WO2017150388A1 - Exposure device, flat panel display manufacturing method, device manufacturing method, light blocking device and exposure method - Google Patents

Exposure device, flat panel display manufacturing method, device manufacturing method, light blocking device and exposure method Download PDF

Info

Publication number
WO2017150388A1
WO2017150388A1 PCT/JP2017/007186 JP2017007186W WO2017150388A1 WO 2017150388 A1 WO2017150388 A1 WO 2017150388A1 JP 2017007186 W JP2017007186 W JP 2017007186W WO 2017150388 A1 WO2017150388 A1 WO 2017150388A1
Authority
WO
WIPO (PCT)
Prior art keywords
light shielding
exposure
light
substrate
projection
Prior art date
Application number
PCT/JP2017/007186
Other languages
French (fr)
Japanese (ja)
Inventor
淳行 青木
謙介 水橋
貴 中村
仁 西川
宏和 金子
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2018503111A priority Critical patent/JPWO2017150388A1/en
Priority to KR1020217006121A priority patent/KR102538199B1/en
Priority to KR1020187022525A priority patent/KR102223791B1/en
Priority to CN201780012572.3A priority patent/CN108700825B/en
Publication of WO2017150388A1 publication Critical patent/WO2017150388A1/en
Priority to HK18116076.3A priority patent/HK1256939A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention relates to an exposure apparatus, a flat panel display manufacturing method, a device manufacturing method, a light shielding apparatus, and an exposure method, and more specifically, an exposure apparatus and method for forming a predetermined pattern on an object via a projection optical system,
  • the present invention relates to a light-shielding device used in an exposure apparatus that forms a predetermined pattern on an object via a projection optical system, and a flat panel display or device manufacturing method using the exposure apparatus or method.
  • a lithography process for manufacturing an electronic device such as a liquid crystal display element (liquid crystal panel) or a semiconductor element, a mask or reticle (hereinafter collectively referred to as “mask”), a glass plate or a wafer (hereinafter referred to as “mask”).
  • a step-and-scan type exposure apparatus that transfers a pattern formed on a mask onto a substrate by using an energy beam while synchronously moving a “substrate” together in a predetermined scanning direction. Scanning steppers (also called scanners)) are used.
  • an exposure apparatus that performs exposure by moving the object in a first direction relative to a projection optical system that projects a predetermined pattern onto the object, the exposure apparatus performing the exposure on the object via the projection optical system.
  • a light-shielding unit that shields a predetermined region in which the amount of illumination on the object changes along the second direction intersecting the first direction according to the position in the first direction
  • An exposure apparatus is provided that includes a drive unit that drives the light shielding unit to change the amount of illumination.
  • a method of manufacturing a flat panel display comprising: exposing the substrate using the exposure apparatus according to the first embodiment; and developing the exposed substrate. Is provided.
  • a device manufacturing method including exposing the substrate and developing the exposed substrate using the exposure apparatus according to the first embodiment.
  • the light shielding device is used in an exposure apparatus that scans and exposes the object by relatively moving the object in the first direction with respect to the projection optical system that projects a predetermined pattern onto the object.
  • a light shielding device including a light shielding unit that shields light and a driving unit that drives the light shielding unit to change the amount of illumination.
  • an exposure method in which scanning exposure is performed by relatively moving the object in a first direction with respect to a projection optical system that projects a predetermined pattern onto the object.
  • the predetermined area where the illumination amount on the object changes along the second direction intersecting the first direction according to the position in the first direction is shielded by the light shielding unit.
  • an exposure method including driving the light-shielding portion to change the illumination amount is provided.
  • an exposure method in which scanning exposure is performed by relatively moving the object in a first direction with respect to a projection optical system that projects a predetermined pattern onto the object.
  • the predetermined area where the illumination amount on the object changes along the second direction intersecting the first direction according to the position in the first direction is shielded by the light shielding unit.
  • an exposure method including driving the light-shielding portion to change the illumination amount is provided.
  • a method for manufacturing a flat panel display which includes exposing the substrate using the exposure method according to the sixth embodiment and developing the exposed substrate.
  • a device manufacturing method including exposing the substrate using the exposure method according to the sixth embodiment and developing the exposed substrate.
  • FIG. 3A is a plan view showing the arrangement of the field stop and the light shielding plate of the projection optical system
  • FIG. 3B is a diagram showing the positional relationship between the field stop and the light shielding plate in the optical axis direction
  • FIG. 4A is a diagram showing a first inclined arrangement of the light shielding plates
  • FIG. 4B is a diagram showing a second inclined arrangement of the light shielding plates.
  • FIG. 5A is a diagram illustrating a case where a joint is formed in the center of the projection region using a light shielding plate
  • FIG. 5B is a diagram illustrating a joint near the end of the projection region using a light shielding plate. It is a figure which shows the case where it forms.
  • FIG. 6A is a diagram showing a case where a joint portion is formed using two light shielding plates
  • FIG. 6B is a joint portion similar to FIG. 6A using one light shielding plate.
  • FIG. 7A is a diagram showing a conventional light shielding plate
  • FIG. 7B is a diagram showing the light shielding plate of the embodiment
  • FIG. 7C is provided with a plurality of light shielding plates of the embodiment.
  • FIGS. 8A to 8D are views for explaining the mode of the opening (first mode to fourth mode) formed by the field stop and the light shielding plate. It is a top view which shows the projection area
  • FIG. 11A is a diagram showing the relationship between the substrate and the mask according to the first exposure method
  • FIG. 11B is a diagram when the A region is scanned and exposed by the first exposure method.
  • FIG. 11C is a diagram when the B area is scanned and exposed by the first exposure method.
  • FIG. 12A is a diagram showing the relationship between the substrate and the mask according to the second exposure method, and FIG.
  • FIG. 12B is a diagram when the A region is scanned and exposed by the second exposure method.
  • FIG. 12C is a diagram when the B area is scanned and exposed by the second exposure method.
  • FIG. 13A is a diagram showing the relationship between the substrate and the mask according to the third exposure method, and FIG. 13B is a diagram when the A region is scanned and exposed by the third exposure method.
  • FIG. 14A is a diagram when the B region is scanned and exposed by the third exposure method, and FIG. 14B is a diagram when the C region is scanned and exposed by the third exposure method.
  • FIG. 15A is a diagram showing the relationship between the substrate and the mask according to the fourth exposure method, and FIG. 15B is a diagram when scanning exposure is performed on the area A by the fourth exposure method. .
  • FIG. 17A is a diagram showing the relationship between the substrate and the mask according to the fifth exposure method
  • FIG. 17B is a diagram when the A1 region is scanned and exposed by the fifth exposure method.
  • FIG. 18A is a diagram when the B1 region is scanned and exposed by the fifth exposure method
  • FIG. 18B is a diagram when the A2 region is scanned and exposed by the fifth exposure method. It is a figure at the time of carrying out scanning exposure of B2 area
  • FIG. 24A is a diagram showing a modification of the light shielding plate
  • FIGS. 24B to 24E are diagrams showing the operation of the light shielding plate in FIG. 24A (parts 1 to 4). ).
  • FIG. 1 is a perspective view showing a configuration of an exposure apparatus EX according to an embodiment.
  • an exposure apparatus EX illuminates a mask stage MST that supports a mask M, a substrate stage PST that supports a photosensitive substrate P (hereinafter simply referred to as “substrate P”), and the mask M with exposure light EL.
  • a projection image (hereinafter referred to as a pattern image) of a pattern formed on the illumination optical system IL and the mask M is transferred to the substrate P, and a transfer pattern as a latent image corresponding to the pattern image is formed on the substrate P.
  • a projection optical system PL and a control device CONT (not shown in FIG. 1, refer to FIG.
  • the substrate P is obtained by applying a photosensitive agent (photoresist) to a glass substrate, and a transfer pattern is formed in the photosensitive agent.
  • the projection optical system PL is constituted by a plurality (seven in FIG. 1) of projection optical modules PLa to PLg arranged in parallel.
  • the exposure apparatus EX in the present embodiment has a mask M and a substrate P with respect to the projection optical system PL. And the mask M is illuminated with the exposure light EL, and the pattern image of the mask M is transferred to the substrate P.
  • the synchronous movement direction (scanning direction) between the mask M and the substrate P is the X-axis direction
  • the direction orthogonal to the scanning direction in the horizontal plane is the Y-axis direction (non-scanning direction)
  • the X-axis direction is taken as the Z-axis direction.
  • the directions around the X-axis, Y-axis, and Z-axis are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • the mask stage apparatus of the present embodiment includes a mask stage MST that supports a mask M, a linear guide (not shown) having a long stroke in the X-axis direction, a linear motor, a voice coil motor (VCM), and the like.
  • a stage drive unit MSTD can drive the mask stage MST having the mask M with a long stroke in the X-axis direction when the mask M and the substrate P are moved synchronously under the control of the control device CONT (see FIG. 2).
  • the mask stage MST can be driven in the X axis direction, the Y axis direction, the Z axis direction, and the ⁇ Z direction.
  • the position of the mask stage MST in the horizontal plane is measured using a laser interferometer, and is always detected with a resolution of about 0.5 to 1 nm, for example.
  • the measurement value of the laser interferometer is sent to the control device CONT, and controls the position of the mask stage MST in the X-axis direction, Y-axis direction, Z-axis direction, and ⁇ Z direction.
  • the exposure light EL that has passed through the mask M is incident on the projection optical modules PLa to PLg, respectively.
  • the projection optical modules PLa to PLg are supported by the surface plate 150 and form a pattern image corresponding to the irradiation area on the mask M by the exposure light EL on the substrate P.
  • the projection optical modules PLa, PLc, PLe, and PLg and the projection optical modules PLb, PLd, and PLf are respectively arranged at predetermined intervals in the Y-axis direction.
  • the rows of the projection optical modules PLa, PLc, PLe, and PLg and the rows of the projection optical modules PLb, PLd, and PLf are arranged apart from each other in the X axis direction, and are staggered as a whole along the Y axis direction. Is arranged.
  • Each of the projection optical modules PLa to PLg has a plurality of optical elements (lenses and the like).
  • the exposure light EL transmitted through the projection optical modules PLa to PLg forms a pattern image corresponding to the irradiation area on the mask M for each of the different projection areas 50a to 50g on the substrate P.
  • the substrate stage PST has a substrate holder PH, and holds the substrate P via the substrate holder PH. Similar to mask stage MST, substrate stage PST is movable in the X-axis direction, Y-axis direction, and Z-axis direction, and is also movable in the ⁇ X, ⁇ Y, and ⁇ Z directions.
  • the substrate stage PST is driven by a substrate stage drive unit PSTD configured by a linear motor or the like under the control of the control device CONT (see FIG. 2).
  • the pattern surface of the mask M and the exposure surface of the substrate P are between the column of the projection optical modules PLa, PLc, PLe, and PLg on the ⁇ X side and the column of the projection optical modules PLb, PLd, and PLf on the + X side.
  • a focus detection system 110 that detects the position in the Z-axis direction is arranged.
  • the focus detection system 110 is configured by arranging a plurality of oblique incidence type focus detection systems.
  • the detection result of the focus detection system 110 is output to the control device CONT (see FIG. 2).
  • the control device CONT determines whether the pattern surface of the mask M and the exposure surface of the substrate P are based on the detection result of the focus detection system 110. It controls so that a predetermined space
  • the control device CONT is connected to the storage unit 120 (see FIG. 2 respectively), and monitors the positions of the mask stage MST and the substrate stage PST based on the recipe information stored in the storage unit 120 and the like. By controlling the stage drive unit PSTD and the mask stage drive unit MSTD, the mask M and the substrate P are synchronously moved in the X-axis direction.
  • FIG. 2 is a diagram showing the configuration of the illumination optical system IL and the projection optical system PL.
  • the illumination optical system IL includes a light source 1 composed of an ultrahigh pressure mercury lamp or the like, an elliptical mirror 1a that condenses the light emitted from the light source 1, and the elliptical mirror 1a.
  • dichroic mirror 2 that reflects light having a wavelength necessary for exposure and transmits light having other wavelengths, and among wavelengths reflected by dichroic mirror 2, wavelengths necessary for exposure (usually g, h, Wavelength selection filter 3 that passes light containing only at least one band of i-line) as exposure light, and exposure light from wavelength selection filter 3 is branched into a plurality (7 in this embodiment) and reflected. And a light guide 4 that is incident on each of the illumination system modules IMa to IMg via a mirror 5.
  • the illumination system module IM constituting the illumination optical system IL in this embodiment, seven illumination system modules IMa to IMg are provided corresponding to the seven projection optical modules PLa to PLg.
  • each of the illumination system modules IMa to IMg is arranged corresponding to each of the projection optical modules PLa to PLg with a predetermined interval in the X axis direction and the Y axis direction.
  • the exposure light EL emitted from each of the illumination system modules IMa to IMg illuminates different irradiation areas on the mask M in correspondence with the projection optical modules PLa to PLg.
  • Each of the illumination system modules IMa to IMg includes an illumination shutter 6, a relay lens 7, a fly-eye lens 8 as an optical integrator, and a condenser lens 9.
  • the illumination shutter 6 is disposed on the downstream side of the light path of the light guide 4 so as to be detachable from the light path.
  • the illumination shutter 6 shields the exposure light when it is arranged in the optical path, and cancels the shielding when retracted from the optical path.
  • a shutter drive unit 6 a is connected to the illumination shutter 6.
  • the shutter driving unit 6a is controlled by the control device CONT.
  • each of the illumination system modules IMa to IMg has a light amount adjustment mechanism 10.
  • the light amount adjusting mechanism 10 adjusts the exposure amount by setting the illuminance of the exposure light for each optical path, and includes a half mirror 11, a detector 12, a filter 13, and a filter driving unit 14. .
  • the half mirror 11 is disposed in the optical path between the filter 13 and the relay lens 7, and causes a part of the exposure light transmitted through the filter 13 to enter the detector 12.
  • the detector 12 independently detects the illuminance of the incident exposure light, and outputs the detected illuminance signal to the control device CONT.
  • the filter 13 is formed such that the transmittance gradually changes linearly in a predetermined range along the X-axis direction, and is disposed between the illumination shutter 6 and the half mirror 11 in each optical path.
  • the filter drive unit 14 adjusts the exposure amount for each optical path by moving the filter 13 along the X-axis direction based on an instruction from the control device CONT.
  • the light beam that has passed through the light amount adjusting mechanism 10 reaches the fly-eye lens 8 through the relay lens 7.
  • the fly-eye lens 8 forms a secondary light source on the exit surface side, and the exposure light EL from the secondary light source passes through the condenser lens 9 and includes a right-angle prism 16, a lens system 17, and a concave mirror 18.
  • the irradiation area on the mask M is illuminated uniformly.
  • the catadioptric optical system 15 may be omitted.
  • the mask M may be directly irradiated with the light beam that has passed through the condenser lens 9.
  • the illumination optical system IL and thus the exposure apparatus EX can be reduced in size.
  • Each of the projection optical modules PLa to PLg includes an image shift mechanism 19, a focus position adjustment mechanism 31, two sets of catadioptric optical systems 21 and 22, a field stop 20, and a magnification adjustment mechanism 23.
  • the image shift mechanism 19 shifts the pattern image of the mask M in the X-axis direction or the Y-axis direction by rotating two parallel flat plate glasses in the ⁇ Y direction or the ⁇ X direction, respectively.
  • the focus position adjusting mechanism 31 includes a pair of wedge prisms, and changes the image plane position of the pattern image by changing the sum of the thicknesses of the wedge prisms in the optical path. The inclination angle of the image plane of the pattern image is changed by rotating it around.
  • the exposure light EL that has passed through the mask M passes through the image shift mechanism 19 and the focus position adjustment mechanism 31 and then enters the first set of catadioptric optical system 21.
  • the catadioptric optical system 21 forms an intermediate image of the pattern of the mask M, and includes a right-angle prism 24, a lens system 25, and a concave mirror 26.
  • the right-angle prism 24 is rotatable in the ⁇ Z direction, and the pattern image of the mask M can be rotated.
  • the field stop 20 is disposed on the image plane of the intermediate image formed by the catadioptric optical system 21 or in the vicinity thereof.
  • the field stop 20 sets a projection area on the substrate P.
  • the exposure light EL transmitted through the field stop 20 enters the second set of catadioptric optical system 22.
  • the catadioptric optical system 22 includes a right-angle prism 27, a lens system 28, and a concave mirror 29.
  • the right-angle prism 27 is also rotatable in the ⁇ Z direction, and the pattern image of the mask M can be rotated.
  • the exposure light EL emitted from the catadioptric optical system 22 passes through the magnification adjusting mechanism 23 and forms a pattern image of the mask M on the substrate P at an erecting equal magnification.
  • the magnification adjustment mechanism 23 has a first plano-convex lens, a biconvex lens, and a second plano-convex lens in this order along the Z axis. By moving the biconvex lens in the Z axis direction, the magnification of the pattern image of the mask M To change.
  • FIG. 3A is a diagram showing the field stop 20 provided in each of the projection optical modules PLa to PLg.
  • the field stop 20 is disposed at a position substantially conjugate with the mask M and the substrate P.
  • Each of the projection optical modules PLa to PLg has a field stop 20, and the projection regions 50 a to 50 g on the substrate P of each of the projection optical modules PLa to PLg are respectively openings K formed in the corresponding field stop 20.
  • each opening K is formed in an isosceles trapezoidal shape having two sides parallel to the Y-axis direction, or a trapezoidal shape having two sides parallel to the Y-axis direction and one side parallel to the X-axis direction.
  • the projection areas 50a to 50g are set in a trapezoidal shape having a conjugate relationship with the corresponding opening K.
  • the field stop 20 is illustrated as a rectangular plate-like member having a trapezoidal opening and is actually shown in FIG. 3B.
  • the aperture member 20y including an edge (end portion) for setting the width of the opening K in the Y-axis direction and the aperture member 20x including an edge (end portion) for setting the width of the aperture K in the X-axis direction are different members.
  • the diaphragm members 20y and 20x are disposed on the conjugate plane CP with respect to the mask M and the substrate P, and the diaphragm member 20x is slightly closer to the exposure light EL incident side than the conjugate plane CP. It is arranged on the (+ Z side).
  • the projection optical module PLf has a light shielding plate 30.
  • the light shielding plate 30 is a substantially rectangular plate member in plan view (viewed from the Z-axis direction), and as shown in FIG. 3B, exposure light is applied to the field stop 20 provided in the projection optical module PLf. It is arranged on the emission side ( ⁇ Z side) of EL.
  • the light shielding plate 30 has a + Y side end portion on which the long side on the + Y side forms the opening K of the field stop 20 by a drive mechanism 80 (see FIG. 8A and the like) described later.
  • a first inclined arrangement (see FIG. 4A) that is substantially parallel to (the oblique side), and a long side on the ⁇ Y side that forms an opening K of the field stop 20 and an end portion (the oblique side) on the ⁇ Y side. It is possible to drive between the second inclined arrangement (see FIG. 4B) that is substantially parallel.
  • the light shielding member 30 is generated by the projection optical module PLf by moving between the first inclined arrangement (first inclination angle) and the second inclined arrangement (second inclination angle).
  • the first tilt angle and the second tilt angle are determined by the tilt angle of the trapezoidal projection area.
  • the first inclination angle shown in FIG. 4A is such that the inclination angle of the light shielding plate 30 with respect to the Y-axis direction is parallel to the inclination angle of the edge of the trapezoidal projection region 50f in the + Y-axis direction.
  • the second inclination angle shown in FIG. 4B the inclination angle of the light shielding plate 30 with respect to the Y-axis direction is parallel to the inclination angle of the end of the trapezoidal projection area 50f in the ⁇ Y-axis direction. . That is, the inclination angle (the first inclination angle and the second inclination angle) of the light shielding plate 30 can be arbitrarily determined based on the shape of the projection region.
  • the light shielding plate 30 can be moved straight in the Y-axis direction by a drive mechanism 80 (see FIG. 8A and the like), and the width in the Y-axis direction of the projection region 50f generated by the projection optical module PLf is set. Settings can be changed. Further, the light shielding plate 30 can move to a position where it does not overlap the opening K, that is, a position where the opening K is set only by the field stop 20 by moving straight in the Y-axis direction.
  • FIGS. 5 (a) to 6 (b) show diagrams showing the positional relationship between the projection area and the light-shielding portion when performing joint exposure.
  • a part of the projection area projection areas 50e to 50g
  • a light shielding plate 30 that defines a projection region by shielding light is shown.
  • a form in which the projection areas are arranged in a line is shown.
  • pattern joining is performed in an area where the projection width in the X-axis direction of the projection area 50e changes along the Y-axis direction, that is, in an end area of the trapezoidal projection area.
  • the exposure amount becomes too large at the inclined portion G, and the pattern joining cannot be performed.
  • FIG. 6A if a similar light shielding plate 30A is arranged in the projection region 50f in addition to the light shielding plate 30 in the projection region 50e, an inclined portion G of the exposure amount can be formed. Pattern splicing can be performed. 30 A of light shielding plates are arrange
  • the light shielding plate 30 and the light shielding plate 30A may be separate members or may be formed by a common member.
  • the projection region 50e is changed by changing the inclination angle of the light shielding plate 30 as shown in FIG. 6B.
  • the inclined portion G can be formed with only one light shielding plate 30 to be defined.
  • the inclination angle of the light shielding plate 30 is changed to be parallel to the angle of the end region of the projection region 50e. That is, the inclination angle of the light shielding plate 30 is changed to be parallel to the angle of the end region of the projection region 50f.
  • Pattern joining is performed as if the end region of the projection region 50f has been moved in the + Y direction. Accordingly, it is not necessary to increase the number of light shielding plates, and it is not necessary to synchronize the light shielding plates in the projection region 50e and the light shielding plate in the projection region 50f as compared with the case of FIG. Can be
  • the scanning width in the Y-axis direction can be set by moving the light shielding plate in the Y-axis direction, and when performing joint exposure in the ⁇ region or the ⁇ region.
  • the scanning width could be set by shielding the exposure light with the illumination shutter 6 (see FIG. 2) of the illumination system module IMf or the illumination system module IMg.
  • the illumination shutter 6 see FIG. 2
  • the exposure amount is not uniform, and there is a limit to the region where the joint exposure can be performed.
  • the light shielding plate 30 can be moved between the first inclined arrangement and the second inclined arrangement as shown in FIG. 7B. Even when the light shielding plate 30 is arranged in the U region, it is possible to perform joint exposure with a uniform exposure amount. For example, when performing joint exposure in the T region, the light shielding plate 30 is used in the first inclined arrangement, and when performing joint exposure in the U region, the light shielding plate 30 is moved to the second inclined arrangement. Can be used.
  • the continuous exposure can be performed also in the S area. It can. That is, by using the light shielding plate 30 of the present embodiment, it is possible to perform joint exposure in any region in the Y-axis direction.
  • the driving mechanism 80 includes a pair of actuators 82 and 84 with the opening K interposed therebetween (on the ⁇ X side and the + X side of the opening K).
  • the actuator 82 is a so-called feed screw device including a motor (servo motor) 82a, a screw 82b driven by the motor 82a, and a cylindrical nut 82c screwed to the screw 82b.
  • Reciprocating drive can be performed with a stroke longer than the opening K in the Y-axis direction.
  • a U-shaped notch 30a in plan view is formed in the vicinity of the ⁇ X side end of the light shielding plate 30, and a nut 82c is inserted into the notch 30a.
  • the actuator 84 is also a feed screw device having a configuration similar to that of the actuator 82 (motor 84a, screw 84b, nut 84c), but the nut 84c is in the vicinity of the + X side end of the light shielding plate 30 and ⁇ Z with respect to the light shielding plate 30. It is different in that it is mounted so as to be freely rotatable in the direction.
  • the pair of actuators 82 and 84 included in the drive mechanism 80 are independently controlled by the control device CONT (see FIG. 2).
  • the drive mechanism 80 has a + Y side edge (end) of the light shielding plate 30 at the field stop 20 (not shown in FIG. 8A, see FIG. 3A).
  • the substrate By positioning the light shielding plate 30 at a position parallel to the + Y side edge among the edges (ends) forming the opening K of the light, and forming the optical path of the exposure light on the ⁇ Y side of the light shielding plate 30, the substrate
  • the projection region 50f generated on P can be a trapezoid (isosceles trapezoid) in plan view.
  • the position and angle of the light shielding plate 30 are measured based on the output of a measurement device (not shown) (position measurement device, light amount measurement device, etc.) or input signals to the actuators 82 and 84. At this time, a region on the + Y side of the light shielding plate 30 in the opening K is shielded by the movable blind device 60 so that the exposure light does not pass through.
  • a measurement device not shown
  • position measurement device position measurement device, light amount measurement device, etc.
  • input signals to the actuators 82 and 84 input signals to the actuators 82 and 84.
  • a region on the + Y side of the light shielding plate 30 in the opening K is shielded by the movable blind device 60 so that the exposure light does not pass through.
  • FIG. 8A an optical path of exposure light is formed on the ⁇ Y side of the light shielding plate 30, and a trapezoidal projection area 50f in plan view is formed on the substrate P by the exposure light that has passed through the optical path.
  • the drive mechanism 80 drives the nuts 82c and 84c of the pair of actuators 82 and 84 in the Y-axis direction with the same stroke (movement amount) from the state shown in FIG.
  • the area that is, the width (area) of the projection region 50f (trapezoid in plan view) generated on the substrate P (see FIG. 1) can be changed.
  • the blind device 60 is also driven in the Y-axis direction according to the position of the light shielding plate 30.
  • the blind device 60 described above is also provided corresponding to each of the projection optical modules PLa to PLe and PLg (see FIG. 1) not including the light shielding plate 30, and each of the projection optical modules PLa to PLe and PLg. Opening and shielding the opening K (see FIG. 3A) formed in the field stop 20 included in can be arbitrarily selected.
  • the blind device 60 is included in the illumination optical system IL (see FIG. 1).
  • the blind device 60 is not limited to this, and the blind device 60 is disposed at another position on the optical path of the exposure light EL. May be.
  • the drive mechanism 80 starts from the first mode (see FIG. 8A as an example), and the nut 82c of the actuator 82 is + Y side of the nut 84c of the actuator 84 as shown in FIG. 8B.
  • the nut 82c of the actuator 82 is + Y side of the nut 84c of the actuator 84 as shown in FIG. 8B.
  • an optical path of exposure light is formed on the ⁇ Y side of the light shielding plate 30, and a projection region having a parallelogram in plan view on the substrate P by the exposure light that has passed through the optical path.
  • the state in which 50f is generated will be described as the second mode of the light shielding plate 30.
  • the area of the opening K that is, the projection region 50f generated on the substrate P (see FIG. 1) (in plan view).
  • the width (area) of the (parallelogram) can be set and changed. Further, the region on the + Y side of the light shielding plate 30 in the opening K is appropriately shielded by the blind device 60 according to the position of the light shielding plate 30.
  • the drive mechanism 80 moves the position of the blind device 60 from the second mode (see FIG. 8B as an example) to the ⁇ Y side of the light shielding plate 30 as shown in FIG. 8C.
  • the optical path of the exposure light can be formed on the + Y side of the light shielding plate 30.
  • the + Y side edge (end portion) of the light shielding plate 30 is ⁇ Y among the edges (end portions) forming the opening K of the field stop 20 (not shown in FIG. 8C, see FIG. 3A).
  • the projection region 50f generated on the substrate P by the exposure light that has passed through the optical path has a trapezoidal shape (isosceles trapezoidal shape) in plan view.
  • an optical path of exposure light is formed on the + Y side of the light shielding plate 30, and a trapezoidal projection area 50f in plan view is generated on the substrate P by the exposure light passing through the optical path.
  • This state will be described as a third mode of the light shielding plate 30.
  • the area of the opening K that is, the projection region 50f generated on the substrate P (see FIG. 1) (in plan view)
  • the width (area) of the trapezoid) can be changed. Further, a region on the ⁇ Y side of the light shielding plate 30 in the opening K is appropriately shielded by the blind device 60 according to the position of the light shielding plate 30.
  • the drive mechanism 80 starts from the third mode (see FIG. 8C as an example) so that the nut 84c is positioned on the + Y side of the nut 82c as shown in FIG. 8D.
  • the + Y side edge (end portion) of the light shielding plate 30 forms the opening K of the field stop 20 (not shown in FIG. 8B, see FIG. 3A).
  • the light shielding plate 30 can be positioned at a position parallel to the + Y side edge.
  • the projection region 50f generated on the substrate P can be made into a parallelogram in plan view.
  • FIG. 1 As shown in FIG.
  • the optical path of the exposure light is formed on the + Y side of the light shielding plate 30, and the projection area 50f having a parallelogram in plan view on the substrate P by the exposure light passing through the optical path.
