WO2017150295A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2017150295A1
WO2017150295A1 PCT/JP2017/006549 JP2017006549W WO2017150295A1 WO 2017150295 A1 WO2017150295 A1 WO 2017150295A1 JP 2017006549 W JP2017006549 W JP 2017006549W WO 2017150295 A1 WO2017150295 A1 WO 2017150295A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
photodiode
contact hole
electrode
conversion device
Prior art date
Application number
PCT/JP2017/006549
Other languages
English (en)
French (fr)
Inventor
一篤 伊東
誠二 金子
庸輔 神崎
貴翁 斉藤
宮本 忠芳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/770,742 priority Critical patent/US10355040B2/en
Priority to CN201780003629.3A priority patent/CN108701701A/zh
Publication of WO2017150295A1 publication Critical patent/WO2017150295A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/117Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the bulk effect radiation detector type, e.g. Ge-Li compensated PIN gamma-ray detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type

Definitions

  • the present invention relates to a photoelectric conversion device.
  • Patent Document 1 discloses an example of a photoelectric conversion device.
  • JP 2010-67662 A (published on March 25, 2010)
  • FIG. 7 is a cross-sectional view showing an example of a photoelectric conversion device according to the prior art.
  • the source electrode 4 of the oxide semiconductor layer 5 (thin film transistor) and the lower electrode 91 of the photodiode 9 are connected immediately below the photodiode 9 that is a PIN diode.
  • the contact hole is drilled.
  • the off-leak current of the photodiode 9 is increased.
  • FIG. 8 is an enlarged cross-sectional view showing an example of a photodiode according to the prior art.
  • FIG. 9 is a graph showing an example of characteristics of a photodiode according to the related art.
  • the film thickness of the photoelectric conversion layer 92 is smaller than that of the flat portion of the lower electrode 91, and the n + layer 921 in the photoelectric conversion layer 92 is broken. Cutting is likely to occur, and cracks (cracks) occur in the i layer 922.
  • the current due to the reverse bias voltage with respect to the photodiode 9 increases, and the off-leak current of the photodiode 9 increases as shown in FIG.
  • the present invention has been made in view of the above problems, and an object thereof is to reduce the off-leak current of a photodiode in a photoelectric conversion device.
  • a photoelectric conversion device includes a thin film transistor formed over a substrate, a first insulating layer stacked over the thin film transistor, an upper electrode, and a lower electrode. And a photodiode provided with a photoelectric conversion layer therebetween, and a lower electrode of the photodiode is connected to a drain electrode of the thin film transistor through a first contact hole formed in the first insulating layer The photoelectric conversion layer is not provided immediately above the first contact hole.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1.
  • FIG. 3 is an enlarged view of FIG. 2. It is a graph which shows the example of a characteristic of the photodiode concerning Embodiment 1 of this invention.
  • FIG. 8 is an enlarged view of FIG. 7. It is a graph which shows the example of a characteristic of the photodiode concerning a prior art.
  • Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIGS.
  • FIG. 1 is a plan view showing a configuration of an array substrate used in the photoelectric conversion apparatus 100 according to the present embodiment.
  • a plurality of gate electrodes 2 and a plurality of source electrodes (drain electrodes) 4 are formed.
  • the plurality of gate electrodes 2 and the plurality of source electrodes 4 are respectively provided in parallel.
  • the gate electrode 2 is formed extending in the horizontal direction
  • the source electrode 4 is formed extending in the vertical direction.
  • the gate electrode 2 and the source electrode 4 are formed so as to cross each other through a gate insulating film 3 (not shown in FIG. 1, refer to FIG. 2).
  • the oxide semiconductor layer 5 is provided immediately above the gate electrode 2.
  • the photodiode 9 is a PIN diode, is disposed between the adjacent source electrodes 4, and is provided on the oxide semiconductor layer 5.
  • the photodiode 9 includes a lower electrode 91.
  • the source electrode 13 is formed so as to pass over the photodiode 9.
  • the source electrodes 13 are disposed between the source electrodes 4 of the adjacent oxide semiconductor layers 5 (particularly, at the center between the adjacent source electrodes 4).
  • the source electrode 13 and the source electrode 4 are disposed so as to be substantially parallel to each other.
  • the contact hole is an opening formed in the insulating film in order to connect the layer in which the element is formed and the layer for wiring.
  • the contact hole (first contact hole) 21 is provided to connect the source electrode 4 and the lower electrode 91.
  • the gap 22 is a portion where the photoelectric conversion layer 92 of the photodiode 9 is not provided.
  • the contact hole (second contact hole) 23 is provided to connect the upper electrode of the photodiode 9 and the source electrode 13.
  • the contact holes 21 and 23 are arranged inside the photodiode 9 (near the center).
  • a contact hole 21 is formed in the center between the source electrodes 4 of adjacent oxide semiconductor layers 5.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.
  • the photoelectric conversion device 100 includes a substrate 1, a gate electrode 2, a gate insulating film 3, a source electrode 4, an oxide semiconductor layer 5, a passivation film (first insulating layer) 6, a planarizing film ( A first insulating layer 7, a photodiode 9, a SiNx insulating film (second insulating layer) 11, a planarization film (second insulating layer) 12, and a source electrode 13.
  • the photodiode 9 includes a lower electrode 91, a photoelectric conversion layer 92, and an upper electrode 93.
  • the substrate 1 is a transparent insulating glass substrate.
  • the gate electrode 2 is formed on the substrate 1.
  • the gate insulating film 3 is formed on the substrate 1 and the gate electrode 2.
  • the source electrode 4 is formed on the gate insulating film 3.
  • a contact hole (not shown) is formed in the gate insulating film 3 to connect the gate electrode 2 and the source electrode 4.
