WO2017154274A1 - アーク検出装置 - Google Patents

アーク検出装置 Download PDF

Info

Publication number
WO2017154274A1
WO2017154274A1 PCT/JP2016/084646 JP2016084646W WO2017154274A1 WO 2017154274 A1 WO2017154274 A1 WO 2017154274A1 JP 2016084646 W JP2016084646 W JP 2016084646W WO 2017154274 A1 WO2017154274 A1 WO 2017154274A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
current
solar cell
cell string
capacitor
Prior art date
Application number
PCT/JP2016/084646
Other languages
English (en)
French (fr)
Inventor
岳史 蘆田
公平 冨田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2017154274A1 publication Critical patent/WO2017154274A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/50Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an arc detection device applied to a DC power supply system.
  • a photovoltaic power generation system power generated by a solar cell is supplied to a power transmission network via a power conditioning system (hereinafter simply referred to as a PCS (Power Conditioning System)) including a DC / AC converter and the like. It has become so.
  • a power conditioning system hereinafter simply referred to as a PCS (Power Conditioning System)
  • a DC / AC converter DC / AC converter
  • the photovoltaic power generation system includes an arc detection device that detects the occurrence of an arc by measuring the alternating current of the arc with a current sensor.
  • the plurality of solar cell strings are connected in parallel in a connection box 112 and connected to the PCS 113 via the connection box 112 as shown in FIG. Has been.
  • the solar cell strings 111a and 111b are each formed by connecting a plurality of solar cell modules 115 in series.
  • Patent Document 2 discloses a power supply device G as a booster box 116.
  • the booster box 116 includes a booster circuit that boosts the output voltage of the solar cell string 111a so as to match the output voltage of the solar cell string 111b.
  • the current sensor 114 detects the alternating current of the electric arc. I can't.
  • the boost box 116 is normally configured by a boost chopper circuit, and the AC component of the electric arc is reduced by the inductor in the boost chopper circuit, and is inserted into the boost chopper circuit for voltage stabilization. This is because a high frequency component of the alternating current of the electric arc flows through the capacitor and does not flow through the current sensor 114.
  • FIG. 12 shows the alternating current waveform before and after the booster box 116 and the operation of the booster box 116 in this case.
  • (A) of FIG. 12 is a graph which shows the waveform of the alternating current of the arc non-generation state and the arc generation state in the front stage (the solar cell string 111a side) of the boost box 116.
  • FIG. 12B is a graph showing the waveform of the alternating current in the arc non-generated state and the arc generated state in the subsequent stage (on the connection box 112 side) of the booster box 116.
  • an object of the present invention is to provide an arc detection device that can detect an electric arc generated in a photovoltaic power generation system even when a booster box (a booster circuit) is present.
  • an arc detection device includes a first DC power source that generates or charges / discharges, a booster circuit that boosts an output voltage of the first DC power source, and the booster circuit.
  • a load device that consumes or converts output power; a pair of first power lines that connect the first DC power source and the booster circuit; and a pair of second power lines that connect the booster circuit and the load device.
  • An arc detection device applied to a direct-current power supply system comprising: a first capacitor connected in parallel with the booster circuit to form a bypass current path that bypasses the booster circuit; and a current flowing through the first capacitor
  • a first current measurement unit that measures current in a current path that can flow, and a first arc determination that determines the presence or absence of an arc based on a high-frequency component of the current measured by the first current measurement unit And it is configured to have a.
  • an electric arc generated in the solar power generation system can be detected even if the booster circuit is present in the solar power generation system.
  • FIG. 3 is a graph which shows the waveform of the alternating current of the arc non-generation state and arc generation state in the front
  • FIG. 3B is a graph showing the waveform of the alternating current in the arc non-generated state and the arc generated state in the latter stage of the booster box shown in FIG.
  • FIG. 3 is a graph showing the waveform of the alternating current in the arc non-generated state and the arc generated state in the latter stage of the booster box shown in FIG.
  • FIG. 4A is a waveform diagram showing an FFT processing waveform of the current measured by the current sensor when no arc is generated in the photovoltaic power generation system shown in FIG. b) is a waveform diagram showing the FFT processing waveform of the current measured by the current sensor when an arc is generated in the photovoltaic power generation system.
  • FIG. 12 is a graph which shows the waveform of the alternating current of the arc non-generation state and the arc generation state in the front stage (solar cell string side) of the booster box shown in FIG.
  • B) of FIG. 12 is a graph showing a waveform of an alternating current in the arc non-generated state and the arc generated state in the latter stage (junction box side) of the boost box.
  • FIG. 1 is a schematic circuit diagram illustrating a configuration of a photovoltaic power generation system including the arc detection device of the present embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of an arc detection processing unit of the arc detection device included in the photovoltaic power generation system illustrated in FIG. 1.
  • a photovoltaic power generation system (DC power supply system) 1 includes a solar cell string (first DC power supply) 11a, a booster box (boost circuit) 22, and a power conditioning system (hereinafter referred to as PCS (Power Conditioning System)). 13).
  • DC power supply system includes a solar cell string (first DC power supply) 11a, a booster box (boost circuit) 22, and a power conditioning system (hereinafter referred to as PCS (Power Conditioning System)). 13).
  • PCS Power Conditioning System
  • the solar cell string 11a is formed by connecting a large number of solar cell modules 21 in series.
  • Each solar cell module 21 includes a plurality of solar cells (not shown) connected in series, and is formed in a panel shape.
  • the solar cell string 11a is connected to the booster box 22 by a P-side power line (first power line) 17a and an N-side power line (first power line) 18a, and the booster box 22 is connected to the P-side power line (second power line). ) 17b and N-side power line (second power line) 18b (load device) is connected to PCS13.
  • the booster box 22 includes a booster circuit that boosts the output voltage of the solar cell string 11a.
  • the PCS 13 converts the DC power input from each solar cell string 11a into AC power and outputs it.
  • the solar power generation system 1 includes an arc detection device 61.
  • the arc detection device 61 includes a bypass current path 23, a capacitor (first capacitor) 19, a current sensor (first current measurement unit) 31a, and an arc detection processing unit (first arc determination unit) 32 (see FIG. 2). Yes.
  • the bypass current path 23 has a first end that is one end connected to the power line 17 a between the boost box 22 and the solar cell string 11 a, and a second end that is the other end connected to the boost box 22. It is connected to the power line 17 b between the PCS 13 and bypasses the booster box 22.
  • a capacitor 19 and a current sensor 31a are provided in series. That is, the capacitor 19 has a first electrode connected to the power line 17 a and a second electrode connected to the power line 17 b to form a bypass current path 23.
  • the capacitor 19 has a capacitance of 5 ⁇ F or more, for example.
  • the alternating current flowing through the bypass current path 23 is measured by the arc generated in the current sensor 31a and the solar cell string 11a.
  • the arc detection processing unit 32 has a conventionally known configuration, and includes, for example, an amplifier 41, a filter 42, an A / D conversion unit 43, and a CPU (central processing unit) 44 as shown in FIG.
  • the amplifier 41 amplifies the current measured by the current sensor 31a.
  • the filter 42 is a band pass filter (BPF), and allows only a current in a predetermined frequency range among currents output from the amplifier 41 to pass therethrough. As a result, it is possible to eliminate, from the current output from the amplifier 41, a frequency component current that contains a large amount of switching noise of the converter (DC-DC converter) included in the PCS 14.
  • the A / D converter 43 converts the analog current signal that has passed through the filter 42 into a digital signal and inputs the digital signal to the CPU 44.
  • the CPU 44 includes an FFT processing unit 51 and an arc presence / absence determination unit 52.
  • the FFT processing unit 51 performs FFT on the current digital signal input from the A / D conversion unit 43 to generate a power spectrum of the current.
  • the arc presence / absence determination unit 52 determines the presence / absence of arc generation based on the power spectrum of the current generated by the FFT processing unit 51.
  • FIG. 3 is a graph showing the waveform of the alternating current in the arc non-generated state and the arc generated state in the front stage of the booster box 22 (on the solar cell string 11a side).
  • FIG. 3B is a graph showing the waveform of the alternating current in the arc non-generated state and the arc generated state in the latter stage (PCS 13 side) of the booster box 22.
  • FIG. 4A is a waveform diagram showing the FFT processing waveform of the current measured by the current sensor 31a when no arc is generated in the solar cell string 11a.
  • FIG. 4B is a waveform diagram showing an FFT processing waveform of the current measured by the current sensor 31a when an arc is generated in the solar cell string 11a.
  • the solar cell string 11 a generates DC power, and the power generated by the solar cell string 11 a is input to the PCS 13 via the booster box 22. In this case, the direct current output from the solar cell string 11 a is blocked by the capacitor 19 and does not flow through the bypass current path 23.