  • the state in which is generated will be referred to as a fourth mode of the light shielding plate 30.
  • the area of the opening K that is, the projection region 50f generated on the substrate P (see FIG. 1) (in plan view).
  • the width (area) of the (parallelogram) can be set and changed. Further, a region on the ⁇ Y side of the light shielding plate 30 in the opening K is appropriately shielded by the blind device 60 according to the position of the light shielding plate 30.
  • the exposure light is transmitted in both the ⁇ Y direction (first and second modes) and the + Y direction (third and fourth modes) of the opening K with respect to the light shielding plate 30.
  • An optical path can be formed, and the width of the opening K can be arbitrarily adjusted in each of the first to fourth modes. That is, the field stop 20, the light shielding plate 30, the drive mechanism 80, and the blind device 60 constitute a variable field stop device that arbitrarily changes the shape and position of the projection region 50f generated on the substrate P by the projection optical module PLf. is doing.
  • FIG. 9 is a plan view showing projection areas 50a to 50g generated on the substrate P.
  • the projection areas 50a to 50g are adjacent to each other in the Y-axis direction, that is, end parts 51a and 51b, end parts 51c and 51d, end parts 51e and 51f, end parts 51g and 51h, and end parts 51i and 51j.
  • the end portions 51k and 51l are set so as to overlap in the Y-axis direction (so that the positions in the Y-axis direction overlap). For this reason, by performing exposure (scanning exposure) while scanning the substrate P in the X-axis direction with respect to the projection areas 50a to 50g, overlapping areas 52a to 52f that are overlapped (double exposure) (FIG. 9). In this case, a region sandwiched between two point difference lines is formed.
  • the light shielding plate 30 appropriately sets the effective size of the projection region 50f by the first and second positions and the movement in the Y-axis direction. Thereby, the light shielding plate 30 appropriately sets the width and shape in the Y-axis direction of the pattern image of the mask M transferred via the projection region 50f when scanning exposure is performed by scanning the substrate P in the X-axis direction.
  • the pattern width in the Y-axis direction and the pattern shape of the transfer pattern formed on the substrate P as a latent image corresponding to the pattern image can be appropriately set.
  • a partial pattern PA having a length LA in the Y-axis direction and a portion having a length LB in the Y-axis direction.
  • the pattern image of the two areas with the pattern PB is divided into two scanning exposures (first and second scanning exposures) and sequentially transferred onto the substrate P, and the transfer patterns MA and MB corresponding to these pattern images are transferred.
  • the entire transfer pattern MPA on the substrate P is a combination of the transfer pattern MA of the partial pattern PA and the transfer pattern MB of the partial pattern PB.
  • the position and width in the Y-axis direction of the projection area 50f generated on the substrate P by the projection optical module PLf are appropriately changed using the first to fourth modes. can do.
  • the length LA and the end shape thereof are arbitrarily set in the Y-axis direction of the partial pattern PA.
  • the joint portion in the transfer pattern MB in the second scanning exposure is formed using the projection optical module PLf, the length LB in the Y-axis direction of the partial pattern PB and its end shape are arbitrarily set. be able to.
  • first exposure method and second exposure method a case where there are seven projection optical system modules will be described, and in the third to fifth exposure methods, a case where there are 11 projection optical system modules will be described.
  • the number of projection optical system modules can be changed as appropriate, and the concept and method of splice exposure are the same as the example described in FIG. 6 regardless of the number of projection optical system modules. .
  • FIG. 11A shows a substrate P and a mask M according to the first exposure method.
  • the first exposure method two panels PN1 and PN2 are manufactured from one substrate P.
  • the sizes of the panels PN1 and PN2 are the same, and the mask patterns used are also the same.
  • the first exposure method is the same as that described with reference to FIG. 10, and the exposure operation for each panel PN1 and PN2 can be completed by two exposure operations (one connection exposure operation).
  • the light shielding plate 30 is moved to the second inclined arrangement, and the light shielding plate 30 is formed so that the optical path of the exposure light is formed on the + Y axis side.
  • the mask M and the substrate P are moved relative to each other along the X-axis direction (first direction), so that the first scanning exposure for forming the pattern of the A region in the mask pattern on the substrate P is performed. Is called.
  • step movement is performed in which the substrate P is moved in the Y-axis direction (second direction) by the substrate stage drive unit PSTD. Then, as shown in FIG.
  • the light shielding plate 30 is moved to the first inclined arrangement, and the light shielding plate 30 is moved in the Y axis direction so that the optical path of the exposure light is formed on the ⁇ Y axis direction side. Move along.
  • a joint portion is formed between the transfer pattern corresponding to the A region and the transfer pattern corresponding to the B region.
  • the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform.
  • the mask M and the substrate P are moved relative to each other along the X-axis direction, whereby second scanning exposure for forming the pattern of the B region in the mask pattern on the substrate P is performed.
  • a panel having a size larger than the pattern area PPA (see FIG. 10) of the mask M can be formed on the substrate P.
  • FIG. 12A shows the substrate P and the mask M according to the second exposure method.
  • the second exposure method two panels PN1 and PN2 are manufactured from one substrate P.
  • the sizes of the panels PN1 and PN2 are the same, and the mask patterns used are also the same.
  • a panel larger than that in the first exposure method can be manufactured.
  • the exposure operation for each panel PN1 and PN2 can be completed by two exposure operations (one joint exposure operation).
  • the light shielding plate 30 that defines the projection region 50f generated by the projection optical module PLf (see FIG. 1) is moved to the second inclined arrangement.
  • the light shielding plate 30 is moved so that the optical path of the exposure light is formed on the + Y axis side.
  • the mask M and the substrate P are relatively moved along the X-axis direction, whereby the first scanning exposure for forming the pattern of the A region in the mask pattern on the substrate P is performed.
  • step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage drive unit PSTD. Then, as shown in FIG.
  • the light shielding plate 30 that defines the projection region 50b generated by the projection optical module PLb (see FIG. 1) is moved to the first inclined arrangement, and the ⁇ Y axis side The light shielding plate 30 is moved so that the optical path of the exposure light is formed.
  • a joint portion is formed between the transfer pattern corresponding to the A region and the transfer pattern corresponding to the B region.
  • the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform.
  • the mask M and the substrate P are moved relative to each other along the X-axis direction, whereby second scanning exposure for forming the pattern of the B region in the mask pattern on the substrate P is performed.
  • a panel having a size larger than the pattern area PPA of the mask M can be formed on the substrate P.
  • FIG. 13A shows the substrate P and the mask M according to the third exposure method.
  • the third exposure method two panels PN1 and PN2 are manufactured from one substrate P.
  • the sizes of the panels PN1 and PN2 are the same, and the mask patterns used are also the same.
  • the length of the panels PN1 and PN2 in the Y-axis direction is almost twice the length of the mask M in the Y-axis direction.
  • the exposure operation for each of the panels PN1 and PN2 is not completed. Therefore, the A region, the B region, and the C region are set on the mask M, and a total of three exposure operations (two joint exposure operations) are performed for one panel (product).
  • the third exposure method moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the first inclined arrangement, + Y-axis
  • the light shielding plate 30 is moved so that the optical path of the exposure light is formed on the side.
  • the mask M and the substrate P are relatively moved along the X-axis direction, whereby the first scanning exposure for forming the pattern of the A region in the mask pattern on the substrate P is performed.
  • a first step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage driving unit PSTD. Then, as shown in FIG.
  • the light shielding plate 30 moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the second inclined arrangement, the exposure light on the + Y-axis side
  • the light shielding plate 30 is moved so that the optical path is formed.
  • a joint portion is formed between the transfer pattern corresponding to the A region and the transfer pattern corresponding to the B region.
  • the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform.
  • the mask M and the substrate P are moved relative to each other along the X-axis direction, whereby second scanning exposure for forming the pattern of the B region in the mask pattern on the substrate P is performed.
  • a second step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage drive unit PSTD. Then, as shown in FIG. 14 (b), moves the light shielding plate 30 which defines the projected area 50 4 generated by the projection optical module PL 4 to the first inclined arrangement, exposure light -Y-axis side The light shielding plate 30 is moved so that the optical path is formed. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the B region and the transfer pattern corresponding to the C region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform.
  • the mask M and the substrate P are relatively moved along the X-axis direction, whereby the third scanning exposure for forming the pattern of the C region in the mask pattern on the substrate P is performed.
  • a panel having a size larger than the pattern area PPA of the mask M can be formed on the substrate P.
  • FIG. 15A shows a substrate P and a mask M according to the fourth exposure method.
  • the fourth exposure method three panels PN1 to PN3 are manufactured from one substrate P. The sizes of the panels PN1 to PN3 are the same, and the mask patterns used are also the same.
  • the length of the panels PN1 to PN3 in the Y-axis direction is about 1.3 times the length of the mask M in the Y-axis direction. Unlike the third exposure method, the length is twice.
  • the exposure operation for each of the panels PN1 to PN3 is completed by the exposure operation (one connection exposure operation).
  • two areas of area A and area B are set on the mask M, and a total of two exposure operations (one splice exposure operation) per panel (product). I do.
  • the fourth exposure method moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the first inclined arrangement, + Y-axis
  • the light shielding plate 30 is moved so that the optical path of the exposure light is formed on the side.
  • the mask M and the substrate P are relatively moved along the X-axis direction, whereby the first scanning exposure for forming the pattern of the A region in the mask pattern on the substrate P is performed.
  • step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage drive unit PSTD. Then, as shown in FIG.
  • the 16 moves the light shielding plate 30 which defines the projected area 50 7 generated by the projection optical module PL 7 to the second inclined arrangement, the optical path of the exposure light -Y axis side
  • the light shielding plate 30 is moved so as to be formed.
  • a joint portion is formed between the transfer pattern corresponding to the A region and the transfer pattern corresponding to the B region.
  • the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform.
  • the mask M and the substrate P are moved relative to each other along the X-axis direction, whereby second scanning exposure for forming the pattern of the B region in the mask pattern on the substrate P is performed.
  • a panel having a size larger than the pattern area PPA (see FIG. 10) of the mask M can be formed on the substrate P.
  • FIG. 17A shows a substrate P and a mask M according to the fifth exposure method.
  • the fifth exposure method three panels PN1 to PN3 are manufactured from one substrate P.
  • the panel PN1 is smaller in size than the panels PN2 and PN3 and has a shorter length in the Y-axis direction.
  • the mask pattern MP1 formed on the mask M is used for the exposure of the panel PN1, and the mask pattern MP2 different from the mask pattern MP1 is used for the exposure of the panels PN2 and PN3.
  • the fifth exposure method moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the second inclined arrangement, + Y-axis
  • the light shielding plate 30 is moved so that the optical path of the exposure light is formed on the side.
  • the first scanning exposure for forming the pattern of the A1 region of the mask pattern on the substrate P is performed by relatively moving the mask M and the substrate P along the X-axis direction.
  • a first step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage driving unit PSTD. Then, as shown in FIG.
  • the light shielding plate 30 moves the light shielding plate 30 which defines the projected area 50 7 generated by the projection optical module PL 7 to the second inclined arrangement, exposure light -Y-axis side
  • the light shielding plate 30 is moved so that the optical path is formed.
  • a joint portion is formed between the transfer pattern corresponding to the A1 region and the transfer pattern corresponding to the B1 region.
  • the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform.
  • the mask M and the substrate P are relatively moved along the X-axis direction, whereby the second scanning exposure for forming the pattern of the B1 region in the mask pattern on the substrate P is performed. Accordingly, the mask pattern MP1 can be transferred to the substrate P, and the panel PN1 can be formed on the substrate P.
  • a second step movement is performed in which the substrate P is moved in the X-axis direction and the Y-axis direction by the substrate stage driving unit PSTD. Further, in the second step movement, in order to transfer the mask pattern MP2 to the substrate P, the mask M is moved by the mask stage driving unit MSTD. Then, as shown in FIG. 18 (b), moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the first inclined arrangement, the exposure light on the + Y-axis side The light shielding plate 30 is moved so that the optical path is formed.
  • the third scanning exposure for forming the pattern of the A2 region of the mask pattern on the substrate P is performed.
  • a third step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage driving unit PSTD.
  • the light shielding plate 30 which defines the projected area 50 7 generated by the projection optical module PL 7 to the second inclined arrangement, the optical path of the exposure light -Y axis side
  • the light shielding plate 30 is moved so as to be formed.
  • a joint portion is formed between the transfer pattern corresponding to the A2 region and the transfer pattern corresponding to the B2 region.
  • the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the mask M and the substrate P are moved relative to each other along the X-axis direction to perform the fourth scanning exposure for forming the B2 region pattern of the mask pattern on the substrate P. Accordingly, the mask pattern MP2 can be transferred to the substrate P, and the panel PN2 can be formed on the substrate P.
  • a fourth step movement is performed in which the substrate P is moved in the X-axis direction and the Y-axis direction by the substrate stage driving unit PSTD. . Then, the light shielding plate 30 that defines the projection region 50 10 generated by the projection optical module PL 10 is moved to the first inclined arrangement, and the light shielding plate 30 is formed so that the optical path of the exposure light is formed on the + Y axis side. Move. In this state, by moving the mask M and the substrate P relative to each other along the X-axis direction, the fifth scanning exposure for forming the pattern of the A2 region of the mask pattern on the substrate P is performed.
  • a fifth step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage drive unit PSTD. Then, it moves the light shielding plate 30 which defines the projected area 50 7 generated by the projection optical module PL 7 to the second inclined arrangement, the light shielding plate 30 so that the optical path of the exposure light on the -Y-axis side is formed Move.
  • a joint portion is formed between the transfer pattern corresponding to the A2 region and the transfer pattern corresponding to the B2 region.
  • the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform.
  • the sixth scanning exposure for forming the pattern of the B2 region of the mask pattern on the substrate P is performed by relatively moving the mask M and the substrate P along the X-axis direction.
  • the mask pattern MP3 can be transferred to the substrate P, and the panel PN3 can be formed on the substrate P.
  • the panel PN1, the panel PN2, and the panel PN3 can be formed on the substrate P.
  • the first to fifth exposure methods are merely examples, and besides these, various modes are conceivable for splice exposure performed in the exposure apparatus EX. Therefore, it is necessary to design each time how to divide the mask pattern into a plurality of areas and perform joint exposure according to the required panel size.
  • the length of each transfer pattern in the Y axis direction is The base is an integral multiple of the length of the projection area formed by each projection optical system module, and the total length is adjusted by the light shielding plate 30.
  • the projection optical module having the light shielding plate 30 is only a part (in this embodiment, the projection optical system module PLf), which is a limitation in designing the total length of the projection area in the Y-axis direction. .
  • each panel has a lead-out line (referred to as a tab area) for connecting each panel and the drive circuit to the peripheral portion separately from the liquid crystal display surface on which a repeated pattern is formed. Is formed. Since the lead lines formed in the tab area are not repetitive patterns, they become a restriction when performing joint exposure. Also, from the viewpoint of throughput, it is preferable that the number of splice exposures is small, and this is also a limitation when the mask pattern is divided into a plurality of regions. Further, since the mask size is physically limited depending on the size of the mask stage MST, this point also becomes a restriction when the mask pattern is divided into a plurality of regions.
  • a joint portion is formed when joint exposure is performed by the variable diaphragm device configured by the field diaphragm 20, the light shielding plate 30, the drive mechanism 80, and the blind device 60.
  • the length and end shape of one projection area are determined by using the light shielding plate 30 in any of the first to fourth modes. Can be adjusted arbitrarily.
  • the parallelogram-shaped and slit-shaped opening K cannot be formed (the oblique side of the light shielding plate 30 and the edge where the opening K is formed).
  • the degree of freedom of design described above is improved.
  • the position of the light-shielding plate 30 and the position of the light-shielding plate 30 according to the required product design (see the first to fifth exposure methods above), and The inclination (any one of the first to fourth modes) is determined.
  • the panel (product) size, the mask size, the width (position) of the tab area, and the position of the light shielding plate 30 (in this embodiment, the position corresponding to the projection area 50f).
  • a plurality of areas (A and B areas of the first exposure method, areas A to C of the third exposure method, etc.) are set on the mask M according to various conditions such as the number of times of the best scanning exposure. .
  • the position of the light shielding plate 30 in the Y-axis direction is determined according to the length in the Y-axis direction of the region on the mask M determined in step S10.
  • step S14 it is determined whether or not the position of the light shielding plate 30 determined in step S12 satisfies a desired splice exposure condition. For example, it is determined whether or not the total exposure amount of the joint portion MC (see FIG. 10) formed on the substrate P satisfies a desired exposure condition when joint exposure is performed in the inclination direction of the current light shielding plate 30. To do. If the determination in step S14 is yes, the process proceeds to step S16 to perform splice exposure. If the determination in step S14 is No, the process proceeds to step S18, and mode switching of the light shielding plate 30 (switching between the first mode and the second mode or switching between the third mode and the fourth mode) is performed. After adding the above process (the mode of the light shielding plate 30 is actually switched during the Y step operation of the substrate P), the process proceeds to step S16 to perform splice exposure.
  • a desired splice exposure condition For example, it is determined whether or not the total exposure amount of the joint portion MC
  • the position of the light shielding plate 30 can be determined if the exposure conditions for performing joint exposure are known in advance based on the panel (product) size, the mask size, the width (position) of the tab region, the number of scanning exposures, and the like. It may be configured to be switchable between the first scanning exposure and the second scanning exposure. As a result, the above-described steps (steps S14 and S18) can be omitted, so that the exposure process can be simplified.
  • one of the pair of edges (+ Y side or ⁇ Y side) spaced apart in the Y axis direction that forms the opening K and the pair of edges in the Y axis direction of the light shielding plate 30 is formed on one side or the other side (+ Y side or ⁇ Y side) of the light shielding plate 30 by one (+ Y side or ⁇ Y side) of the light, and the exposure light that has passed through the optical path
  • a planar trapezoidal or parallelogram-shaped projection region 50f is generated.
  • region 50f of the said planar view trapezoid or a parallelogram can be suitably set and changed with the Y position of the light-shielding plate 30.
  • the projection region formed on the substrate P by the plurality of projection optical modules including the projection region 50f can be changed.
  • the length in the Y-axis direction and the end shape (inclination direction) can be arbitrarily set. Therefore, the degree of freedom in designing the width of the transfer pattern MPA or MPB (see FIG. 10) formed on the substrate P by splice exposure is improved, and a liquid crystal panel having an arbitrary width is formed on one mother glass substrate. It becomes possible to do.
  • the configuration of the embodiment described above is an example, and can be changed as appropriate. That is, in the above embodiment, only one light shielding plate 30 (variable field stop device) is provided. However, the present invention is not limited to this, and a plurality of light shielding plates 30 may be provided. The number and position of the projection optical module provided with the light shielding plate 30 (variable field stop device) are not particularly limited. In this case, the degree of freedom in designing the width of the transfer pattern MPA or MPB (see FIG. 10) formed on the substrate P by splicing exposure is further improved.
  • the mechanism for driving the light shielding plate 30 can be changed as appropriate. That is, as in the modification shown in FIG. 21, two light shielding plates 30 may be provided for one opening K (field stop 20 (see FIG. 3)).
  • the drive mechanism 80A for independently driving the two light shielding plates 30 includes a pair of actuators 82A and 84B, as in the above embodiment, and the nuts 82c and 84c of the pair of actuators 82A and 84A are provided.
  • the light shielding plate 30 is fixed.
  • the angle of the light shielding plate 30 is changed by rotationally driving the light shielding plate 30.
  • the end portions of the two light shielding plates 30 are in the Y-axis direction in which the opening K is formed.
  • FIG. 21 is a schematic diagram
  • FIG. 25 shows details of this modification.
  • each light shielding plate 30 is reciprocally driven independently within a predetermined movable range (see the broken line arrow in FIG. 25) along a pair of arms 88 extending in the Y-axis direction.
  • Such a drive mechanism that reciprocates the arm 88 can also be used as the drive mechanism of the light shielding plate 30 of the above embodiment.
  • the nut 84c of the actuator 84B may have a rotation motor 84d for driving the light shielding plate 30 to rotate.
  • the rotation motor 84d positions the light shielding plate 30 by rotating the light shielding plate 30 and bringing it into contact with a pair of stoppers 84e fixed to the nut 84c.
  • the drive mechanism 80 (see FIG. 4A, etc.) of the above embodiment has a pair of linear actuators, whereas only one linear actuator is required, and the configuration is simple.
  • the light shielding plate 30 may be rotatably supported via a shaft 84f with respect to the nut 84c of the actuator 84C.
  • the drive mechanism 80C has a pair of pins 84h whose positions with respect to the opening K are fixed, and moves the nut 84c in the Y-axis direction with the light shielding plate 30 in contact with one of the pair of pins 84h. Thus, the light shielding plate 30 is rotated (see FIG. 23B).
  • the nut 84c has a leaf spring 84g that presses the light shielding plate 30 against one of the pair of stoppers 84e, and the light shielding plate 30 is always kept in contact with one of the pair of stoppers 84e. It is. In the present modification, an actuator that rotationally drives the light shielding plate 30 is unnecessary, and the configuration of the drive mechanism 80C is simple.
  • the light shielding plate 30 of the above embodiment is formed in a rectangular shape (rectangular) in plan view and the angle is changed by rotation
  • the shape of the light shielding plate is not limited to this. That is, like the light shielding plate 130 of the modified example shown in FIG. 24A, it may be formed in a U shape (reverse C shape) in a plan view that opens to the + X side.
  • the light shielding plate 130 is made of a plate-like member extending in the Y-axis direction, and the + Y side end portion is formed in parallel with the + Y side end portion of the end portions forming the aperture K of the field stop 20 (see FIG. 3). Has been.
  • the light shielding plate 130 is formed in parallel with the ⁇ Y side end portion of the end portions where the ⁇ Y side end portion forms the opening K of the field stop 20.
  • the + Y side end portion is the end portion that forms the opening K of the field stop 20.
  • the ⁇ Y side end portion is the end portion forming the opening K of the field stop 20 and the ⁇ Y side end portion. They are formed in parallel (that is, parallel to the end of the light shielding plate 130 on the -Y side).
  • the light shielding plate 130 according to the modification shown in FIG. 24A is driven in the Y-axis direction by the actuator 86. Accordingly, as shown in FIGS. 24B to 24E, the first to fourth modes can be realized as in the above embodiment. As in the above embodiment, the portion of the opening K that does not form the optical path of the exposure light is shielded by the movable blind device 60. According to the present modification, the first to fourth modes can be realized only by linearly driving the light shielding plate 130 by the single actuator 86, so that the configuration is simple.
  • the optical path (opening K) of the exposure light is formed by the cooperation of the field stop 20 and the light shielding plate 30 made of a plate-like member.
  • the member that forms the optical path is not limited to this. That is, as shown in FIG. 26, a part of the opening K may be shielded from light using the optical filters 230a and 230b.
  • the optical filter 230a is set so that the light transmittance decreases from the + Y side end toward the ⁇ Y side.
  • the optical filter 230b is configured symmetrically on the paper surface with respect to the optical filter 230a.
  • the optical filters 230a and 230b can be driven independently in the Y-axis direction, and the light shielding range of the exposure light and the position of the optical path of the exposure light can be arbitrarily set. Also according to this modification, splice exposure similar to that in the above embodiment can be performed.
  • the optical filters 230a and 230b are arranged in the optical axis direction from the conjugate plane with respect to the mask M and the substrate P so that the minute dots forming the light shielding portions (filter portions) in the optical filters 230a and 230b are not transferred onto the substrate P. It is better to place it at a slightly shifted position.
  • the configuration of the drive mechanism is not limited to this. That is, a known shaft motor or the like may be used as an actuator for driving the light shielding plate 30. Since the shaft motor can independently drive a plurality of movers with respect to one stator, it is suitable for the type in which the position of the pair of light shielding plates 30 is independently controlled as in the modification shown in FIG. It is. Further, as the actuator, an electromagnetic motor such as a linear motor, or a mechanical actuator such as an ultrasonic motor or an air cylinder may be used.
  • each of the pair of light shielding plates 30 is driven by an independent actuator, but a part of the actuator may be common.
  • the pair of light shielding plates 30 is placed on a common first stage (coarse movement stage), and the second stage (fine movement) capable of independently controlling the positions of the pair of light shielding plates 30 on the first stage.
  • the stage may be configured to be placed.
  • the actuator for driving the light shielding plate 30 is arranged along the Y-axis direction.
  • the actuator is not limited to this, and along other directions (X-axis direction, Z-axis direction, etc.). It may be arranged.
  • the light shielding plate 30 and its driving mechanism 80 are provided to define the projection area (exposure area) generated on the substrate P, but the present invention is not limited to this, and the blind device of the illumination optical system IL is not limited to the above. You may provide the light-shielding plate of the structure similar to embodiment, and its drive mechanism.
  • the light shielding plate 30 is provided in the projection optical module constituting the projection optical system PL, the arrangement position is not particularly limited as long as it is on the optical path of the exposure light EL, and may be provided in the illumination optical system IL or the like. .
  • the light shielding plate 30 and its driving mechanism 80 are devices that constitute a part of the exposure apparatus EX.
  • the light shielding plate 30 and the driving mechanism 80 (such as a driver) are not limited thereto. It is also possible to additionally provide an existing exposure apparatus as a light-shielding device (variable field stop device).
  • the position and shape of the projection region formed on the substrate P are changed by the variable field stop device including the light shielding plate 30.
  • the present invention is not limited to this, and the mask M and the projection optical system PL are provided. It may be configured to be relatively movable in the Y-axis direction, and the position and shape of the projection region may be changed by relative movement of the mask M and the projection optical system PL in the Y-axis direction.
  • the illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm).
  • a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium).
  • harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
  • a solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
  • the projection optical system PL is a multi-lens type projection optical system including a plurality of projection optical modules
  • the number of projection optical modules is not limited to this, and one or more projection optical modules may be used.
  • the projection optical system PL may be an enlargement system or a reduction system.
  • the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern onto the square glass plate.
  • the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel the semiconductor manufacture
  • the present invention can also be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like.
  • microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • the object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank.
  • the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member).
  • the exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
  • the step of designing the function and performance of the device the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer)
  • the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the exposure apparatus and method of the present invention are suitable for exposing a mask pattern onto a substrate.
  • the flat panel display manufacturing method and device manufacturing method of the present invention are suitable for manufacturing flat panel displays and micro devices, respectively.
  • the light-shielding device of the present invention is suitable for exposing a mask pattern onto a substrate.