  • the oxide semiconductor layer 5 is a thin film transistor and is formed on the substrate 1, and in particular, is formed directly on the gate electrode 2 with the gate insulating film 3 interposed therebetween.
  • the passivation film 6 and the planarization film 7 are stacked on the oxide semiconductor layer 5. Specifically, the passivation film 6 is formed on the gate insulating film 3, the source electrode 4, and the oxide semiconductor layer 5.
  • the planarizing film 7 is formed on the passivation film 6.
  • the lower electrode 91 of the photodiode 9 is connected to the source electrode 4 of the oxide semiconductor layer 5 through the contact holes 20 and 21 formed in the passivation film 6 and the planarization film 7.
  • the photodiode 9 has a structure in which a photoelectric conversion layer 92 is provided between the upper electrode 93 and the lower electrode 91.
  • the lower electrode 91 is formed on the source electrode 4 exposed by the contact holes 20 and 21.
  • the photoelectric conversion layer 92 is formed on the lower electrode 91.
  • the upper electrode 93 is an IZO electrode and is formed on the photoelectric conversion layer 92.
  • the SiNx insulating film 11 and the planarizing film 12 are stacked on the photodiode 9. Specifically, the SiNx insulating film 11 is continuously formed on the lower electrode 91 and the upper electrode 93. The planarizing film 12 is formed on the SiNx insulating film 11.
  • the upper electrode 93 of the photodiode 9 is connected to the source electrode 13 of the photodiode 9 through the contact hole 23 formed in the SiNx insulating film 11 and the planarizing film 12.
  • the source electrode 13 is formed on the upper electrode 93 exposed through the contact hole 23. In other words, the contact hole 23 is formed immediately below the source electrode 13.
  • FIG. 3 is an enlarged view of FIG.
  • the photoelectric conversion layer of the photodiode 9 is not provided immediately above the contact hole 21, and is a gap 22. That is, in FIG. 3, since there is no inclined portion in the photoelectric conversion layer 92 according to the prior art shown in FIG. 8, there is no portion where the film thickness of the photoelectric conversion layer 92 is smaller than that of the flat portion. Therefore, the current due to the reverse bias voltage does not increase.
  • FIG. 4 is a graph showing a characteristic example of the photodiode 9 according to the present embodiment.
  • the horizontal axis Va indicates the voltage applied to the lower electrode 91 and the upper electrode 93 of the photodiode 9
  • the vertical axis Ia indicates the current flowing through the photodiode 9.
  • I photo indicates an example of characteristics when the photodiode 9 is irradiated with light having a predetermined illuminance (for example, 2000 [lx])
  • I dark indicates characteristics when the photodiode 9 is not irradiated with light. An example is shown.
  • FIG. 4 shows that the off-leakage current is reduced as compared with the characteristic example of the photodiode 9 according to the prior art shown in FIG.
  • the off-leak current in the photodiode 9 can be reduced by providing the gap 22 so that the photodiode 9 does not exist immediately above the contact hole 21.
  • the fill factor (an index indicating the performance of the photodiode) of the photodiode 9 is ensured by forming the contact hole 21 immediately below the source electrode 13. Can do. In other words, since the source electrode 13 that blocks light is formed immediately above the contact hole 21 in which the photoelectric conversion layer is not provided, the light is easy to hit, which is efficient.
  • the parasitic capacitance between the source electrode 4 and the source electrode 13 can be reduced by forming the contact hole 21 and the source electrode 13 at the center of the adjacent source electrode 4.
  • Embodiment 2 of the present invention will be described in detail with reference to FIG.
  • members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 5A is a plan view showing the configuration of the array substrate used in the photoelectric conversion device 101 according to this embodiment. As shown in FIG. 5A, in the photoelectric conversion device 101, the contact hole 21 is disposed around the photodiode 9.
  • FIG. 5B is a plan view showing the configuration of the array substrate used in the photoelectric conversion device 102 according to this embodiment. As shown in FIG. 5B, in the photoelectric conversion device 101, the contact hole 21 is disposed at the corner portion of the photodiode 9.
  • Embodiment 3 of the present invention will be described in detail with reference to FIG.
  • members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 6 is a plan view showing the configuration of the array substrate used in the photoelectric conversion device 103 according to this embodiment.
  • the gap 22 on the contact hole 21 protrudes from the source electrode 13.
  • the photoelectric conversion layer 92 (not shown in FIG. 6, refer to FIG. 2). There is an effect that the area that the light hits can be increased.
  • a photoelectric conversion device 100 includes a thin film transistor (oxide semiconductor layer 5) formed over a substrate 1, and a first insulating layer (passivation film 6, planarization film) stacked over the thin film transistor. 7) and a photodiode 9 in which a photoelectric conversion layer 92 is provided between the upper electrode 93 and the lower electrode 91, and a first contact hole (contact hole 21) formed in the first insulating layer.
  • the lower electrode of the photodiode is connected to the drain electrode (source electrode 4) of the thin film transistor, and the photoelectric conversion layer is not provided immediately above the first contact hole.
  • the off-leak current of the photodiode can be reduced in the photoelectric conversion device.
  • the source electrode (13) of the photodiode may be formed immediately above the first contact hole.
  • the first contact hole and the source electrode of the photodiode may be formed in the center between the drain electrodes of the adjacent thin film transistors.
  • the parasitic capacitance between the drain electrode of the thin film transistor and the source electrode of the photodiode can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

