WO2017152434A1 - 对撞式气流粉碎机构及粉碎机 - Google Patents

对撞式气流粉碎机构及粉碎机 Download PDF

Info

Publication number
WO2017152434A1
WO2017152434A1 PCT/CN2016/077073 CN2016077073W WO2017152434A1 WO 2017152434 A1 WO2017152434 A1 WO 2017152434A1 CN 2016077073 W CN2016077073 W CN 2016077073W WO 2017152434 A1 WO2017152434 A1 WO 2017152434A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative pressure
zone
positive pressure
pulverizing mechanism
grinding
Prior art date
Application number
PCT/CN2016/077073
Other languages
English (en)
French (fr)
Inventor
钟文虎
Original Assignee
钟文虎
上海红箭自动化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钟文虎, 上海红箭自动化设备有限公司 filed Critical 钟文虎
Priority to JP2017527373A priority Critical patent/JP6681895B2/ja
Priority to US15/579,204 priority patent/US10792669B2/en
Publication of WO2017152434A1 publication Critical patent/WO2017152434A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/20Disintegrating by mills having rotary beater elements ; Hammer mills with two or more co-operating rotors
    • B02C13/205Disintegrating by mills having rotary beater elements ; Hammer mills with two or more co-operating rotors arranged concentrically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/063Jet mills of the toroidal type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/065Jet mills of the opposed-jet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/066Jet mills of the jet-anvil type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/068Jet mills of the fluidised-bed type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/11High-speed drum mills