Abstract

Provided is an exposure method in which a plurality of projection optical units are provided that project the pattern of a mask (M) onto a substrate (P) and in which the pattern of the mask (M) is exposed onto the substrate (P) by moving the mask (M) and the substrate (P) relative to each other in an X direction. The exposure method includes: a first exposure step for projecting a pattern A onto an A region on the substrate (P) in a state where a -Y side end of a projection region that is projected onto the substrate (P) by the projection optical units is shielded from light at a first inclination angle; a step movement step for moving the substrate (P); and a second exposure step for projecting a pattern B onto a B region that at least partially overlaps the A region in a state where a +Y side end of the projection region is shielded from light at a second inclination angle.

Description

露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、遮光装置、及び露光方法Exposure apparatus, flat panel display manufacturing method, device manufacturing method, shading apparatus, and exposure method
 本発明は、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、遮光装置、及び露光方法に係り、更に詳しくは、物体上に投影光学系を介して所定パターンを形成する露光装置及び方法、物体上に投影光学系を介して所定パターンを形成する露光装置に用いられる遮光装置、並びに前記露光装置又は方法を用いたフラットパネルディスプレイ又はデバイスの製造方法に関する。 The present invention relates to an exposure apparatus, a flat panel display manufacturing method, a device manufacturing method, a light shielding apparatus, and an exposure method, and more specifically, an exposure apparatus and method for forming a predetermined pattern on an object via a projection optical system, The present invention relates to a light-shielding device used in an exposure apparatus that forms a predetermined pattern on an object via a projection optical system, and a flat panel display or device manufacturing method using the exposure apparatus or method.
 従来、液晶表示素子(液晶パネル)、半導体素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、マスク又はレチクル(以下、「マスク」と総称する)と、ガラスプレート又はウエハ等(以下、「基板」と総称する)とを所定の走査方向に沿って同期移動させつつ、マスクに形成されたパターンを、エネルギビームを用いて基板上に転写するステップ・アンド・スキャン方式の露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが用いられている。 Conventionally, in a lithography process for manufacturing an electronic device (microdevice) such as a liquid crystal display element (liquid crystal panel) or a semiconductor element, a mask or reticle (hereinafter collectively referred to as “mask”), a glass plate or a wafer (hereinafter referred to as “mask”). A step-and-scan type exposure apparatus that transfers a pattern formed on a mask onto a substrate by using an energy beam while synchronously moving a “substrate” together in a predetermined scanning direction. Scanning steppers (also called scanners)) are used.
 この種の露光装置を用いて基板上にパターンを形成する方法としては、マスクに形成されたパターン(マスクパターン)の周期性を利用して、マスクパターンを基板上で継ぎ合わせる、いわゆる繋ぎ露光が知られている(特許文献1参照)。 As a method of forming a pattern on a substrate using this type of exposure apparatus, so-called splice exposure, in which the mask pattern is spliced on the substrate using the periodicity of the pattern (mask pattern) formed on the mask. It is known (see Patent Document 1).
 従来の露光装置で上記繋ぎ露光を行う場合、上記繋ぎ合わせの自由度が十分ではなかった。 When performing the above-described joint exposure with a conventional exposure apparatus, the degree of freedom of the joint is not sufficient.
特開2004-335864号公報JP 2004-335864 A
 第1の実施形態では、所定パターンを物体に投影する投影光学系に対して、前記物体を第1方向に相対移動させて露光する露光装置であって、前記投影光学系を介して前記物体上に投影される投影領域のうち、前記第1方向の位置に応じて、前記物体上の照明量が前記第1方向に交差する前記第2方向に沿って変化する所定領域を遮光する遮光部と、前記遮光部を、前記照明量を変化させるように駆動する駆動部と、を備える露光装置が、提供される。 In the first embodiment, an exposure apparatus that performs exposure by moving the object in a first direction relative to a projection optical system that projects a predetermined pattern onto the object, the exposure apparatus performing the exposure on the object via the projection optical system. A light-shielding unit that shields a predetermined region in which the amount of illumination on the object changes along the second direction intersecting the first direction according to the position in the first direction An exposure apparatus is provided that includes a drive unit that drives the light shielding unit to change the amount of illumination.
 第2の実施形態では、第1の実施形態に係る露光装置を用いて、前記基板を露光することと、露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。が、提供される。 In the second embodiment, a method of manufacturing a flat panel display, comprising: exposing the substrate using the exposure apparatus according to the first embodiment; and developing the exposed substrate. Is provided.
 第3の実施形態では、第1の実施形態に係る露光装置を用いて、前記基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が、提供される。 In the third embodiment, there is provided a device manufacturing method including exposing the substrate and developing the exposed substrate using the exposure apparatus according to the first embodiment.
 第4の実施形態では、所定パターンを物体に投影する投影光学系に対して前記物体を第1方向に相対移動させて走査露光する露光装置に用いられる遮光装置であって、前記投影光学系を介して前記物体上に投影される投影領域のうち、前記第1方向の位置に応じて、前記物体上の照明量が前記第1方向に交差する前記第2方向に沿って変化する所定領域を遮光する遮光部と、前記遮光部を、前記照明量を変化させるように駆動する駆動部と、を備える遮光装置が、提供される。 In the fourth embodiment, the light shielding device is used in an exposure apparatus that scans and exposes the object by relatively moving the object in the first direction with respect to the projection optical system that projects a predetermined pattern onto the object. A predetermined area in which the amount of illumination on the object changes along the second direction intersecting the first direction according to the position in the first direction among the projection areas projected onto the object via Provided is a light shielding device including a light shielding unit that shields light and a driving unit that drives the light shielding unit to change the amount of illumination.
 第5の実施形態では、所定パターンを物体に投影する投影光学系に対して前記物体を第1方向に相対移動させて走査露光する露光方法であって、前記投影光学系を介して前記物体上に投影される投影領域のうち、前記第1方向の位置に応じて、前記物体上の照明量が前記第1方向に交差する前記第2方向に沿って変化する所定領域を、遮光部によって遮光することと、前記遮光部を、前記照明量を変化させるように駆動することと、を含む露光方法が、提供される。 In the fifth embodiment, there is provided an exposure method in which scanning exposure is performed by relatively moving the object in a first direction with respect to a projection optical system that projects a predetermined pattern onto the object. Of the projection area projected onto the object, the predetermined area where the illumination amount on the object changes along the second direction intersecting the first direction according to the position in the first direction is shielded by the light shielding unit. And an exposure method including driving the light-shielding portion to change the illumination amount is provided.
 第6の実施形態では、所定パターンを物体に投影する投影光学系に対して前記物体を第1方向に相対移動させて走査露光する露光方法であって、前記投影光学系を介して前記物体上に投影される投影領域のうち、前記第1方向の位置に応じて、前記物体上の照明量が前記第1方向に交差する前記第2方向に沿って変化する所定領域を、遮光部によって遮光することと、前記遮光部を、前記照明量を変化させるように駆動することと、を含む露光方法が、提供される。 In the sixth embodiment, there is provided an exposure method in which scanning exposure is performed by relatively moving the object in a first direction with respect to a projection optical system that projects a predetermined pattern onto the object. Of the projection area projected onto the object, the predetermined area where the illumination amount on the object changes along the second direction intersecting the first direction according to the position in the first direction is shielded by the light shielding unit. And an exposure method including driving the light-shielding portion to change the illumination amount is provided.
 第7の実施形態では、第6の実施形態に係る露光方法を用いて前記基板を露光することと、露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法が、提供される。 In the seventh embodiment, there is provided a method for manufacturing a flat panel display, which includes exposing the substrate using the exposure method according to the sixth embodiment and developing the exposed substrate. The
 第8の実施形態では、第6の実施形態に係る露光方法を用いて前記基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が、提供される。 In the eighth embodiment, there is provided a device manufacturing method including exposing the substrate using the exposure method according to the sixth embodiment and developing the exposed substrate.
一実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on one Embodiment. 図1の露光装置が有する照明光学系、及び投影光学系の構造を説明するための図である。It is a figure for demonstrating the structure of the illumination optical system which the exposure apparatus of FIG. 1 has, and a projection optical system. 図3(a)は、投影光学系が有する視野絞りと遮光板の配置を示す平面図、図3(b)は、視野絞りと遮光板との光軸方向の位置関係を示す図である。FIG. 3A is a plan view showing the arrangement of the field stop and the light shielding plate of the projection optical system, and FIG. 3B is a diagram showing the positional relationship between the field stop and the light shielding plate in the optical axis direction. 図4(a)は、遮光板の第1の傾斜配置を示す図であり、図4(b)は、遮光板の第2の傾斜配置を示す図である。FIG. 4A is a diagram showing a first inclined arrangement of the light shielding plates, and FIG. 4B is a diagram showing a second inclined arrangement of the light shielding plates. 図5(a)は、遮光板を用いて投影領域の中央に継ぎ部を形成する場合を示す図であり、図5(b)は、遮光板を用いて投影領域の端部近傍に継ぎ部を形成する場合を示す図である。FIG. 5A is a diagram illustrating a case where a joint is formed in the center of the projection region using a light shielding plate, and FIG. 5B is a diagram illustrating a joint near the end of the projection region using a light shielding plate. It is a figure which shows the case where it forms. 図6(a)は、2枚の遮光板を用いて継ぎ部を形成する場合を示す図であり、図6(b)は、1枚の遮光板で図6(a)と同様の継ぎ部を形成する場合を示す図である。FIG. 6A is a diagram showing a case where a joint portion is formed using two light shielding plates, and FIG. 6B is a joint portion similar to FIG. 6A using one light shielding plate. It is a figure which shows the case where it forms. 図7(a)は、従来の遮光板を示す図であり、図7(b)は実施形態の遮光板を示す図であり、図7(c)は、実施形態の遮光板を複数備えた場合を示す図である。FIG. 7A is a diagram showing a conventional light shielding plate, FIG. 7B is a diagram showing the light shielding plate of the embodiment, and FIG. 7C is provided with a plurality of light shielding plates of the embodiment. It is a figure which shows a case. 図8(a)~図8(d)は、視野絞りと遮光板とによって形成される開口の態様(第1のモード~第4のモード)を説明するための図である。FIGS. 8A to 8D are views for explaining the mode of the opening (first mode to fourth mode) formed by the field stop and the light shielding plate. 基板上に生成される投影領域を示す平面図である。It is a top view which shows the projection area | region produced | generated on a board | substrate. 繋ぎ露光の概念図である。It is a conceptual diagram of splicing exposure. 図11(a)は、第1の露光方法に係る基板とマスクとの関係を示す図であり、図11(b)は、第1の露光方法でA領域を走査露光する際の図であり、図11(c)は、第1の露光方法でB領域を走査露光する際の図である。FIG. 11A is a diagram showing the relationship between the substrate and the mask according to the first exposure method, and FIG. 11B is a diagram when the A region is scanned and exposed by the first exposure method. FIG. 11C is a diagram when the B area is scanned and exposed by the first exposure method. 図12(a)は、第2の露光方法に係る基板とマスクとの関係を示す図であり、図12(b)は、第2の露光方法でA領域を走査露光する際の図であり、図12(c)は、第2の露光方法でB領域を走査露光する際の図である。FIG. 12A is a diagram showing the relationship between the substrate and the mask according to the second exposure method, and FIG. 12B is a diagram when the A region is scanned and exposed by the second exposure method. FIG. 12C is a diagram when the B area is scanned and exposed by the second exposure method. 図13(a)は、第3の露光方法に係る基板とマスクとの関係を示す図であり、図13(b)は、第3の露光方法でA領域を走査露光する際の図である。FIG. 13A is a diagram showing the relationship between the substrate and the mask according to the third exposure method, and FIG. 13B is a diagram when the A region is scanned and exposed by the third exposure method. . 図14(a)は、第3の露光方法でB領域を走査露光する際の図であり、図14(b)は、第3の露光方法でC領域を走査露光する際の図である。FIG. 14A is a diagram when the B region is scanned and exposed by the third exposure method, and FIG. 14B is a diagram when the C region is scanned and exposed by the third exposure method. 図15(a)は、第4の露光方法に係る基板とマスクとの関係を示す図であり、図15(b)は、第4の露光方法でA領域を走査露光する際の図である。FIG. 15A is a diagram showing the relationship between the substrate and the mask according to the fourth exposure method, and FIG. 15B is a diagram when scanning exposure is performed on the area A by the fourth exposure method. . 第4の露光方法でB領域を走査露光する際の図である。It is a figure at the time of carrying out scanning exposure of B area | region by the 4th exposure method. 図17(a)は、第5の露光方法に係る基板とマスクとの関係を示す図であり、図17(b)は、第5の露光方法でA1領域を走査露光する際の図である。FIG. 17A is a diagram showing the relationship between the substrate and the mask according to the fifth exposure method, and FIG. 17B is a diagram when the A1 region is scanned and exposed by the fifth exposure method. . 図18(a)は、第5の露光方法でB1領域を走査露光する際の図であり、図18(b)は、第5の露光方法でA2領域を走査露光する際の図である。FIG. 18A is a diagram when the B1 region is scanned and exposed by the fifth exposure method, and FIG. 18B is a diagram when the A2 region is scanned and exposed by the fifth exposure method. 第5の露光方法でB2領域を走査露光する際の図である。It is a figure at the time of carrying out scanning exposure of B2 area | region by the 5th exposure method. 繋ぎ露光を行う際のフローチャートである。It is a flowchart at the time of performing joint exposure. 遮光板の駆動機構の変形例(その1)を示す図である。It is a figure which shows the modification (the 1) of the drive mechanism of a light-shielding plate. 遮光板の駆動機構の変形例(その2)を示す図である。It is a figure which shows the modification (the 2) of the drive mechanism of a light-shielding plate. 図23(a)及び図23(b)は、遮光板の駆動機構の変形例(その3)を示す図(その1及びその2)である。FIGS. 23A and 23B are views (No. 1 and No. 2) showing a modified example (No. 3) of the drive mechanism of the light shielding plate. 図24(a)は、遮光板の変形例を示す図であり、図24(b)~図24(e)は、図24(a)の遮光板の動作を示す図(その1~その4)である。FIG. 24A is a diagram showing a modification of the light shielding plate, and FIGS. 24B to 24E are diagrams showing the operation of the light shielding plate in FIG. 24A (parts 1 to 4). ). 遮光板の駆動機構の詳細を示す図である。It is a figure which shows the detail of the drive mechanism of a light-shielding plate. 光学フィルタを用いた繋ぎ露光を説明するための図である。It is a figure for demonstrating splice exposure using an optical filter.
 以下、一実施形態について、図1~図20を用いて説明する。図1は、一実施形態に係る露光装置EXの構成を示す斜視図である。図1において、露光装置EXは、マスクMを支持するマスクステージMSTと、感光基板P(以下、単に「基板P」と称する)を支持する基板ステージPSTと、マスクMを露光光ELで照明する照明光学系ILと、マスクMに形成されたパターンの投影像(以下、パターン像と呼ぶ)を基板Pに転写し、このパターン像に対応する潜像としての転写パターンを基板P上に形成する投影光学系PLと、露光装置EXの動作を統括制御する制御装置CONT(図1では不図示。図2参照)とを備えている。基板Pは、ガラス基板に感光剤(フォトレジスト)を塗布したものであり、転写パターンは、この感光剤中に形成される。投影光学系PLは並設された複数(図1では7つ)の投影光学モジュールPLa~PLgにより構成され、本実施形態における露光装置EXは、この投影光学系PLに対してマスクMと基板Pとを同期移動(同期走査)しつつマスクMを露光光ELで照明し、マスクMのパターン像を基板Pに転写する。 Hereinafter, an embodiment will be described with reference to FIGS. FIG. 1 is a perspective view showing a configuration of an exposure apparatus EX according to an embodiment. In FIG. 1, an exposure apparatus EX illuminates a mask stage MST that supports a mask M, a substrate stage PST that supports a photosensitive substrate P (hereinafter simply referred to as “substrate P”), and the mask M with exposure light EL. A projection image (hereinafter referred to as a pattern image) of a pattern formed on the illumination optical system IL and the mask M is transferred to the substrate P, and a transfer pattern as a latent image corresponding to the pattern image is formed on the substrate P. A projection optical system PL and a control device CONT (not shown in FIG. 1, refer to FIG. 2) for overall control of the operation of the exposure apparatus EX are provided. The substrate P is obtained by applying a photosensitive agent (photoresist) to a glass substrate, and a transfer pattern is formed in the photosensitive agent. The projection optical system PL is constituted by a plurality (seven in FIG. 1) of projection optical modules PLa to PLg arranged in parallel. The exposure apparatus EX in the present embodiment has a mask M and a substrate P with respect to the projection optical system PL. And the mask M is illuminated with the exposure light EL, and the pattern image of the mask M is transferred to the substrate P.
 ここで、以下の説明において、マスクMと基板Pとの同期移動方向(走査方向)をX軸方向、水平面内において走査方向と直交する方向をY軸方向(非走査方向)、X軸方向及びY軸方向に直交する方向をZ軸方向とする。また、X軸、Y軸、及びZ軸の軸線まわり方向を、それぞれθX、θY、及びθZ方向とする。 Here, in the following description, the synchronous movement direction (scanning direction) between the mask M and the substrate P is the X-axis direction, the direction orthogonal to the scanning direction in the horizontal plane is the Y-axis direction (non-scanning direction), the X-axis direction, and The direction orthogonal to the Y-axis direction is taken as the Z-axis direction. The directions around the X-axis, Y-axis, and Z-axis are the θX, θY, and θZ directions, respectively.
 本実施形態のマスクステージ装置は、マスクMを支持するマスクステージMSTと、X軸方向に長いストロークを有するリニアガイド(不図示)と、リニアモータ、ボイスコイルモータ(VCM)等により構成されるマスクステージ駆動部MSTDとを備える。マスクステージ駆動部MSTDは、制御装置CONT(図2参照)の制御の下、マスクMと基板Pとを同期移動させる際に、マスクMを有するマスクステージMSTをX軸方向に長いストロークで駆動可能であるとともに、X軸方向及びY軸方向を含む水平面内におけるマスクMの位置を微調整するために、マスクステージMSTをX軸方向、Y軸方向、Z軸方向及びθZ方向に駆動可能である。また、マスクステージMSTの水平面内の位置は、レーザ干渉計を用いて測定され、例えば0.5~1nm程度の分解能で常時検出される。このレーザ干渉計の計測値は、制御装置CONTに送られ、マスクステージMSTのX軸方向、Y軸方向、Z軸方向及びθZ方向の位置を制御する。 The mask stage apparatus of the present embodiment includes a mask stage MST that supports a mask M, a linear guide (not shown) having a long stroke in the X-axis direction, a linear motor, a voice coil motor (VCM), and the like. A stage drive unit MSTD. The mask stage drive unit MSTD can drive the mask stage MST having the mask M with a long stroke in the X-axis direction when the mask M and the substrate P are moved synchronously under the control of the control device CONT (see FIG. 2). In addition, in order to finely adjust the position of the mask M in the horizontal plane including the X axis direction and the Y axis direction, the mask stage MST can be driven in the X axis direction, the Y axis direction, the Z axis direction, and the θZ direction. . The position of the mask stage MST in the horizontal plane is measured using a laser interferometer, and is always detected with a resolution of about 0.5 to 1 nm, for example. The measurement value of the laser interferometer is sent to the control device CONT, and controls the position of the mask stage MST in the X-axis direction, Y-axis direction, Z-axis direction, and θZ direction.
 マスクMを透過した露光光ELは、投影光学モジュールPLa~PLgにそれぞれ入射する。投影光学モジュールPLa~PLgは定盤150に支持され、露光光ELによるマスクM上の照射領域に対応するパターン像を基板Pに結像させる。投影光学モジュールPLa、PLc、PLe、PLgと、投影光学モジュールPLb、PLd、PLfとは、それぞれY軸方向に所定間隔で配置されている。また、投影光学モジュールPLa、PLc、PLe、PLgの列と、投影光学モジュールPLb、PLd、PLfの列とは、X軸方向に離れて配置されており、全体でY軸方向に沿って千鳥状に配置されている。投影光学モジュールPLa~PLgのそれぞれは、複数の光学素子(レンズ等)を有している。各投影光学モジュールPLa~PLgを透過した露光光ELは、基板P上の異なる投影領域50a~50gごとにマスクM上の照射領域に対応したパターン像を結像する。 The exposure light EL that has passed through the mask M is incident on the projection optical modules PLa to PLg, respectively. The projection optical modules PLa to PLg are supported by the surface plate 150 and form a pattern image corresponding to the irradiation area on the mask M by the exposure light EL on the substrate P. The projection optical modules PLa, PLc, PLe, and PLg and the projection optical modules PLb, PLd, and PLf are respectively arranged at predetermined intervals in the Y-axis direction. In addition, the rows of the projection optical modules PLa, PLc, PLe, and PLg and the rows of the projection optical modules PLb, PLd, and PLf are arranged apart from each other in the X axis direction, and are staggered as a whole along the Y axis direction. Is arranged. Each of the projection optical modules PLa to PLg has a plurality of optical elements (lenses and the like). The exposure light EL transmitted through the projection optical modules PLa to PLg forms a pattern image corresponding to the irradiation area on the mask M for each of the different projection areas 50a to 50g on the substrate P.
 基板ステージPSTは基板ホルダPHを有しており、この基板ホルダPHを介して基板Pを保持する。基板ステージPSTは、マスクステージMSTと同様に、X軸方向、Y軸方向及びZ軸方向に移動可能であり、更に、θX、θY、及びθZ方向にも移動可能である。基板ステージPSTは、制御装置CONT(図2参照)の制御の下、リニアモータ等により構成される基板ステージ駆動部PSTDにより駆動される。 The substrate stage PST has a substrate holder PH, and holds the substrate P via the substrate holder PH. Similar to mask stage MST, substrate stage PST is movable in the X-axis direction, Y-axis direction, and Z-axis direction, and is also movable in the θX, θY, and θZ directions. The substrate stage PST is driven by a substrate stage drive unit PSTD configured by a linear motor or the like under the control of the control device CONT (see FIG. 2).
 また、-X側の投影光学モジュールPLa、PLc、PLe、PLgの列と、+X側の投影光学モジュールPLb、PLd、PLfの列との間には、マスクMのパターン面及び基板Pの露光面のZ軸方向における位置を検出するフォーカス検出系110が配置されている。フォーカス検出系110は、斜入射方式の焦点検出系を複数配置して構成される。フォーカス検出系110の検出結果は、制御装置CONT(図2参照)に出力され、制御装置CONTは、フォーカス検出系110の検出結果に基づいて、マスクMのパターン面と基板Pの露光面とが所定の間隔および平行度をなすように制御する。 Further, the pattern surface of the mask M and the exposure surface of the substrate P are between the column of the projection optical modules PLa, PLc, PLe, and PLg on the −X side and the column of the projection optical modules PLb, PLd, and PLf on the + X side. A focus detection system 110 that detects the position in the Z-axis direction is arranged. The focus detection system 110 is configured by arranging a plurality of oblique incidence type focus detection systems. The detection result of the focus detection system 110 is output to the control device CONT (see FIG. 2). The control device CONT determines whether the pattern surface of the mask M and the exposure surface of the substrate P are based on the detection result of the focus detection system 110. It controls so that a predetermined space | interval and parallelism may be made.
 制御装置CONTは、記憶部120(それぞれ図2参照)と接続されており、記憶部120に記憶されているレシピ情報等に基づいて、マスクステージMST及び基板ステージPSTの位置をモニタしながら、基板ステージ駆動部PSTD及びマスクステージ駆動部MSTDを制御することにより、マスクMと基板PとをX軸方向に同期移動させる。 The control device CONT is connected to the storage unit 120 (see FIG. 2 respectively), and monitors the positions of the mask stage MST and the substrate stage PST based on the recipe information stored in the storage unit 120 and the like. By controlling the stage drive unit PSTD and the mask stage drive unit MSTD, the mask M and the substrate P are synchronously moved in the X-axis direction.
 図2は、照明光学系IL及び投影光学系PLの構成を示す図である。図2に示されるように、照明光学系ILは、超高圧水銀ランプ等からなる光源1と、光源1から射出された光を集光する楕円鏡1aと、この楕円鏡1aによって集光された光のうち露光に必要な波長の光を反射し、その他の波長の光を透過させるダイクロイックミラー2と、ダイクロイックミラー2で反射した光のうち更に露光に必要な波長(通常は、g、h、i線のうち少なくとも1つの帯域)のみ含んだ光を露光光として通過させる波長選択フィルタ3と、波長選択フィルタ3からの露光光を複数本(本実施形態では7本)に分岐して、反射ミラー5を介して各照明系モジュールIMa~IMgに入射させるライトガイド4とを備えている。ここで、照明光学系ILを構成する照明系モジュールIMとして、本実施形態では、7つの投影光学モジュールPLa~PLgに対応して7つの照明系モジュールIMa~IMgが設けられている。ただし、図2においては、便宜上、投影光学モジュールPLfに対応する照明系モジュールIMfのみが示されている。照明系モジュールIMa~IMgのそれぞれは、X軸方向とY軸方向とに所定の間隔を持って、投影光学モジュールPLa~PLgのそれぞれに対応して配置されている。そして、照明系モジュールIMa~IMgのそれぞれから射出した露光光ELは、投影光学モジュールPLa~PLgに対応させてマスクM上の異なる照射領域をそれぞれ照明する。 FIG. 2 is a diagram showing the configuration of the illumination optical system IL and the projection optical system PL. As shown in FIG. 2, the illumination optical system IL includes a light source 1 composed of an ultrahigh pressure mercury lamp or the like, an elliptical mirror 1a that condenses the light emitted from the light source 1, and the elliptical mirror 1a. Of the light, dichroic mirror 2 that reflects light having a wavelength necessary for exposure and transmits light having other wavelengths, and among wavelengths reflected by dichroic mirror 2, wavelengths necessary for exposure (usually g, h, Wavelength selection filter 3 that passes light containing only at least one band of i-line) as exposure light, and exposure light from wavelength selection filter 3 is branched into a plurality (7 in this embodiment) and reflected. And a light guide 4 that is incident on each of the illumination system modules IMa to IMg via a mirror 5. Here, as the illumination system module IM constituting the illumination optical system IL, in this embodiment, seven illumination system modules IMa to IMg are provided corresponding to the seven projection optical modules PLa to PLg. However, in FIG. 2, only the illumination system module IMf corresponding to the projection optical module PLf is shown for convenience. Each of the illumination system modules IMa to IMg is arranged corresponding to each of the projection optical modules PLa to PLg with a predetermined interval in the X axis direction and the Y axis direction. The exposure light EL emitted from each of the illumination system modules IMa to IMg illuminates different irradiation areas on the mask M in correspondence with the projection optical modules PLa to PLg.
 照明系モジュールIMa~IMgのそれぞれは、照明シャッタ6と、リレーレンズ7と、オプティカルインテグレータとしてのフライアイレンズ8と、コンデンサレンズ9とを備えている。照明シャッタ6は、ライトガイド4の光路下流側に、光路に対して挿脱自在に配置されている。照明シャッタ6は、光路内に配置されたときに露光光を遮光し、光路から退避したときにその遮光を解除する。照明シャッタ6には、シャッタ駆動部6aが接続されている。シャッタ駆動部6aは制御装置CONTによって制御される。 Each of the illumination system modules IMa to IMg includes an illumination shutter 6, a relay lens 7, a fly-eye lens 8 as an optical integrator, and a condenser lens 9. The illumination shutter 6 is disposed on the downstream side of the light path of the light guide 4 so as to be detachable from the light path. The illumination shutter 6 shields the exposure light when it is arranged in the optical path, and cancels the shielding when retracted from the optical path. A shutter drive unit 6 a is connected to the illumination shutter 6. The shutter driving unit 6a is controlled by the control device CONT.
 また、照明系モジュールIMa~IMgのそれぞれは、光量調整機構10を有している。光量調整機構10は、光路毎に露光光の照度を設定することによって露光量を調整するものであって、ハーフミラー11と、ディテクタ12と、フィルタ13と、フィルタ駆動部14とを備えている。ハーフミラー11は、フィルタ13とリレーレンズ7との間の光路中に配置され、フィルタ13を透過した露光光の一部をディテクタ12へ入射させる。ディテクタ12は、入射した露光光の照度を独立して検出し、検出した照度信号を制御装置CONTへ出力する。フィルタ13は、透過率がX軸方向に沿って所定範囲で線形に漸次変化するように形成されており、各光路中の照明シャッタ6とハーフミラー11との間に配置されている。フィルタ駆動部14は、制御装置CONTの指示に基づいてフィルタ13をX軸方向に沿って移動することにより、光路ごとに露光量を調整する。 Also, each of the illumination system modules IMa to IMg has a light amount adjustment mechanism 10. The light amount adjusting mechanism 10 adjusts the exposure amount by setting the illuminance of the exposure light for each optical path, and includes a half mirror 11, a detector 12, a filter 13, and a filter driving unit 14. . The half mirror 11 is disposed in the optical path between the filter 13 and the relay lens 7, and causes a part of the exposure light transmitted through the filter 13 to enter the detector 12. The detector 12 independently detects the illuminance of the incident exposure light, and outputs the detected illuminance signal to the control device CONT. The filter 13 is formed such that the transmittance gradually changes linearly in a predetermined range along the X-axis direction, and is disposed between the illumination shutter 6 and the half mirror 11 in each optical path. The filter drive unit 14 adjusts the exposure amount for each optical path by moving the filter 13 along the X-axis direction based on an instruction from the control device CONT.
 光量調整機構10を透過した光束はリレーレンズ7を介してフライアイレンズ8に達する。フライアイレンズ8は射出面側に二次光源を形成し、この二次光源からの露光光ELは、コンデンサレンズ9を通過し、直角プリズム16と、レンズ系17と、凹面鏡18とを備えた反射屈折型光学系15を通過した後、マスクM上の照射領域を均一に照明する。なお、反射屈折型光学系15を省略しても良い。すなわち、コンデンサレンズ9を通過した光束をマスクMに直接照射しても良い。これによって、照明光学系IL、ひいては露光装置EXを小型化できる。 The light beam that has passed through the light amount adjusting mechanism 10 reaches the fly-eye lens 8 through the relay lens 7. The fly-eye lens 8 forms a secondary light source on the exit surface side, and the exposure light EL from the secondary light source passes through the condenser lens 9 and includes a right-angle prism 16, a lens system 17, and a concave mirror 18. After passing through the catadioptric optical system 15, the irradiation area on the mask M is illuminated uniformly. The catadioptric optical system 15 may be omitted. In other words, the mask M may be directly irradiated with the light beam that has passed through the condenser lens 9. As a result, the illumination optical system IL and thus the exposure apparatus EX can be reduced in size.