  • the PCS 13 converts the DC power input through the booster box 22 into AC power and outputs the AC power.
  • the waveform of the alternating current in the front stage of the booster box 22 is the waveform of the arc non-generation state shown in FIG. Become. Therefore, the current measured by the current sensor 31a does not include the alternating current of the arc, and the waveform obtained by subjecting this current to the FFT processing by the FFT processing unit 51 is as shown in FIG.
  • the waveform of the alternating current in the previous stage (on the solar cell string 11a side) of the booster box 22 is the waveform of the arc generation state shown in FIG.
  • the alternating current of the arc does not flow through the booster box 22, but flows through the power line 17b from the power line 17a via the bypass current path 23. Therefore, the waveform of the alternating current in the subsequent stage (on the connection box 12 side) of the booster box 22 is the waveform of the arc generation state shown in FIG.
  • the arc alternating current is measured by a current sensor 31 a provided in the bypass current path 23.
  • the current measured by the current sensor 31a includes the alternating current of the arc, and the waveform obtained by performing FFT processing on this current in the FFT processing unit 51 is as shown in FIG.
  • the arc detection process part 32 can detect generation
  • the arc detection device 61 includes the bypass current path 23 for the booster box 22 in the solar cell string 11a provided with the booster box 22, and the capacitor 19 and the current sensor 31a are connected in series to the bypass current path 23. Is provided. Therefore, even when the booster box 22 is present in the solar power generation system 1, the alternating current of the arc generated in the solar cell string 11a can be measured by the current sensor 31a. Also, a large direct current does not flow in the bypass current path 23, and only a weak alternating current due to an arc flows. Therefore, the current sensor 31a can use a sensor with a small rated current, and can measure the arc current with good S / N.
  • the arc detecting device 61 can detect the arc generated in the solar cell string 11a with high accuracy even when the booster box 22 is present.
  • a capacitor 20 is also provided in parallel with the booster box 22 on the N-side power line 18 b. Provided. This also applies to the other embodiments described below.
  • FIG. 5 is a schematic circuit diagram showing a configuration of a photovoltaic power generation system including an arc detection device according to another embodiment of the present invention.
  • the arc detector 63 provided in the solar cell string 11 a is provided with only the capacitor 19 in the bypass current path 23, and the current sensor 31 is a power line between the booster box 22 and the PCS 13. 17b.
  • the alternating current of the arc generated in the solar cell string 11a flows through the power line 17a via the bypass current path 23 and can be measured by the current sensor 31a.
  • the arc detector 63 can detect the arc generated in the solar cell string 11a even when the booster box 22 is present.
  • FIG. 7 is a schematic circuit diagram illustrating a configuration of a photovoltaic power generation system including the arc detection device of the present embodiment.
  • the photovoltaic power generation system 1 includes a plurality of solar cell strings 11 a and 11 b, a booster box 22, a connection box 12, and a power conditioning system (hereinafter referred to as PCS (Power Conditioning System)) 13. Yes.
  • PCS Power Conditioning System
  • the number of solar cell strings provided in the solar power generation system 1 may be three or more.
  • the solar cell string (first DC power source) 11 a is connected to the PCS 13 via the boost box 22 and the connection box 12.
  • the solar cell string (second DC power supply) 11 b is connected to the PCS 13 via the connection box 12.
  • the connection box 12 connects the solar cell string 11a and the solar cell string 11b in parallel.
  • the solar cell string 11b includes a P-side power line (third power line) 17c connected to the solar cell string 11b at a forward branch point 17b1 on the P-side power line 17b.
  • An N-side power line (third power line) 18c connected and connected to the solar cell string 11b is connected to the power line 18b at a negative branch point 18b1 on the N-side power line 18b.
  • a backflow prevention diode (first backflow prevention element) 16a and a backflow prevention diode (second backflow prevention element) 16b are provided in the connection box 12.
  • the backflow prevention diode 16a is provided in the power line 17b between the booster box 22 and the forward branch point 17b1, and prevents the current from flowing in the direction opposite to the current supplied by the solar cell string 11a.
  • the backflow prevention diode 16b is provided in the power line 17c between the solar cell string 11b and the forward branch point 17b1, and prevents a current from flowing in the direction opposite to the current supplied by the solar cell string 11b.
  • the arrangement positions of the backflow prevention diodes 16a and 16b are not limited to the power lines 17b and 17c, but may be the power lines 18b and 18c.
  • the backflow prevention diodes 16a and 16b are arranged on the power lines 18b and 18c, the anode is connected to the PCS 13.
  • the booster box 22 boosts the output voltage of the solar cell string 11a so as to match the output voltage of the solar cell string 11b. That is, the number of solar cell modules 21 is different between the solar cell string 11a and the solar cell string 11b, and the solar cell string 11a is smaller than the solar cell string 11b. Therefore, the booster box 22 boosts the output voltage of the solar cell string 11a so as to eliminate the difference between the output voltage of the solar cell string 11a and the output voltage of the solar cell string 11b.
  • FIG. 7 shows an example in which two solar cell strings 11a and 11b are provided as a plurality of solar cell strings (first DC power source and second DC power source). Two or more solar cell strings may be provided. This also applies to other embodiments including a plurality of solar cell strings.
  • the solar power generation system 1 includes an arc detection device for each of the solar cell strings 11a and 11b.
  • the arc detector 64 provided in the solar cell string (first DC power source) 11a includes a capacitor (first capacitor) 19, a bypass current path 23 formed by the capacitor 19, and a current sensor (first current measuring unit) 31a.
  • the capacitor 25a is connected in parallel to the backflow prevention diode 16a.
  • capacitor (second capacitor) 25a is connected in parallel to the backflow prevention diode 16a is not limited to the configuration in which the capacitor 25a is connected in parallel only to the backflow prevention diode 16a.
  • a configuration in which the backflow prevention diode 16a and other circuit elements connected in series with the backflow prevention diode 16a are connected in parallel is also included. The same applies to the case where the capacitor (second capacitor) 25a is connected in parallel to the backflow prevention diode 16b as described below.
  • the arc detection device 65 provided in the solar cell string 11b includes a current sensor (second current measurement unit) 31b, an arc detection processing unit 32 (second arc determination unit) 32, and a capacitor (third capacitor) 25b. Yes.
  • the current sensor 31b is provided, for example, on the power line 17c between the solar cell string 11b and the connection box 12.
  • the current sensor 31b measures a current flowing through the power line 17b by an arc generated in the solar cell string 11b.
  • the capacitor 25b is connected in parallel to the backflow prevention diode 16b.
  • the capacitors 25a and 25b have a capacitance of 5 ⁇ F or more, for example.
  • the arc detectors 64 and 65 have a configuration in which the arc detection processing unit 32 is provided corresponding to each of the current sensors 31a and 31b, or currents measured by the current sensors 31a and 31b by the single arc detection processing unit 32. Any of the structures which process by time division may be sufficient. This point is the same in other embodiments including two current sensors 31a and 31b.
  • the backflow prevention diode 16a may be in a reverse bias state.
  • the backflow prevention diode 16a becomes reverse biased.
  • the backflow prevention diode 16a is not reverse-biased.
  • the current sensor 31a cannot measure the alternating current of the parallel arc.
  • a capacitor 25a is connected in parallel to the backflow prevention diode 16a. Therefore, even if the backflow prevention diode 16a is in a reverse bias state, the alternating current of the parallel arc generated in the solar cell string 11a flows through the capacitor 25a, and therefore can be measured by the current sensor 31a. Thereby, the arc detector 64 can detect the parallel arc generated in the solar cell string 11a.
  • the above operation of the arc detection device 64 by connecting the capacitor 25a in parallel with the backflow prevention diode 16a is the arc detection device when a parallel arc is generated in the solar cell string 11b and the backflow prevention diode 16b is in a reverse bias state.
  • the arc detection device 64 includes the bypass current path 23 for the booster box 22 in the solar cell string 11a provided with the booster box 22, and the capacitor 19 and the current sensor 31a are connected in series to the bypass current path 23. Is provided. Therefore, the alternating current of the generated arc can also be measured by the current sensor 31a for the solar cell string 11a in which the booster box 22 is provided. Thereby, similarly to the arc detection device 61, the arc detection device 64 can detect the arc generated in the solar cell string 11a with high accuracy even when the booster box 22 is present.
  • the arc detectors 64 and 65 include capacitors 25a and 25b connected in parallel to the backflow prevention diodes 16a and 16b, even if the backflow prevention diode 16a or the backflow prevention diode 16b is in a reverse bias state,
  • the alternating current of the parallel arc generated in the solar cell string 11a and the alternating current of the parallel arc generated in the solar cell string 11b can be measured by the current sensors 31a and 31b.
  • produced in the solar cell string 11a, 11b is detectable.
  • the current sensor 31b can cover the current sensor for arc detection and the current sensor for measuring the generated current of the solar cell string.
