WO2017152745A1 - 镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器 - Google Patents

镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器 Download PDF

Info

Publication number
WO2017152745A1
WO2017152745A1 PCT/CN2017/074090 CN2017074090W WO2017152745A1 WO 2017152745 A1 WO2017152745 A1 WO 2017152745A1 CN 2017074090 W CN2017074090 W CN 2017074090W WO 2017152745 A1 WO2017152745 A1 WO 2017152745A1
Authority
WO
WIPO (PCT)
Prior art keywords
formaldehyde
sensitive material
photocatalytic
cerium
zinc oxide
Prior art date
Application number
PCT/CN2017/074090
Other languages
English (en)
French (fr)
Inventor
郑淑
李星国
郑捷
常兴华
Original Assignee
夏普株式会社
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 北京大学 filed Critical 夏普株式会社
Publication of WO2017152745A1 publication Critical patent/WO2017152745A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance

Definitions

  • the invention belongs to the field of formaldehyde gas monitoring technology and formaldehyde sensor technology, and particularly relates to an antimony doped photocatalytic formaldehyde sensitive material, a preparation method thereof and a formaldehyde sensor.
  • Chinese patent application 201510477075.3 (tin-doped photocatalytic formaldehyde sensing material and its preparation method and formaldehyde sensor) relates to a photocatalytic formaldehyde sensing material and a preparation method thereof.
  • the sensor is made of zinc oxide nanoparticles and tin additive as a gas sensitive material.
  • the pre-synthesized zinc oxide nanoparticles are uniformly dispersed in a tin salt solution, and the precipitate is obtained by stirring the solution and evaporating the solvent; and the precipitate is subjected to high-temperature calcination treatment to obtain a photocatalytic formaldehyde sensing material.
  • the sensor has low operating temperature, high sensitivity to formaldehyde and strong anti-interference ability to indoor polluting gases such as benzene, toluene, xylene and ammonia, and has a short response time and recovery time.
  • the lower limit of the formaldehyde concentration that can be detected is 0.1 ppm, and the lower limit of the indoor formaldehyde content set by the World Health Organization cannot be met.
  • the preparation process of photocatalytic formaldehyde sensitive materials by solution method is complicated, and there are many waste liquids produced during the preparation process, which is not suitable for large-scale production. Therefore, it is particularly important to explore the development of a more sensitive formaldehyde sensor with a simpler preparation process.
  • the present invention is directed to the above problems, and provides a low-cost, high-sensitivity, high-selective yttrium-doped photocatalytic formaldehyde-sensitive material (or photocatalytic formaldehyde sensing material), and a formaldehyde sensor using the same. .
  • a photocatalytic formaldehyde sensitive material comprising cerium doped zinc oxide nanoparticles.
  • the molar ratio of cerium is from 0.1% to 5%, further preferably from 0.5% to 5%, most preferably 1%.
  • a method for preparing the above photocatalytic formaldehyde sensitive material comprises the following steps:
  • the onium salt in the step 1) is preferably cerium nitrate.
  • the zinc oxide nanoparticles in the step 1) have a particle diameter of 20 to 50 nm, preferably about 30 nm.
  • step 2) is carried out under sealed conditions.
  • the ball mill has a ball milling time of 1-600 min and a rotational speed of 10-1000 rpm. It is preferably 60 min and 800 rpm.
  • step 3 evaporates the solvent at 60-100 ° C for 0.1-24 h. It is preferably 80 ° C, 2 h.
  • a method of preparing the above photocatalytic formaldehyde sensitive material comprises the steps of:
  • a method for preparing a formaldehyde sensor using the above photocatalytic formaldehyde sensitive material comprising:
  • an ultraviolet light source for providing ultraviolet light to illuminate the electrode area during detection
  • c) measuring circuit connected to the electrode, for detecting the photo-induced change of the formaldehyde-sensitive material when the ultraviolet light is irradiated to the electrode region, and then measuring the formaldehyde content.
  • the photocatalytic formaldehyde-sensitive material in a) is applied to the electrode by sputtering, evaporation, spraying or the like, preferably by spraying.