 投影光学モジュールPLa~PLgのそれぞれは、像シフト機構19と、フォーカス位置調整機構31と、2組の反射屈折型光学系21、22と、視野絞り20と、倍率調整機構23とを備えている。像シフト機構19は、2枚の平行平面板ガラスをそれぞれθY方向もしくはθX方向に回転させることで、マスクMのパターン像をX軸方向もしくはY軸方向にシフトさせる。また、フォーカス位置調整機構31は、1対の楔プリズムを備え、光路中の楔プリズムの厚さの総和を変化させることによりパターン像の像面位置を変化させ、少なくとも一方の楔プリズムを光軸回りに回転させることによりパターン像の像面の傾斜角度を変化させる。マスクMを透過した露光光ELは像シフト機構19、フォーカス位置調整機構31を透過した後、1組目の反射屈折型光学系21に入射する。反射屈折型光学系21は、マスクMのパターンの中間像を形成するものであって、直角プリズム24とレンズ系25と凹面鏡26とを備えている。直角プリズム24はθZ方向に回転自在となっており、マスクMのパターン像を回転可能となっている。 Each of the projection optical modules PLa to PLg includes an image shift mechanism 19, a focus position adjustment mechanism 31, two sets of catadioptric optical systems 21 and 22, a field stop 20, and a magnification adjustment mechanism 23. . The image shift mechanism 19 shifts the pattern image of the mask M in the X-axis direction or the Y-axis direction by rotating two parallel flat plate glasses in the θY direction or the θX direction, respectively. The focus position adjusting mechanism 31 includes a pair of wedge prisms, and changes the image plane position of the pattern image by changing the sum of the thicknesses of the wedge prisms in the optical path. The inclination angle of the image plane of the pattern image is changed by rotating it around. The exposure light EL that has passed through the mask M passes through the image shift mechanism 19 and the focus position adjustment mechanism 31 and then enters the first set of catadioptric optical system 21. The catadioptric optical system 21 forms an intermediate image of the pattern of the mask M, and includes a right-angle prism 24, a lens system 25, and a concave mirror 26. The right-angle prism 24 is rotatable in the θZ direction, and the pattern image of the mask M can be rotated.
 視野絞り20は、反射屈折型光学系21が形成する中間像の像面もしくはその近傍に配置されている。視野絞り20は、基板P上での投影領域を設定する。視野絞り20を透過した露光光ELは、2組目の反射屈折型光学系22に入射する。反射屈折型光学系22は、反射屈折型光学系21と同様に、直角プリズム27とレンズ系28と凹面鏡29とを備えている。直角プリズム27もθZ方向に回転自在となっており、マスクMのパターン像を回転可能となっている。 The field stop 20 is disposed on the image plane of the intermediate image formed by the catadioptric optical system 21 or in the vicinity thereof. The field stop 20 sets a projection area on the substrate P. The exposure light EL transmitted through the field stop 20 enters the second set of catadioptric optical system 22. Similar to the catadioptric optical system 21, the catadioptric optical system 22 includes a right-angle prism 27, a lens system 28, and a concave mirror 29. The right-angle prism 27 is also rotatable in the θZ direction, and the pattern image of the mask M can be rotated.
 反射屈折型光学系22から射出した露光光ELは、倍率調整機構23を通過し、基板P上にマスクMのパターン像を正立等倍で結像する。倍率調整機構23は、第1平凸レンズ、両凸レンズおよび第2平凸レンズをZ軸に沿ってこの順に有しており、両凸レンズをZ軸方向に移動させることにより、マスクMのパターン像の倍率を変化させる。 The exposure light EL emitted from the catadioptric optical system 22 passes through the magnification adjusting mechanism 23 and forms a pattern image of the mask M on the substrate P at an erecting equal magnification. The magnification adjustment mechanism 23 has a first plano-convex lens, a biconvex lens, and a second plano-convex lens in this order along the Z axis. By moving the biconvex lens in the Z axis direction, the magnification of the pattern image of the mask M To change.
 図3(a)は、各投影光学モジュールPLa~PLgが備える視野絞り20を示す図である。視野絞り20は、マスクM及び基板Pに対して略共役な位置に配置されている。各投影光学モジュールPLa~PLgは、それぞれ視野絞り20を有しており、各投影光学モジュールPLa~PLgの基板P上における投影領域50a~50gは、それぞれ対応する視野絞り20に形成された開口Kによって設定される。本実施形態において、各開口Kは、Y軸方向に平行な2辺を有する等脚台形状、もしくはY軸方向に平行な2辺とX軸方向に平行な1辺とを有する台形状に形成されており、投影領域50a~50gは、それぞれ対応する開口Kと共役関係となる台形形状に設定される。 FIG. 3A is a diagram showing the field stop 20 provided in each of the projection optical modules PLa to PLg. The field stop 20 is disposed at a position substantially conjugate with the mask M and the substrate P. Each of the projection optical modules PLa to PLg has a field stop 20, and the projection regions 50 a to 50 g on the substrate P of each of the projection optical modules PLa to PLg are respectively openings K formed in the corresponding field stop 20. Set by In this embodiment, each opening K is formed in an isosceles trapezoidal shape having two sides parallel to the Y-axis direction, or a trapezoidal shape having two sides parallel to the Y-axis direction and one side parallel to the X-axis direction. The projection areas 50a to 50g are set in a trapezoidal shape having a conjugate relationship with the corresponding opening K.
 なお、図3(a)では、視野絞り20は、台形状の開口が形成された平面視矩形の板状部材として図示されているが、実際には、図3(b)に示されるように、開口KのY軸方向の幅を設定するエッジ(端部)を含む絞り部材20yと、開口KのX軸方向の幅を設定するエッジ(端部)を含む絞り部材20xとが別部材とされている。そして、上記絞り部材20y、20xのうち、絞り部材20yが、マスクM及び基板Pに対する共役面CP上に配置されており、絞り部材20xは、共役面CPよりも幾分露光光ELの入射側(+Z側)に配置されている。 In FIG. 3A, the field stop 20 is illustrated as a rectangular plate-like member having a trapezoidal opening and is actually shown in FIG. 3B. The aperture member 20y including an edge (end portion) for setting the width of the opening K in the Y-axis direction and the aperture member 20x including an edge (end portion) for setting the width of the aperture K in the X-axis direction are different members. Has been. Of the diaphragm members 20y and 20x, the diaphragm member 20y is disposed on the conjugate plane CP with respect to the mask M and the substrate P, and the diaphragm member 20x is slightly closer to the exposure light EL incident side than the conjugate plane CP. It is arranged on the (+ Z side).
 図3(a)に戻り、投影光学モジュールPLa~PLgのうち、投影光学モジュールPLfは、遮光板30を有している。遮光板30は、平面視(Z軸方向から見て)で略長方形の板部材であって、図3(b)に示されるように、投影光学モジュールPLfが備える視野絞り20に対して露光光ELの出射側(-Z側)に配置されている。 Returning to FIG. 3A, among the projection optical modules PLa to PLg, the projection optical module PLf has a light shielding plate 30. The light shielding plate 30 is a substantially rectangular plate member in plan view (viewed from the Z-axis direction), and as shown in FIG. 3B, exposure light is applied to the field stop 20 provided in the projection optical module PLf. It is arranged on the emission side (−Z side) of EL.
 図3(a)に戻り、遮光板30は、後述する駆動機構80(図8(a)など参照)によって、+Y側の長辺が、視野絞り20の開口Kを形成する+Y側の端部(斜辺)と略平行になる第1の傾斜配置(図4(a)参照)と、-Y側の長辺が、視野絞り20の開口Kを形成する-Y側の端部(斜辺)と略平行となる第2の傾斜配置(図4(b)参照)との間で駆動可能となっている。このように、遮光部材30は、第1の傾斜配置(第1の傾斜角度)と第2の傾斜配置(第2の傾斜角度)との間を移動することにより、投影光学モジュールPLfによって生成される投影領域50fの形状を変更することが可能となっている。なお、第1の傾斜角度及び第2の傾斜角度は、台形状の投影領域の傾斜角度によって定められる。例えば、図4(a)に示される第1の傾斜角度は、遮光板30のY軸方向に対する傾斜角度が、台形状の投影領域50fの+Y軸方向の端辺の傾斜角度と平行である。また、図4(b)に示される第2の傾斜角度は、遮光板30のY軸方向に対する傾斜角度が、台形状の投影領域50fの-Y軸方向の端辺の傾斜角度と平行である。すなわち、投影領域の形状を踏まえて、遮光板30の傾斜角度(第1の傾斜角度及び第2の傾斜角度)は任意に定めることができる。 Returning to FIG. 3A, the light shielding plate 30 has a + Y side end portion on which the long side on the + Y side forms the opening K of the field stop 20 by a drive mechanism 80 (see FIG. 8A and the like) described later. A first inclined arrangement (see FIG. 4A) that is substantially parallel to (the oblique side), and a long side on the −Y side that forms an opening K of the field stop 20 and an end portion (the oblique side) on the −Y side. It is possible to drive between the second inclined arrangement (see FIG. 4B) that is substantially parallel. Thus, the light shielding member 30 is generated by the projection optical module PLf by moving between the first inclined arrangement (first inclination angle) and the second inclined arrangement (second inclination angle). It is possible to change the shape of the projected area 50f. The first tilt angle and the second tilt angle are determined by the tilt angle of the trapezoidal projection area. For example, the first inclination angle shown in FIG. 4A is such that the inclination angle of the light shielding plate 30 with respect to the Y-axis direction is parallel to the inclination angle of the edge of the trapezoidal projection region 50f in the + Y-axis direction. Further, in the second inclination angle shown in FIG. 4B, the inclination angle of the light shielding plate 30 with respect to the Y-axis direction is parallel to the inclination angle of the end of the trapezoidal projection area 50f in the −Y-axis direction. . That is, the inclination angle (the first inclination angle and the second inclination angle) of the light shielding plate 30 can be arbitrarily determined based on the shape of the projection region.
 また、遮光板30は、駆動機構80(図8(a)など参照)によってY軸方向に直進移動可能とされており、投影光学モジュールPLfによって生成される投影領域50fのY軸方向の幅を設定変更することができる。また、遮光板30は、Y軸方向に直進移動することによって、開口Kと重ならない位置、すなわち開口Kが視野絞り20のみによって設定される位置に移動することも可能である。 The light shielding plate 30 can be moved straight in the Y-axis direction by a drive mechanism 80 (see FIG. 8A and the like), and the width in the Y-axis direction of the projection region 50f generated by the projection optical module PLf is set. Settings can be changed. Further, the light shielding plate 30 can move to a position where it does not overlap the opening K, that is, a position where the opening K is set only by the field stop 20 by moving straight in the Y-axis direction.
 ここで、従来の遮光板を用いた実施例と遮光板30を用いた本実施形態との相違について説明する。 Here, the difference between the example using the conventional light shielding plate and the present embodiment using the light shielding plate 30 will be described.
 図5(a)~図6(b)には、繋ぎ露光を行う際の投影領域と遮光部との位置関係を示した図が記載されている。図5(a)~図6(b)における紙面右側には、上記実施形態で用いられる複数の投影光学モジュールによって基板上に投影される投影領域の一部(投影領域50e~50g)と、露光光を遮光することによって投影領域を規定する遮光板30とが示されている。また、図5(a)~図6(b)における紙面左側には、投影領域を一列に配置した形態が示されている。 FIGS. 5 (a) to 6 (b) show diagrams showing the positional relationship between the projection area and the light-shielding portion when performing joint exposure. On the right side of FIG. 5 (a) to FIG. 6 (b), a part of the projection area (projection areas 50e to 50g) projected onto the substrate by the plurality of projection optical modules used in the above embodiment, and exposure are shown. A light shielding plate 30 that defines a projection region by shielding light is shown. In addition, on the left side of the page in FIGS. 5A to 6B, a form in which the projection areas are arranged in a line is shown.
 図5(a)に示されるように、投影領域50eのX軸方向の投影幅がY軸方向においてほぼ一定である領域、すなわち台形状の投影領域50eの中心部においてパターン継ぎを行う場合、遮光板30を投影領域50eの中心部に配置することによって、Y軸方向に沿って投影幅が変化する露光量の傾斜部G(継ぎ部)を形成することができる。 As shown in FIG. 5A, when pattern joining is performed in a region where the projection width in the X-axis direction of the projection region 50e is substantially constant in the Y-axis direction, that is, in the central portion of the trapezoidal projection region 50e. By disposing the plate 30 at the center of the projection region 50e, it is possible to form an exposure amount inclined portion G (joint portion) whose projection width changes along the Y-axis direction.
 しかしながら、図5(b)に示されるように、投影領域50eのX軸方向の投影幅がY軸方向に沿って変化する領域、すなわち台形状の投影領域のうちの端部領域においてパターン継ぎを行う場合、投影領域50eを規定する遮光部30だけで露光量の傾斜部Gを形成しようとすると、傾斜部Gで露光量が多くなり過ぎて、パターン継ぎを行うことができない。 However, as shown in FIG. 5B, pattern joining is performed in an area where the projection width in the X-axis direction of the projection area 50e changes along the Y-axis direction, that is, in an end area of the trapezoidal projection area. When it is performed, if it is attempted to form the inclined portion G of the exposure amount only by the light shielding portion 30 that defines the projection region 50e, the exposure amount becomes too large at the inclined portion G, and the pattern joining cannot be performed.
 そこで、図6(a)に示されるように、投影領域50eの遮光板30に加えて、投影領域50fに同様の遮光板30Aを配置すれば、露光量の傾斜部Gを形成することができ、パターン継ぎを行うことができる。遮光板30Aは、遮光板30と傾斜角度が等しくなるように配置される。なお、遮光板30と遮光板30Aとは、別部材であっても良いし、共通の部材により形成されていても良い。 Therefore, as shown in FIG. 6A, if a similar light shielding plate 30A is arranged in the projection region 50f in addition to the light shielding plate 30 in the projection region 50e, an inclined portion G of the exposure amount can be formed. Pattern splicing can be performed. 30 A of light shielding plates are arrange | positioned so that a light shielding plate 30 and an inclination angle may become equal. The light shielding plate 30 and the light shielding plate 30A may be separate members or may be formed by a common member.
 さらに、図6(a)に示されるように、遮光板30Aを配置しなくても、図6(b)に示されるように、遮光板30の傾斜角度を変更することによって、投影領域50eを規定する1つの遮光板30のみで傾斜部Gを形成することができる。遮光板30の傾斜角度を、投影領域50eの端部領域の角度と平行となるように変更する。つまり、遮光板30の傾斜角度を、投影領域50fの端部領域の角度と平行となるように変更する。これにより、投影領域50eの端部領域と投影領域50fの端部領域とのパターン継ぎを行うことができる。投影領域50fの端部領域が、あたかも+Y方向に移動されたように、パターン継ぎが行われる。これによって、遮光板を増やす必要がないとともに、図6(a)の場合と比較して、投影領域50eの遮光板と投影領域50fの遮光板とを同期させる必要がないので、露光装置を簡素化できる。 Further, as shown in FIG. 6A, even if the light shielding plate 30A is not disposed, the projection region 50e is changed by changing the inclination angle of the light shielding plate 30 as shown in FIG. 6B. The inclined portion G can be formed with only one light shielding plate 30 to be defined. The inclination angle of the light shielding plate 30 is changed to be parallel to the angle of the end region of the projection region 50e. That is, the inclination angle of the light shielding plate 30 is changed to be parallel to the angle of the end region of the projection region 50f. Thereby, the pattern joining between the end region of the projection region 50e and the end region of the projection region 50f can be performed. Pattern joining is performed as if the end region of the projection region 50f has been moved in the + Y direction. Accordingly, it is not necessary to increase the number of light shielding plates, and it is not necessary to synchronize the light shielding plates in the projection region 50e and the light shielding plate in the projection region 50f as compared with the case of FIG. Can be
 また、従来の遮光板を用いた実施例と遮光板30を用いた本実施形態との相違については、次のように説明することもできる。 Further, the difference between the example using the conventional light shielding plate and the present embodiment using the light shielding plate 30 can also be explained as follows.
 図7(a)に示されるように、従来の実施例では、投影領域50fに対する傾斜配置が一方向にのみ傾斜した遮光板を用いていたため、Y軸方向に関するT領域及びα領域、β領域でのみ1回の走査移動で露光できるY軸方向の走査幅を設定することが可能であった。例えば、T領域及びβ領域内で繋ぎ露光を行う際には、遮光板をY軸方向に移動させることで走査幅を設定することができ、α領域又はγ領域で繋ぎ露光を行う際には、照明系モジュールIMfまたは照明系モジュールIMgの照明シャッタ6(図2参照)で露光光を遮光することによって走査幅を設定することができた。しかしながら、領域U内に遮光板を配置した場合、露光量が均一にならず、繋ぎ露光を行える領域に制限があった。 As shown in FIG. 7A, in the conventional example, since the light shielding plate inclined in only one direction is used with respect to the projection region 50f, the T region, the α region, and the β region in the Y-axis direction are used. It was possible to set the scanning width in the Y-axis direction that can be exposed by only one scanning movement. For example, when performing joint exposure in the T region and β region, the scanning width can be set by moving the light shielding plate in the Y-axis direction, and when performing joint exposure in the α region or the γ region. The scanning width could be set by shielding the exposure light with the illumination shutter 6 (see FIG. 2) of the illumination system module IMf or the illumination system module IMg. However, when the light shielding plate is arranged in the region U, the exposure amount is not uniform, and there is a limit to the region where the joint exposure can be performed.
 これに対して、遮光板30を用いた本実施形態では、図7(b)に示されるように遮光板30を第1の傾斜配置及び第2の傾斜配置の間で移動させることができるため、U領域内に遮光板30を配置した場合であっても、露光量を均一にして、繋ぎ露光を行うことができる。例えば、T領域内で繋ぎ露光を行う際には、遮光板30を第1の傾斜配置で用い、U領域内で繋ぎ露光を行う際には、遮光板30を第2の傾斜配置に移動させて用いることができる。 In contrast, in the present embodiment using the light shielding plate 30, the light shielding plate 30 can be moved between the first inclined arrangement and the second inclined arrangement as shown in FIG. 7B. Even when the light shielding plate 30 is arranged in the U region, it is possible to perform joint exposure with a uniform exposure amount. For example, when performing joint exposure in the T region, the light shielding plate 30 is used in the first inclined arrangement, and when performing joint exposure in the U region, the light shielding plate 30 is moved to the second inclined arrangement. Can be used.
 また、図7(c)に示されるように、遮光板30を投影領域50fに加えて、投影領域50e及び投影領域50gを遮光できるように配置すれば、S領域においても繋ぎ露光を行うことができる。すなわち、本実施形態の遮光板30を用いれば、Y軸方向のあらゆる領域で繋ぎ露光を行うことができる。 Further, as shown in FIG. 7C, if the light shielding plate 30 is added to the projection area 50f and the projection area 50e and the projection area 50g are arranged so as to be shielded from light, the continuous exposure can be performed also in the S area. it can. That is, by using the light shielding plate 30 of the present embodiment, it is possible to perform joint exposure in any region in the Y-axis direction.
 次に、駆動機構80を用いて、本実施形態の遮光板30を第1の傾斜配置又は第2の傾斜配置に移動させることによって、開口Kを設定変更する手法について説明する。 Next, a method of changing the setting of the opening K by moving the light shielding plate 30 of the present embodiment to the first inclined arrangement or the second inclined arrangement using the driving mechanism 80 will be described.
 図8(a)に示されるように、駆動機構80は、一対のアクチュエータ82、84を、開口Kを挟んで(開口Kの-X側、+X側に)備えている。アクチュエータ82は、モータ(サーボモータ)82aと、該モータ82aによって駆動されるネジ82bと、該ネジ82bに螺合する円筒状のナット82cとを備えた、いわゆる送りネジ装置であり、ナット82cをY軸方向に関して開口Kよりも長いストロークで往復駆動することができる。遮光板30の-X側の端部近傍には、平面視U字状の切り欠き30aが形成されており、該切り欠き30a内にナット82cが挿入されている。アクチュエータ84も、アクチュエータ82と同様な構成(モータ84a、ネジ84b、ナット84c)の送りネジ装置であるが、ナット84cが遮光板30の+X側の端部近傍に、遮光板30に対してθZ方向に回転自在に取り付けられている点が異なる。駆動機構80が有する一対のアクチュエータ82、84は、それぞれ独立に制御装置CONT(図2参照)により制御される。 As shown in FIG. 8A, the driving mechanism 80 includes a pair of actuators 82 and 84 with the opening K interposed therebetween (on the −X side and the + X side of the opening K). The actuator 82 is a so-called feed screw device including a motor (servo motor) 82a, a screw 82b driven by the motor 82a, and a cylindrical nut 82c screwed to the screw 82b. Reciprocating drive can be performed with a stroke longer than the opening K in the Y-axis direction. A U-shaped notch 30a in plan view is formed in the vicinity of the −X side end of the light shielding plate 30, and a nut 82c is inserted into the notch 30a. The actuator 84 is also a feed screw device having a configuration similar to that of the actuator 82 (motor 84a, screw 84b, nut 84c), but the nut 84c is in the vicinity of the + X side end of the light shielding plate 30 and θZ with respect to the light shielding plate 30. It is different in that it is mounted so as to be freely rotatable in the direction. The pair of actuators 82 and 84 included in the drive mechanism 80 are independently controlled by the control device CONT (see FIG. 2).
 駆動機構80は、図8(a)に示されるように、遮光板30の+Y側のエッジ(端部)が、視野絞り20(図8(a)では不図示。図3(a)参照)の開口Kを形成するエッジ(端部)のうち、+Y側のエッジと平行となる位置に遮光板30を位置決めし、遮光板30の-Y側に露光光の光路を形成することによって、基板P(図1参照)上に生成される投影領域50fを、平面視で台形(等脚台形)とすることができる。遮光板30の位置、及び角度は、不図示の計測装置(位置計測装置、光量計測装置など)の出力、あるいはアクチュエータ82、84に対する入力信号に基づいて計測される。この際、開口Kのうち、遮光板30よりも+Y側の領域は、露光光が通過しないように、可動式のブラインド装置60によって遮光される。以下、図8(a)に示されるように、遮光板30の-Y側に露光光の光路が形成され、且つ該光路を通過した露光光によって基板P上に平面視台形の投影領域50fが生成される状態を、遮光板30の第1のモードと称して説明する。 As shown in FIG. 8A, the drive mechanism 80 has a + Y side edge (end) of the light shielding plate 30 at the field stop 20 (not shown in FIG. 8A, see FIG. 3A). By positioning the light shielding plate 30 at a position parallel to the + Y side edge among the edges (ends) forming the opening K of the light, and forming the optical path of the exposure light on the −Y side of the light shielding plate 30, the substrate The projection region 50f generated on P (see FIG. 1) can be a trapezoid (isosceles trapezoid) in plan view. The position and angle of the light shielding plate 30 are measured based on the output of a measurement device (not shown) (position measurement device, light amount measurement device, etc.) or input signals to the actuators 82 and 84. At this time, a region on the + Y side of the light shielding plate 30 in the opening K is shielded by the movable blind device 60 so that the exposure light does not pass through. Hereinafter, as shown in FIG. 8A, an optical path of exposure light is formed on the −Y side of the light shielding plate 30, and a trapezoidal projection area 50f in plan view is formed on the substrate P by the exposure light that has passed through the optical path. The generated state will be described as a first mode of the light shielding plate 30.
 また、駆動機構80は、図8(a)に示される状態から、一対のアクチュエータ82、84それぞれのナット82c、84cを同じストローク(移動量)でY軸方向に駆動することによって、開口Kの面積、すなわち基板P(図1参照)上に生成される投影領域50f(平面視で台形)の幅(面積)を設定変更することができる。この際、遮光板30の位置に応じてブラインド装置60もY軸方向に駆動される。 Further, the drive mechanism 80 drives the nuts 82c and 84c of the pair of actuators 82 and 84 in the Y-axis direction with the same stroke (movement amount) from the state shown in FIG. The area, that is, the width (area) of the projection region 50f (trapezoid in plan view) generated on the substrate P (see FIG. 1) can be changed. At this time, the blind device 60 is also driven in the Y-axis direction according to the position of the light shielding plate 30.
 なお、上述したブラインド装置60は、遮光板30を備えていない投影光学モジュールPLa~PLe、PLg(図1参照)それぞれにも対応して備えられており、該投影光学モジュールPLa~PLe、PLgそれぞれが備える視野絞り20に形成された開口K(図3(a)参照)を開放すること、及び遮蔽することが任意に選択可能となっている。なお、本実施形態において、ブラインド装置60は、照明光学系IL(図1参照)が有しているが、これに限定されず、露光光ELの光路上であれば、他の位置に配置されていても良い。 The blind device 60 described above is also provided corresponding to each of the projection optical modules PLa to PLe and PLg (see FIG. 1) not including the light shielding plate 30, and each of the projection optical modules PLa to PLe and PLg. Opening and shielding the opening K (see FIG. 3A) formed in the field stop 20 included in can be arbitrarily selected. In the present embodiment, the blind device 60 is included in the illumination optical system IL (see FIG. 1). However, the blind device 60 is not limited to this, and the blind device 60 is disposed at another position on the optical path of the exposure light EL. May be.
 また、駆動機構80は、上記第1のモード(一例として図8(a)参照)から、図8(b)に示されるように、アクチュエータ82のナット82cがアクチュエータ84のナット84cよりも+Y側に位置するようにナット82c、84cそれぞれのY位置を制御することによって、遮光板30の-Y側のエッジ(端部)が、視野絞り20(図8(b)では不図示。図3(a)参照)の開口Kを形成するエッジ(端部)のうち、-Y側のエッジと平行となる位置に遮光板30を位置決めすることができる。これによって、基板P(図1参照)上に生成される投影領域50fを平面視で平行四辺形とすることができる。以下、図8(b)に示されるように、遮光板30の-Y側に露光光の光路が形成され、且つ該光路を通過した露光光によって基板P上に平面視平行四辺形の投影領域50fが生成される状態を、遮光板30の第2のモードと称して説明する。本第2のモードにおいても、一対のナット82c、84cをY軸方向に同期駆動することによって、開口Kの面積、すなわち基板P(図1参照)上に生成される投影領域50f(平面視で平行四辺形)の幅(面積)を設定変更することができる。また、開口Kにおける遮光板30よりも+Y側の領域は、遮光板30の位置に応じてブラインド装置60によって適宜遮光される。 Further, the drive mechanism 80 starts from the first mode (see FIG. 8A as an example), and the nut 82c of the actuator 82 is + Y side of the nut 84c of the actuator 84 as shown in FIG. 8B. By controlling the Y position of each of the nuts 82c and 84c so that the -Y side edge (end portion) of the light shielding plate 30 is positioned at the field stop 20 (not shown in FIG. 8B). The light shielding plate 30 can be positioned at a position parallel to the edge on the −Y side among the edges (end portions) forming the opening K in (a). Thereby, the projection region 50f generated on the substrate P (see FIG. 1) can be made into a parallelogram in plan view. Hereinafter, as shown in FIG. 8B, an optical path of exposure light is formed on the −Y side of the light shielding plate 30, and a projection region having a parallelogram in plan view on the substrate P by the exposure light that has passed through the optical path. The state in which 50f is generated will be described as the second mode of the light shielding plate 30. Also in the second mode, by driving the pair of nuts 82c and 84c synchronously in the Y-axis direction, the area of the opening K, that is, the projection region 50f generated on the substrate P (see FIG. 1) (in plan view). The width (area) of the (parallelogram) can be set and changed. Further, the region on the + Y side of the light shielding plate 30 in the opening K is appropriately shielded by the blind device 60 according to the position of the light shielding plate 30.
 また、駆動機構80は、上記第2のモード(一例として図8(b)参照)から、図8(c)に示されるように、ブラインド装置60の位置を遮光板30の-Y側に移動させることによって、遮光板30の+Y側に露光光の光路を形成することができる。遮光板30の+Y側のエッジ(端部)は、視野絞り20(図8(c)では不図示。図3(a)参照)の開口Kを形成するエッジ(端部)のうち、-Y側のエッジと平行であるため、上記光路を通過した露光光によって基板P上に生成される投影領域50fは、平面視で台形(等脚台形)となる。以下、図8(c)に示されるように、遮光板30の+Y側に露光光の光路が形成され、且つ該光路を通過した露光光によって基板P上に平面視台形の投影領域50fが生成される状態を、遮光板30の第3のモードと称して説明する。本第3のモードにおいても、一対のナット82c、84cをY軸方向に同期駆動することによって、開口Kの面積、すなわち基板P(図1参照)上に生成される投影領域50f(平面視で台形)の幅(面積)を設定変更することができる。また、開口Kにおける遮光板30よりも-Y側の領域は、遮光板30の位置に応じてブラインド装置60によって適宜遮光される。 Further, the drive mechanism 80 moves the position of the blind device 60 from the second mode (see FIG. 8B as an example) to the −Y side of the light shielding plate 30 as shown in FIG. 8C. By doing so, the optical path of the exposure light can be formed on the + Y side of the light shielding plate 30. The + Y side edge (end portion) of the light shielding plate 30 is −Y among the edges (end portions) forming the opening K of the field stop 20 (not shown in FIG. 8C, see FIG. 3A). The projection region 50f generated on the substrate P by the exposure light that has passed through the optical path has a trapezoidal shape (isosceles trapezoidal shape) in plan view. Hereinafter, as shown in FIG. 8C, an optical path of exposure light is formed on the + Y side of the light shielding plate 30, and a trapezoidal projection area 50f in plan view is generated on the substrate P by the exposure light passing through the optical path. This state will be described as a third mode of the light shielding plate 30. Also in the third mode, by driving the pair of nuts 82c and 84c synchronously in the Y-axis direction, the area of the opening K, that is, the projection region 50f generated on the substrate P (see FIG. 1) (in plan view) The width (area) of the trapezoid) can be changed. Further, a region on the −Y side of the light shielding plate 30 in the opening K is appropriately shielded by the blind device 60 according to the position of the light shielding plate 30.
 また、駆動機構80は、上記第3のモード(一例として図8(c)参照)から、図8(d)に示されるように、ナット84cがナット82cよりも+Y側に位置するようにナット82c、84cのY位置を制御することによって、遮光板30の+Y側のエッジ(端部)が、視野絞り20(図8(b)では不図示。図3(a)参照)の開口Kを形成するエッジ(端部)のうち、+Y側のエッジと平行となる位置に遮光板30を位置決めすることができる。これによって、基板P(図1参照)上に生成される投影領域50fを平面視で平行四辺形とすることができる。以下、図8(d)に示されるように、遮光板30の+Y側に露光光の光路が形成され、且つ該光路を通過した露光光によって基板P上に平面視平行四辺形の投影領域50fが生成される状態を遮光板30の第4のモードと称して説明する。本第4のモードにおいても、一対のナット82c、84cをY軸方向に同期駆動することによって、開口Kの面積、すなわち基板P(図1参照)上に生成される投影領域50f(平面視で平行四辺形)の幅(面積)を設定変更することができる。また、開口Kにおける遮光板30よりも-Y側の領域は、遮光板30の位置に応じてブラインド装置60によって適宜遮光される。 Further, the drive mechanism 80 starts from the third mode (see FIG. 8C as an example) so that the nut 84c is positioned on the + Y side of the nut 82c as shown in FIG. 8D. By controlling the Y positions of 82c and 84c, the + Y side edge (end portion) of the light shielding plate 30 forms the opening K of the field stop 20 (not shown in FIG. 8B, see FIG. 3A). Of the edges (ends) to be formed, the light shielding plate 30 can be positioned at a position parallel to the + Y side edge. Thereby, the projection region 50f generated on the substrate P (see FIG. 1) can be made into a parallelogram in plan view. Hereinafter, as shown in FIG. 8D, the optical path of the exposure light is formed on the + Y side of the light shielding plate 30, and the projection area 50f having a parallelogram in plan view on the substrate P by the exposure light passing through the optical path. The state in which is generated will be referred to as a fourth mode of the light shielding plate 30. Also in the fourth mode, by driving the pair of nuts 82c and 84c synchronously in the Y-axis direction, the area of the opening K, that is, the projection region 50f generated on the substrate P (see FIG. 1) (in plan view). The width (area) of the (parallelogram) can be set and changed. Further, a region on the −Y side of the light shielding plate 30 in the opening K is appropriately shielded by the blind device 60 according to the position of the light shielding plate 30.
 このように、本実施形態では、遮光板30に対して開口Kの-Y方向(第1及び第2のモード)、及び+Y方向(第3及び第4のモード)の双方向に露光光の光路を形成することができ、且つ第1~第4のモードそれぞれにおいて、開口Kの幅を任意に調節することができる。すなわち、視野絞り20、遮光板30、駆動機構80、及びブラインド装置60は、投影光学モジュールPLfが基板P上に生成する投影領域50fの形状、及び位置を任意に変化させる可変視野絞り装置を構成している。 As described above, in this embodiment, the exposure light is transmitted in both the −Y direction (first and second modes) and the + Y direction (third and fourth modes) of the opening K with respect to the light shielding plate 30. An optical path can be formed, and the width of the opening K can be arbitrarily adjusted in each of the first to fourth modes. That is, the field stop 20, the light shielding plate 30, the drive mechanism 80, and the blind device 60 constitute a variable field stop device that arbitrarily changes the shape and position of the projection region 50f generated on the substrate P by the projection optical module PLf. is doing.