Definitions

  • the invention relates to a high-speed, high-frequency and high-efficiency collision type airflow pulverizing mechanism and a pulverizer using the same.
  • the invention adopts ultra-high-speed airflow, high-frequency collision and progressive process to complete the pulverization of materials.
  • a powder having a particle size of 1 to 10 ⁇ m is referred to as an ultrafine powder
  • a powder having a particle size of 0.1 to 1 ⁇ m is referred to as an ultrafine powder
  • a powder having a particle size of not more than 0.1 ⁇ m is referred to as a nanopowder.
  • Ultra-fine powder production equipment and technology currently mainly include: mechanical impact pulverizer, jet mill and vibrating mill.
  • the commonality of these technical equipments is that the ultimate particle size can only reach about 5 microns.
  • There are certain technical and technological difficulties to achieve the industrial production of ultra-fine materials Generally, there are low yield, high energy consumption, poor environmental performance, and powder purity. Low question.
  • Mechanical impact pulverizer and vibrating medium grinder are a kind of more traditional mechanical grinding equipment, and there are many types of machinery.
  • the principle is to use mechanical energy to directly drive the movement of the medium to pulverize the material, the pulverization effect is also low, and it is difficult to achieve the powder purity requirement, and the powder fineness is worse than the airflow mill.
  • a vibrating medium mill has an effective pulverization power of about 0.3%, and about 98% of the energy is converted into heat and escapes.
  • the jet mill is the most advanced ultra-fine equipment in the world. It is mainly of the following types: flat jet mill, circulating jet mill, jet jet mill, target jet mill, fluidized bed Jet mill, etc.
  • airflow pulverizer has the following problems: 1, high energy consumption, low production efficiency; 2, less production, generally not more than 100kg / h Most of them are less than 50kg/h; 3. It is more difficult to prepare ultrafine powder; 4. The structure is complicated and the price is expensive.
  • a Chinese utility model patent disclosed in CN 204724286 discloses a solid material grinding machine comprising a grinding chamber, a working chamber and a classifier arranged in sequence from top to bottom, wherein the grinding chamber is provided with an abrasive body in the middle thereof, corresponding to the grinding body a liner on the side wall of the grinding chamber; a hollow structure in the grinding body, the upper receiving port and the working The warehouse outlet is connected, and a plurality of material outlets and hammer plates are arranged in the circumferential direction; the grinding chamber and the working chamber are connected by a plurality of conduits, and the working chamber is provided with an annular air inlet; the classifier is sequentially connected with the screw receiver and the bag filter.
  • the discharge ports of the screw receiver and the bag filter are respectively connected to the finished product discharge device; the feed port of the work chamber is additionally connected to the material storage bin through the material conveying device.
  • An invention patent application published as CN 103752388 discloses an environmentally-friendly and energy-saving vortex pulverizer comprising a grinding chamber surrounded by an outer cylinder and a rotating body disposed in the grinding chamber and a motor for driving the rotating body to rotate
  • the invention further comprises a plurality of inner grinding blocks, an outer grinding block and an inner cylinder disposed between the inner grinding block and the outer grinding block, which are evenly distributed on both sides of the rotating body in the circumferential direction, and the inner and outer grinding blocks are positive in one side of the rotating direction.
  • the pressing surface and the other surface are negative pressure surfaces.
  • a negative pressure plate is disposed on the negative pressure surface of the inner and outer grinding blocks, and the negative pressure plate is opposite to the negative pressure surface of the inner and outer grinding blocks.
  • a front density cover plate and a rear density cover plate are respectively disposed at the front end and the rear end of the outer cylinder body, and the front density cover plate and the rear density cover plate are provided with the grinding chamber
  • the discharge port is provided with a feed port in the grinding chamber.
  • An object of the present invention is to provide a high-speed, high-frequency, high-efficiency collision type airflow pulverizing mechanism and a pulverizer using the same.
  • an aspect of the present invention provides a collision type airflow pulverizing mechanism including a casing, and a rotating member rotatable about a shaft is disposed in the casing, and the casing is provided with a material inlet and a material outlet.
  • the utility model is characterized in that: at least four circumferentially arranged grinding zones are arranged in the rotating component, and a channel is formed between the outer edge of each grinding zone and the inner wall of the outer casing, and a diameter of each end of each channel is formed, and the material is carried.
  • Air flow It is defined as a two-phase flow, which is injected into the negative pressure zone of the corresponding grinding zone via a diameter.
  • a negative pressure blade, a positive pressure blade and a two-phase flow guiding portion are provided, and the cross-sectional area of the positive pressure blade is controlled. It is N times the cross-sectional area of the passage, N>1, and a negative pressure zone is formed between adjacent negative pressure vanes and between the walls of the negative pressure vane and the wear zone, and between adjacent positive pressure vanes and between positive pressure vanes and grinding zones.
  • a positive pressure zone is formed between the walls, and a positive pressure zone is formed on the left and right sides of any negative pressure zone, and a negative pressure zone is formed on the left and right sides of any positive pressure zone, wherein the axial direction of the rotating member is defined as front and rear, and is perpendicular to The horizontal direction before and after is defined as left and right;
  • the negative pressure vane rotates to generate a negative pressure in the negative pressure region
  • the positive pressure vane rotates to generate a positive pressure in the positive pressure region, thereby generating an air flow; the air flow carries the material to form a two-phase flow at least from the left and right direction.
  • the two-phase flow flowing out of the positive pressure zone of the current grinding zone to the right is injected into the negative pressure zone adjacent to and adjacent to the right side of the positive pressure zone via the passage and the passage, the negative pressure
  • the zone is located in the current grinding zone;
  • the two-phase flow flowing out of the positive pressure zone of the current grinding zone to the left is injected into the negative pressure zone located on the left side of the positive pressure zone and adjacent thereto through the passage and the passage, the negative pressure zone is located a second grinding zone adjacent to the left side of the current grinding zone;