  • the middle electrode of b) is an interdigital electrode.
  • the wavelength of the ultraviolet light source in c) is 350-400 nm, preferably 380 nm.
  • the distance of the ultraviolet light source from the electrode region in c) is 1-10 mm, preferably 3 mm.
  • the invention provides a photocatalytic formaldehyde sensitive material with low cost, high sensitivity and simple process flow. Compared with the prior art, by optimizing the incorporation of antimony in zinc oxide, the detection limit of formaldehyde was successfully reduced to 0.08 ppm, which significantly improved the sensitivity of the sensor.
  • the photocatalytic material of the invention has simple preparation method and is suitable for large-scale production, and the waste water discharge is greatly reduced in the preparation process, and environmental pollution is reduced.
  • Figure 1 is a process flow diagram of a method of synthesizing and using a photocatalytic formaldehyde sensitive material of the present invention.
  • Figure 2 shows the response of different cerium doping samples to 3 ppm formaldehyde.
  • Figure 3 is a powder diffraction pattern of a 1% cerium doped sample.
  • Figure 4 is a response of a 1% cerium doped sample to 0.08 ppm formaldehyde.
  • Figure 1 is a flow chart showing the steps of a method for synthesizing and using a photocatalytic formaldehyde-sensitive material of the present invention, comprising the steps of:
  • the pre-synthesized zinc oxide nanoparticles are mixed with the cerium salt and dissolved in anhydrous ethanol;
  • the ball-milled solution is dried in an oven at an oven temperature of 60-100 ° C for 0.1-24 h.
  • the resulting material is a formaldehyde sensitive material
  • Step 2 Synthesis of 1% antimony-doped formaldehyde sensitive material
  • the zinc oxide nanomaterial was mixed with 0.2 g of cerium nitrate (the molar ratio of cerium was 1%), and the mixture was dissolved in 20 ml of absolute ethanol to form a solution, which was then poured into a ball mill jar and sealed.
  • Ball milling was carried out in a ball mill with a ball milling time of 60 minutes and a ball milling speed of 800 rpm; the ball milled solution was dried in an oven at a temperature of 80 ° C for 2 hours.
  • Fig. 3 is a powder diffraction pattern of the 1% cerium-doped sample of the present example. It can be seen that the main phase of the sample is ZnO and a trace amount of cerium nitrate is present.
  • the prepared formaldehyde sensitive material was applied to the interdigital electrodes by spray coating. Fixing the UV lamp with a wavelength of 380 nm A formaldehyde sensor is obtained 3 mm directly above the interdigital electrode.
  • a 10V voltage regulator circuit is provided for the sensor interdigital electrode, and a 5V voltage of the ultraviolet lamp is provided.
  • Figure 4 is the response of a formaldehyde sensor to 0.08 ppm formaldehyde. It can be seen that this embodiment successfully reduces the detection limit of formaldehyde to 0.08 ppm, which significantly improves the sensitivity of the sensor.
  • Example 2 Response of different cerium doping ratio samples to 3 ppm formaldehyde
  • Figure 2 shows the response of samples with different erbium doping ratios (0-5% mole percent of yttrium) to the same concentration of formaldehyde (3 ppm). It can be seen that the optimum ratio of antimony doping is 1%.
  • the zinc oxide nanomaterial was mixed with cerium nitrate in a molar ratio of cerium of 0.1%, and the mixture was dissolved in absolute ethanol to form a solution, which was then poured into a ball mill jar and sealed. Ball milling was carried out in a ball mill with a ball milling time of 20 minutes and a ball milling speed of 1000 rpm; the ball milled solution was dried in an oven at a temperature of 60 ° C for 24 hours. The resulting material is a formaldehyde sensitive material.
  • the zinc oxide nanomaterial was mixed with cerium nitrate in a molar ratio of 5%, and the mixture was dissolved in absolute ethanol to form a solution, which was then poured into a ball mill jar and sealed. Ball milling was carried out in a ball mill with a ball milling time of 600 minutes and a ball milling speed of 10 rpm; the ball milled solution was dried in an oven at a temperature of 100 ° C for 0.1 h. The resulting material is a formaldehyde sensitive material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Catalysts (AREA)