  • FIG. 8 is a schematic circuit diagram showing a configuration of a photovoltaic power generation system 1 including the arc detection device of the present embodiment.
  • the solar power generation system 1 includes arc detection devices 67 and 68 instead of the arc detection devices 64 and 65.
  • the capacitors 25a and 25b are connected in parallel only to the backflow prevention diodes 16a and 16b.
  • the capacitor 25a has a first electrode between the booster box 22 and the junction box 12 (backflow prevention diode 16a), and the bypass current path 23.
  • the connection point between the power line 17 b and the connection box 12, and the second electrode is connected to the power line 18 b between the booster box 22 and the connection box 12.
  • the capacitor 25b has a first electrode connected to the power line 17c between the current sensor 31b and the connection box 12 (backflow prevention diode 16b), and a second electrode connected to the solar cell string 11b and the connection box 12. It is connected to the power line 18c.
  • the power line 17b is connected to the power line 18b via the PCS 13 (a capacitor inside the PCS 13). Therefore, the capacitor (second capacitor) 25a is connected in parallel with at least the backflow prevention diode (first backflow prevention element) 16a.
  • the power line 17c is connected to the power line 18c via the PCS 13 (a capacitor inside the PCS 13). Therefore, the capacitor (third capacitor) 25b is connected in parallel with at least the backflow prevention diode (second backflow prevention element) 16b.
  • Other configurations of the arc detectors 64 and 65 are the same as those of the arc detectors 64 and 65 described above.
  • the operation of the arc detection devices 67 and 68 will be described below.
  • the arc detection devices 67 and 68 are arc detection devices 64 and 65 (arc detection devices 61 and 63). Similarly, the occurrence of arcs in the solar cell strings 11a and 11b can be detected.
  • the current sensor 31a or the current sensor 31b can measure the alternating current of the parallel arc, and the arc detector 67 Or the arc detection apparatus 68 can detect the parallel arc which generate
  • the arc detection device 67 accurately detects an arc generated in the solar cell string 11a even when the booster box 22 is present in the photovoltaic power generation system 1. Can be detected.
  • the arc detection devices 67 and 68 are similar to the arc detection devices 64 and 65, and the parallel arcs generated in the solar cell string 11a are exchanged even when the backflow prevention diode 16a or the backflow prevention diode 16b is in a reverse bias state.
  • the electric current and the parallel arc generated in the solar cell string 11b can be detected with high accuracy.
  • FIG. 9 is a schematic circuit diagram illustrating a configuration of a photovoltaic power generation system including an arc detection device according to still another embodiment of the present invention.
  • the solar power generation system 1 includes arc detection devices 66 and 65.
  • the arc detector 66 provided in the solar cell string 11a is different from the arc detector 64 shown in FIG.
  • the current sensor 31a includes the boost box 22 (bypass It is provided on the power line 17b between the connection path 12 (a connection point between the current path 23 and the power line 17b) and the connection box 12 (parallel arc-connected backflow prevention diode 16a and capacitor 25a).
  • the other configuration of the arc detection device 66 is the same as that of the arc detection device 64.
  • the arc detection device 67 accurately detects an arc generated in the solar cell string 11a even when the booster box 22 is present in the photovoltaic power generation system 1. Can be detected.
  • the arc detection devices 66 and 65 are generated in the solar cell string 11a even when the backflow prevention diode 16a or the backflow prevention diode 16b is in a reverse bias state, similarly to the arc detection devices 64 and 65 shown in FIG.
  • the parallel arc generated and the parallel arc generated in the solar cell string 11b can be detected with high accuracy.
  • FIG. 10 is a schematic circuit diagram illustrating a configuration of a photovoltaic power generation system including an arc detection device according to still another embodiment of the present invention.
  • the solar power generation system 1 includes arc detection devices 69 and 68.
  • the arc detector 69 provided in the solar cell string 11a is different from the arc detector 67 shown in FIG. 8 in that only the capacitor 19 is provided in the bypass current path 23, and the current sensor 31a includes the boost box 22 (bypass It is provided in the power line 17b between the connection box 12 (backflow prevention diode 16a) and the connection point of the current path 23 with the power line 17b.
  • condenser 25a is connected to the electric power line 17b between the current sensor 31b and the connection box 12 (backflow prevention diode 16a).
  • Other configurations of the arc detection device 69 are the same as those of the arc detection device 67.
  • the arc detector 69 can detect the arc generated in the solar cell string 11a with high accuracy even when the booster box 22 is present in the photovoltaic power generation system 1.
  • the arc detectors 69 and 68 are generated in the solar cell string 11a even when the backflow prevention diode 16a or the backflow prevention diode 16b is in a reverse bias state, similarly to the arc detection devices 67 and 68 shown in FIG.
  • the parallel arc generated and the parallel arc generated in the solar cell string 11b can be detected with high accuracy.
  • the arc detection device consumes the first DC power supply that generates or charges / discharges, the booster circuit that boosts the output voltage of the first DC power supply, and the output power of the booster circuit.
  • a DC power supply comprising a load device to be converted, a pair of first power lines connecting the first DC power source and the booster circuit, and a pair of second power lines connecting the booster circuit and the load device.
  • An arc detection device applied to a system wherein the first capacitor is connected in parallel with the booster circuit and forms a bypass current path that bypasses the booster circuit, and a current path through which a current flowing through the first capacitor can flow
  • a first current measurement unit that measures current
  • a first arc determination unit that determines the presence or absence of an arc based on a high-frequency component of the current measured by the first current measurement unit. It is formed.
  • the first DC power source is connected to the load device via the first power line, the booster circuit, and the second power line, and the first capacitor forms a bypass current path that bypasses the booster circuit.
  • the measurement unit measures the current in a current path through which the current flowing through the first capacitor can flow.
  • the first current measuring unit can measure the alternating current of the arc generated by the first DC power supply.
  • the arc detection device can detect the arc generated in the DC power supply system with high accuracy even when the DC power supply system includes a booster circuit.
  • the DC power supply system to which the arc detection device is applied further includes a second DC power source that generates or charges / discharges at a voltage higher than an output voltage of the first DC power source, and the second DC power source.
  • a second DC power source that generates or charges / discharges at a voltage higher than an output voltage of the first DC power source
  • the second DC power source Provided between the booster circuit and a pair of third power lines connecting a power source and the pair of second power lines, and a branch point where the pair of second power lines and the pair of third power lines are connected
  • a first backflow prevention element for preventing a current from flowing in a direction opposite to a current supplied by the first DC power supply, and one of the pair of third power lines, and supplied by the second DC power supply.
  • a second backflow prevention element for preventing a current from flowing in a direction opposite to the direction of the current, a second capacitor connected in parallel with the first backflow prevention element, and connected in parallel with the second backflow prevention element.
  • Third A second current measuring unit that measures current in a current path through which a current flowing through the third capacitor can flow, and a second unit that determines whether or not an arc is present based on a high-frequency component of the current measured by the second current measuring unit. It is good also as a structure which further has a 2 arc determination part.
  • the first backflow prevention element includes the first backflow prevention element for preventing the backflow of current to the first DC power supply, and the second backflow prevention element for preventing the backflow of current to the second DC power supply. And a third capacitor connected in parallel with the second backflow prevention element.
  • the output voltage of the first DC power supply decreases below the output voltage of the second DC power supply, and the first backflow prevention element enters a reverse bias state.
  • the alternating current of the parallel arc generated in the first DC power source flows through the second capacitor.
  • the 1st electric current measurement part can measure the alternating current of the parallel arc which generate
  • the arc detection apparatus can detect the parallel arc which generate
  • the second current measuring unit can measure the alternating current of the parallel arc generated in the second DC power supply, and the arc detection device can detect the parallel arc generated in the second DC power supply.
  • the first current measuring unit may measure current in the bypass current path.
  • the first current measuring unit measures the current in the bypass current path formed by the first capacitor and bypassing the booster circuit. Therefore, a large direct current does not flow through the first current measurement unit, and only a weak alternating current due to an arc flows.
  • the 1st electric current measurement part can use what has a small rated current, and can measure the electric current of an arc by favorable S / N.
  • the first arc determination unit and the second arc determination unit may include a single arc determination unit that functions as both arc determination units.
  • the number of arc determination units can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Photovoltaic Devices (AREA)