  • the two-phase flow entering the negative pressure zone is directed by the two-phase flow guiding section to the positive pressure zone of the same grinding zone to form a cycle;
  • two two-phase flows are injected into the negative pressure zone through the paths on the left and right sides respectively, and the two-phase flow velocity injected from the through-path is the speed after the sum of the airflows generated by the positive pressure blades N times, two two-phase flows are respectively injected from the paths on the left and right sides to form a hedging at the entrance of the negative pressure zone, so that the materials in the two two-phase flows collide and pulverize.
  • a two-phase flow split guide portion is further disposed in the negative pressure region, and the two-phase flow in the same negative pressure region is guided by the two-phase flow split guide portion flow to the plurality of the same grinding region Positive pressure zone.
  • each of the grinding zones is provided with a plurality of sets of blades arranged one behind the other, each set of blades comprising the negative pressure vanes and the positive pressure vanes arranged circumferentially left and right, and two groups arranged one behind the other A segmental drafting blade set for achieving segmentation and/or discharge, all of which are located between the two component section drafting blade sets.
  • the segmented draft blade group comprises a plurality of segmented draft blades, the segmented draft is either a critical blade, or a negative pressure blade for generating a negative pressure, or is used to generate a positive pressure airflow. Positive pressure blades.
  • a collision type airflow pulverizer comprising: a motor, wherein: the pulverizing mechanism is coaxially mounted on an output shaft of the motor, and the pulverizing mechanism is located in the casing, and the casing is The feed port and the discharge port are respectively opened, and the feed port communicates with the material inlet of the pulverizing mechanism via the feed passage, and the discharge port communicates with the material outlet of the pulverizing mechanism via the discharge passage.
  • a collision type airflow pulverizer comprising a motor, characterized in that: two inner and outer pulverizing mechanisms are installed on an output shaft of the motor, respectively, an outer ring pulverizing mechanism and an inner ring a ring pulverizing mechanism, the material outlet of the inner ring pulverizing mechanism is in communication with the material inlet of the outer ring pulverizing mechanism, and the material inlet of the inner ring pulverizing mechanism communicates with the feeding port via the feeding passage, and the material outlet of the outer ring pulverizing mechanism is The discharge channel communicates with the discharge port.
  • an air inlet hole is opened in the casing, and an external air flow is introduced into the outer ring pulverizing mechanism via the air inlet hole; an external air flow of the inner ring pulverizing mechanism is entered by the feeding port.
  • a return port and a return inlet are opened on the casing, and the return port communicates with the passage of the crushing mechanism on the one hand, and the return port and the closed return inlet through the closed pipe on the other hand.
  • the return inlet is in communication with the material inlet of the inner ring crushing mechanism.
  • the container in line with environmental requirements, the container is negative pressure, no leakage, low speed, low noise.
  • the high-speed airflow, high-frequency collision and progressive pulverization technology used in the milling process can produce various fine powders up to the ultra-fine powder.
  • FIG. 1 is a schematic structural view of a collision type airflow pulverizer provided by the present invention
  • FIG. 2 is a partial schematic view of a collision type airflow pulverizing mechanism in the present invention
  • Figure 3 is a schematic illustration of a single rotating member of the present invention.
  • the present invention discloses a collision type airflow pulverizer including a motor 9, and an inner ring pulverizing mechanism 17 and an outer ring outside the inner ring pulverizing mechanism 17 are fixed on an output shaft of the motor 9.
  • Both the inner ring pulverizing mechanism 17 and the outer ring pulverizing mechanism 18 are located inside the casing 10.
  • the inner ring pulverizing mechanism 17 is similar in structure to the outer ring pulverizing mechanism 18.
  • the axial direction of the inner ring pulverizing mechanism 17 and the outer ring pulverizing mechanism 18 is set to the front-rear direction, and the horizontal direction perpendicular to the front-rear direction is set to the left-right direction.
  • the pulverizing mechanism in this embodiment includes a casing 1 in which the position of the casing 1 is fixed, and the outer ring of the casing 1 is a wear ring.
  • the outer casing 1 is provided with a material inlet and a material outlet.
  • a rotary member 8 rotatable about an axis is provided in the outer casing 1.
  • a plurality of rotary members 8 arranged in front and rear are employed (for the inner ring pulverizing mechanism 17 in Fig. 1, Fig. 1 is schematically drawn 9 rotating parts 8).
  • the rotary member 8 is fixed to the impeller 21.
  • a plurality of circumferentially disposed grinding zones 2-1, 2-2, 2-3 are provided on the rotary member 8.
  • a channel 23 is formed between the outer edge of each of the grinding zones 2-1, 2-2, 2-3 and the inner wall of the outer casing 1, and a diameter 3 is formed at each end of each of the channels 23, and the airflow carrying the material is defined as two
  • the phase flow is injected through the bore 3 into the negative pressure zone 6 of the respective grinding zone 2-1, 2-2, 2-3.
  • each grinding zone 2-1, 2-2, 2-3 a plurality of negative pressure blades 4-1, 4-2, 4-3, 4-4 and a plurality of positive pressures are arranged along the circumference. Blades 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7.
  • the ribs 20 are fixed to the front and rear sides of the negative pressure blade and the positive pressure blade.
  • the rib 20 of the outer ring pulverizing mechanism 18 is fixed to the impeller 21 on the output shaft of the motor 9 by a key and a screw; the rib 20 of the inner ring pulverizing mechanism 17 is connected to the impeller 21 fixed to the output shaft of the motor 9 by screws and nuts. fixed.
  • the present embodiment is merely an illustration, and those skilled in the art can adjust the number of blade groups as needed and adjust the number of negative pressure blades and positive pressure blades in the blade group.
  • the cross-sectional area of the force-receiving surface of the positive pressure vanes 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, and 5-7 is several to several tens of times the cross-sectional area of the diameter 3.
  • a negative pressure zone 6 is formed between the walls of 2-3.
  • a positive pressure zone 7 is formed between -4, 5-5, 5-6, 5-7 and the walls of the grinding zones 2-1, 2-2, 2-3.
  • the inventors schematically divide the negative pressure zone 6 and the positive pressure zone 7 by a broken line, positive pressure blades 5-1, 5-2, 5-3, 5-4, 5-5.
  • the side of the broken line where 5-6, 5-7 is located is the positive pressure zone 7, and the side of the broken line where the negative pressure blades 4-1, 4-2, 4-3, 4-4 are located is the negative pressure zone 6.