Abstract

一种镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器。该光催化甲醛敏感材料,包含镧掺杂的氧化锌纳米颗粒,其中镧的摩尔比为0.1%-5%。该光催化甲醛敏感材料的制备方法包括:1)将氧化锌纳米颗粒与镧盐混合,并用无水乙醇溶解,得到溶液A;2)将溶液A用球磨机进行机械研磨,得到溶液B;3)将溶液B蒸干溶剂,得到产物C,即为光催化甲醛敏感材料。通过优化镧在氧化锌中的掺入量,成功地将甲醛的检测下限降到了0.08ppm,显著的提高了传感器的敏感度;光催化材料的制备方法简单,适合大规模生产,制备过程中大大减少了废水的排放,降低了环境污染。

Description

镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器
交叉引用
本发明要求2016年3月11日提交的申请号为201610140339.0的中国专利申请的优先权,该专利申请的全部内容通过引用结合在此。
技术领域
本发明属于甲醛气体监测技术、甲醛传感器技术领域,具体涉及一种镧掺杂的光催化甲醛敏感材料及其制备方法和甲醛传感器。
背景技术
目前在中国甲醛污染仍然非常严重,近70%新装修的房子都受到甲醛污染的困扰。世界卫生组织已确认甲醛为一级致癌物质,我国规定:室内甲醛含量不得超过0.08ppm。但是目前的已有的甲醛传感器的敏感度都不尽如人意。
中国专利申请201510477075.3(锡掺杂的光催化甲醛传感材料及其制备方法和甲醛传感器)涉及到一种光催化甲醛传感材料、制备方法。该传感器是由氧化锌纳米颗粒及锡添加剂作为气敏材料。将预先合成的氧化锌纳米颗粒均匀分散在锡盐溶液中,通过搅拌溶液并蒸干溶剂,得到沉淀物;对沉淀物进行高温煅烧处理,得到产物即为光催化甲醛传感材料。该传感器操作温度低、对甲醛的灵敏度高并且对于苯、甲苯、二甲苯、氨等室内污染气体具有很强的抗干扰能力,并且具有很短的响应时间和回复时间的特点。但是能够检测到的甲醛浓度的下限为0.1ppm,还不能达到世界卫生组织所设定的室内甲醛含量的下限检测标准。同时通过溶液法制备光催化甲醛敏感材料制备过程复杂,制备过程中产生的废液多,不适合大规模生产。因此探索开发灵敏度更高的、制备工艺更简单的甲醛传感器尤为重要。
发明内容
本发明针对上述问题,提供一种低成本、高灵敏度、高选择性的镧(La)掺杂的光催化甲醛敏感材料(或称为光催化甲醛传感材料),以及应用该材料的甲醛传感器。
本发明采用的技术方案如下:
一种光催化甲醛敏感材料,包含镧掺杂的氧化锌纳米颗粒。
进一步地,所述镧掺杂的氧化锌纳米颗粒中,镧的摩尔比为0.1%-5%,进一步优选为0.5%-5%,最优为1%。
一种制备上述光催化甲醛敏感材料的方法,包括以下步骤:
1)将氧化锌纳米颗粒与镧盐混合,并用无水乙醇溶解,得到溶液A;
2)将溶液A用球磨机进行机械研磨,得到溶液B;
3)将溶液B蒸干溶剂,得到产物C,即为光催化甲醛敏感材料。
进一步地,步骤1)中所述镧盐优选硝酸镧。
进一步地,步骤1)中所述氧化锌纳米颗粒的粒径为20-50nm,优选约30nm。
进一步地,步骤2)在密封条件下进行。
进一步地,步骤2)中球磨机球磨时间为1-600min,转速为10-1000rpm。优选为60min、800rpm。
进一步地,步骤3)在60-100℃下蒸干溶剂,时间为0.1-24h。优选为80℃,2h。
根据一个具体实施方案,制备上述光催化甲醛敏感材料的方法,包括以下步骤:
1)将氧化锌纳米颗粒与镧盐混合,并用无水乙醇溶解,得到溶液A;
2)将溶液A导入磨罐中密封,并用球磨机进行机械研磨,得到溶液B;
3)将溶液B放入烘箱中蒸干溶剂,得到产物C,即为光催化甲醛敏感材料。
一种采用上述光催化甲醛敏感材料制备甲醛传感器,其包括:
a)电极,其上涂敷上述光催化甲醛敏感材料;
b)紫外光源,用于提供紫外光以在检测时对电极区域进行照射;
c)测量电路,连接所述电极,用于检测紫外光照射电极区域时甲醛敏感材料所产生的光致电导变化,进而测得甲醛含量。
进一步地,a)中光催化甲醛敏感材料通过溅射、蒸发、喷涂等方法涂覆到电极上,优选喷涂法。