 図9は、基板P上に生成される投影領域50a~50gを示す平面図である。投影領域50a~50gは、Y軸方向に隣り合う投影領域の端部同士、すなわち端部51aと51b、端部51cと51d、端部51eと51f、端部51gと51h、端部51iと51j、端部51kと51lが、Y軸方向に重なり合うように(Y軸方向の位置が重複するように)設定されている。このため、投影領域50a~50gに対して基板PをX軸方向へ走査しながら露光(走査露光)を行うことで、重複して露光(二重露光)される重複領域52a~52f(図9において二点差線で挟まれた領域)が形成される。 FIG. 9 is a plan view showing projection areas 50a to 50g generated on the substrate P. FIG. The projection areas 50a to 50g are adjacent to each other in the Y-axis direction, that is, end parts 51a and 51b, end parts 51c and 51d, end parts 51e and 51f, end parts 51g and 51h, and end parts 51i and 51j. The end portions 51k and 51l are set so as to overlap in the Y-axis direction (so that the positions in the Y-axis direction overlap). For this reason, by performing exposure (scanning exposure) while scanning the substrate P in the X-axis direction with respect to the projection areas 50a to 50g, overlapping areas 52a to 52f that are overlapped (double exposure) (FIG. 9). In this case, a region sandwiched between two point difference lines is formed.
 また、図9において破線で示されるように、遮光板30は、上記第1及び第2の位置、並びにY軸方向への移動によって、投影領域50fの実効的な大きさを適宜設定する。これによって、遮光板30は、基板PをX軸方向へ走査して走査露光を行う場合、投影領域50fを介して転写されるマスクMのパターン像のY軸方向の幅、及び形状を適宜設定することができ、そのパターン像に対応する潜像として基板P上に形成される転写パターンのY軸方向のパターン幅、及びパターン形状を適宜設定することができる。 Further, as indicated by a broken line in FIG. 9, the light shielding plate 30 appropriately sets the effective size of the projection region 50f by the first and second positions and the movement in the Y-axis direction. Thereby, the light shielding plate 30 appropriately sets the width and shape in the Y-axis direction of the pattern image of the mask M transferred via the projection region 50f when scanning exposure is performed by scanning the substrate P in the X-axis direction. The pattern width in the Y-axis direction and the pattern shape of the transfer pattern formed on the substrate P as a latent image corresponding to the pattern image can be appropriately set.
 次に、露光装置EX(図1参照)を用いて複数回の走査露光を行い、マスクMのパターン像に対応する複数の転写パターンを基板P上で継ぎ合わせる繋ぎ露光方法について説明する。以下の説明では、図10に示されるように、マスクM上に形成されているパターンPPAのうち、Y軸方向に長さLAを有する部分パターンPAと、Y軸方向に長さLBを有する部分パターンPBとの2つの領域のパターン像を、2回の走査露光(第1及び第2走査露光)に分けて基板P上に順次転写し、これらのパターン像に対応する転写パターンMA、MBを基板P上で継ぎ合わせてパターン合成を行うものとする。その際、部分パターンPA、PBのそれぞれの境界部45、46に対応する転写パターンMA、MBの境界部を、重複して露光することで継ぎ部MCを形成する。これによって、基板P上の全体の転写パターンMPAは、部分パターンPAの転写パターンMAと、部分パターンPBの転写パターンMBとが継ぎ合わされたものとなる。 Next, a description will be given of a splicing exposure method in which a plurality of scanning exposures are performed using the exposure apparatus EX (see FIG. 1), and a plurality of transfer patterns corresponding to the pattern image of the mask M are joined on the substrate P. In the following description, as shown in FIG. 10, of the pattern PPA formed on the mask M, a partial pattern PA having a length LA in the Y-axis direction and a portion having a length LB in the Y-axis direction. The pattern image of the two areas with the pattern PB is divided into two scanning exposures (first and second scanning exposures) and sequentially transferred onto the substrate P, and the transfer patterns MA and MB corresponding to these pattern images are transferred. It is assumed that pattern synthesis is performed by splicing on the substrate P. At that time, the joint portions MC are formed by overlappingly exposing the boundary portions of the transfer patterns MA and MB corresponding to the boundary portions 45 and 46 of the partial patterns PA and PB, respectively. As a result, the entire transfer pattern MPA on the substrate P is a combination of the transfer pattern MA of the partial pattern PA and the transfer pattern MB of the partial pattern PB.
 ここで、本実施形態では、投影光学モジュールPLfによって基板P上に生成される投影領域50fのY軸方向に関する位置、及び幅を、上記第1~第4の4つのモードを用いて適宜設定変更することができる。これによって、第1走査露光で転写パターンMAにおける継ぎ部を、投影光学モジュールPLfを用いて形成する場合に、部分パターンPAのY軸方向に長さLA、及びその端部形状を任意に設定すること、又は第2走査露光で転写パターンMBおける継ぎ部を、投影光学モジュールPLfを用いて形成する場合に、部分パターンPBのY軸方向の長さLB、及びその端部形状を任意に設定することができる。 Here, in the present embodiment, the position and width in the Y-axis direction of the projection area 50f generated on the substrate P by the projection optical module PLf are appropriately changed using the first to fourth modes. can do. As a result, when the joint portion in the transfer pattern MA is formed using the projection optical module PLf in the first scanning exposure, the length LA and the end shape thereof are arbitrarily set in the Y-axis direction of the partial pattern PA. When the joint portion in the transfer pattern MB in the second scanning exposure is formed using the projection optical module PLf, the length LB in the Y-axis direction of the partial pattern PB and its end shape are arbitrarily set. be able to.
 ここで、実際には、露光装置EXを用いて1枚のマザーガラス基板から製品としての液晶パネルを複数枚製造する場合、液晶パネルのサイズ、枚数などは、様々な種類のものが要求される。例えば一枚のガラス基板上に、互いに異なるサイズの製品(液晶パネル等の回路パターン)を作成することが要求される。従って、実際には、繋ぎ露光の回数(継ぎ部MCの数)、転写パターンMA、MBの長さなどには、設計に応じて様々な態様が要求される。以下、本実施形態の遮光板30を用いて繋ぎ露光を行う際の露光方法について具体的に説明する。なお、以下の第1の露光方法及び第2の露光方法では、投影光学系モジュールが7本の場合について説明し、第3~第5の露光方法では、投影光学系モジュールが11本の場合について説明するが、投影光学系モジュールの本数は、適宜変更可能なものであり、繋ぎ露光の概念、方法などに関しては、投影光学系モジュールの本数にかかわらず、図6に説明した例と同一である。 Here, in actuality, when manufacturing a plurality of liquid crystal panels as products from a single mother glass substrate using the exposure apparatus EX, various types of liquid crystal panel sizes and numbers are required. . For example, it is required to produce products of different sizes (circuit patterns such as liquid crystal panels) on a single glass substrate. Therefore, in practice, various modes are required for the number of splice exposures (number of splices MC), the lengths of the transfer patterns MA, MB, and the like depending on the design. Hereinafter, an exposure method when performing joint exposure using the light shielding plate 30 of the present embodiment will be specifically described. In the following first exposure method and second exposure method, a case where there are seven projection optical system modules will be described, and in the third to fifth exposure methods, a case where there are 11 projection optical system modules will be described. As will be described, the number of projection optical system modules can be changed as appropriate, and the concept and method of splice exposure are the same as the example described in FIG. 6 regardless of the number of projection optical system modules. .
 図11(a)には、第1の露光方法に係る基板PとマスクMとが図示されている。第1の露光方法では、1枚の基板Pから2枚のパネルPN1、PN2を製造する。パネルPN1、PN2のサイズは同一であり、使用されるマスクパターンも同一である。第1の露光方法では、図10に説明した場合と同様であり、2回の露光動作(1回の繋ぎ露光動作)で、各パネルPN1、PN2への露光動作を完了することができる。 FIG. 11A shows a substrate P and a mask M according to the first exposure method. In the first exposure method, two panels PN1 and PN2 are manufactured from one substrate P. The sizes of the panels PN1 and PN2 are the same, and the mask patterns used are also the same. The first exposure method is the same as that described with reference to FIG. 10, and the exposure operation for each panel PN1 and PN2 can be completed by two exposure operations (one connection exposure operation).
 第1の露光方法では、図11(b)に示されるように、遮光板30を第2の傾斜配置に移動させるとともに、+Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この状態で、マスクMと基板PとをX軸方向(第1方向)に沿って相対移動させることにより、マスクパターンのうちのA領域のパターンを基板Pに形成する第1の走査露光が行われる。次に、基板Pを基板ステージ駆動部PSTDによってY軸方向(第2方向)に移動させるステップ移動が行われる。そして、図11(c)に示されるように、遮光板30を第1の傾斜配置に移動させるとともに、-Y軸方向側に露光光の光路が形成されるように遮光板30をY軸方向に沿って移動させる。この際、基板P上の各パネル領域において、A領域に対応する転写パターンとB領域に対応する転写パターンとの間には、継ぎ部が形成されることになる。この継ぎ部において、露光量が均一になるように遮光板30及びブラインド装置60の位置決めが行われる。その後、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのB領域のパターンを基板Pに形成する第2の走査露光が行われる。これによって、マスクMのパターン領域PPA(図10参照)よりも大きなサイズのパネルを基板Pに形成することができる。 In the first exposure method, as shown in FIG. 11B, the light shielding plate 30 is moved to the second inclined arrangement, and the light shielding plate 30 is formed so that the optical path of the exposure light is formed on the + Y axis side. Move. In this state, the mask M and the substrate P are moved relative to each other along the X-axis direction (first direction), so that the first scanning exposure for forming the pattern of the A region in the mask pattern on the substrate P is performed. Is called. Next, step movement is performed in which the substrate P is moved in the Y-axis direction (second direction) by the substrate stage drive unit PSTD. Then, as shown in FIG. 11C, the light shielding plate 30 is moved to the first inclined arrangement, and the light shielding plate 30 is moved in the Y axis direction so that the optical path of the exposure light is formed on the −Y axis direction side. Move along. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the A region and the transfer pattern corresponding to the B region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the mask M and the substrate P are moved relative to each other along the X-axis direction, whereby second scanning exposure for forming the pattern of the B region in the mask pattern on the substrate P is performed. Thus, a panel having a size larger than the pattern area PPA (see FIG. 10) of the mask M can be formed on the substrate P.
 図12(a)には、第2の露光方法に係る基板PとマスクMとが図示されている。第2の露光方法では、1枚の基板Pから2枚のパネルPN1、PN2を製造する。パネルPN1、PN2のサイズは同一であり、使用されるマスクパターンも同一である。第2の露光方法では、第1の露光方法よりも大きなパネルを製造することができる。また、第1の露光方法と同様に、2回の露光動作(1回の繋ぎ露光動作)で、各パネルPN1、PN2への露光動作を完了することができる。 FIG. 12A shows the substrate P and the mask M according to the second exposure method. In the second exposure method, two panels PN1 and PN2 are manufactured from one substrate P. The sizes of the panels PN1 and PN2 are the same, and the mask patterns used are also the same. In the second exposure method, a panel larger than that in the first exposure method can be manufactured. Further, similarly to the first exposure method, the exposure operation for each panel PN1 and PN2 can be completed by two exposure operations (one joint exposure operation).
 第2の露光方法では、図12(b)に示されるように、投影光学モジュールPLf(図1参照)によって生成される投影領域50fを規定する遮光板30を第2の傾斜配置に移動させるとともに、+Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この状態で、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのA領域のパターンを基板Pに形成する第1の走査露光が行われる。次に、基板Pを基板ステージ駆動部PSTDによってY軸方向に移動させるステップ移動が行われる。そして、図12(c)に示されるように、投影光学モジュールPLb(図1参照)によって生成される投影領域50bを規定する遮光板30を第1の傾斜配置に移動させるとともに、-Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この際、基板P上の各パネル領域において、A領域に対応する転写パターンとB領域に対応する転写パターンとの間には、継ぎ部が形成されることになる。この継ぎ部において、露光量が均一になるように遮光板30及びブラインド装置60の位置決めが行われる。その後、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのB領域のパターンを基板Pに形成する第2の走査露光が行われる。これによって、マスクMのパターン領域PPAよりも大きなサイズのパネルを基板Pに形成することができる。 In the second exposure method, as shown in FIG. 12B, the light shielding plate 30 that defines the projection region 50f generated by the projection optical module PLf (see FIG. 1) is moved to the second inclined arrangement. The light shielding plate 30 is moved so that the optical path of the exposure light is formed on the + Y axis side. In this state, the mask M and the substrate P are relatively moved along the X-axis direction, whereby the first scanning exposure for forming the pattern of the A region in the mask pattern on the substrate P is performed. Next, step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage drive unit PSTD. Then, as shown in FIG. 12C, the light shielding plate 30 that defines the projection region 50b generated by the projection optical module PLb (see FIG. 1) is moved to the first inclined arrangement, and the −Y axis side The light shielding plate 30 is moved so that the optical path of the exposure light is formed. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the A region and the transfer pattern corresponding to the B region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the mask M and the substrate P are moved relative to each other along the X-axis direction, whereby second scanning exposure for forming the pattern of the B region in the mask pattern on the substrate P is performed. Thus, a panel having a size larger than the pattern area PPA of the mask M can be formed on the substrate P.
 図13(a)には、第3の露光方法に係る基板PとマスクMとが図示されている。第3の露光方法では、1枚の基板Pから2枚のパネルPN1、PN2を製造する。パネルPN1、PN2のサイズは同一であり、使用されるマスクパターンも同一である。第3の露光方法では、パネルPN1、PN2のY軸方向の長さが、マスクMのY軸方向の長さのほぼ2倍であり、図10に説明した場合と異なり、2回の露光動作(1回の繋ぎ露光動作)では、各パネルPN1、PN2への露光動作が完了しない。そこで、マスクM上に、A領域、B領域、及びC領域を設定し、1枚のパネル(製品)につき、合計で3回の露光動作(2回の繋ぎ露光動作)を行う。 FIG. 13A shows the substrate P and the mask M according to the third exposure method. In the third exposure method, two panels PN1 and PN2 are manufactured from one substrate P. The sizes of the panels PN1 and PN2 are the same, and the mask patterns used are also the same. In the third exposure method, the length of the panels PN1 and PN2 in the Y-axis direction is almost twice the length of the mask M in the Y-axis direction. Unlike the case described with reference to FIG. In (one-time joint exposure operation), the exposure operation for each of the panels PN1 and PN2 is not completed. Therefore, the A region, the B region, and the C region are set on the mask M, and a total of three exposure operations (two joint exposure operations) are performed for one panel (product).
 第3の露光方法では、図13(b)に示されるように、投影光学モジュールPL10によって生成される投影領域5010を規定する遮光板30を第1の傾斜配置に移動させるとともに、+Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この状態で、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのA領域のパターンを基板Pに形成する第1の走査露光が行われる。次に、基板Pを基板ステージ駆動部PSTDによってY軸方向に移動させる第1のステップ移動が行われる。そして、図14(a)に示されるように、投影光学モジュールPL10によって生成される投影領域5010を規定する遮光板30を第2の傾斜配置に移動させるとともに、+Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この際、基板P上の各パネル領域において、A領域に対応する転写パターンとB領域に対応する転写パターンとの間には、継ぎ部が形成されることになる。この継ぎ部において、露光量が均一になるように遮光板30及びブラインド装置60の位置決めが行われる。その後、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのB領域のパターンを基板Pに形成する第2の走査露光が行われる。さらに、基板Pを基板ステージ駆動部PSTDによってY軸方向に移動させる第2のステップ移動が行われる。そして、図14(b)に示されるように、投影光学モジュールPLによって生成される投影領域50を規定する遮光板30を第1の傾斜配置に移動させるとともに、-Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この際、基板P上の各パネル領域において、B領域に対応する転写パターンとC領域に対応する転写パターンとの間には、継ぎ部が形成されることになる。この継ぎ部において、露光量が均一になるように遮光板30及びブラインド装置60の位置決めが行われる。その後、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのC領域のパターンを基板Pに形成する第3の走査露光が行われる。これによって、マスクMのパターン領域PPAよりも大きなサイズのパネルを基板Pに形成することができる。 In the third exposure method, as shown in FIG. 13 (b), moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the first inclined arrangement, + Y-axis The light shielding plate 30 is moved so that the optical path of the exposure light is formed on the side. In this state, the mask M and the substrate P are relatively moved along the X-axis direction, whereby the first scanning exposure for forming the pattern of the A region in the mask pattern on the substrate P is performed. Next, a first step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage driving unit PSTD. Then, as shown in FIG. 14 (a), moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the second inclined arrangement, the exposure light on the + Y-axis side The light shielding plate 30 is moved so that the optical path is formed. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the A region and the transfer pattern corresponding to the B region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the mask M and the substrate P are moved relative to each other along the X-axis direction, whereby second scanning exposure for forming the pattern of the B region in the mask pattern on the substrate P is performed. Further, a second step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage drive unit PSTD. Then, as shown in FIG. 14 (b), moves the light shielding plate 30 which defines the projected area 50 4 generated by the projection optical module PL 4 to the first inclined arrangement, exposure light -Y-axis side The light shielding plate 30 is moved so that the optical path is formed. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the B region and the transfer pattern corresponding to the C region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the mask M and the substrate P are relatively moved along the X-axis direction, whereby the third scanning exposure for forming the pattern of the C region in the mask pattern on the substrate P is performed. Thus, a panel having a size larger than the pattern area PPA of the mask M can be formed on the substrate P.
 また、図15(a)には、第4の露光方法に係る基板PとマスクMとが図示されている。第4の露光方法では、1枚の基板Pから3枚のパネルPN1~PN3を製造する。パネルPN1~PN3のサイズは同一であり、使用されるマスクパターンも同一である。第4の露光方法では、パネルPN1~PN3のY軸方向の長さが、マスクMのY軸方向の長さの1.3倍程度であり、上記第3の露光方法とは異なり、2回の露光動作(1回の繋ぎ露光動作)で各パネルPN1~3への露光動作が完了する。第4の露光方法では、マスクM上に、A領域、及びB領域の2つの領域を設定し、1枚のパネル(製品)につき、合計で2回の露光動作(1回の繋ぎ露光動作)を行う。 FIG. 15A shows a substrate P and a mask M according to the fourth exposure method. In the fourth exposure method, three panels PN1 to PN3 are manufactured from one substrate P. The sizes of the panels PN1 to PN3 are the same, and the mask patterns used are also the same. In the fourth exposure method, the length of the panels PN1 to PN3 in the Y-axis direction is about 1.3 times the length of the mask M in the Y-axis direction. Unlike the third exposure method, the length is twice. The exposure operation for each of the panels PN1 to PN3 is completed by the exposure operation (one connection exposure operation). In the fourth exposure method, two areas of area A and area B are set on the mask M, and a total of two exposure operations (one splice exposure operation) per panel (product). I do.
 第4の露光方法では、図15(b)に示されるように、投影光学モジュールPL10によって生成される投影領域5010を規定する遮光板30を第1の傾斜配置に移動させるとともに、+Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この状態で、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのA領域のパターンを基板Pに形成する第1の走査露光が行われる。次に、基板Pを基板ステージ駆動部PSTDによってY軸方向に移動させるステップ移動が行われる。そして、図16に示されるように、投影光学モジュールPLによって生成される投影領域50を規定する遮光板30を第2の傾斜配置に移動させるとともに、-Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この際、基板P上の各パネル領域において、A領域に対応する転写パターンとB領域に対応する転写パターンとの間には、継ぎ部が形成されることになる。この継ぎ部において、露光量が均一になるように遮光板30及びブラインド装置60の位置決めが行われる。その後、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのB領域のパターンを基板Pに形成する第2の走査露光が行われる。これによって、マスクMのパターン領域PPA(図10参照)よりも大きなサイズのパネルを基板Pに形成することができる。 In the fourth exposure method, as shown in FIG. 15 (b), moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the first inclined arrangement, + Y-axis The light shielding plate 30 is moved so that the optical path of the exposure light is formed on the side. In this state, the mask M and the substrate P are relatively moved along the X-axis direction, whereby the first scanning exposure for forming the pattern of the A region in the mask pattern on the substrate P is performed. Next, step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage drive unit PSTD. Then, as shown in FIG. 16 moves the light shielding plate 30 which defines the projected area 50 7 generated by the projection optical module PL 7 to the second inclined arrangement, the optical path of the exposure light -Y axis side The light shielding plate 30 is moved so as to be formed. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the A region and the transfer pattern corresponding to the B region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the mask M and the substrate P are moved relative to each other along the X-axis direction, whereby second scanning exposure for forming the pattern of the B region in the mask pattern on the substrate P is performed. Thus, a panel having a size larger than the pattern area PPA (see FIG. 10) of the mask M can be formed on the substrate P.
 また、図17(a)には、第5の露光方法に係る基板PとマスクMとが図示されている。第5の露光方法では、1枚の基板Pから3枚のパネルPN1~PN3を製造する。パネルPN1は、パネルPN2、PN3に比べてサイズが小さく、Y軸方向の長さも短い。また、パネルPN1の露光には、マスクM上に形成されたマスクパターンMP1を用い、パネルPN2、PN3の露光には、上記マスクパターンMP1とは異なるマスクパターンMP2を用いる。 FIG. 17A shows a substrate P and a mask M according to the fifth exposure method. In the fifth exposure method, three panels PN1 to PN3 are manufactured from one substrate P. The panel PN1 is smaller in size than the panels PN2 and PN3 and has a shorter length in the Y-axis direction. The mask pattern MP1 formed on the mask M is used for the exposure of the panel PN1, and the mask pattern MP2 different from the mask pattern MP1 is used for the exposure of the panels PN2 and PN3.
 第5の露光方法では、図17(b)に示されるように、投影光学モジュールPL10によって生成される投影領域5010を規定する遮光板30を第2の傾斜配置に移動させるとともに、+Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この状態で、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのA1領域のパターンを基板Pに形成する第1の走査露光が行われる。次に、基板Pを基板ステージ駆動部PSTDによってY軸方向に移動させる第1のステップ移動が行われる。そして、図18(a)に示されるように、投影光学モジュールPLによって生成される投影領域50を規定する遮光板30を第2の傾斜配置に移動させるとともに、-Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この際、基板P上の各パネル領域において、A1領域に対応する転写パターンとB1領域に対応する転写パターンとの間には、継ぎ部が形成されることになる。この継ぎ部において、露光量が均一になるように遮光板30及びブラインド装置60の位置決めが行われる。その後、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのB1領域のパターンを基板Pに形成する第2の走査露光が行われる。これによって、マスクパターンMP1を基板Pに転写することができ、基板PにパネルPN1を形成することができる。 In the fifth exposure method, as shown in FIG. 17 (b), moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the second inclined arrangement, + Y-axis The light shielding plate 30 is moved so that the optical path of the exposure light is formed on the side. In this state, the first scanning exposure for forming the pattern of the A1 region of the mask pattern on the substrate P is performed by relatively moving the mask M and the substrate P along the X-axis direction. Next, a first step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage driving unit PSTD. Then, as shown in FIG. 18 (a), moves the light shielding plate 30 which defines the projected area 50 7 generated by the projection optical module PL 7 to the second inclined arrangement, exposure light -Y-axis side The light shielding plate 30 is moved so that the optical path is formed. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the A1 region and the transfer pattern corresponding to the B1 region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the mask M and the substrate P are relatively moved along the X-axis direction, whereby the second scanning exposure for forming the pattern of the B1 region in the mask pattern on the substrate P is performed. Accordingly, the mask pattern MP1 can be transferred to the substrate P, and the panel PN1 can be formed on the substrate P.
 さらに、基板P上にパネルPN2を形成するために、基板Pを基板ステージ駆動部PSTDによってX軸方向及びY軸方向に移動させる第2のステップ移動が行われる。また、第2のステップ移動では、マスクパターンMP2を基板Pに転写するために、マスクMをマスクステージ駆動部MSTDによって移動させる。そして、図18(b)に示されるように、投影光学モジュールPL10によって生成される投影領域5010を規定する遮光板30を第1の傾斜配置に移動させるとともに、+Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この状態で、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのA2領域のパターンを基板Pに形成する第3の走査露光が行われる。次に、基板Pを基板ステージ駆動部PSTDによってY軸方向に移動させる第3のステップ移動が行われる。そして、図19に示されるように、投影光学モジュールPLによって生成される投影領域50を規定する遮光板30を第2の傾斜配置に移動させるとともに、-Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この際、基板P上の各パネル領域において、A2領域に対応する転写パターンとB2領域に対応する転写パターンとの間には、継ぎ部が形成されることになる。この継ぎ部において、露光量が均一になるように遮光板30及びブラインド装置60の位置決めが行われる。その後、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのB2領域のパターンを基板Pに形成する第4の走査露光が行われる。これによって、マスクパターンMP2を基板Pに転写することができ、基板PにパネルPN2を形成することができる。 Further, in order to form the panel PN2 on the substrate P, a second step movement is performed in which the substrate P is moved in the X-axis direction and the Y-axis direction by the substrate stage driving unit PSTD. Further, in the second step movement, in order to transfer the mask pattern MP2 to the substrate P, the mask M is moved by the mask stage driving unit MSTD. Then, as shown in FIG. 18 (b), moves the light shielding plate 30 which defines the projected area 50 10 generated by the projection optical module PL 10 to the first inclined arrangement, the exposure light on the + Y-axis side The light shielding plate 30 is moved so that the optical path is formed. In this state, by moving the mask M and the substrate P relative to each other along the X-axis direction, the third scanning exposure for forming the pattern of the A2 region of the mask pattern on the substrate P is performed. Next, a third step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage driving unit PSTD. Then, as shown in FIG. 19 moves the light shielding plate 30 which defines the projected area 50 7 generated by the projection optical module PL 7 to the second inclined arrangement, the optical path of the exposure light -Y axis side The light shielding plate 30 is moved so as to be formed. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the A2 region and the transfer pattern corresponding to the B2 region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the mask M and the substrate P are moved relative to each other along the X-axis direction to perform the fourth scanning exposure for forming the B2 region pattern of the mask pattern on the substrate P. Accordingly, the mask pattern MP2 can be transferred to the substrate P, and the panel PN2 can be formed on the substrate P.
 以下、不図示であるが同様にして、基板P上にパネルPN3を形成するために、基板Pを基板ステージ駆動部PSTDによってX軸方向及びY軸方向に移動させる第4のステップ移動が行われる。そして、投影光学モジュールPL10によって生成される投影領域5010を規定する遮光板30を第1の傾斜配置に移動させるとともに、+Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この状態で、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのA2領域のパターンを基板Pに形成する第5の走査露光が行われる。次に、基板Pを基板ステージ駆動部PSTDによってY軸方向に移動させる第5のステップ移動が行われる。そして、投影光学モジュールPLによって生成される投影領域50を規定する遮光板30を第2の傾斜配置に移動させるとともに、-Y軸側に露光光の光路が形成されるように遮光板30を移動させる。この際、基板P上の各パネル領域において、A2領域に対応する転写パターンとB2領域に対応する転写パターンとの間には、継ぎ部が形成されることになる。この継ぎ部において、露光量が均一になるように遮光板30及びブラインド装置60の位置決めが行われる。その後、マスクMと基板PとをX軸方向に沿って相対移動させることにより、マスクパターンのうちのB2領域のパターンを基板Pに形成する第6の走査露光が行われる。これによって、マスクパターンMP3を基板Pに転写することができ、基板PにパネルPN3を形成することができる。以上により、基板P上に、パネルPN1、パネルPN2、パネルPN3を形成することができる。 Hereinafter, although not shown, in order to form the panel PN3 on the substrate P, a fourth step movement is performed in which the substrate P is moved in the X-axis direction and the Y-axis direction by the substrate stage driving unit PSTD. . Then, the light shielding plate 30 that defines the projection region 50 10 generated by the projection optical module PL 10 is moved to the first inclined arrangement, and the light shielding plate 30 is formed so that the optical path of the exposure light is formed on the + Y axis side. Move. In this state, by moving the mask M and the substrate P relative to each other along the X-axis direction, the fifth scanning exposure for forming the pattern of the A2 region of the mask pattern on the substrate P is performed. Next, a fifth step movement is performed in which the substrate P is moved in the Y-axis direction by the substrate stage drive unit PSTD. Then, it moves the light shielding plate 30 which defines the projected area 50 7 generated by the projection optical module PL 7 to the second inclined arrangement, the light shielding plate 30 so that the optical path of the exposure light on the -Y-axis side is formed Move. At this time, in each panel region on the substrate P, a joint portion is formed between the transfer pattern corresponding to the A2 region and the transfer pattern corresponding to the B2 region. At the joint portion, the light shielding plate 30 and the blind device 60 are positioned so that the exposure amount is uniform. Thereafter, the sixth scanning exposure for forming the pattern of the B2 region of the mask pattern on the substrate P is performed by relatively moving the mask M and the substrate P along the X-axis direction. Thereby, the mask pattern MP3 can be transferred to the substrate P, and the panel PN3 can be formed on the substrate P. Thus, the panel PN1, the panel PN2, and the panel PN3 can be formed on the substrate P.