  • the ends of the positive pressure vanes 5-1, 5-2, 5-5, 5-6, 5-7 are formed with an arc shape, and the arc function is to guide the two-phase flow from the negative pressure zone 6 to the positive pressure zone. 7.
  • the end arcs of the positive pressure vanes 5-3, 5-4 are arcuately connected to the ends of the negative pressure vanes 4-2, 4-3, and also function as a two-phase flow guide.
  • the negative pressure vanes 4-2, 4-3, 4-4 also function as a two-phase flow split, which disperses the two-phase flow in the negative pressure zone to make it flow more uniformly to the corresponding positive pressure. Zone to improve grinding efficiency.
  • the arrows in Fig. 2 illustrate the direction of travel of the two-phase flow during rotation of the rotating member 8.
  • the negative pressure vanes 4-1, 4-2, 4-3, 4-4 are rotated such that the negative pressure region 6 generates a negative pressure.
  • the positive pressure vanes 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7 are rotated such that the positive pressure zone 7 generates a positive pressure, thereby generating an air flow.
  • the airflow carrying the material is deformed into a gas-solid two-phase flow, that is, a two-phase flow.
  • the two-phase flow flows out in four directions: front, back, left, and right.
  • the two-phase flow flowing backward is sealed by a gas seal provided in the pulverizer, so the flow rate is zero.
  • the two-phase flow flowing forward flows out from the material outlet of the outer ring pulverizing mechanism 18 in the axial direction. Since the two-phase flow from the material outlet is the sum of the two-phase flow in the front and rear directions, the two-phase flow flowing out of the cross section is small, and can be ignored here, so the two-phase flow is mainly from the left and the right. Flow out in one direction.
  • the two-phase flow reaches the passage 23 between the positive pressure zone 7 and the wear ring of the outer casing 1 and then travels 180° from both the left and right directions.
  • the two-phase region flows grinding pressure region 2-1 after 7, A 1 form A 2 stream to flow through a via 23, respectively.
  • a 1 flows to the negative pressure zone 6 of the grinding zone 2-1, and
  • a 2 flows to the negative pressure zone 6 of the grinding zone 2-3.
  • the positive pressure vane 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7 has a force surface cross-sectional area that is several times to several tens of times the cross-sectional area of the diameter 3 Therefore, the velocity of the A 1 flow and the A 2 flow after the exit path 3 is generated by the positive pressure blades 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7.
  • the speed of the positive pressure air flow is several times to several tens of times, and the speed of sound can be even higher.
  • a feed port 11 and a discharge port 12 are opened in the casing 10, and the feed port 11 has an open structure.
  • the material outlet of the inner ring crushing mechanism communicates with the material inlet of the outer ring crushing mechanism, the material inlet of the inner ring crushing mechanism communicates with the feed port 11 via the feed passage 13, and the material outlet of the outer ring crushing mechanism passes through the discharge passage 14
  • the ports 12 are connected.
  • a return port 16 and a return inlet are also formed in the housing 10.
  • Return port 16 on the one hand and outer ring crusher
  • the channel 23 of the structure is connected; on the other hand, the closed line is connected to the return inlet, so that the return inlet forms a closed structure.
  • the return inlet is then in communication with the feed passage 13 to communicate with the material inlet of the inner ring pulverizing mechanism.
  • An intake hole 15 is also formed in the casing 10, and the intake hole 15 communicates with the outer ring pulverizing mechanism 18.
  • the outer ring pulverizing mechanism 18 introduces an external air flow through the air intake opening 15, and the inner ring pulverizing mechanism 17 introduces an external air flow through the feed passage 13.
  • a group of section drafting vane sets 19 is provided at the end outlet of the outer ring pulverizing mechanism 18.
  • the segmented draft blade group 19 is composed of a plurality of segmented draft blades, and its function is to segment and discharge.
  • the sectional draft vane can be set as a critical vane, a negative pressure vane for generating a negative pressure, or a positive pressure vane for producing a positive pressure air flow, as needed. The following is a three-to-one discussion of the segmented draft blades.
  • the sectional draft vane When the sectional draft vane is set as the critical vane, it neither generates negative pressure nor generates positive pressure airflow, and is used to generate centrifugal force for the material carried in the airflow in the front-rear direction after the positive pressure zone of the grinding zone. If the particle size of the material is large, the material is sent to the return port 16 under the action of centrifugal force, and then enters the inner ring crushing mechanism through the closed pipe, the return inlet, the feed passage 13 and the material of the inner ring crushing mechanism. 17 and the outer ring pulverizing mechanism 18 are re-pulverized to a smaller particle size. If the particle size of the material is small, the material is discharged through the segmented draft blade group 19, the material outlet of the outer ring pulverizing mechanism, the discharge channel 14 and the discharge port 12, thereby achieving segmentation.
  • the sectional draft blade When the sectional draft blade is set as the negative pressure blade, the sectional draft blade generates negative pressure, and the material carried in the airflow in the front-rear direction after the positive pressure zone in the grinding zone is attracted by the negative pressure zone generated by the segmented draft blade. Therefore, the material is discharged through the sectional drafting blade group 19, the material outlet of the outer ring pulverizing mechanism, the discharging passage 14 and the discharging port 12. In this case, due to the centrifugal force, the segmentation effect still exists, but the material size of the discharged material is larger than the former setting, and the centrifugal force is adjusted to determine the granularity. The granulation at this time is also enlarged.
  • the sectional draft vane When the sectional draft vane is set as the positive pressure vane, the sectional draft vane generates a positive pressure airflow, and the material carried in the airflow in the front-rear direction after the positive pressure zone of the grinding zone cannot pass through the sectional draft vane, and After the material inlet 16, the return line, the feed inlet 13 and the inner ring pulverizing mechanism are filled, the inner ring pulverizing mechanism 17 and the outer ring pulverizing mechanism 18 are re-pulverized to a smaller particle size.
  • a negative pressure is generated at the discharge port 12 by the external discharge device, and the material is passed through the sectional inlet blade group 19, the material outlet of the outer ring pulverizing mechanism, and the discharge passage 14 through the discharge port 12 by external force. Aspirate.
  • the particle size of the material to be discharged will be finer. The size of the material at this time is determined by the size of the positive pressure and the negative pressure of the discharge device.