进一步地,b)中电极为叉指电极。
进一步地,c)中紫外光源的波长为350-400nm,优选380nm。
进一步地,c)中紫外光源距离电极区域的距离为1-10mm,优选3mm。
本发明提供了一种低成本、高灵敏度、工艺流程简单的光催化甲醛敏感材料。相比于现有技术,通过优化镧在氧化锌中的掺入量,成功地将甲醛的检测下限降到了0.08ppm,显著的提高了传感器的敏感度。本发明的光催化材料的制备方法简单,适合大规模生产,制备过程中大大减少了废水的排放,降低了环境污染。
附图说明
图1是本发明的光催化甲醛敏感材料的一种合成和使用方法的工艺流程图。
图2是不同镧掺杂比例样品对3ppm甲醛的响应大小。
图3是1%镧掺杂样品的粉沫衍射图谱。
图4是1%镧掺杂样品对0.08ppm甲醛响应大小。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面通过具体实施例和附图,对本发明做进一步说明。
图1是本发明的光催化甲醛敏感材料的一种合成和使用方法的步骤流程图,包括如下步骤:
1.将预先合成的氧化锌纳米颗粒与镧盐混合后加入无水乙醇溶解;
2.把溶液倒入球磨罐中密封,放入球磨机中进行球磨,球磨时间为1-600min,球磨速度为10-1000rpm;
3.将球磨后的溶液放入烘箱中干燥,烘箱温度为60-100℃,时间0.1-24h。所得物质即为甲醛敏感材料;
4.将所得材料涂覆到叉指电极上(例如,将甲醛敏感材料研磨,乙醇分散,然后滴涂到传感器电极例如叉指电极上);
5.将紫外光源固定在距离叉指电极的正上方1-10mm处,即得到甲醛传感器。
实施例1:1%镧掺杂甲醛敏感材料的合成及测试
步骤一:氧化锌纳米颗粒的合成
将10.77g ZnSO4·7H2O(375mmol)溶解在25mL去离子水中。将溶液逐滴加入到50mL100g/L(1.36mmol/L)NH4HCO3溶液中,在40℃水浴下搅拌1h。去掉上清液,每次用15mL去离子水洗涤沉淀,共洗涤三次,然后将沉淀在80℃干燥12h,在120℃干燥2h。烘完后将样品放入马弗炉中500℃煅烧2h,得到氧化锌纳米材料。
步骤二:1%镧掺杂甲醛敏感材料的合成
将50g氧化锌纳米材料与0.2g硝酸镧混合(镧的摩尔比为1%),将混合物溶解在20ml的无水乙醇中形成溶液,然后倒入球磨罐中并密封。在球磨机中进行球磨,球磨时间为60分钟,球磨速度为800rpm;将球磨后的溶液放入烘箱中烘干,温度为80℃,时间为2h。
图3是本实施例的1%镧掺杂样品的粉末衍射图谱,可以看出,样品的主相为ZnO,并有微量的硝酸镧。
步骤三:甲醛传感器制备
将制备的甲醛敏感材料通过喷涂法涂覆到叉指电极上。将波长为380nm的紫外灯固定在 距离叉指电极的正上方3mm处,即得到甲醛传感器。
步骤四:甲醛检测
提供传感器叉指电极10V稳压电路,同时提供紫外灯5V电压。图4是甲醛传感器对0.08ppm甲醛的响应大小。可以看出,本实施例成功地将甲醛的检测下限降到了0.08ppm,显著的提高了传感器的敏感度。
实施例2:不同镧掺杂比例样品对3ppm甲醛的响应大小
图2是不同镧掺杂比例(镧的摩尔百分含量为0-5%)的样品对同种浓度甲醛(3ppm)的响应大小。可以看出,镧掺杂的最优比例为1%。
实施例3:
将氧化锌纳米材料与硝酸镧混合,其中镧的摩尔比为0.1%,将混合物溶解在无水乙醇中形成溶液,然后倒入球磨罐中并密封。在球磨机中进行球磨,球磨时间为20分钟,球磨速度为1000rpm;将球磨后的溶液放入烘箱中烘干,温度为60℃,时间为24h。所得物质即为甲醛敏感材料。
实施例4:
将氧化锌纳米材料与硝酸镧混合,其中镧的摩尔比为5%,将混合物溶解在无水乙醇中形成溶液,然后倒入球磨罐中并密封。在球磨机中进行球磨,球磨时间为600分钟,球磨速度为10rpm;将球磨后的溶液放入烘箱中烘干,温度为100℃,时间为0.1h。所得物质即为甲醛敏感材料。
以上实施例仅用以说明本发明的技术方案而非对其进行限制,本领域的普通技术人员可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明的精神和范围,本发明的保护范围应以权利要求书所述为准。