 なお、上記第1~第5の露光方法は、一例であって、これら以外にも、露光装置EXにおいて行われる繋ぎ露光には、様々な態様が考えられる。従って、要求されるパネルのサイズに応じて、その都度、マスクパターンをどのように複数の領域に分割して繋ぎ露光を行うかその都度設計しなければならない。 Note that the first to fifth exposure methods are merely examples, and besides these, various modes are conceivable for splice exposure performed in the exposure apparatus EX. Therefore, it is necessary to design each time how to divide the mask pattern into a plurality of areas and perform joint exposure according to the required panel size.
 ただし、マスクパターンの分割箇所の設計には、各種の制約がある。すなわち、露光装置EXでは、マスクステージMST(マスクM)と各投影光学系モジュールとのステップ(Y軸)方向の相対位置が不変であることから、各転写パターンのY軸方向の長さは、各投影光学系モジュールによって形成される投影領域の長さの整数倍がベースとなり、その合計長さを遮光板30で調整するようになっている。これに対し、遮光板30を有する投影光学モジュールは、一部のみ(本実施形態では、投影光学系モジュールPLf)であり、投影領域のY軸方向の合計長さを設計する上で制約となる。また、パネルの製造工程において、各パネルには、繰り返しパターンが形成される液晶表示面とは別に、周辺部に各パネルと駆動回路とを接続するための引き出し線(タブ領域と称される)が形成される。このタブ領域に形成される引き出し線は、繰り返しのパターンではないので、繋ぎ露光を行う際の制約となる。また、スループットの観点から、繋ぎ露光の回数は、少ないことが好ましく、この点もマスクパターンを複数の領域に分割する際の制約となる。また、マスクサイズにも、マスクステージMSTの大きさにより物理的な制限があるので、この点もマスクパターンを複数の領域に分割する際の制約となる。 However, there are various restrictions on the design of the mask pattern divisions. That is, in the exposure apparatus EX, since the relative position in the step (Y axis) direction between the mask stage MST (mask M) and each projection optical system module is unchanged, the length of each transfer pattern in the Y axis direction is The base is an integral multiple of the length of the projection area formed by each projection optical system module, and the total length is adjusted by the light shielding plate 30. On the other hand, the projection optical module having the light shielding plate 30 is only a part (in this embodiment, the projection optical system module PLf), which is a limitation in designing the total length of the projection area in the Y-axis direction. . Further, in the panel manufacturing process, each panel has a lead-out line (referred to as a tab area) for connecting each panel and the drive circuit to the peripheral portion separately from the liquid crystal display surface on which a repeated pattern is formed. Is formed. Since the lead lines formed in the tab area are not repetitive patterns, they become a restriction when performing joint exposure. Also, from the viewpoint of throughput, it is preferable that the number of splice exposures is small, and this is also a limitation when the mask pattern is divided into a plurality of regions. Further, since the mask size is physically limited depending on the size of the mask stage MST, this point also becomes a restriction when the mask pattern is divided into a plurality of regions.
 これに対し、本実施形態の露光装置EXでは、上記視野絞り20、遮光板30、駆動機構80、及びブラインド装置60により構成される可変絞り装置によって、繋ぎ露光を行う際に継ぎ部を形成する一対の投影領域のうち、一方の投影領域(本実施形態では、投影領域50f)の長さ、及び端部形状を、遮光板30を上記第1~第4のモードの何れかを用いることによって、任意に調整することができる。従って、繋ぎ露光で製品を製造する際の設計(マスク上に形成された回路パターンのどの部分を繋ぎ露光を用いてガラス基板上に形成するのか、その繋ぎ露光処理が施される回路パターン上の位置や、更には互いに大きさの異なる複数種類の回路パターンをガラス基板上に露光する際に用いられるマスク上における当該複数種類の回路パターンの配置等)の自由度が向上し、上記各種の制約を緩和することが可能となる。一例をあげると、仮に遮光板30の傾斜方向が固定であるとした場合、図4(a)あるいは図4(c)に示されるような台形状の開口Kを形成可能なように遮光板30を配置すると、図4(b)あるいは図4(d)に示されるように、平行四辺形状、且つスリット状の開口Kを形成することができない(遮光板30の斜辺と開口Kを形成する端部(斜辺)とが交差する)ので、設計上の制約となるが、本実施形態では、上述の設計の自由度が向上する。 On the other hand, in the exposure apparatus EX of the present embodiment, a joint portion is formed when joint exposure is performed by the variable diaphragm device configured by the field diaphragm 20, the light shielding plate 30, the drive mechanism 80, and the blind device 60. Of the pair of projection areas, the length and end shape of one projection area (in this embodiment, the projection area 50f) are determined by using the light shielding plate 30 in any of the first to fourth modes. Can be adjusted arbitrarily. Therefore, design for manufacturing products by splicing exposure (which part of the circuit pattern formed on the mask is to be formed on the glass substrate using splicing exposure, on the circuit pattern on which splicing exposure processing is performed) The degree of freedom of the position and the arrangement of the plurality of types of circuit patterns on the mask used when exposing a plurality of types of circuit patterns of different sizes on the glass substrate is improved, and the above various restrictions Can be relaxed. For example, if the inclination direction of the light shielding plate 30 is fixed, the light shielding plate 30 is formed so that a trapezoidal opening K as shown in FIG. 4A or 4C can be formed. 4 (b) or 4 (d), the parallelogram-shaped and slit-shaped opening K cannot be formed (the oblique side of the light shielding plate 30 and the edge where the opening K is formed). However, in this embodiment, the degree of freedom of design described above is improved.
 本実施形態の露光装置EXを用いて繋ぎ露光を行う際には、要求される製品の設計(上記第1の露光方法~第5の露光方法参照)に応じて、遮光板30の位置、及び傾き(上記第1~第4のモードの何れか)を決定する。例えば、図20に示されるように、ステップS10では、パネル(製品)サイズ、マスクサイズ、タブ領域の幅(位置)、遮光板30の位置(本実施形態では、投影領域50fに対応する位置)、最善の走査露光の回数などの諸条件に応じて、マスクM上に複数の領域(上記第1の露光方法のA及びB領域、第3の露光方法のA~C領域など)を設定する。また、ステップS12において、上記ステップS10で決定されたマスクM上の領域のY軸方向の長さに応じた遮光板30のY軸方向の位置を決定する。 When joint exposure is performed using the exposure apparatus EX of the present embodiment, the position of the light-shielding plate 30 and the position of the light-shielding plate 30 according to the required product design (see the first to fifth exposure methods above), and The inclination (any one of the first to fourth modes) is determined. For example, as shown in FIG. 20, in step S10, the panel (product) size, the mask size, the width (position) of the tab area, and the position of the light shielding plate 30 (in this embodiment, the position corresponding to the projection area 50f). A plurality of areas (A and B areas of the first exposure method, areas A to C of the third exposure method, etc.) are set on the mask M according to various conditions such as the number of times of the best scanning exposure. . In step S12, the position of the light shielding plate 30 in the Y-axis direction is determined according to the length in the Y-axis direction of the region on the mask M determined in step S10.
 そして、ステップS14で、ステップS12で決定された遮光板30の位置が、所望の繋ぎ露光の条件を満たすか否かを判定する。例えば、現状の遮光板30の傾斜方向で繋ぎ露光を行った場合に、基板P上に形成される継ぎ部MC(図10参照)の総露光量が所望の露光条件を満たすか否かを判定する。ステップS14の判定でYes判定である場合には、ステップS16に進み、繋ぎ露光を行う。また、ステップS14でNo判定の場合には、ステップS18に進み、遮光板30のモード切り替え(第1モードと第2モードとの切り替え、又は第3モードと第4モードとの切り替え)を繋ぎ露光の工程に追加した後(実際に遮光板30のモード切り替えを行うのは、基板PのYステップ動作中)、ステップS16に進み、繋ぎ露光を行う。 In step S14, it is determined whether or not the position of the light shielding plate 30 determined in step S12 satisfies a desired splice exposure condition. For example, it is determined whether or not the total exposure amount of the joint portion MC (see FIG. 10) formed on the substrate P satisfies a desired exposure condition when joint exposure is performed in the inclination direction of the current light shielding plate 30. To do. If the determination in step S14 is yes, the process proceeds to step S16 to perform splice exposure. If the determination in step S14 is No, the process proceeds to step S18, and mode switching of the light shielding plate 30 (switching between the first mode and the second mode or switching between the third mode and the fourth mode) is performed. After adding the above process (the mode of the light shielding plate 30 is actually switched during the Y step operation of the substrate P), the process proceeds to step S16 to perform splice exposure.
 なお、あらかじめ、パネル(製品)サイズ、マスクサイズ、タブ領域の幅(位置)、走査露光の回数等を踏まえて、繋ぎ露光を行う際の露光条件がわかっていれば、遮光板30の位置を第1の走査露光と第2の走査露光とで切り替え可能に構成しても良い。これによって、上述したステップ(ステップS14、S18)を省略することができるので、露光処理を簡素化できる。 Note that the position of the light shielding plate 30 can be determined if the exposure conditions for performing joint exposure are known in advance based on the panel (product) size, the mask size, the width (position) of the tab region, the number of scanning exposures, and the like. It may be configured to be switchable between the first scanning exposure and the second scanning exposure. As a result, the above-described steps (steps S14 and S18) can be omitted, so that the exposure process can be simplified.
 以上説明したように、本実施形態では、開口Kを形成するY軸方向に離間した一対のエッジのうちの一方(+Y側又は-Y側)と、遮光板30のY軸方向に関する一対のエッジのうちの一方(+Y側又は-Y側)とによって、遮光板30の一側又は他側(+Y側又は-Y側)に露光光の光路が形成され、且つ該光路を通過した露光光によって、基板P上には、平面視台形又は平行四辺形の投影領域50fが生成される。そして、上記平面視台形又は平行四辺形の投影領域50fのY軸方向に関する幅は、遮光板30のY位置によって、適宜設定変更することができる。 As described above, in the present embodiment, one of the pair of edges (+ Y side or −Y side) spaced apart in the Y axis direction that forms the opening K and the pair of edges in the Y axis direction of the light shielding plate 30. The light path of the exposure light is formed on one side or the other side (+ Y side or −Y side) of the light shielding plate 30 by one (+ Y side or −Y side) of the light, and the exposure light that has passed through the optical path On the substrate P, a planar trapezoidal or parallelogram-shaped projection region 50f is generated. And the width | variety regarding the Y-axis direction of the projection area | region 50f of the said planar view trapezoid or a parallelogram can be suitably set and changed with the Y position of the light-shielding plate 30. FIG.
 このように、遮光板30のモードを切り替えることによって、投影領域50fの位置及び形状を変化させることができるので、投影領域50fを含む複数の投影光学モジュールによって基板P上に形成される投影領域のY軸方向の長さ、及びその端部形状(傾斜方向)を任意に設定することができる。したがって、繋ぎ露光によって基板P上に形成される転写パターンMPA、又はMPB(図10参照)の幅の設計の自由度が向上し、1枚のマザーガラス基板上に任意の幅の液晶パネルを形成することが可能となる。 Thus, since the position and shape of the projection region 50f can be changed by switching the mode of the light shielding plate 30, the projection region formed on the substrate P by the plurality of projection optical modules including the projection region 50f can be changed. The length in the Y-axis direction and the end shape (inclination direction) can be arbitrarily set. Therefore, the degree of freedom in designing the width of the transfer pattern MPA or MPB (see FIG. 10) formed on the substrate P by splice exposure is improved, and a liquid crystal panel having an arbitrary width is formed on one mother glass substrate. It becomes possible to do.
 なお、以上説明した一実施形態の構成は、一例であって、適宜変更が可能である。すなわち、上記実施形態において、遮光板30(可変視野絞り装置)は、1つのみ設けられたが、これに限られず、複数設けられても良い。また、遮光板30(可変視野絞り装置)が設けられる投影光学モジュールの数、及び位置は、特に限定されない。この場合、繋ぎ露光によって基板P上に形成される転写パターンMPA、又はMPB(図10参照)の幅の設計の自由度が更に向上する。 Note that the configuration of the embodiment described above is an example, and can be changed as appropriate. That is, in the above embodiment, only one light shielding plate 30 (variable field stop device) is provided. However, the present invention is not limited to this, and a plurality of light shielding plates 30 may be provided. The number and position of the projection optical module provided with the light shielding plate 30 (variable field stop device) are not particularly limited. In this case, the degree of freedom in designing the width of the transfer pattern MPA or MPB (see FIG. 10) formed on the substrate P by splicing exposure is further improved.
 また、遮光板30を駆動するための機構も、適宜変更が可能である。すなわち、図21に示される変形例のように、1つの開口K(視野絞り20(図3参照))に対して、2枚の遮光板30を設けても良い。2枚の遮光板30を独立に駆動するための駆動機構80Aは、上記実施形態と同様に一対のアクチュエータ82A、84Bを有しており、該一対のアクチュエータ82A、84Aそれぞれのナット82c、84cに遮光板30が固定されている。上記実施形態では、1枚の遮光板30を回転駆動することによって、その角度が変更したが、本変形例では、2枚の遮光板30それぞれの端部が開口Kを形成するY軸方向に離間した一対のエッジと平行となるように取り付け角度が予め設定されており、視野絞り20の一対の端部のいずれかと、2枚の遮光板30の、合計で4つの端部のいずれかを組み合わせることによって、上記実施形態と同様に第1~第4のモードを実現することができる。なお、図21は、模式図であり、図25には、本変形例の詳細が示されている。図25に示される駆動機構では、Y軸方向に延びる一対のアーム88に沿って、各遮光板30が所定の可動範囲(図25の破線矢印参照)内で独立に往復駆動される。このようなアーム88を往復駆動するタイプの駆動機構は、上記実施形態の遮光板30の駆動機構として用いることも可能である。 Also, the mechanism for driving the light shielding plate 30 can be changed as appropriate. That is, as in the modification shown in FIG. 21, two light shielding plates 30 may be provided for one opening K (field stop 20 (see FIG. 3)). The drive mechanism 80A for independently driving the two light shielding plates 30 includes a pair of actuators 82A and 84B, as in the above embodiment, and the nuts 82c and 84c of the pair of actuators 82A and 84A are provided. The light shielding plate 30 is fixed. In the above embodiment, the angle of the light shielding plate 30 is changed by rotationally driving the light shielding plate 30. However, in this modification, the end portions of the two light shielding plates 30 are in the Y-axis direction in which the opening K is formed. The mounting angle is set in advance so as to be parallel to the pair of spaced edges, and one of the pair of end portions of the field stop 20 and one of the four end portions of the two light shielding plates 30 are combined. By combining them, the first to fourth modes can be realized as in the above embodiment. FIG. 21 is a schematic diagram, and FIG. 25 shows details of this modification. In the drive mechanism shown in FIG. 25, each light shielding plate 30 is reciprocally driven independently within a predetermined movable range (see the broken line arrow in FIG. 25) along a pair of arms 88 extending in the Y-axis direction. Such a drive mechanism that reciprocates the arm 88 can also be used as the drive mechanism of the light shielding plate 30 of the above embodiment.
 また、図22に示される変形例の駆動機構80Bのように、アクチュエータ84Bのナット84cが遮光板30を回転駆動するための回転モータ84dを有していても良い。回転モータ84dは、遮光板30を回転駆動し、ナット84cに固定された一対のストッパ84eに当接させることによって、遮光板30の位置決めを行う。本変形例では、上記実施形態の駆動機構80(図4(a)など参照)がリニアアクチュエータを一対有していたのに対し、リニアアクチュエータが1つのみで良く、構成が簡単である。 Further, like the drive mechanism 80B of the modification shown in FIG. 22, the nut 84c of the actuator 84B may have a rotation motor 84d for driving the light shielding plate 30 to rotate. The rotation motor 84d positions the light shielding plate 30 by rotating the light shielding plate 30 and bringing it into contact with a pair of stoppers 84e fixed to the nut 84c. In this modification, the drive mechanism 80 (see FIG. 4A, etc.) of the above embodiment has a pair of linear actuators, whereas only one linear actuator is required, and the configuration is simple.
 また、図23(a)に示される変形例の駆動機構80Cのように、遮光板30がアクチュエータ84Cのナット84cに対して軸84fを介して回転自在に支持されていても良い。駆動機構80Cは、開口Kに対する位置が固定の一対のピン84hを有しており、該一対のピン84hの一方に遮光板30を当接させた状態でナット84cをY軸方向に移動させることによって、遮光板30を回転させる(図23(b)参照)。また、ナット84cは、遮光板30を一対のストッパ84eのいずれかに押圧する板ばね84gを有しており、遮光板30は、常に一対のストッパ84eのいずれかに当接した状態が保たれる。本変形例では、遮光板30を回転駆動するアクチュエータが不要であり、駆動機構80Cの構成が簡単である。 Further, as in a modified drive mechanism 80C shown in FIG. 23A, the light shielding plate 30 may be rotatably supported via a shaft 84f with respect to the nut 84c of the actuator 84C. The drive mechanism 80C has a pair of pins 84h whose positions with respect to the opening K are fixed, and moves the nut 84c in the Y-axis direction with the light shielding plate 30 in contact with one of the pair of pins 84h. Thus, the light shielding plate 30 is rotated (see FIG. 23B). The nut 84c has a leaf spring 84g that presses the light shielding plate 30 against one of the pair of stoppers 84e, and the light shielding plate 30 is always kept in contact with one of the pair of stoppers 84e. It is. In the present modification, an actuator that rotationally drives the light shielding plate 30 is unnecessary, and the configuration of the drive mechanism 80C is simple.
 また、上記実施形態の遮光板30は、平面視矩形(長方形)に形成され、回転によって角度が変更されたが、遮光板の形状は、これに限定されない。すなわち、図24(a)に示される変形例の遮光板130のように、+X側に開口する平面視U字状(逆C字状)に形成されていても良い。遮光板130は、Y軸方向に延びる板状部材から成り、+Y側の端部が視野絞り20(図3参照)の開口Kを形成する端部のうち、+Y側の端部と平行に形成されている。また、遮光板130は、-Y側の端部が視野絞り20の開口Kを形成する端部のうち、-Y側の端部と平行に形成されている。また、遮光板130の+X側に開口した切り欠き132を形成するY軸方向に離間した一対の端部のうち、+Y側の端部は、視野絞り20の開口Kを形成する端部のうち、+Y側の端部と平行(すなわち遮光板130の+Y側の端部と平行)に形成されている。また、切り欠き132を形成するY軸方向に離間した一対の端部のうち、-Y側の端部は、視野絞り20の開口Kを形成する端部のうち、-Y側の端部と平行(すなわち遮光板130の-Y側の端部と平行)に形成されている。 Further, although the light shielding plate 30 of the above embodiment is formed in a rectangular shape (rectangular) in plan view and the angle is changed by rotation, the shape of the light shielding plate is not limited to this. That is, like the light shielding plate 130 of the modified example shown in FIG. 24A, it may be formed in a U shape (reverse C shape) in a plan view that opens to the + X side. The light shielding plate 130 is made of a plate-like member extending in the Y-axis direction, and the + Y side end portion is formed in parallel with the + Y side end portion of the end portions forming the aperture K of the field stop 20 (see FIG. 3). Has been. Further, the light shielding plate 130 is formed in parallel with the −Y side end portion of the end portions where the −Y side end portion forms the opening K of the field stop 20. Of the pair of end portions separated in the Y-axis direction that form the notch 132 that opens to the + X side of the light shielding plate 130, the + Y side end portion is the end portion that forms the opening K of the field stop 20. , And parallel to the + Y side end (that is, parallel to the + Y side end of the light shielding plate 130). Of the pair of end portions spaced apart in the Y-axis direction forming the notch 132, the −Y side end portion is the end portion forming the opening K of the field stop 20 and the −Y side end portion. They are formed in parallel (that is, parallel to the end of the light shielding plate 130 on the -Y side).
 図24(a)に示される変形例に係る遮光板130は、アクチュエータ86によってY軸方向に駆動される。これによって、図24(b)~図24(e)に示されるように、上記実施形態と同様に、第1~第4のモードを実現できる。なお、上記実施形態と同様に、開口Kのうち、露光光の光路を形成しない部分は、可動のブラインド装置60によって遮光される。本変形例によれば、1つのアクチュエータ86によって遮光板130を直進駆動するだけで第1~第4モードを実現できるので、構成が簡単である。 The light shielding plate 130 according to the modification shown in FIG. 24A is driven in the Y-axis direction by the actuator 86. Accordingly, as shown in FIGS. 24B to 24E, the first to fourth modes can be realized as in the above embodiment. As in the above embodiment, the portion of the opening K that does not form the optical path of the exposure light is shielded by the movable blind device 60. According to the present modification, the first to fourth modes can be realized only by linearly driving the light shielding plate 130 by the single actuator 86, so that the configuration is simple.
 また、上記実施形態では、視野絞り20と、板状部材から成る遮光板30との協働によって露光光の光路(開口K)が形成されたが、視野絞り20と協働して露光光の光路を形成する部材は、これに限られない。すなわち、図26に示されるように、光学フィルタ230a、230bを用いて開口Kの一部を遮光しても良い。光学フィルタ230aは、光の透過率が+Y側の端部から-Y側に向けて低くなるように設定されている。光学フィルタ230bは、光学フィルタ230aに対して紙面左右対称に構成されている。光学フィルタ230a、230bは、それぞれ独立にY軸方向の駆動可能になっており、露光光の遮光範囲、及び露光光の光路の位置を任意に設定できるようになっている。本変形例によっても、上記実施形態と同様の繋ぎ露光を行うことができる。なお、光学フィルタ230a、230bにおける遮光部(フィルタ部)を形成する微小なドットが基板P上に転写されないように、光学フィルタ230a、230bは、マスクM及び基板Pに対する共役面から光軸方向に幾分ずれた位置に配置すると良い。 In the above embodiment, the optical path (opening K) of the exposure light is formed by the cooperation of the field stop 20 and the light shielding plate 30 made of a plate-like member. The member that forms the optical path is not limited to this. That is, as shown in FIG. 26, a part of the opening K may be shielded from light using the optical filters 230a and 230b. The optical filter 230a is set so that the light transmittance decreases from the + Y side end toward the −Y side. The optical filter 230b is configured symmetrically on the paper surface with respect to the optical filter 230a. The optical filters 230a and 230b can be driven independently in the Y-axis direction, and the light shielding range of the exposure light and the position of the optical path of the exposure light can be arbitrarily set. Also according to this modification, splice exposure similar to that in the above embodiment can be performed. The optical filters 230a and 230b are arranged in the optical axis direction from the conjugate plane with respect to the mask M and the substrate P so that the minute dots forming the light shielding portions (filter portions) in the optical filters 230a and 230b are not transferred onto the substrate P. It is better to place it at a slightly shifted position.
 また、上記実施形態(及びその変形例)では、遮光板30を駆動する駆動機構として送りネジ装置を用いる場合を説明したが、駆動機構の構成は、これに限定されない。すなわち、遮光板30を駆動するためのアクチュエータとして、公知のシャフトモータなどを用いても良い。シャフトモータは、ひとつの固定子に対して複数の可動子を独立に駆動することができるので、図21に示される変形例のように、一対の遮光板30を独立に位置制御するタイプに好適である。また、アクチュエータとしては、リニアモータのような電磁モータ、あるいは超音波モータ、エアシリンダのような機械アクチュエータを用いても良い。 In the above-described embodiment (and its modifications), the case where the feed screw device is used as the drive mechanism for driving the light shielding plate 30 has been described, but the configuration of the drive mechanism is not limited to this. That is, a known shaft motor or the like may be used as an actuator for driving the light shielding plate 30. Since the shaft motor can independently drive a plurality of movers with respect to one stator, it is suitable for the type in which the position of the pair of light shielding plates 30 is independently controlled as in the modification shown in FIG. It is. Further, as the actuator, an electromagnetic motor such as a linear motor, or a mechanical actuator such as an ultrasonic motor or an air cylinder may be used.
 また、図21に示される変形例では、一対の遮光板30それぞれが独立したアクチュエータによって駆動されたが、アクチュエータの一部は共通であっても良い。すなわち、一対の遮光板30が共通の第1ステージ(粗動ステージ)上に載置され、且つ該第1ステージ上に一対の遮光板30それぞれの位置を独立に制御可能な第2ステージ(微動ステージ)が載置されるような構成であっても良い。 Further, in the modification shown in FIG. 21, each of the pair of light shielding plates 30 is driven by an independent actuator, but a part of the actuator may be common. In other words, the pair of light shielding plates 30 is placed on a common first stage (coarse movement stage), and the second stage (fine movement) capable of independently controlling the positions of the pair of light shielding plates 30 on the first stage. The stage may be configured to be placed.
 また、遮光板30を駆動するためのアクチュエータは、上記実施形態では、Y軸方向に沿って配置されたが、これに限られず、その他の方向(X軸方向、Z軸方向など)に沿って配置されても良い。 In the above embodiment, the actuator for driving the light shielding plate 30 is arranged along the Y-axis direction. However, the actuator is not limited to this, and along other directions (X-axis direction, Z-axis direction, etc.). It may be arranged.
 また、遮光板30、及びその駆動機構80は、基板P上に生成される投影領域(露光領域)を規定するために設けられたが、これに限られず、照明光学系ILのブラインド装置に上記実施形態と同様の構成の遮光板、及びその駆動機構を設けても良い。 Further, the light shielding plate 30 and its driving mechanism 80 are provided to define the projection area (exposure area) generated on the substrate P, but the present invention is not limited to this, and the blind device of the illumination optical system IL is not limited to the above. You may provide the light-shielding plate of the structure similar to embodiment, and its drive mechanism.
 また、遮光板30は、投影光学系PLを構成する投影光学モジュールに設けられたが、露光光ELの光路上であれば配置位置は特に限定されず、照明光学系ILなどに設けても良い。 Further, although the light shielding plate 30 is provided in the projection optical module constituting the projection optical system PL, the arrangement position is not particularly limited as long as it is on the optical path of the exposure light EL, and may be provided in the illumination optical system IL or the like. .
 また、上記実施形態において、遮光板30、及びその駆動機構80は、露光装置EXの一部を構成する装置であったが、これに限られず、遮光板30、及び駆動機構80(ドライバなどのソフトウェアを含む)を、遮光装置(可変視野絞り装置)として既存の露光装置に追加的に設けることも可能である。 In the above embodiment, the light shielding plate 30 and its driving mechanism 80 are devices that constitute a part of the exposure apparatus EX. However, the light shielding plate 30 and the driving mechanism 80 (such as a driver) are not limited thereto. It is also possible to additionally provide an existing exposure apparatus as a light-shielding device (variable field stop device).
 また、上記実施形態では、遮光板30を含む可変視野絞り装置によって、基板P上に形成される投影領域の位置及び形状を変更したが、これに限られず、マスクMと投影光学系PLとをY軸方向に相対移動可能に構成し、該マスクMと投影光学系PLとのY軸方向への相対移動によって、投影領域の位置及び形状を変更しても良い。 In the above embodiment, the position and shape of the projection region formed on the substrate P are changed by the variable field stop device including the light shielding plate 30. However, the present invention is not limited to this, and the mask M and the projection optical system PL are provided. It may be configured to be relatively movable in the Y-axis direction, and the position and shape of the projection region may be changed by relative movement of the mask M and the projection optical system PL in the Y-axis direction.
 また、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、Fレーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、例えばDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。 The illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). As the illumination light, for example, a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium). In addition, harmonics converted into ultraviolet light using a nonlinear optical crystal may be used. A solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
 また、投影光学系PLが複数本の投影光学モジュールを備えたマルチレンズ方式の投影光学系である場合について説明したが、投影光学モジュールの本数はこれに限らず、1本以上あれば良い。また、投影光学系PLとしては、拡大系、又は縮小系であっても良い。 Further, the case where the projection optical system PL is a multi-lens type projection optical system including a plurality of projection optical modules has been described, but the number of projection optical modules is not limited to this, and one or more projection optical modules may be used. Further, the projection optical system PL may be an enlargement system or a reduction system.
 また、露光装置の用途としては角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、例えば有機EL(Electro-Luminescence)パネル製造用の露光装置、半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも適用できる。 Further, the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern onto the square glass plate. For example, the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel, the semiconductor manufacture The present invention can also be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like. Moreover, in order to manufacture not only microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
 また、露光対象となる物体はガラスプレートに限られず、例えばウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、例えばフィルム状(可撓性を有するシート状の部材)のものも含まれる。なお、本実施形態の露光装置は、一辺の長さ、又は対角長が500mm以上の基板が露光対象物である場合に特に有効である。 The object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank. Moreover, when the exposure target is a substrate for a flat panel display, the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member). The exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
 液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。 For electronic devices such as liquid crystal display elements (or semiconductor elements), the step of designing the function and performance of the device, the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer) A lithography step for transferring a mask (reticle) pattern to a glass substrate by the exposure apparatus and the exposure method of each embodiment described above, a development step for developing the exposed glass substrate, and a portion where the resist remains. It is manufactured through an etching step for removing the exposed member of the portion by etching, a resist removing step for removing a resist that has become unnecessary after etching, a device assembly step, an inspection step, and the like. In this case, in the lithography step, the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
 なお、これまでの記載で引用した露光装置などに関する全ての公報(国際公開を含む)の開示を援用して本明細書の記載の一部とする。 It should be noted that the disclosure of all publications (including international publications) related to the exposure apparatus cited in the above description is incorporated into the description of this specification.
 以上説明したように、本発明の露光装置及び方法は、マスクのパターンを基板に露光するのに適している。また、本発明のフラットパネルディスプレイの製造方法及びデバイス製造方法は、それぞれフラットパネルディスプレイ、及びマイクロデバイスの製造に適している。また、本発明の遮光装置は、マスクのパターンを基板に露光するのに適している。 As described above, the exposure apparatus and method of the present invention are suitable for exposing a mask pattern onto a substrate. The flat panel display manufacturing method and device manufacturing method of the present invention are suitable for manufacturing flat panel displays and micro devices, respectively. The light-shielding device of the present invention is suitable for exposing a mask pattern onto a substrate.
 20…視野絞り、30…遮光板、50…投影領域、80…駆動機構、CONT…制御装置、EX…露光装置、K…開口、P…基板、PLa~PLg…投影光学モジュール。 20 ... Field stop, 30 ... Shading plate, 50 ... Projection area, 80 ... Drive mechanism, CONT ... Control device, EX ... Exposure device, K ... Aperture, P ... Substrate, PLa-PLg ... Projection optical module.