Abstract

昇圧回路が備える太陽光発電システムの電気アークを検出する。アーク検出装置(61)は、太陽電池ストリング(11a)を有する太陽光発電システム(1)の昇圧箱(22)を迂回するバイパス電流経路(23)を形成するコンデンサ(19)、コンデンサ(19)を流れる電流を計測する電流センサ(31a)、および電流センサ(31a)が計測する電流の高周波成分に基づきアークの有無を判定する第1アーク判定部を備える。

Description

アーク検出装置
 本発明は、直流電源システムに適用されるアーク検出装置に関する。
 従来、太陽光発電システムは、太陽電池により発電された電力が、直流交流変換器等を含むパワーコンディショニングシステム(以下、単にPCS(Power Conditioning System)と称する)を介して、電力送電網に供給されるようになっている。このような太陽光発電システムでは、システム内の回路等の故障によりアークを生じることがある。アークが発生した場合、アークの発生部分は高温になり、火災等を起こす恐れがある。そこで、太陽光発電システムは、アークの交流電流を電流センサにて計測することによりアークの発生を検出するアーク検出装置を備えている。
 特許文献1に記載の構成では、太陽電池(光電発電機)にて発電された電力が、DC電力線を介してインバータに供給されている。DC電力線には電流センサが設けられ、この電流センサが計測する電流に基づいて、アークの発生の有無を検出するようになっている。
 一方、複数の太陽電池ストリングを備えた太陽光発電システムでは、それら複数の太陽電池ストリングは、図11に示すように、接続箱112にて並列に接続され、接続箱112を介してPCS113と接続されている。また、太陽電池ストリング111a,111bは、それぞれ複数の太陽電池モジュール115を直列接続することにより形成されている。
 ここで、例えば、図11に示すように、太陽電池ストリング111aの太陽電池モジュール115の数が太陽電池ストリング111bの数よりも少ない場合、太陽電池ストリング111aと接続箱112との間には、昇圧箱116が設けられる。特許文献2には、昇圧箱116としての電源装置Gが開示されている。昇圧箱116は、太陽電池ストリング111aの出力電圧を、太陽電池ストリング111bの出力電圧と合致するように昇圧する昇圧回路を備えている。
日本国公表特許公報「特表2014-509396号」 日本国特許掲載公報「特許03562118号」
 ところが、図11に示すように、昇圧箱116を設けた太陽電池ストリング111aにおいて、直列アーク121または並列アーク122である電気アークが発生した場合、電流センサ114にて電気アークの交流電流を検出することができない。これは、昇圧箱116は、通常、昇圧チョッパ回路にて構成されており、昇圧チョッパ回路中のインダクタにより電気アークの交流成分が低減されること、電圧安定化のために昇圧チョッパ回路に挿入されているコンデンサに電気アークの交流電流の高周波成分が流れて、電流センサ114には流れないことが原因となっている。
 この場合の昇圧箱116の前後における交流電流の波形、および昇圧箱116の動作を示すと図12のようになる。図12の(a)は、昇圧箱116の前段(太陽電池ストリング111a側)におけるアーク非発生状態およびアーク発生状態の交流電流の波形を示すグラフである。図12の(b)は、昇圧箱116の後段(接続箱112側)におけるアーク非発生状態およびアーク発生状態の交流電流の波形を示すグラフである。
 図12の(a)に示すとおり、アークが発生した場合は電流の高周波成分が増加するにも関わらず、昇圧箱116により増加した高周波成分が低減されてしまう。その結果、図12の(b)に示すとおり、アークにより発生した電流の高周波成分を電流センサ114では計測することができない。したがって、本発明は、昇圧箱(昇圧回路)が存在していても太陽光発電システムに生じた電気アークを検出することができるアーク検出装置の提供を目的としている。
 上記の課題を解決するために、本発明の一態様におけるアーク検出装置は、発電または充放電する第1直流電源と、前記第1直流電源の出力電圧を昇圧する昇圧回路と、前記昇圧回路の出力電力を消費または変換する負荷装置と、前記第1直流電源と前記昇圧回路とを接続する一対の第1電力線と、前記昇圧回路と前記負荷装置とを接続する一対の第2電力線と、を備えた直流電源システムに適用されるアーク検出装置であって、前記昇圧回路と並列に接続され、前記昇圧回路を迂回するバイパス電流経路を形成する第1コンデンサと、前記第1コンデンサに流れる電流が流れ得る電流経路において電流を計測する第1電流計測部と、前記第1電流計測部により計測された電流の高周波成分に基づきアークの有無を判定する第1アーク判定部と、を有する構成である。
 本発明の一態様における構成によれば、太陽光発電システムに昇圧回路が存在していても、太陽光発電システムに生じた電気アークを検出することができる。
本発明の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。 図1に示した太陽光発電システムが備えるアーク検出装置のアーク検出処理部の構成を示すブロック図である。 図3の(a)は、図1に示した昇圧箱の前段におけるアーク非発生状態およびアーク発生状態の交流電流の波形を示すグラフである。図3の(b)は、図1に示した昇圧箱の後段におけるアーク非発生状態およびアーク発生状態の交流電流の波形を示すグラフである。 図4の(a)は、図1に示した太陽光発電システムにおいて、アークが発生していない場合に電流センサにて計測された電流のFFT処理波形を示す波形図であり、図4の(b)は、太陽光発電システムにおいて、アークが発生している場合に電流センサにて計測された電流のFFT処理波形を示す波形図である。 本発明の他の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。 図1に示した昇圧箱が絶縁型昇圧箱である場合の太陽光発電システムの構成を示す概略の回路図である。 本発明の他の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。 本発明のさらに他の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。 本発明のさらに他の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。 本発明のさらに他の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。 従来のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。 図12の(a)は、図11に示した昇圧箱の前段(太陽電池ストリング側)におけるアーク非発生状態およびアーク発生状態の交流電流の波形を示すグラフである。図12の(b)は、上記昇圧箱の後段(接続箱側)におけるアーク非発生状態およびアーク発生状態の交流電流の波形を示すグラフである。
 〔実施形態1〕
 本発明の実施形態を図面に基づいて以下に説明する。図1は、本実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。図2は、図1に示した太陽光発電システムが備えるアーク検出装置のアーク検出処理部の構成を示すブロック図である。
 (太陽光発電システム1の構成)
 図1に示すように、太陽光発電システム(直流電源システム)1は、太陽電池ストリング(第1直流電源)11a、昇圧箱(昇圧回路)22およびパワーコンディショニングシステム(以下、PCS(Power Conditioning System)と称する)13を備えている。
 太陽電池ストリング11aは、多数の太陽電池モジュール21が直列接続されて形成されている。各太陽電池モジュール21は、直列接続された複数の太陽電池セル(図示せず)を備え、パネル状に形成されている。
 太陽電池ストリング11aはP側の電力線路(第1電力線)17aおよびN側の電力線路(第1電力線)18aによって昇圧箱22と接続され、昇圧箱22は、P側の電力線路(第2電力線)17bおよびN側の電力線路(第2電力線)18bによって(負荷装置)PCS13と接続されている。昇圧箱22は、太陽電池ストリング11aの出力電圧を昇圧する昇圧回路を備えている。PCS13は、各太陽電池ストリング11aから入力した直流電力を交流電力に変換して出力する。
 (アーク検出装置の構成)
 太陽光発電システム1はアーク検出装置61を備えている。アーク検出装置61は、バイパス電流経路23、コンデンサ(第1コンデンサ)19、電流センサ(第1電流計測部)31aおよびアーク検出処理部(第1アーク判定部)32(図2参照)を備えている。
 バイパス電流経路23は、一端部である第1の端部が昇圧箱22と太陽電池ストリング11aとの間の電力線路17aに接続され、他端部である第2の端部が昇圧箱22とPCS13との間の電力線路17bに接続され、昇圧箱22を迂回している。
 バイパス電流経路23には、コンデンサ19と電流センサ31aが直列に設けられている。すなわち、コンデンサ19は、第1電極が電力線路17aに接続され、第2電極が電力線路17bに接続され、バイパス電流経路23を形成している。