Claims (14)

  1. 一种光催化甲醛敏感材料,其特征在于,包含镧掺杂的氧化锌纳米颗粒。
  2. 如权利要求1所述的光催化甲醛敏感材料,其特征在于,所述镧掺杂的氧化锌纳米颗粒中,镧的摩尔比为0.1%-5%。
  3. 如权利要求2所述的光催化甲醛敏感材料,其特征在于,所述镧掺杂的氧化锌纳米颗粒中,镧的摩尔比为0.5%-5%。
  4. 如权利要求2所述的光催化甲醛敏感材料,其特征在于,所述镧掺杂的氧化锌纳米颗粒中,镧的摩尔比为1%。
  5. 一种制备权利要求1所述光催化甲醛敏感材料的方法,包括以下步骤:
    1)将氧化锌纳米颗粒与镧盐混合,并用无水乙醇溶解,得到溶液A;
    2)将溶液A用球磨机进行机械研磨,得到溶液B;
    3)将溶液B蒸干溶剂,得到产物C,即为光催化甲醛敏感材料。
  6. 如权利要求5所述的方法,其特征在于,步骤1)所述镧盐为硝酸镧。
  7. 如权利要求5或6所述的方法,其特征在于,步骤2)在密封条件下进行。
  8. 如权利要求5-7中任一项所述的方法,其特征在于,步骤2)中球磨机的球磨时间为1-600min,转速为10-1000rpm。
  9. 如权利要求5-8中任一项所述的方法,其特征在于,步骤3)在60-100℃下蒸干溶剂,时间为0.1-24h。
  10. 一种采用权利要求1-4中任一项所述光催化甲醛敏感材料的甲醛传感器,其特征在于,包括:
    电极,其上涂敷权利要求1-4中任一项所述的光催化甲醛敏感材料;
    紫外光源,用于提供紫外光以在检测时对电极区域进行照射;
    测量电路,连接所述电极,用于检测紫外光照射电极区域时甲醛敏感材料所产生的光致电导变化,进而测得甲醛含量。
  11. 如权利要求10所述的甲醛传感器,其特征在于,所述光催化甲醛敏感材料通过溅射、蒸发、或喷涂方法涂覆到电极上。
  12. 如权利要求10或11所述的甲醛传感器,其特征在于,所述电极为叉指电极。
  13. 如权利要求10-12中任一项所述的甲醛传感器,其特征在于,所述紫外光源的波长为350-400nm。
  14. 如权利要求10-13中任一项所述的甲醛传感器,其特征在于,所述紫外光源距离电极区域的距离为1-10mm。
PCT/CN2017/074090 2016-03-11 2017-02-20 镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器 WO2017152745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610140339.0A CN105866183B (zh) 2016-03-11 2016-03-11 一种镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器
CN201610140339.0 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017152745A1 true WO2017152745A1 (zh) 2017-09-14