Abstract

一种对撞式气流粉碎机构及粉碎机,该粉碎机构包括可绕轴旋转的旋转件(8),在旋转件(8)上设有至少4个沿周向布置的磨区(2-1、2-2、2-3),磨区(2-1、2-2、2-3)的外边缘与旋转件(8)的内壁间形成有通径(3),在每个磨区(2-1、2-2、2-3)内均设有负压叶片(4-1、4-2、4-3、4-4)、正压叶片(5-1、5-2、5-3、5-4、5-5、5-6、5-7)及物料导向部;该对撞式气流粉碎机包括电机(9),在电机(9)的输出轴上同轴安装有上述的粉碎机构,粉碎机构位于壳体(10)内,在壳体(10)上分别开有进料口(11)及出料口(12),进料口(11)经由进料通道(13)与所述粉碎机构的物料进口相通,出料口(12)经由出料通道(14)与所述粉碎机构的物料出口相通。该对撞式气流粉碎机构及粉碎机能耗低;符合环保要求;适合大工业生产;能生产各种要求的细粉直至超微粉体;不需分节器及引风机。

Description

对撞式气流粉碎机构及粉碎机 技术领域
本发明涉及一种高速、高频、高效的对撞式气流粉碎机构及采用该机构的粉碎机。本发明采用超高速气流、高频对撞、渐进式工艺完成物料的粉碎。
背景技术
随着科学技术的迅速发展,超微材料和纳米材料的研究应用,具有广阔的应用前景,对推动工业技术进步有着极其重要的作用。一般将粒度为1~10微米的粉体称为超细粉体,粒度为0.1~1微米的粉体称为超微粉体,粒度不大于0.1微米的粉体称为纳米粉体。
超细粉体的生产设备及技术目前主要有:机械冲击式粉碎机、气流粉碎机和振动研磨机等。这些技术设备的共性是,极限粒度只能达到5微米左右,要达到超细材料的工业化生产还有一定的技术及工艺难度,普遍存在产量低、能耗高、环保性能差、粉体纯度较低等问题。
机械冲击式粉碎机和振动介质研磨机是一种较传统的机械粉磨设备,机械种类比较多。其原理是利用机械能直接驱动介质运动来粉碎物料,粉碎效果也低,且难达到粉体纯度要求,粉体细度相比气流磨要差。例如:振动介质研磨机有效粉碎功率约为0.3%,而约为98%的能量转化为热量而逸散。
气流粉碎机是目前世界上比较先进的超细设备,主要有如下几种类型:扁平式气流粉碎机、循环式气流粉碎机、对喷式气流粉碎机、靶式气流粉碎机、流化床式气流粉碎机等。据《超细粉碎分级技术》(中国轻工业出版社,2001年出版)文献报道:气流粉碎机存在如下问题:1、能耗大,生产效率低;2、产量较少,一般不超过100kg/h,大部分小于50kg/h;3、制备超细粉还比较困难;4、结构复杂,价格昂贵。
为了解决现有气流粉碎机存在的问题,本领域技术人员尝试着提出了不少解决方案。
公告为CN 204724286的中国实用新型专利,公开了一种固体物料研磨机,包括由上至下依次设置的研磨室、工作仓和分级器,所述研磨室中部设有研磨体,与研磨体对应的研磨室侧壁上设衬板;研磨体中为中空结构,上部接料口与工作 仓下料口连接,周向设有多个物料甩出口及锤击板;研磨室和工作仓通过多个导管连接,工作仓设有环形进风口;分级器依次连接螺旋收料器和布袋除尘器,螺旋收料器和布袋除尘器的出料口分别连接成品出料器;工作仓的进料口另外通过物料输送装置连接原料仓。
上述固体物料研磨机虽然对现有气流粉碎机的研磨体稍加改进,但与现有的气流粉碎机差别不大,依然存在:1、能耗大,生产效率低;2、产量较少;3、结构复杂,价格昂贵的问题。
申请人也提出过两项发明专利申请。一项公开号为CN 103752388的发明专利申请,公开了一种环保节能型涡流粉碎机,包括由外筒体所围成的磨腔和布置在磨腔内的转动体以及驱动转动体转动的电机,还包括周向均布在转动体轴向两侧的若干内磨块、外磨块和设置在内磨块、外磨块之间的内筒体,内、外磨块沿旋转方向的一面为正压面,另一面为负压面,其中,从旋转方向看,内、外磨块的负压面上设置有一负压板,负压板相对内、外磨块的负压面的那一面与磨块的负压面之间具有一定间隔,外筒体前端和后端分别设置有前密度盖板和后密度盖板,前密度盖板和后密度盖板上设置有与所述磨腔连通的出料口,磨腔内设置有进料口。另一项公开号为CN 103752387的发明专利申请则公开了一种环保节能型涡流粉碎机的磨粉结构。
对于公开号为CN 103752388及公开号为CN 103752387的专利而言,在转子轴旋转过程中,由于其筒体内壁上的齿形结构,会产生涡流,从而产生热量,使得整个粉碎机能耗增大。同时,受制于磨块的结构,其筒体内磨块的数量少,因此,对研磨效率的提升也不显著。
发明内容
本发明的目的是提供一种高速、高频、高效的对撞式气流粉碎机构及采用该机构的粉碎机。
为了达到上述目的,本发明的一个技术方案是提供了一种对撞式气流粉碎机构,包括外壳,在外壳内设有可绕轴旋转的旋转件,外壳上设有物料进口及物料出口,其特征在于:在旋转件内设有至少4个沿周向布置的磨区,每个磨区的外边缘与外壳的内壁间形成有通道,每个通道两端形成有通径,携带有物料的气流, 定义为二相流,经由通径喷射入相应磨区的负压区,在每个磨区内均设有负压叶片、正压叶片及二相流导向部,正压叶片受力面截面积是通径截面积的N倍,N>1,相邻负压叶片间以及负压叶片与磨区的壁之间形成有负压区,相邻正压叶片间以及正压叶片与磨区的壁之间形成有正压区,在任一负压区的左右两边是正压区,在任一正压区的左右两边是负压区,其中,将旋转件的轴向定义为前后,将垂直于前后的水平方向定义为左右;
在旋转件旋转过程中,负压叶片旋转使得负压区产生负压,与此同时,正压叶片旋转使得正压区产生正压,从而产生气流;气流携带物料形成二相流至少从左右方向流出当前磨区的正压区;向右流出当前磨区的正压区的二相流经由通道及通径喷射入位于该正压区右侧且与其相邻的负压区内,该负压区位于当前磨区内;向左流出当前磨区的正压区的二相流经由通道及通径喷射入位于该正压区左侧且与其相邻的负压区内,该负压区位于与当前磨区左侧相邻的下一个磨区内;进入负压区的二相流被二相流导向部导向至同一磨区的正压区内,从而形成循环;
对于同一负压区而言,两股二相流分别经由左、右两侧的通径喷射入该负压区,自通径喷射出的二相流速度是正压叶片产生气流总和后的速度的N倍,两股二相流分别自左、右两侧的通径喷射出后在该负压区的入口处形成对冲,从而使得两股二相流中的物料碰撞粉碎。
优选地,在所述负压区内还设有二相流分流导向部,同一所述负压区的二相流被二相流分流导向部分流导向至同一所述磨区的多个所述正压区。
优选地,在每个所述磨区设有前后布置的多组叶片组,每组叶片组包括沿周向左右布置的所述负压叶片及所述正压叶片,还包括前后布置的两组用于实现分节和/或出料的分节引风叶片组,所有叶片组位于两组分节引风叶片组之间。
优选地,所述分节引风叶片组包括多片分节引风叶片,分节引风或为临界叶片、或为用于产生负压的负压叶片、或为用于产出正压气流的正压叶片。
本发明的另一个技术方案是提供了一种对撞式气流粉碎机,包括电机,其特征在于:在电机的输出轴上同轴安装有上述的粉碎机构,粉碎机构位于壳体内,在壳体上分别开有进料口及出料口,进料口经由进料通道与所述粉碎机构的物料进口相通,出料口经由出料通道与所述粉碎机构的物料出口相通。
本发明的另一个技术方案是提供了一种对撞式气流粉碎机,包括电机,其特征在于:在电机的输出轴上安装有内外两层上述的粉碎机构,分别为外圈粉碎机构及内圈粉碎机构,内圈粉碎机构的物料出口与外圈粉碎机构的物料进口相通,内圈粉碎机构的物料进口经由所述进料通道与所述进料口相通,外圈粉碎机构的物料出口经由所述出料通道与所述出料口相通。
优选地,在所述壳体上开有进气孔,外部气流经由进气孔被导入所述外圈粉碎机构内;所述内圈粉碎机构的外部气流则由所述进料口进入。
优选地,在所述壳体上开有回料口及回料进口,回料口一方面与所述粉碎机构的通径相通,回料口另一方面经由封闭管路与封闭的回料进口相通,回料进口与所述内圈粉碎机构的物料进口相通。
本发明具有如下优点:
1、能耗低,比挤压式的粉碎机能耗低50%,比一般气流粉碎机能耗低50%~70%。
2、符合环保要求,容器为负压,无泄漏,转速低,噪音小。