 コンデンサ19は、例えば5μF以上の静電容量を有する。電流センサ31a、太陽電池ストリング11aに発生したアークによりバイパス電流経路23を流れる交流電流を計測する。
 アーク検出処理部32は、従来周知の構成であり、例えば図2に示すように、増幅器41、フィルタ42、A/D変換部43およびCPU(central processing unit)44を備えている。
 増幅器41は、電流センサ31aにて計測された電流を増幅する。フィルタ42は、バンドパスフィルタ(BPF)であり、増幅器41から出力される電流のうち、所定周波数範囲の電流のみを通過させる。これにより、増幅器41から出力される電流から、PCS14が備えるコンバータ(DC-DCコンバータ)のスイッチングノイズを多く含む周波数成分の電流を排除できるようにしている。A/D変換部43は、フィルタ42を通過したアナログの電流の信号をデジタル信号に変換し、CPU44へ入力する。
 CPU44は、FFT処理部51およびアーク有無判定部52を備えている。FFT処理部51は、A/D変換部43から入力された電流のデジタル信号に対してFFTを行い、電流のパワースペクトルを生成する。アーク有無判定部52は、FFT処理部51が生成した電流のパワースペクトルに基づいて、アーク発生の有無を判定する。
 (太陽光発電システム1およびアーク検出装置61の動作)
 上記の構成において、太陽光発電システム1およびアーク検出装置61の動作について以下に説明する。
 図3の(a)は、昇圧箱22の前段(太陽電池ストリング11a側)におけるアーク非発生状態およびアーク発生状態の交流電流の波形を示すグラフである。図3の(b)は、昇圧箱22の後段(PCS13側)におけるアーク非発生状態およびアーク発生状態の交流電流の波形を示すグラフである。
 図4の(a)は、太陽電池ストリング11aにおいて、アークが発生していない場合に電流センサ31aにて計測された電流のFFT処理波形を示す波形図である。図4の(b)は、太陽電池ストリング11aにおいて、アークが発生している場合に電流センサ31aにて計測された電流のFFT処理波形を示す波形図である。
 太陽電池ストリング11aは直流の電力を発電し、太陽電池ストリング11aが発電した電力は、昇圧箱22を介してPCS13へ入力される。この場合、太陽電池ストリング11aから出力される直流電流は、コンデンサ19によって阻止され、バイパス電流経路23を流れない。PCS13は、昇圧箱22を介して入力された直流電力を交流電力に変換し、出力する。
 ここで、太陽電池ストリング11aにアークが発生していなければ、昇圧箱22の前段(太陽電池ストリング11a側)の交流電流の波形は、図3の(a)に示すアーク非発生状態の波形となる。したがって、電流センサ31aにて計測される電流はアークの交流電流を含まず、この電流をFFT処理部51にてFFT処理した波形は、図4の(a)に示すようになる。
 一方、太陽電池ストリング11aにおいてアークが発生していれば、昇圧箱22の前段(太陽電池ストリング11a側)の交流電流の波形は、図3の(a)に示すアーク発生状態の波形となる。この場合、アークの交流電流は、昇圧箱22を流れないものの、電力線路17aからバイパス電流経路23を経由して電力線路17bを流れる。したがって、昇圧箱22の後段(接続箱12側)の交流電流の波形は、図3の(c)に示すアーク発生状態の波形となる。また、アークの交流電流は、バイパス電流経路23に設けられている電流センサ31aにて計測される。
 したがって、電流センサ31aが計測する電流は、アークの交流電流を含むものとなり、この電流をFFT処理部51にてFFT処理した波形は、図4の(b)に示すようになる。これにより、アーク検出処理部32は、電流センサ31aから入力された信号に基づいて、太陽電池ストリング11aにおけるアークの発生を検出することができる。
 (アーク検出装置61の利点)
 上記のように、アーク検出装置61は、昇圧箱22が設けられている太陽電池ストリング11aに昇圧箱22に対するバイパス電流経路23を備え、このバイパス電流経路23にコンデンサ19および電流センサ31aが直列状態に設けられている。したがって、太陽光発電システム1に昇圧箱22が存在する場合であっても、太陽電池ストリング11aにて発生したアークの交流電流を電流センサ31aにて計測することができる。また、バイパス電流経路23には、直流の大電流は流れず、アークによる微弱な交流電流のみが流れる。したがって、電流センサ31aは、定格電流が小さいものを使用でき、良好なS/Nにてアークの電流を計測することができる。
 これにより、アーク検出装置61は、昇圧箱22が存在する場合であっても太陽電池ストリング11aにて発生したアークを高精度に検出することができる。
 なお、図1に示した太陽光発電システム1は、昇圧箱22が絶縁型昇圧箱である場合、図6に示すように、N側の電力線路18bにも昇圧箱22と並列にコンデンサ20が設けられる。この点は、以下の他の実施形態においても同様である。
 〔実施形態2〕
 本発明の他の実施形態を図面に基づいて以下に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図5は、本発明の他の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。
 図5に示すように、太陽電池ストリング11aに設けられているアーク検出装置63は、バイパス電流経路23にコンデンサ19のみが設けられ、電流センサ31は、昇圧箱22とPCS13との間の電力線路17bに設けられている。
 上記の構成によれば、太陽電池ストリング11aに発生したアークの交流電流は、バイパス電流経路23を経由して電力線路17aを流れ、電流センサ31aにて計測することができる。これにより、アーク検出装置63は、昇圧箱22が存在する場合であっても太陽電池ストリング11aにて発生したアークを検出することができる。
 〔実施形態3〕
 本発明のさらに他の実施形態を図面に基づいて以下に説明する。図7は、本実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。
 (太陽光発電システム1の構成)
 図7に示すように、太陽光発電システム1は、複数の太陽電池ストリング11a,11b、昇圧箱22、接続箱12およびパワーコンディショニングシステム(以下、PCS(Power Conditioning System)と称する)13を備えている。なお、太陽光発電システム1が備える太陽電池ストリングの数は、3以上であってもよい。
 太陽電池ストリング(第1直流電源)11aは、昇圧箱22および接続箱12を介してPCS13と接続されている。太陽電池ストリング(第2直流電源)11bは接続箱12を介してPCS13と接続されている。接続箱12は、太陽電池ストリング11aと太陽電池ストリング11bとを並列接続している。
 具体的には、太陽電池ストリング11bは、太陽電池ストリング11bと接続されたP側の電力線路(第3電力線)17cが、P側の電力線路17b上の正分岐点17b1において、電力線路17bと接続され、太陽電池ストリング11bと接続されたN側の電力線路(第3電力線)18cが、N側の電力線路18b上の負分岐点18b1において、電力線路18bと接続されている。
 接続箱12の内部には、逆流防止ダイオード(第1逆流防止素子)16aおよび逆流防止ダイオード(第2逆流防止素子)16bが設けられている。逆流防止ダイオード16aは、昇圧箱22と正分岐点17b1との間の電力線路17bに設けられ、太陽電池ストリング11aにより供給される電流と逆方向に電流が流れることを防止している。逆流防止ダイオード16bは、太陽電池ストリング11bと正分岐点17b1との間の電力線路17cに設けられ、太陽電池ストリング11bにより供給される電流と逆方向に電流が流れることを防止している。なお、逆流防止ダイオード16a,16bの配置位置は、電力線路17b,17cに限定されず、電力線路18b,18cであってもよい。なお、逆流防止ダイオード16a,16bを電力線路18b,18cに配置した場合には、アノードがPCS13と接続される方向になる。
 昇圧箱22は、太陽電池ストリング11aの出力電圧を、太陽電池ストリング11bの出力電圧と合致するように昇圧している。すなわち、太陽電池モジュール21の数は、太陽電池ストリング11aと太陽電池ストリング11bとで異なり、太陽電池ストリング11bよりも太陽電池ストリング11aの方が少なくなっている。そこで、昇圧箱22は、太陽電池ストリング11aの出力電圧と太陽電池ストリング11bの出力電圧との差を解消するように、太陽電池ストリング11aの出力電圧を昇圧している。
 なお、図7は、複数の太陽電池ストリング(第1直流電源、第2直流電源)として、二つの太陽電池ストリング11a,11bを備えた例について示しているが、太陽光発電システム1は、三つ以上の太陽電池ストリングを備えていてもよい。この点は、複数の太陽電池ストリングを備えた他の実施形態においても同様である。
 (アーク検出装置の構成)