Family

ID=56624683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074090 WO2017152745A1 (zh) 2016-03-11 2017-02-20 镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器

Country Status (2)

Country Link
CN (1) CN105866183B (zh)
WO (1) WO2017152745A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866183B (zh) * 2016-03-11 2019-03-22 北京大学 一种镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器
CN107096574A (zh) * 2017-05-05 2017-08-29 杭州环康科技有限公司 光触媒甲醛清除组合物及其制备方法
CN109187664B (zh) * 2018-09-20 2021-07-09 电子科技大学 一种外力触发式响应增强型自供能气体传感器及其制备方法
CN110735114A (zh) * 2019-09-30 2020-01-31 安徽省含山县锦华氧化锌厂 一种基于氧化锌掺杂的半导体传感器用组合物
CN113564812B (zh) * 2021-07-20 2023-03-28 上海纳米技术及应用国家工程研究中心有限公司 一种检测超低浓度甲醛的弱碱性氧化铟的制备方法及其产品与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044601A (en) * 1974-07-29 1977-08-30 Hitachi, Ltd. Smoke and gas sensor element
CN101852754A (zh) * 2010-05-14 2010-10-06 云南大学 一种掺杂铁酸镧甲醛气敏材料及其制备方法
CN104897735A (zh) * 2015-04-28 2015-09-09 北京大学 一种双层结构的光催化式甲醛传感器及其制备方法
CN104977320A (zh) * 2015-06-03 2015-10-14 胡齐放 一种用于酒精检测的陶瓷气敏传感器
CN105044160A (zh) * 2015-06-29 2015-11-11 中国科学技术大学 一种锰酸镧/半导体金属氧化物复合气敏材料及其制备方法
CN105092652A (zh) * 2015-08-06 2015-11-25 北京大学 锡掺杂的光催化甲醛传感材料及其制备方法和甲醛传感器
CN105866183A (zh) * 2016-03-11 2016-08-17 北京大学 一种镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285860A (zh) * 2013-05-16 2013-09-11 赵淮光 一种有效消除空气中的甲醛的催化剂及其制备方法
CN104338528A (zh) * 2013-07-30 2015-02-11 江苏瑞丰科技实业有限公司 常温甲醛催化剂的制备
CN103466685A (zh) * 2013-09-26 2013-12-25 新疆大学 一种稀土掺杂氧化锌气敏材料的固相合成方法
CN104671276B (zh) * 2013-11-28 2016-03-16 上海工程技术大学 一种La表面改性的ZnO纳米片组装的三维结构的合成方法
CN105289291A (zh) * 2015-11-25 2016-02-03 江苏中科睿赛污染控制工程有限公司 一种VOCs的光电一体化处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044601A (en) * 1974-07-29 1977-08-30 Hitachi, Ltd. Smoke and gas sensor element
CN101852754A (zh) * 2010-05-14 2010-10-06 云南大学 一种掺杂铁酸镧甲醛气敏材料及其制备方法
CN104897735A (zh) * 2015-04-28 2015-09-09 北京大学 一种双层结构的光催化式甲醛传感器及其制备方法
CN104977320A (zh) * 2015-06-03 2015-10-14 胡齐放 一种用于酒精检测的陶瓷气敏传感器
CN105044160A (zh) * 2015-06-29 2015-11-11 中国科学技术大学 一种锰酸镧/半导体金属氧化物复合气敏材料及其制备方法
CN105092652A (zh) * 2015-08-06 2015-11-25 北京大学 锡掺杂的光催化甲醛传感材料及其制备方法和甲醛传感器
CN105866183A (zh) * 2016-03-11 2016-08-17 北京大学 一种镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器

