/001643 2016-03-09 2017-01-19 加熱調理器 WO2017154364A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780014262.5A CN108700305B (zh) 2016-03-09 2017-01-19 加热烹调器
EP17762710.6A EP3428539B1 (en) 2016-03-09 2017-01-19 Thermal cooking device
HK18114932.2A HK1255856A1 (zh) 2016-03-09 2018-11-22 加熱烹調器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016046205A JP6519881B2 (ja) 2016-03-09 2016-03-09 加熱調理器
JP2016-046205 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017154364A1 true WO2017154364A1 (ja) 2017-09-14

Family

ID=59789217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001643 WO2017154364A1 (ja) 2016-03-09 2017-01-19 加熱調理器

Country Status (6)

Country Link
EP (1) EP3428539B1 (ja)
JP (1) JP6519881B2 (ja)
CN (1) CN108700305B (ja)
HK (1) HK1255856A1 (ja)
TW (1) TWI627906B (ja)
WO (1) WO2017154364A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124371A (ja) * 2018-01-12 2019-07-25 大日本印刷株式会社 加熱システム、加熱装置、容器、シート、加熱制御方法、及びプログラム
JP6904934B2 (ja) * 2018-09-21 2021-07-21 日立グローバルライフソリューションズ株式会社 加熱調理器
JP2023032378A (ja) 2021-08-27 2023-03-09 パナソニックIpマネジメント株式会社 加熱調理器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210517A (ja) * 1985-07-09 1987-01-19 Matsushita Electric Ind Co Ltd 加熱調理器
JPS62299628A (ja) * 1986-06-19 1987-12-26 Matsushita Electric Ind Co Ltd 加熱調理器
JPS63225494A (ja) * 1987-03-13 1988-09-20 松下電器産業株式会社 加熱調理器
JPH0350421A (ja) * 1989-07-18 1991-03-05 Sanyo Electric Co Ltd 加熱調理器
JPH03103206A (ja) * 1989-09-19 1991-04-30 Sanyo Electric Co Ltd 加熱調理装置
JP2011098139A (ja) * 2009-11-09 2011-05-19 Panasonic Corp 加熱調理器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755162A (ja) * 1993-08-20 1995-03-03 Toshiba Corp 電子レンジ
JP3020782B2 (ja) * 1993-10-18 2000-03-15 株式会社東芝 加熱調理器の平面ヒータ
JP2005052445A (ja) * 2003-08-05 2005-03-03 Sanyo Electric Co Ltd 加熱調理器
JP5197236B2 (ja) * 2008-08-28 2013-05-15 株式会社東芝 加熱調理器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210517A (ja) * 1985-07-09 1987-01-19 Matsushita Electric Ind Co Ltd 加熱調理器
JPS62299628A (ja) * 1986-06-19 1987-12-26 Matsushita Electric Ind Co Ltd 加熱調理器
JPS63225494A (ja) * 1987-03-13 1988-09-20 松下電器産業株式会社 加熱調理器
JPH0350421A (ja) * 1989-07-18 1991-03-05 Sanyo Electric Co Ltd 加熱調理器
JPH03103206A (ja) * 1989-09-19 1991-04-30 Sanyo Electric Co Ltd 加熱調理装置
JP2011098139A (ja) * 2009-11-09 2011-05-19 Panasonic Corp 加熱調理器

Also Published As

Publication number Publication date
CN108700305B (zh) 2020-01-07
JP2017161163A (ja) 2017-09-14
CN108700305A (zh) 2018-10-23
HK1255856A1 (zh) 2019-08-30
EP3428539A4 (en) 2019-03-13
TWI627906B (zh) 2018-07-01
TW201731386A (zh) 2017-09-16
EP3428539A1 (en) 2019-01-16
JP6519881B2 (ja) 2019-05-29
EP3428539B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
CN108700304B (zh) 加热烹调器
WO2017154364A1 (ja) 加熱調理器
JP6455731B2 (ja) 加熱調理器
JP2008241062A5 (ja)
JP7145481B2 (ja) 加熱調理器
KR20160126625A (ko) 전기밥솥
JP2008281302A (ja) 加熱調理装置
US20220151434A1 (en) Cooking appliance employing radiative flux
JP2013024539A (ja) 加熱調理器
WO2023026787A1 (ja) 加熱調理器
JPH0779753B2 (ja) 加熱調理装置
JP2008067997A (ja) 高周波加熱装置
JP4389763B2 (ja) 炊飯器
WO2022044719A1 (ja) 高周波加熱調理器
KR200238000Y1 (ko) 전기 레인지
JP3085508U (ja) 加熱装置用輻射板
JP2015114017A (ja) 加熱調理器具及び高周波加熱調理器
JP2012011017A (ja) 調理器具およびそれを用いた加熱装置
KR20100081242A (ko) 다기능 전자레인지의 히터결합체
JPH0578733B2 (ja)
JPH0826996B2 (ja) 電気調理器
JP2004049821A (ja) 高周波加熱調理器用食品載置皿
KR20050121969A (ko) 전자레인지용 히터의 열선구조

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762710

Country of ref document: EP

Kind code of ref document: A1