 太陽光発電システム1は、太陽電池ストリング11a,11b毎にアーク検出装置を備えている。太陽電池ストリング(第1直流電源)11aに設けられているアーク検出装置64は、コンデンサ(第1コンデンサ)19、コンデンサ19によって形成されるバイパス電流経路23、電流センサ(第1電流計測部)31a、アーク検出処理部(第1アーク判定部、第2アーク判定部)32およびコンデンサ(第2コンデンサ)25aを備えている。コンデンサ25aは、逆流防止ダイオード16aに対して並列に接続されている。
 なお、コンデンサ(第2コンデンサ)25aが逆流防止ダイオード16aに対して並列に接続されていることは、コンデンサ25aが逆流防止ダイオード16aのみに並列接続されている構成に限定されず、コンデンサ25aが、逆流防止ダイオード16aおよび逆流防止ダイオード16aと直列接続された他の回路要素と並列接続されている構成も含む。この点は、下記のように、コンデンサ(第2コンデンサ)25aが逆流防止ダイオード16bに対して並列に接続されている場合についても同様である。
 太陽電池ストリング11bに設けられているアーク検出装置65は、電流センサ(第2電流計測部)31b、アーク検出処理部32(第2アーク判定部)32およびコンデンサ(第3コンデンサ)25bを備えている。電流センサ31bは、太陽電池ストリング11bと接続箱12との間の例えば電力線路17cに設けられている。電流センサ31bは、太陽電池ストリング11bに発生したアークにより電力線路17bを流れる電流を計測する。コンデンサ25bは、逆流防止ダイオード16bに対して並列に接続されている。コンデンサ25a,25bは、例えば5μF以上の静電容量を有する。
 なお、アーク検出装置64,65は、アーク検出処理部32を電流センサ31a,31bに対応してそれぞれ備えている構成、または単一のアーク検出処理部32によって電流センサ31a,31bが計測した電流を時分割にて処理する構成のいずれであってもよい。この点は、2個の電流センサ31a,31bを備えている他の実施形態においても同様である。
 (太陽光発電システム1およびアーク検出装置64,65の動作)
 上記の構成において、太陽光発電システム1およびアーク検出装置64,65の動作について以下に説明する。太陽電池ストリング11aにおいてアークが発生していれば、アークの交流電流は、昇圧箱22を流れないものの、バイパス電流経路23を流れて電流センサ31aにて計測される。また、太陽電池ストリング11bにおいてアークが発生していれば、アークの交流電流は電力線路17bを流れて電流センサ31bにて計測される。これにより、アーク検出装置64,65は、太陽電池ストリング11a,11bにおけるアークの発生を検出することができる。
 また、例えば太陽電池ストリング11aにおいて並列アークが発生し、太陽電池ストリング11aの出力電圧が太陽電池ストリング11bの出力電圧よりも低下すると、逆流防止ダイオード16aは逆バイアスの状態となることがある。昇圧箱22が機能を発揮できないほどに太陽電池ストリング11aの出力電圧が低下すると、逆流防止ダイオード16aは逆バイアスとなる。一方、太陽電池ストリング11aの出力電圧の低下が昇圧箱22が機能を発揮できる程度であれば、逆流防止ダイオード16aは逆バイアスとならない。
 逆流防止ダイオード16aが逆バイアスの状態となる場合、逆流防止ダイオード16aにコンデンサ25aが並列接続されていなければ、太陽電池ストリング11aにて発生した並列アークの交流電流は、逆流防止ダイオード16aによって阻止される。したがって、電流センサ31aは、並列アークの交流電流を計測することができない。
 これに対し、アーク検出装置64では、逆流防止ダイオード16aにコンデンサ25aが並列接続されている。したがって、逆流防止ダイオード16aが逆バイアスの状態であっても、太陽電池ストリング11aにて発生した並列アークの交流電流は、コンデンサ25aを介して流れるので、電流センサ31aにより計測することができる。これにより、アーク検出装置64は、太陽電池ストリング11aにて発生した並列アークを検出することができる。
 逆流防止ダイオード16aにコンデンサ25aを並列接続したことによるアーク検出装置64の上記動作は、太陽電池ストリング11bにおいて並列アークが発生し、逆流防止ダイオード16bが逆バイアスの状態となった場合のアーク検出装置65の動作についても同様である。
 上記の点は、太陽電池ストリングに逆流防止ダイオードが設けられ、逆流防止ダイオードをバイパスコンデンサが設けられている他の実施形態の構成においても同様である。
 (アーク検出装置64,65の利点)
 上記のように、アーク検出装置64は、昇圧箱22が設けられている太陽電池ストリング11aに昇圧箱22に対するバイパス電流経路23を備え、このバイパス電流経路23にコンデンサ19および電流センサ31aが直列状態に設けられている。したがって、昇圧箱22が設けられている太陽電池ストリング11aについても、発生したアークの交流電流を電流センサ31aにて計測することができる。これにより、アーク検出装置64は、アーク検出装置61と同様、昇圧箱22が存在する場合であっても太陽電池ストリング11aにて発生したアークを高精度に検出することができる。
 さらに、アーク検出装置64,65は、逆流防止ダイオード16a,16bに並列接続されたコンデンサ25a,25bを備えているので、逆流防止ダイオード16aまたは逆流防止ダイオード16bが逆バイアスの状態であっても、太陽電池ストリング11aにて発生した並列アークの交流電流、および太陽電池ストリング11bにて発生した並列アークの交流電流を電流センサ31a,31bにより計測することができる。これにより、太陽電池ストリング11a,11bにて発生した並列アークを検出することができる。なお、本実施形態において、電流センサ31aには微弱な交流電流のみが流れるため、計測範囲が狭く分解能の高い電流センサを用いることが可能である。ただし、太陽電池ストリング11aの発電電流を測定することはできない。このことは、電流センサ31aをコンデンサ25aに直列接続した場合でも同様である。また、電流センサ31bをコンデンサ25bに直列接続した場合も同様である。
 一方、電流センサ31bには太陽電池ストリング11bによって発電された直流電流も流れるため、分解能の高い電流センサを用いることはできないが、太陽電池ストリング11bの発電電流を測定することが可能となる。これによりアーク検出用の電流センサと太陽電池ストリングの発電電流測定用の電流センサを1つの電流センサ31bにより賄うことが可能である。
 〔実施形態4〕
 本発明のさらに他の実施形態を図面に基づいて以下に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (太陽光発電システム1およびアーク検出装置67,68の構成)
 図8は、本実施形態のアーク検出装置を備える太陽光発電システム1の構成を示す概略の回路図である。本実施形態において、太陽光発電システム1は前記のアーク検出装置64,65に代えてアーク検出装置67,68を備えている。
 図7に示したアーク検出装置64,65では、コンデンサ25a,25bは、逆流防止ダイオード16a,16bのみに対して並列接続されていた。これに対し、アーク検出装置67では、図8に示すように、コンデンサ25aは、第1電極が、昇圧箱22と接続箱12(逆流防止ダイオード16a)との間であって、バイパス電流経路23と電力線路17bとの接続点と接続箱12との間に接続され、第2電極が、昇圧箱22と接続箱12との間の電力線路18bに接続されている。また、コンデンサ25bは、第1電極が、電流センサ31bと接続箱12(逆流防止ダイオード16b)との間の電力線路17cに接続され、第2電極が、太陽電池ストリング11bと接続箱12との間の電力線路18cと接続されている。
 ここで、電力線路17bは、PCS13(PCS13の内部のコンデンサ)を介して電力線路18bと接続されている。したがって、コンデンサ(第2コンデンサ)25aは、少なくとも逆流防止ダイオード(第1逆流防止素子)16aと並列に接続されている。同様に、電力線路17cは、PCS13(PCS13の内部のコンデンサ)を介して電力線路18cと接続されている。したがって、コンデンサ(第3コンデンサ)25bは、少なくとも逆流防止ダイオード(第2逆流防止素子)16bと並列に接続されている。アーク検出装置64,65の他の構成は、前記のアーク検出装置64,65と同様である。
 (アーク検出装置67,68の動作)
 上記の構成において、アーク検出装置67,68の動作について以下に説明する。太陽電池ストリング11aにおいてアークが発生している場合、および太陽電池ストリング11bにおいてアークが発生している場合、アーク検出装置67,68は、アーク検出装置64,65(アーク検出装置61,63)と同様にして、太陽電池ストリング11a,11bにおけるアークの発生を検出することができる。
 また、逆流防止ダイオード16aまたは逆流防止ダイオード16bが逆バイアスの状態になった場合であっても、同様に、電流センサ31aまたは電流センサ31bは、並列アークの交流電流を計測でき、アーク検出装置67またはアーク検出装置68は、太陽電池ストリング11aまたは太陽電池ストリング11bにて発生した並列アークを検出することができる。
 (アーク検出装置67,68の利点)