3、适合大工业生产,产量高。
4、制粉工艺采用的高速气流,高频对撞,渐进式的粉碎技术,能生产各种要求的细粉直至超微粉体。
5、集粉碎、分节、引风、出料于一体,不需分节器及引风机。
附图说明
图1为本发明提供的对撞式气流粉碎机的结构示意图;
图2为本发明中的对撞式气流粉碎机构的局部示意图;
图3为本发明中单个旋转件的示意图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
如图1所示,本发明公开了一种对撞式气流粉碎机,其包括电机9,在电机9的输出轴上固定有内圈粉碎机构17及套在内圈粉碎机构17外的外圈粉碎机构18。内圈粉碎机构17与外圈粉碎机构18均位于壳体10内。
内圈粉碎机构17与外圈粉碎机构18的结构相类似。在本实施例中,将内圈粉碎机构17与外圈粉碎机构18的轴向方向设定为前后方向,将垂直于前后方向的水平方向设定为左右方向。结合图2,本实施例中的粉碎机构包括外壳1,外壳1的位置固定,外壳1的外圈为耐磨圈。外壳1上设有物料进口及物料出口。在外壳1内设有可绕轴旋转的旋转件8,在本实施例中,采用多个前后布置的旋转件8(对于图1中的内圈粉碎机构17而言,图1示意性地画出了9个旋转件8)。旋转件8固定在叶轮21上。结合图3,在旋转件8上设有多个沿周向布置的磨区2-1、2-2、2-3。每个磨区2-1、2-2、2-3的外边缘与外壳1的内壁间形成有通道23,每个通道23两端形成有通径3,携带有物料的气流,定义为二相流,经由通径3喷射入相应磨区2-1、2-2、2-3的负压区6。在每个磨区2-1、2-2、2-3内,沿周向左右布置有由多片负压叶片4-1、4-2、4-3、4-4及多片正压叶片5-1、5-2、5-3、5-4、5-5、5-6、5-7。结合图1,负压叶片及正压叶片的前后两侧均固定有筋板20。外圈粉碎机构18的筋板20通过键及螺钉固定在电机9输出轴上的叶轮21上;内圈粉碎机构17的筋板20通过螺钉、螺母与固定在电机9输出轴上的叶轮21连接固定。因注意的是,本实施例仅为一个示意,本领域技术人员可根据需要调整叶片组的数量以及调整叶片组内负压叶片及正压叶片的数量。正压叶片5-1、5-2、5-3、5-4、5-5、5-6、5-7的受力面截面积是通径3截面积的数倍至数十倍。相邻负压叶片4-1、4-2、4-3、4-4间以及负压叶片4-1、4-2、4-3、4-4与磨区2-1、2-2、2-3的壁之间形成有负压区6。相邻正压叶片5-1、5-2、5-3、5-4、5-5、5-6、5-7间以及正压叶片5-1、5-2、5-3、5-4、5-5、5-6、5-7与磨区2-1、2-2、2-3的壁之间形成有正压区7。在磨区2-1中,发明人用虚线示意性地将负压区6与正压区7加以划分,正压叶片5-1、5-2、5-3、5-4、5-5、5-6、5-7所在的虚线一侧为正压区7,负压叶片4-1、4-2、4-3、4-4所在的虚线一侧为负压区6。
正压叶片5-1、5-2、5-5、5-6、5-7的端部形成有弧形,该弧形的作用在于将二相流由负压区6导向至正压区7。正压叶片5-3、5-4的端部弧形与负压叶片4-2、4-3的端部弧形相接,也同样起到了二相流导向的作用。同时,负压叶片4-2、4-3、4-4还起到了二相流分流的作用,其将位于负压区的二相流分散后,使其更为均匀地流向相应的正压区,提高研磨效率。
图2中的箭头示意出了在旋转件8旋转过程中,二相流的行进方向。在旋转件8旋转过程中,负压叶片4-1、4-2、4-3、4-4旋转使得负压区6产生负压。与此同时,正压叶片5-1、5-2、5-3、5-4、5-5、5-6、5-7旋转使得正压区7产生正压,从而产生气流。此时,携带有物料的气流变形成了气固两相流,即二相流。二相流分前、后、左、右四个方向流出。流向后方的二相流被设置于粉碎机内的气封封住,所以流量为零。向前流出的二相流,经轴向从外圈粉碎机构18的物料出口流出。由于从物料出口流出的二相流是沿前、后方向流出二相流的总和,对这一截面流出的二相流量很小,在这里可以忽略不计,所以二相流主要从左、右两个方向流出。
二相流到达正压区7与外壳1的耐磨圈之间的通道23后便从左、右两个方向呈180°行进。对于图2中的磨区2-1而言,二相流出磨区2-1的正压区7后,经由通到23分别形成A1流与A2流。A1流往磨区2-1的负压区6流动,A2流往磨区2-3的负压区6流动。由于正压叶片5-1、5-2、5-3、5-4、5-5、5-6、5-7的受力面截面积是通径3截面积的数倍至数十倍,因此,出通径3后的A1流与A2流的速度是正压叶片5-1、5-2、5-3、5-4、5-5、5-6、5-7产生的正压气流的速度的数倍至数十倍,可达音速甚至更高。对于磨区2-1而言,在其负压区6的入口处,来自磨区2-1的A1流与来自磨区2-2的A2流形成对冲,物料相互激烈碰撞,碰撞粉碎后的A1流重新流回磨区2-1的负压区6,A2流流入下一个磨区2-3,形成循环。由于A1流与A2流的对冲处为正压区与负压区的交接处,而此使交接处处于近似真空状态,使得A1流与A2流撞击时的速度大大提高,效果非常明显。同时,在交接处,物料的碰撞过程中,由于速度、密度及负压的因素,物料质量的均匀度将会达到动态平衡。假设旋转件8的旋转速度为3000转/分钟,并且有6个磨区,则在一分钟内整个粉碎机构内的物料至少发生3000×6=18000次碰撞,效率非常可观。
对于如图1所示的粉碎机而言,在其壳体10上开有进料口11及出料口12,进料口11采用开放式结构。内圈粉碎机构的物料出口与外圈粉碎机构的物料进口相通,内圈粉碎机构的物料进口经由进料通道13与进料口11相通,外圈粉碎机构的物料出口经由出料通道14与出料口12相通。
在壳体10上还开有回料口16及回料进口。回料口16一方面与外圈粉碎机 构的通道23相通;另一方面通过封闭管路与回料进口相连,使得回料进口形成封闭式结构。回料进口再与进料通道13相连通,从而与内圈粉碎机构的物料进口相通。
在壳体10上还开有进气孔15,进气孔15与外圈粉碎机构18相通。外圈粉碎机构18通过进气孔15引入外部气流,内圈粉碎机构17则通过进料通道13引入外部气流。
在外圈粉碎机构18的末端出口设有一组分节引风叶片组19。分节引风叶片组19由多片分节引风叶片组成,其作用在于分节、出料。分节引风叶片可以根据需要设定为临界叶片、用于产生负压的负压叶片或用于产出正压气流的正压叶片。以下分别针对分节引风叶片的三种一一讨论。
当分节引风叶片设定为临界叶片时,其既不产生负压,也不产生正压气流,用于对出磨区正压区后的前后方向的气流中携带的物料产生离心力。若物料的粒度大,则在离心力作用下,物料被送入回料口16,再经由封闭管路、回料进口、进料通道13及内圈粉碎机构的物料进口后,进入内圈粉碎机构17及外圈粉碎机构18被重新粉碎至更小粒度。若物料的粒度小,则物料通过分节引风叶片组19、外圈粉碎机构的物料出口、出料通道14及出料口12后出料,从而实现分节。
当分节引风叶片设定为负压叶片时,分节引风叶片产生负压,出磨区正压区后的前后方向的气流中携带的物料被分节引风叶片产生的负压区吸引,从而通过分节引风叶片组19、外圈粉碎机构的物料出口、出料通道14及出料口12后出料。此种情况时,由于离心力的作用,分节效果仍然存在,但出料的物料粒度比前一种设置要大,调节离心力的大小,以决定颗粒度。此时的出粒也随之放大。
当分节引风叶片设定为正压叶片时,分节引风叶片产生正压气流,出磨区正压区后的前后方向的气流中携带的物料无法通过分节引风叶片,其经由回料口16、封闭管路、回料进口、进料通道13及内圈粉碎机构的物料进口后,进入内圈粉碎机构17及外圈粉碎机构18被重新粉碎至更小粒度。需要出料时,在出料口12通过外加的出料装置产生负压,借助外力将物料经由分节引风叶片组19、外圈粉碎机构的物料出口及出料通道14通过出料口12吸出。此种情况时,由于离心力及正压的双重作用,出料的物料粒度将更细,此时的粒度大小决定于正压的大小及出料装置负压的大小。