Claims (42)

  1.  所定パターンを物体に投影する投影光学系に対して、前記物体を第1方向に相対移動させて露光する露光装置であって、
     前記投影光学系を介して前記物体上に投影される投影領域のうち、前記第1方向の位置に応じて、前記物体上の照明量が前記第1方向に交差する前記第2方向に沿って変化する所定領域を遮光する遮光部と、
     前記遮光部を、前記照明量を変化させるように駆動する駆動部と、を備える露光装置。
    An exposure apparatus that performs exposure by relatively moving the object in a first direction with respect to a projection optical system that projects a predetermined pattern onto the object,
    Of the projection area projected onto the object via the projection optical system, the illumination amount on the object is along the second direction intersecting the first direction according to the position in the first direction. A light-shielding portion that shields a predetermined region that changes, and
    An exposure apparatus comprising: a drive unit that drives the light shielding unit to change the amount of illumination.
  2.  前記駆動部は、前記第2方向に関する前記所定領域の位置を変更するように、前記遮光部を駆動する請求項1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein the driving unit drives the light shielding unit so as to change a position of the predetermined region with respect to the second direction.
  3.  前記遮光部は、前記第2方向に関して、前記物体上の照明量が連続的に変化するように前記投影領域の一部を遮光する請求項1又は2に記載の露光装置。 3. The exposure apparatus according to claim 1, wherein the light shielding unit shields a part of the projection area so that an illumination amount on the object continuously changes in the second direction.
  4.  前記駆動部は、前記第1及び第2方向に交差する第3方向を軸として、前記遮光部を回転させる請求項1~3の何れか一項に記載の露光装置。 4. The exposure apparatus according to claim 1, wherein the driving unit rotates the light shielding unit around a third direction intersecting the first and second directions.
  5.  前記駆動部は、前記第3方向を軸とし、前記投影領域に対する前記遮光部の角度を切替えるように、前記遮光部を駆動する請求項4に記載の露光装置。 5. The exposure apparatus according to claim 4, wherein the driving unit drives the light shielding unit so as to switch an angle of the light shielding unit with respect to the projection region with the third direction as an axis.
  6.  前記駆動部は、前記遮光部を前記第2方向へ駆動する請求項1~5の何れか一項に記載の露光装置。 6. The exposure apparatus according to claim 1, wherein the driving unit drives the light shielding unit in the second direction.
  7.  前記遮光部は、前記第2方向に関して前記投影領域の端部を遮光する請求項1~6の何れか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 6, wherein the light shielding unit shields an end of the projection region with respect to the second direction.
  8.  前記物体を保持し、移動可能な移動体と、
     前記第2方向に関する前記遮光部の位置に応じて、前記第2方向への前記移動体の移動を制御する制御部と、を更に備える請求項1~7の何れか一項に記載の露光装置。
    A movable body that holds the object and is movable;
    The exposure apparatus according to claim 1, further comprising a control unit that controls movement of the moving body in the second direction according to a position of the light shielding unit with respect to the second direction. .
  9.  前記駆動部は、前記制御部により前記移動体が第2方向へ移動されると、前記投影領域の一端部を遮光する前記遮光部を、他端部を遮光するように駆動する請求項8に記載の露光装置。 9. The drive unit according to claim 8, wherein when the moving body is moved in the second direction by the control unit, the drive unit drives the light shielding unit that shields one end of the projection region to shield the other end. The exposure apparatus described.
  10.  前記制御部は、前記投影光学系により前記所定パターンのうち第1パターンが投影された前記物体上に、前記第1パターンと一部領域が重なる第2パターンが投影されるように、前記移動体を前記第2方向へ移動させる請求項8又は9に記載の露光装置。 The control unit is configured to project the second pattern on the object on which the first pattern of the predetermined pattern is projected by the projection optical system so that the second pattern partially overlaps the first pattern. The exposure apparatus according to claim 8, wherein the exposure apparatus is moved in the second direction.
  11.  前記遮光部は、前記一部領域である前記所定領域を遮光する請求項10に記載の露光装置。 The exposure apparatus according to claim 10, wherein the light shielding unit shields the predetermined area which is the partial area.
  12.  前記投影光学系は、前記第1方向に関して、複数設けられ、
     前記遮光部は、前記第1方向の異なる位置に設けられた前記投影光学系のそれぞれに設けられる請求項1~11の何れか一項に記載の露光装置。
    A plurality of the projection optical systems are provided in the first direction,
    The exposure apparatus according to any one of claims 1 to 11, wherein the light shielding unit is provided in each of the projection optical systems provided at different positions in the first direction.
  13.  前記第1方向の異なる位置に設けられた前記投影光学系は、前記第2方向に関して、前記投影領域が一部異なる請求項12に記載の露光装置。 13. The exposure apparatus according to claim 12, wherein the projection optical system provided at a different position in the first direction is partially different in the projection area in the second direction.
  14.  前記第1方向に複数設けられた前記投影光学系は、前記投影領域が重なる前記所定領域を照射する請求項12又は13に記載の露光装置。 14. The exposure apparatus according to claim 12, wherein a plurality of the projection optical systems provided in the first direction irradiate the predetermined area where the projection areas overlap.
  15.  前記物体は、フラットパネルディスプレイの製造に用いられる基板である請求項1~14の何れか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 14, wherein the object is a substrate used for manufacturing a flat panel display.
  16.  前記物体は、少なくとも一辺の長さ又は対角長が500mm以上である請求項1~15の何れか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 15, wherein the object has a length of at least one side or a diagonal length of 500 mm or more.
  17.  請求項15に記載の露光装置を用いて、前記基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Using the exposure apparatus of claim 15 to expose the substrate;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  18.  請求項1~16の何れか一項に記載の露光装置を用いて、前記基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Using the exposure apparatus according to any one of claims 1 to 16, exposing the substrate;
    Developing the exposed substrate. A device manufacturing method.
  19.  所定パターンを物体に投影する投影光学系に対して前記物体を第1方向に相対移動させて走査露光する露光装置に用いられる遮光装置であって、
     前記投影光学系を介して前記物体上に投影される投影領域のうち、前記第1方向の位置に応じて、前記物体上の照明量が前記第1方向に交差する前記第2方向に沿って変化する所定領域を遮光する遮光部と、
     前記遮光部を、前記照明量を変化させるように駆動する駆動部と、を備える遮光装置。
    A light-shielding device used in an exposure apparatus that scans and exposes the object by relatively moving the object in a first direction with respect to a projection optical system that projects a predetermined pattern onto the object,
    Of the projection area projected onto the object via the projection optical system, the illumination amount on the object is along the second direction intersecting the first direction according to the position in the first direction. A light-shielding portion that shields a predetermined region that changes, and
    A light-shielding device comprising: a drive unit that drives the light-shielding unit to change the amount of illumination.
  20.  前記駆動部は、前記第2方向に関する前記所定領域の位置を変更するように、前記遮光部を駆動する請求項19に記載の遮光装置。 20. The light shielding device according to claim 19, wherein the driving unit drives the light shielding unit so as to change a position of the predetermined region with respect to the second direction.
  21.  前記遮光部は、前記第2方向に関して、前記物体上の照明量が連続的に変化するように前記投影領域の一部を遮光する請求項19又は20に記載の遮光装置。 21. The light shielding device according to claim 19 or 20, wherein the light shielding unit shields a part of the projection region so that an illumination amount on the object continuously changes in the second direction.
  22.  前記駆動部は、前記第1及び第2方向に交差する第3方向を軸として、前記遮光部を回転させる請求項19~21の何れか一項に記載の遮光装置。 The light shielding device according to any one of claims 19 to 21, wherein the driving unit rotates the light shielding unit around a third direction intersecting the first and second directions.
  23.  前記駆動部は、前記第3方向を軸とし、前記投影領域に対する前記遮光部の角度を切替えるように駆動する請求項22に記載の遮光装置。 23. The light shielding device according to claim 22, wherein the driving unit is driven so as to switch an angle of the light shielding unit with respect to the projection region with the third direction as an axis.
  24.  前記駆動部は、前記遮光部を前記第2方向へ駆動する請求項19~23の何れか一項に記載の遮光装置。 The light shielding device according to any one of claims 19 to 23, wherein the driving unit drives the light shielding unit in the second direction.
  25.  前記遮光部は、前記第2方向に関して前記投影領域の一端部を遮光する請求項19~24の何れか一項に記載の遮光装置。 The light-shielding device according to any one of claims 19 to 24, wherein the light-shielding part shields one end of the projection region with respect to the second direction.
  26.  前記遮光部は、前記第2方向に関して前記投影領域の他端部を遮光する請求項25に記載の遮光装置。 26. The light-shielding device according to claim 25, wherein the light-shielding unit shields the other end of the projection region with respect to the second direction.
  27.  前記遮光部は、前記露光装置に着脱可能に設けられる請求項19~26の何れか一項に記載の遮光装置。 The light-shielding device according to any one of claims 19 to 26, wherein the light-shielding portion is detachably provided on the exposure apparatus.
  28.  前記遮光部は、前記投影光学系に着脱可能に設けられる請求項19~27の何れか一項に記載の遮光装置。 The light-shielding device according to any one of claims 19 to 27, wherein the light-shielding portion is detachably provided on the projection optical system.
  29.  所定パターンを物体に投影する投影光学系に対して前記物体を第1方向に相対移動させて走査露光する露光方法であって、
     前記投影光学系を介して前記物体上に投影される投影領域のうち、前記第1方向の位置に応じて、前記物体上の照明量が前記第1方向に交差する前記第2方向に沿って変化する所定領域を、遮光部によって遮光することと、
     前記遮光部を、前記照明量を変化させるように駆動することと、を含む露光方法。
    An exposure method for performing scanning exposure by relatively moving the object in a first direction with respect to a projection optical system that projects a predetermined pattern onto the object,
    Of the projection area projected onto the object via the projection optical system, the illumination amount on the object is along the second direction intersecting the first direction according to the position in the first direction. Shielding the predetermined area to be changed by the light shielding portion;
    Driving the light-shielding portion to change the amount of illumination.
  30.  前記駆動することでは、前記遮光部を駆動し、前記第2方向に関する前記所定領域の位置を変更する請求項29に記載の露光方法。 30. The exposure method according to claim 29, wherein in the driving, the light shielding unit is driven to change a position of the predetermined area in the second direction.
  31.  前記遮光することでは、前記第2方向に関して、前記物体上の照明量が連続的に変化するように前記投影領域の一部を遮光する請求項29又は30に記載の露光方法。 31. The exposure method according to claim 29 or 30, wherein in the shielding, a part of the projection area is shielded so that an illumination amount on the object continuously changes in the second direction.
  32.  前記駆動することでは、前記第1及び第2方向に交差する第3方向を軸として、前記遮光部を回転させる請求項29~31の何れか一項に記載の露光方法。 The exposure method according to any one of claims 29 to 31, wherein in the driving, the light shielding portion is rotated around a third direction intersecting the first and second directions.
  33.  前記駆動することでは、前記第3方向を軸とし、前記投影領域に対する前記遮光部の角度を切替えるように駆動する請求項32に記載の露光方法。 33. The exposure method according to claim 32, wherein the driving is performed so that the angle of the light shielding portion with respect to the projection region is switched with the third direction as an axis.
  34.  前記駆動することでは、前記遮光部を前記第2方向へ駆動する請求項29~33の何れか一項に記載の露光方法。 The exposure method according to any one of claims 29 to 33, wherein in the driving, the light shielding portion is driven in the second direction.
  35.  前記遮光することでは、前記第2方向に関して前記投影領域の端部を遮光する請求項29~34の何れか一項に記載の露光方法。 The exposure method according to any one of claims 29 to 34, wherein in the shielding, the end of the projection region is shielded with respect to the second direction.
  36.  前記物体を保持する移動体を、前記第2方向に関する前記遮光部の位置に応じて、前記第2方向へ移動することと、を更に含む請求項29~35の何れか一項に記載の露光方法。 The exposure according to any one of claims 29 to 35, further comprising: moving a moving body that holds the object in the second direction according to a position of the light shielding unit with respect to the second direction. Method.
  37.  前記駆動することで、前記移動体が前記第2方向へ移動されると、前記投影領域の一端部を遮光する前記遮光部を、他端部を遮光するように駆動する請求項36に記載の露光方法。 37. The driving unit according to claim 36, wherein when the movable body is moved in the second direction by the driving, the light shielding unit that shields one end portion of the projection region is driven so as to shield the other end portion. Exposure method.
  38.  前記移動することでは、前記投影光学系により前記所定パターンのうち第1パターンが投影された前記物体上に、前記第1パターンと一部領域が重なる第2パターンが投影されるように、前記移動体を前記第2方向へ移動する請求項36又は37に記載の露光方法。 In the movement, the movement is performed so that a second pattern in which a part of the first pattern overlaps the first pattern is projected onto the object on which the first pattern of the predetermined pattern is projected by the projection optical system. 38. The exposure method according to claim 36 or 37, wherein a body is moved in the second direction.
  39.  前記遮光することでは、前記一部領域である前記所定領域を遮光する請求項38に記載の露光方法。 39. The exposure method according to claim 38, wherein the shading shields the predetermined area as the partial area.
  40.  請求項29~39の何れか一項に記載の露光方法を用いて前記基板を露光することと、
     露光された前記基板を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing the substrate using the exposure method according to any one of claims 29 to 39;
    Developing the exposed substrate. A method of manufacturing a flat panel display.
  41.  前記基板は、少なくとも一辺の長さ又は対角長が500mm以上の基板である請求項40に記載のフラットパネルディスプレイの製造方法。 The method for manufacturing a flat panel display according to claim 40, wherein the substrate is a substrate having a length of at least one side or a diagonal length of 500 mm or more.
  42.  請求項29~39の何れか一項に記載の露光方法を用いて前記基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate using the exposure method according to any one of claims 29 to 39;
    Developing the exposed substrate. A device manufacturing method.
PCT/JP2017/007186 2016-02-29 2017-02-24 Exposure device, flat panel display manufacturing method, device manufacturing method, light blocking device and exposure method WO2017150388A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018503111A JPWO2017150388A1 (en) 2016-02-29 2017-02-24 Exposure apparatus, flat panel display manufacturing method, device manufacturing method, shading apparatus, and exposure method
KR1020217006121A KR102538199B1 (en) 2016-02-29 2017-02-24 Exposure device, flat panel display manufacturing method, device manufacturing method, light blocking device and exposure method
KR1020187022525A KR102223791B1 (en) 2016-02-29 2017-02-24 Exposure apparatus, manufacturing method of flat panel display, device manufacturing method, light shielding apparatus, and exposure method
CN201780012572.3A CN108700825B (en) 2016-02-29 2017-02-24 Exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, light shielding apparatus, and exposure method
HK18116076.3A HK1256939A1 (en) 2016-02-29 2018-12-14 Exposure device, flat panel display manufacturing method, device manufacturing method, light blocking device and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016037099 2016-02-29
JP2016-037099 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150388A1 true WO2017150388A1 (en) 2017-09-08