 アーク検出装置67は、アーク検出装置64(アーク検出装置61)と同様、太陽光発電システム1に昇圧箱22が存在する場合であっても、太陽電池ストリング11aにて発生したアークを高精度に検出することができる。
 さらに、アーク検出装置67,68は、アーク検出装置64,65と同様、逆流防止ダイオード16aまたは逆流防止ダイオード16bが逆バイアスの状態であっても、太陽電池ストリング11aにて発生した並列アークの交流電流、および太陽電池ストリング11bにて発生した並列アークを高精度に検出することができる。
 〔実施形態5〕
 本発明のさらに他の実施形態を図面に基づいて以下に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (太陽光発電システム1およびアーク検出装置66,65の構成)
 図9は、本発明のさらに他の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。図9に示すように、本実施形態において、太陽光発電システム1は、アーク検出装置66,65を備えている。太陽電池ストリング11aに設けられているアーク検出装置66は、図7に示したアーク検出装置64とは異なり、バイパス電流経路23にコンデンサ19のみが設けられ、電流センサ31aは、昇圧箱22(バイパス電流経路23の電力線路17bとの接続点)と接続箱12(並列アーク接続された逆流防止ダイオード16aおよびコンデンサ25a)との間の電力線路17bに設けられている。アーク検出装置66の他の構成は、アーク検出装置64と同様である。
 (アーク検出装置66,65の利点)
 アーク検出装置67は、アーク検出装置63(アーク検出装置61)と同様、太陽光発電システム1に昇圧箱22が存在する場合であっても、太陽電池ストリング11aにて発生したアークを高精度に検出することができる。
 さらに、アーク検出装置66,65は、図7に示したアーク検出装置64,65と同様、逆流防止ダイオード16aまたは逆流防止ダイオード16bが逆バイアスの状態であっても、太陽電池ストリング11aにて発生した並列アーク、および太陽電池ストリング11bにて発生した並列アークを高精度に検出することができる。
 〔実施形態6〕
 本発明のさらに他の実施形態を図面に基づいて以下に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (太陽光発電システム1およびアーク検出装置69,68の構成)
 図10は、本発明のさらに他の実施形態のアーク検出装置を備える太陽光発電システムの構成を示す概略の回路図である。図10に示すように、本実施形態において、太陽光発電システム1は、アーク検出装置69,68を備えている。太陽電池ストリング11aに設けられているアーク検出装置69は、図8に示したアーク検出装置67とは異なり、バイパス電流経路23にコンデンサ19のみが設けられ、電流センサ31aは、昇圧箱22(バイパス電流経路23の電力線路17bとの接続点)と接続箱12(逆流防止ダイオード16a)との間の電力線路17bに設けられている。なお、コンデンサ25aの第1電極は、電流センサ31bと接続箱12(逆流防止ダイオード16a)との間の電力線路17bに接続されている。アーク検出装置69の他の構成は、アーク検出装置67と同様である。
 (アーク検出装置69,68の利点)
 アーク検出装置69は、アーク検出装置68と同様、太陽光発電システム1に昇圧箱22が存在する場合であっても、太陽電池ストリング11aにて発生したアークを高精度に検出することができる。
 さらに、アーク検出装置69,68は、図8に示したアーク検出装置67,68と同様、逆流防止ダイオード16aまたは逆流防止ダイオード16bが逆バイアスの状態であっても、太陽電池ストリング11aにて発生した並列アーク、および太陽電池ストリング11bにて発生した並列アークを高精度に検出することができる。
 以上のように、本発明の一態様におけるアーク検出装置は、発電または充放電する第1直流電源と、前記第1直流電源の出力電圧を昇圧する昇圧回路と、前記昇圧回路の出力電力を消費または変換する負荷装置と、前記第1直流電源と前記昇圧回路とを接続する一対の第1電力線と、前記昇圧回路と前記負荷装置とを接続する一対の第2電力線と、を備えた直流電源システムに適用されるアーク検出装置であって、前記昇圧回路と並列に接続され、前記昇圧回路を迂回するバイパス電流経路を形成する第1コンデンサと、前記第1コンデンサに流れる電流が流れ得る電流経路において電流を計測する第1電流計測部と、前記第1電流計測部により計測された電流の高周波成分に基づきアークの有無を判定する第1アーク判定部と、を有する構成である。
 上記の構成によれば、第1直流電源は第1電力線、昇圧回路および第2電力線を介して負荷装置と接続され、第1コンデンサは昇圧回路を迂回するバイパス電流経路を形成し、第1電流計測部は、第1コンデンサに流れる電流が流れ得る電流経路において電流を計測する。
 したがって、昇圧回路が存在する場合であっても、第1電流計測部は、第1直流電源にて発生したアークの交流電流を計測することができる。これにより、アーク検出装置は、直流電源システムに昇圧回路が存在する場合であっても、直流電源システムにて発生したアークを高精度に検出することができる。
 上記のアーク検出装置において、前記アーク検出装置が適用される直流電源システムは、さらに、前記第1直流電源の出力電圧よりも高い電圧で発電または充放電する第2直流電源と、前記第2直流電源と前記一対の第2電力線とを接続する一対の第3電力線と、前記一対の第2電力線と前記一対の第3電力線とが接続される分岐点のいずれかと前記昇圧回路との間に設けられ、前記第1直流電源により供給される電流と逆方向に電流が流れることを防ぐ第1逆流防止素子と、前記一対の第3電力線のいずれかに設けられ、前記第2直流電源により供給される電流と逆方向に電流が流れることを防ぐ第2逆流防止素子と、を備え、前記第1逆流防止素子と並列に接続された第2コンデンサと、前記第2逆流防止素子と並列に接続された第3コンデンサと、前記第3コンデンサに流れる電流が流れうる電流経路において電流を計測する第2電流計測部と、前記第2電流計測部により計測された電流の高周波成分に基づきアークの有無を判定する第2アーク判定部と、をさらに有する、構成としてもよい。
 上記の構成によれば、第1直流電源への電流の逆流を防ぐ第1逆流防止素子、および第2直流電源への電流の逆流を防ぐ第2逆流防止素子を備え、かつ第1逆流防止素子と並列に接続された第2コンデンサ、および第2逆流防止素子と並列に接続された第3コンデンサを備えている。
 したがって、例えば第1直流電源において並列アークが発生し、第1直流電源の出力電圧が第2直流電源の出力電圧よりも低下して、第1逆流防止素子が逆バイアスの状態となったとしても、第1直流電源において発生した並列アークの交流電流は、第2コンデンサを介して流れる。これにより、第1電流計測部は、第1直流電源において発生した並列アークの交流電流を計測でき、アーク検出装置は、第1直流電源において発生した並列アークを検出することができる。同様にして、第2電流計測部は、第2直流電源において発生した並列アークの交流電流を計測でき、アーク検出装置は、第2直流電源において発生した並列アークを検出することができる。
 上記のアーク検出装置において、前記第1電流計測部は前記バイパス電流経路において電流を計測する構成としてもよい。
 上記の構成によれば、第1電流計測部は、第1コンデンサにて形成され、昇圧回路を迂回するバイパス電流経路において電流を計測する。したがって、第1電流計測部には、直流の大電流は流れず、アークによる微弱な交流電流のみが流れる。これにより、第1電流計測部は、定格電流が小さいものを使用でき、良好なS/Nにてアークの電流を計測することができる。
 上記のアーク検出装置において、前記第1アーク判定部と前記第2アーク判定部とは、これら両アーク判定部の機能を兼ねる単一のアーク判定部からなる、構成としてもよい。
 上記の構成によれば、アーク判定部の数を削減することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
  1   太陽光発電システム(直流電源システム)
 11a  太陽電池ストリング(第1直流電源)
 11b  太陽電池ストリング(第2直流電源)
 12   接続箱
 13   パワーコンディショニングシステム(負荷装置)
 16a  逆流防止ダイオード(第1逆流防止素子)
 16b  逆流防止ダイオード(第2逆流防止素子)
 17a  電力線路(第1電力線)
 18a  電力線路(第1電力線)
 17b  電力線路(第2電力線)
 17b1 正分岐点
 18b  電力線路(第2電力線)
 18b1 負分岐点
 17c  電力線路(第3電力線)
 18c  電力線路(第3電力線)
 19   コンデンサ(第1コンデンサ)
 21   太陽電池モジュール
 22   昇圧箱(昇圧回路)
 23   バイパス電流経路
 25a  コンデンサ(第2コンデンサ)
 25b  コンデンサ(第3コンデンサ)
 31a  電流センサ(第1電流計測部)
 31b  電流センサ(第2電流計測部)
 32   アーク検出処理部(第1アーク判定部、第2アーク判定部)
61,63~69 アーク検出装置