Also Published As

Publication number Publication date
CN105866183B (zh) 2019-03-22
CN105866183A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017152745A1 (zh) 镧掺杂的甲醛敏感材料及其制备方法和甲醛传感器
WO2017020859A1 (zh) 锡掺杂的光催化甲醛传感材料及其制备方法和甲醛传感器
CN103713016B (zh) 钯掺杂二氧化锡包覆碳纳米管及其制备方法和应用
Gesenhues Al-doped TiO2 pigments: influence of doping on the photocatalytic degradation of alkyd resins
JP6239668B2 (ja) 二層構造光触媒式ホルムアルデヒドセンサ及びその製造方法
CN104820068A (zh) 氧化锡氧化铝基低浓度丙酮气体传感器及其制备方法
CN110577236A (zh) 用于气敏传感器的NiO改性二氧化锡纳米材料的制备方法及其产品和应用
CN110243881B (zh) 一种基于rGO-SnO2纳米复合材料的NO2气敏元件及其制备方法
CN102507657A (zh) 一种高灵敏度的铋掺杂二氧化锡传感材料的制备方法
CN110687170A (zh) 一种基于紫外光波段的TiO2/SnO2气体传感器及制备方法
CN110487772B (zh) 一种三维SnO2/Ag NPs拉曼增强基底及其制备方法与应用
CN107064250B (zh) 一种钒酸铋-多酸气体传感纳米复合材料制备方法
CN108946815A (zh) 一种wo3纳米颗粒和其制备方法及其在传感器中的应用
CN103896338A (zh) 模板法制备具有规则六方片状形貌的三氧化钨的方法及其应用
CN105738449A (zh) 二氧化锡-多酸复合气体传感材料及其制备方法
CN110395761A (zh) 一种表面钴掺杂氧化锌复合材料及其制备方法和应用
CN107817278A (zh) 新型铈掺杂丙酮气敏传感元件的制备方法
CN107817273A (zh) 铝、钛共掺杂氧化锌基丙酮气体传感器的制备方法
CN105044160B (zh) 一种锰酸镧/半导体金属氧化物复合气敏材料及其制备方法
Rahman et al. Studies of methanol electro-oxidation with ternary wet-chemically prepared ZCSO hexagonal nanodiscs with electrochemical approach
CN109521061A (zh) 一种一氧化碳气体传感器及制备方法
CN107817276A (zh) 新型钛掺杂氧化钨基甲苯蒸汽检测传感器的制备方法
CN109655499B (zh) 一种用于二氧化氮传感器的气敏材料及其制备方法
CN113697857A (zh) 一种二维片状氧化钼纳米材料的制备方法及应用
CN109187665B (zh) 一种基于非水解溶胶-凝胶wo3多孔薄膜的no2气敏元件及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762431

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762431

Country of ref document: EP

Kind code of ref document: A1