Family

ID=59742985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007186 WO2017150388A1 (en) 2016-02-29 2017-02-24 Exposure device, flat panel display manufacturing method, device manufacturing method, light blocking device and exposure method

Country Status (6)

Country Link
JP (3) JPWO2017150388A1 (en)
KR (2) KR102538199B1 (en)
CN (1) CN108700825B (en)
HK (1) HK1256939A1 (en)
TW (3) TWI815055B (en)
WO (1) WO2017150388A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330220A (en) * 1995-06-02 1996-12-13 Nikon Corp Scanning exposure device
JP2003151880A (en) * 2001-11-12 2003-05-23 Nikon Corp Projection aligner, exposure method, and device- manufacturing method
JP2004335864A (en) * 2003-05-09 2004-11-25 Nikon Corp Aligner and exposure method
WO2009088004A1 (en) * 2008-01-09 2009-07-16 Nikon Corporation Exposure method and exposure device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044099A (en) * 1999-07-26 2001-02-16 Nikon Corp Aligner and exposure method
JP2001201867A (en) * 2000-01-21 2001-07-27 Nikon Corp Exposure method, aligner and device manufacturing method
KR101240130B1 (en) * 2005-01-25 2013-03-07 가부시키가이샤 니콘 Exposure device, exposure method, and micro device manufacturing method
WO2007055199A1 (en) * 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus and method, and method for manufacturing device
WO2007066679A1 (en) * 2005-12-06 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device manufacturing method
TW200846626A (en) * 2007-03-08 2008-12-01 Nikon Corp Position measurement module, position measurement apparatus, stage apparatus, exposure apparatus, and method for manufacturing decive
JP5105155B2 (en) * 2007-07-13 2012-12-19 Nskテクノロジー株式会社 Exposure apparatus and exposure method
JPWO2009128488A1 (en) * 2008-04-17 2011-08-04 株式会社ニコン Illumination apparatus, exposure apparatus, and device manufacturing method
JP5392549B2 (en) * 2009-05-12 2014-01-22 株式会社ニコン Exposure method and apparatus, and device manufacturing method
JP2011248125A (en) * 2010-05-27 2011-12-08 Nikon Corp Exposure method, exposure device, mask and device manufacturing method
JP5836848B2 (en) * 2012-03-06 2015-12-24 東京エレクトロン株式会社 Auxiliary exposure equipment
JP2013238670A (en) * 2012-05-11 2013-11-28 Canon Inc Exposure apparatus, exposure method, method for manufacturing device, and aperture plate
JP6243616B2 (en) * 2013-03-26 2017-12-06 キヤノン株式会社 Exposure apparatus and article manufacturing method
JP6380728B2 (en) * 2013-11-25 2018-08-29 株式会社ニコン Projection scanning exposure method and device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330220A (en) * 1995-06-02 1996-12-13 Nikon Corp Scanning exposure device
JP2003151880A (en) * 2001-11-12 2003-05-23 Nikon Corp Projection aligner, exposure method, and device- manufacturing method
JP2004335864A (en) * 2003-05-09 2004-11-25 Nikon Corp Aligner and exposure method
WO2009088004A1 (en) * 2008-01-09 2009-07-16 Nikon Corporation Exposure method and exposure device

Also Published As

Publication number Publication date
JP2022106891A (en) 2022-07-20
KR20180100405A (en) 2018-09-10
KR20210025719A (en) 2021-03-09
CN108700825B (en) 2021-07-23
CN108700825A (en) 2018-10-23
TW202115508A (en) 2021-04-16
TW201935144A (en) 2019-09-01
JP7347578B2 (en) 2023-09-20
KR102223791B1 (en) 2021-03-05
TWI711893B (en) 2020-12-01
TWI663482B (en) 2019-06-21
TW201800867A (en) 2018-01-01
HK1256939A1 (en) 2019-10-04
KR102538199B1 (en) 2023-05-30
TWI815055B (en) 2023-09-11
JP2020173465A (en) 2020-10-22
JPWO2017150388A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
EP1993120A1 (en) Exposure method and apparatus, and device manufacturing method
US8023103B2 (en) Exposure apparatus, exposure method, and method for producing device
WO1999066370A1 (en) Method for producing mask
EP2037488A1 (en) Pattern formation method, pattern formation device, exposure method, exposure device, and device manufacturing method
JP2006235533A (en) Exposure device and method for manufacturing micro device
US8917378B2 (en) Exposure method, exposure apparatus, and method for producing device with plurality of projection optical systems and pattern having first partial pattern area and second partial area having overlaid area with first partial pattern area
US20090002676A1 (en) Lithographic apparatus
KR20030006953A (en) Lithographic Apparatus, Device Manufacturing Method, and Device Manufactured Thereby
JP3782774B2 (en) Piezoelectric actuator, lithographic apparatus, and device manufacturing method
US7148948B2 (en) Scanning exposure apparatus, and device manufacturing method
JP3708075B2 (en) Lithographic apparatus and device manufacturing method
US8164739B2 (en) Controlling fluctuations in pointing, positioning, size or divergence errors of a beam of light for optical apparatus
JP5505685B2 (en) Projection optical system, and exposure method and apparatus
JP2004153096A (en) Aligner
JP7347578B2 (en) Exposure equipment, flat panel display manufacturing method, and device manufacturing method
JP2009253048A (en) Optical system, exposure apparatus and method of manufacturing electronic device
JP2010272631A (en) Lighting apparatus, exposure apparatus, and device manufacturing method
JP2011086708A (en) Diaphragm device, optical system, exposure device, and method of manufacturing electronic device
JP2000058422A (en) Aligner
EP1324138A2 (en) Lithographic apparatus and device manufacturing method
JP2012033924A (en) Exposure apparatus, and method for manufacturing device
JP2009059893A (en) Exposure method and device, and method of manufacturing the same
JP2012234110A (en) Exposure apparatus and device manufacturing method using the same
JP2010238832A (en) Lighting system, exposure apparatus, and method of manufacturing device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503111

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187022525

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022525

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759854

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759854

Country of ref document: EP

Kind code of ref document: A1