Claims (4)

  1.  発電または充放電する第1直流電源と、
     前記第1直流電源の出力電圧を昇圧する昇圧回路と、
     前記昇圧回路の出力電力を消費または変換する負荷装置と、
     前記第1直流電源と前記昇圧回路とを接続する一対の第1電力線と、
     前記昇圧回路と前記負荷装置とを接続する一対の第2電力線と、
     を備えた直流電源システムに適用されるアーク検出装置であって、
     前記昇圧回路と並列に接続され、前記昇圧回路を迂回するバイパス電流経路を形成する第1コンデンサと、
     前記第1コンデンサに流れる電流が流れ得る電流経路において電流を計測する第1電流計測部と、
     前記第1電流計測部により計測された電流の高周波成分に基づきアークの有無を判定する第1アーク判定部と、
    を有するアーク検出装置。
  2.  前記アーク検出装置が適用される直流電源システムは、
     前記第1直流電源の出力電圧よりも高い電圧で発電または充放電する第2直流電源と、
     前記第2直流電源と前記一対の第2電力線とを接続する一対の第3電力線と、
     前記一対の第2電力線と前記一対の第3電力線とが接続される分岐点のいずれかと前記昇圧回路との間に設けられ、前記第1直流電源により供給される電流と逆方向に電流が流れることを防ぐ第1逆流防止素子と、
     前記一対の第3電力線のいずれかに設けられ、前記第2直流電源により供給される電流と逆方向に電流が流れることを防ぐ第2逆流防止素子と、
    を備え、
     前記第1逆流防止素子と並列に接続された第2コンデンサと、
     前記第2逆流防止素子と並列に接続された第3コンデンサと、
     前記第3コンデンサに流れる電流が流れうる電流経路において電流を計測する第2電流計測部と、
     前記第2電流計測部により計測された電流の高周波成分に基づきアークの有無を判定する第2アーク判定部と、
    をさらに有する、
    請求項1に記載のアーク検出装置。
  3.  前記第1電流計測部は前記バイパス電流経路において電流を計測する請求項1に記載のアーク検出装置。
  4.  前記第1アーク判定部と前記第2アーク判定部とは、これら両アーク判定部の機能を兼ねる単一のアーク判定部からなる、請求項2に記載のアーク検出装置。
PCT/JP2016/084646 2016-03-07 2016-11-22 アーク検出装置 WO2017154274A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016043390A JP6037071B1 (ja) 2016-03-07 2016-03-07 アーク検出装置
JP2016-043390 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017154274A1 true WO2017154274A1 (ja) 2017-09-14

Family

ID=57419875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084646 WO2017154274A1 (ja) 2016-03-07 2016-11-22 アーク検出装置

Country Status (2)

Country Link
JP (1) JP6037071B1 (ja)
WO (1) WO2017154274A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182259A1 (ja) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103095B1 (ja) * 2016-03-07 2017-03-29 オムロン株式会社 アーク検出装置
JP6673237B2 (ja) * 2017-01-23 2020-03-25 オムロン株式会社 アーク検出装置
JP6658582B2 (ja) 2017-01-31 2020-03-04 オムロン株式会社 アーク検出装置
JP6658586B2 (ja) * 2017-02-03 2020-03-04 オムロン株式会社 アーク検出装置
KR101888932B1 (ko) * 2018-04-24 2018-08-16 주식회사 에너솔라 태양광 발전 시스템의 아크 검출 장치 및 방법
JP7108859B2 (ja) * 2018-04-25 2022-07-29 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500476A (ja) * 2009-07-23 2013-01-07 エンフェイズ エナジー インコーポレイテッド Dcアーク故障を検出及び制御するための方法及び装置
JP2013016640A (ja) * 2011-07-04 2013-01-24 Hitachi Cable Ltd 太陽光発電用接続箱
US20140055900A1 (en) * 2012-08-27 2014-02-27 Charles John Luebke Method and apparatus for enhancing arc fault signal for detection in photovoltaic system
JP2014161203A (ja) * 2013-01-24 2014-09-04 Omron Corp パワーコンディショナ、太陽電池システム、および異常判定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120316804A1 (en) * 2011-06-07 2012-12-13 Texas Instruments Incorporated Technique for arc detection in photovoltaic systems and other systems
JP6048876B2 (ja) * 2012-09-26 2016-12-21 パナソニックIpマネジメント株式会社 パワーコンディショナ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500476A (ja) * 2009-07-23 2013-01-07 エンフェイズ エナジー インコーポレイテッド Dcアーク故障を検出及び制御するための方法及び装置
JP2013016640A (ja) * 2011-07-04 2013-01-24 Hitachi Cable Ltd 太陽光発電用接続箱
US20140055900A1 (en) * 2012-08-27 2014-02-27 Charles John Luebke Method and apparatus for enhancing arc fault signal for detection in photovoltaic system
JP2014161203A (ja) * 2013-01-24 2014-09-04 Omron Corp パワーコンディショナ、太陽電池システム、および異常判定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182259A1 (ja) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
JPWO2021182259A1 (ja) * 2020-03-11 2021-09-16
JP7437812B2 (ja) 2020-03-11 2024-02-26 パナソニックIpマネジメント株式会社 アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱

Also Published As

Publication number Publication date
JP2017161242A (ja) 2017-09-14
JP6037071B1 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6037071B1 (ja) アーク検出装置
US10401410B2 (en) Electric arc detection apparatus and electric arc detection method
US10554035B2 (en) Arc detector and arc detection method
JP6027178B2 (ja) 無変圧器型太陽光インバータの漏れ電流監視装置
US10505370B2 (en) Safety detection device and method of grid-connected inverter
JP5691816B2 (ja) 太陽電池パネルの異常検知装置
JP6658582B2 (ja) アーク検出装置
US8988906B2 (en) Power conversion apparatus
JP6547659B2 (ja) アーク検出装置
US9337750B2 (en) Power conversion apparatus
JP6658586B2 (ja) アーク検出装置
TWI678044B (zh) 電弧檢測裝置及其控制方法、非暫時性電腦可讀取的記錄媒體、以及直流電源系統
JP6103095B1 (ja) アーク検出装置
JP6673237B2 (ja) アーク検出装置
WO2019208027A1 (ja) アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱
JP5979818B2 (ja) 電力変換装置
WO2021182259A1 (ja) アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
US11283368B2 (en) Open phase detection system for power conversion system
JP5255930B2 (ja) 位相検出器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893598

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893598

Country of ref document: EP

Kind code of ref document: A1