Claims (8)

  1. 一种对撞式气流粉碎机构,包括外壳(1),在外壳(1)内设有可绕轴旋转的旋转件(8),外壳(1)上设有物料进口及物料出口,其特征在于:在旋转件(8)内设有至少4个沿周向布置的磨区(2-1、2-2、2-3),每个磨区的外边缘与外壳(1)的内壁间形成有通道(23),每个通道(23)两端形成有通径(3),携带有物料的气流,定义为二相流,经由通径(3)喷射入相应磨区的负压区(6),在每个磨区内均设有负压叶片(4-1、4-2、4-3、4-4)、正压叶片(5-1、5-2、5-3、5-4、5-5、5-6、5-7)及二相流导向部,正压叶片受力面截面积是通径(3)截面积的N倍,N>1,相邻负压叶片间以及负压叶片与磨区的壁之间形成有负压区(6),相邻正压叶片间以及正压叶片与磨区的壁之间形成有正压区(7),在任一负压区(6)的左右两边是正压区(7),在任一正压区(7)的左右两边是负压区(6),其中,将旋转件(8)的轴向定义为前后,将垂直于前后的水平方向定义为左右;
    在旋转件(8)旋转过程中,负压叶片旋转使得负压区(6)产生负压,与此同时,正压叶片旋转使得正压区(7)产生正压,从而产生气流;气流携带物料形成二相流至少从左右方向流出当前磨区的正压区(7);向右流出当前磨区的正压区(7)的二相流经由通道(23)及通径(3)喷射入位于该正压区(7)右侧且与其相邻的负压区(6)内,该负压区(6)位于当前磨区内;向左流出当前磨区的正压区(7)的二相流经由通道(23)及通径(3)喷射入位于该正压区(7)左侧且与其相邻的负压区(6)内,该负压区(6)位于与当前磨区左侧相邻的下一个磨区内;进入负压区(6)的二相流被二相流导向部导向至同一磨区的正压区(7)内,从而形成循环;
    对于同一负压区(6)而言,两股二相流分别经由左、右两侧的通径(3)喷射入该负压区(6),自通径(3)喷射出的二相流速度是正压叶片产生气流总和后的速度的N倍,两股二相流分别自左、右两侧的通径(3)喷射出后在该负压区(6)的入口处形成对冲,从而使得两股二相流中的物料碰撞粉碎。
  2. 如权利要求1所述的一种对撞式气流粉碎机构,其特征在于:在所述负压区(6)内还设有二相流分流导向部,同一所述负压区(6)的二相流被二相流分流导向部分流导向至同一所述磨区的多个所述正压区(7)。
  3. 如权利要求1所述的一种对撞式气流粉碎机构,其特征在于:在每个所述磨区设有前后布置的多组叶片组,每组叶片组包括沿周向左右布置的所述负压叶片及所述正压叶片,还包括前后布置的两组用于实现分节和/或出料的分节引风叶片组(19),所有叶片组位于两组分节引风叶片组(19)之间。
  4. 如权利要求3所述的一种对撞式气流粉碎机构,其特征在于:所述分节引风叶片组(19)包括多片分节引风叶片,分节引风或为临界叶片、或为用于产生负压的负压叶片、或为用于产出正压气流的正压叶片。
  5. 一种对撞式气流粉碎机,包括电机(9),其特征在于:在电机(9)的输出轴上同轴安装有如权利要求1所述的粉碎机构,粉碎机构位于壳体(10)内,在壳体(10)上分别开有进料口(11)及出料口(12),进料口(11)经由进料通道(13)与所述粉碎机构的物料进口相通,出料口(12)经由出料通道(14)与所述粉碎机构的物料出口相通。
  6. 一种对撞式气流粉碎机,包括电机(9),其特征在于:在电机(9)的输出轴上安装有内外两层如权利要求3所述的粉碎机构,分别为外圈粉碎机构(18)及内圈粉碎机构(17),内圈粉碎机构(17)的物料出口与外圈粉碎机构(18)的物料进口相通,内圈粉碎机构(17)的物料进口经由所述进料通道(13)与所述进料口(11)相通,外圈粉碎机构(18)的物料出口经由所述出料通道(14)与所述出料口(12)相通。
  7. 如权利要求6所述的一种对撞式气流粉碎机,其特征在于:在所述壳体(10)上开有进气孔(15),外部气流经由进气孔(15)被导入所述外圈粉碎机构(18)内;所述内圈粉碎机构(17)的外部气流则由所述进料口(11)进入。
  8. 如权利要求6所述的一种对撞式气流粉碎机,其特征在于:在所述壳体(10)上开有回料口(16)及回料进口(22),回料口(16)一方面与所述粉碎机构的通径(3)相通,回料口(16)另一方面经由封闭管路与封闭的回料进口(22)相通,回料进口与所述内圈粉碎机构(17)的物料进口相通。
PCT/CN2016/077073 2016-03-07 2016-03-23 对撞式气流粉碎机构及粉碎机 WO2017152434A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017527373A JP6681895B2 (ja) 2016-03-07 2016-03-23 カウンター式気流粉砕機構および粉砕機
US15/579,204 US10792669B2 (en) 2016-03-07 2016-03-23 Counter-impact jet milling mechanism and jet mill using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610127529.9 2016-03-07
CN201610127529.9A CN105728147B (zh) 2016-03-07 2016-03-07 对撞式气流粉碎机构及粉碎机

Publications (1)

Publication Number Publication Date
WO2017152434A1 true WO2017152434A1 (zh) 2017-09-14

Family

ID=56249194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077073 WO2017152434A1 (zh) 2016-03-07 2016-03-23 对撞式气流粉碎机构及粉碎机

Country Status (4)

Country Link
US (1) US10792669B2 (zh)
JP (1) JP6681895B2 (zh)
CN (1) CN105728147B (zh)
WO (1) WO2017152434A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620199B (zh) * 2018-04-24 2020-02-18 凤冈县金桥梁大牲畜交易有限公司 饲料粉碎装置
CN113000173B (zh) * 2021-03-29 2022-08-05 南京工程学院 超硬纳米粉碎卧式液力双向对冲高速湍流磨
CN115254308B (zh) * 2022-06-22 2023-08-29 常州市佳华机械科技有限公司 一种富含淀粉的原料制粉工艺
CN116889920B (zh) * 2023-09-11 2023-11-10 烟台康司坦新材料科技有限公司 氧化亚硅复合负极材料的气流粉碎装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB696799A (en) * 1951-03-03 1953-09-09 Joseph Lecher Improvements in or relating to processing materials
JPH05237411A (ja) * 1992-02-27 1993-09-17 Yamashiyou:Kk プリント基板の処理方法
CN202162054U (zh) * 2011-08-02 2012-03-14 四川省机械研究设计院 一种高效能涡流磨
CN203470131U (zh) * 2013-09-09 2014-03-12 唐金祥 带微细分级机的无筛超微粉碎机
US20140183290A1 (en) * 2013-01-01 2014-07-03 Hanping Xiao Super Pulverizer
US20150069156A1 (en) * 2013-09-12 2015-03-12 Jm Tech Co., Ltd. Jet mill combining high speed grinding apparatus and high speed griding apparatus with jet mill mounted thereon
CN204396118U (zh) * 2014-12-12 2015-06-17 潍坊埃尔派粉体技术设备有限公司 内置分级叶轮的圆盘式气流粉碎机

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2294920A (en) * 1936-11-13 1942-09-08 Henry G Lykken Pulverizing machine
US3552661A (en) * 1967-12-06 1971-01-05 Asbestos Grading Equipment Co Mill with rotating air stream
JPS5333783B2 (zh) * 1973-09-18 1978-09-16
US4176798A (en) * 1978-04-27 1979-12-04 Washington State University Research Foundation, Inc. Method and apparatus for induction and dispersion of particles in an airstream
DE3543370A1 (de) * 1985-12-07 1987-06-11 Jackering Altenburger Masch Muehle mit mehreren mahlstufen
CN2122687U (zh) * 1992-05-03 1992-11-25 武汉工业大学 立轴锤破旋风离心自磨机
CN2180330Y (zh) * 1993-11-04 1994-10-26 吴斌 高效冲击式破碎机
US5667150A (en) * 1995-09-20 1997-09-16 Arasmith; Stanley Dale Pulverizing, filtering, and transporting apparatus
DE19834896A1 (de) * 1998-08-03 2000-02-10 Goergens Hermann Josef Prallmühle und Verfahren zum Mahlen und Trocknen
JP3562643B2 (ja) * 2001-09-03 2004-09-08 株式会社セイシン企業 ジェットミルの砕料供給装置
JP3992224B2 (ja) * 2002-03-20 2007-10-17 株式会社リコー 電子写真トナー製造用流動槽式粉砕分級機およびそれを用いたトナーの製造方法
CN1295021C (zh) * 2004-04-15 2007-01-17 杨富茂 机械湍流磨
US7438245B2 (en) * 2004-07-13 2008-10-21 Ricoh Company, Ltd. Milling and classifying apparatus, collision mill, air classifier, toner, and method for producing toner
JP2006061902A (ja) * 2004-07-28 2006-03-09 Ricoh Co Ltd 粉砕装置及び粉砕方法
DE102005036211A1 (de) * 2005-08-02 2007-02-08 Lanxess Deutschland Gmbh Strahlmühle mit integriertem dynamischen Sichter
RU2385768C1 (ru) * 2008-12-25 2010-04-10 Артер Текнолоджи Лимитед Способ измельчения материала и устройство для его осуществления
DE102009045116A1 (de) * 2009-09-29 2011-03-31 Evonik Degussa Gmbh Niederdruckvermahlungsverfahren
EP2599555A4 (en) * 2010-07-30 2017-06-07 Hosokawa Micron Corporation Jet mill
US8348727B2 (en) * 2011-05-26 2013-01-08 Black & Decker Inc. Airflow arrangement for a power tool
CN202876919U (zh) * 2012-09-20 2013-04-17 肇庆国华电子有限公司 高速旋转气流粉碎机
CN103752388B (zh) * 2014-01-12 2016-02-10 上海红箭自动化设备有限公司 环保节能型涡流粉碎机
CN103752387B (zh) * 2014-01-12 2016-02-10 上海红箭自动化设备有限公司 环保节能型涡流粉碎机的磨粉结构
CN204724286U (zh) 2015-06-09 2015-10-28 蔡昌荣 一种固体物料研磨机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB696799A (en) * 1951-03-03 1953-09-09 Joseph Lecher Improvements in or relating to processing materials
JPH05237411A (ja) * 1992-02-27 1993-09-17 Yamashiyou:Kk プリント基板の処理方法
CN202162054U (zh) * 2011-08-02 2012-03-14 四川省机械研究设计院 一种高效能涡流磨
US20140183290A1 (en) * 2013-01-01 2014-07-03 Hanping Xiao Super Pulverizer
CN203470131U (zh) * 2013-09-09 2014-03-12 唐金祥 带微细分级机的无筛超微粉碎机
US20150069156A1 (en) * 2013-09-12 2015-03-12 Jm Tech Co., Ltd. Jet mill combining high speed grinding apparatus and high speed griding apparatus with jet mill mounted thereon
CN204396118U (zh) * 2014-12-12 2015-06-17 潍坊埃尔派粉体技术设备有限公司 内置分级叶轮的圆盘式气流粉碎机

Also Published As

Publication number Publication date
US20180304273A1 (en) 2018-10-25
CN105728147B (zh) 2018-05-08
US10792669B2 (en) 2020-10-06
CN105728147A (zh) 2016-07-06
JP2019511351A (ja) 2019-04-25
JP6681895B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
CN201988430U (zh) 流化床气流粉碎分级机
WO2017152434A1 (zh) 对撞式气流粉碎机构及粉碎机
WO2005089948A1 (fr) Broyeur a turbulence elevee et sa turbine a pression bi-negative
CN103752388B (zh) 环保节能型涡流粉碎机
CN100430144C (zh) 粉体破壁机
CN105536957A (zh) 一种叶轮及超细粉磨机、超细粉磨系统
CN104258929A (zh) 一种粉磨设备
CN203494602U (zh) 多转子大型超细气流粉碎分级一体机
CN207521126U (zh) 高效气流磨生产线
CN207102821U (zh) 一种制备钛白粉用的气流粉碎装置
CN1929925B (zh) 高度湍流磨及其双负压涡轮
CN107803264B (zh) 一种扰动增强粉碎与表面改性的设备
CN1295021C (zh) 机械湍流磨
CN206229683U (zh) 一种大流量多分级装置
CN203711108U (zh) 环保节能型涡流粉碎机
CN202053406U (zh) 一种精细研磨机
CN103752387B (zh) 环保节能型涡流粉碎机的磨粉结构
CN203437172U (zh) 一种流化床气流粉碎机
CN206526866U (zh) 一种环保型冲击破碎腔
CN203711107U (zh) 环保节能型涡流粉碎机的磨粉结构
CN209735762U (zh) 一种用于新型烟草的气流粉碎装置
CN205833321U (zh) 环形磁吸粉末气流粉碎机
CN212069068U (zh) 一种白炭黑粉碎加工设备
CN215541323U (zh) 一种卧式冲击磨
CN203264825U (zh) 一种改良的流化床气流粉碎机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017527373

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579204

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893083

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893083

Country of ref document: EP

Kind code of ref document: A1