光電変換装置においてフォトダイオードのオフリーク電流を低減する。基板(1)上に形成された酸化物半導体層(5)と、酸化物半導体層上に積層されたパッシベーション膜(6)及び平坦化膜(7)と、下部電極(91)、光電変換層(92)、上部電極(93)からなるフォトダイオード(9)と、を備え、パッシベーション膜及び平坦化膜に形成されたコンタクトホール(21)を介して、ソース電極(4)に下部電極が接続され、コンタクトホールの直上には光電変換層がない光電変換装置(100)。

Description

光電変換装置
 本発明は、光電変換装置に関する。
 従来、X線センサや光センサとして、光電変換装置が利用されている。特許文献1には、光電変換装置の一例が開示されている。
日本国公開特許公報「特開2010-67762号公報(2010年3月25日公開)」
 図7は、従来技術に係る光電変換装置の一例を示す断面図である。図7に示すように、光電変換装置110では、PINダイオードであるフォトダイオード9の直下に、酸化物半導体層5(薄膜トランジスタ)のソース電極4と、フォトダイオード9の下部電極91とを接続するためのコンタクトホールが穿設される。上記のような構造を有する光電変換装置において、フォトダイオード9のオフリーク電流が大きくなるという問題がある。
 その原因を、図8、9を用いて、説明する。図8は、従来技術に係るフォトダイオードの一例を示す拡大断面図である。図9は、従来技術に係るフォトダイオードの特性例を示すグラフである。図8に示すように、下部電極91の傾斜部において、光電変換層92の膜厚が下部電極91の平坦部と比較して小さくなり、また、光電変換層92のうち、n+層921の断切れが発生しやすくなり、さらに、i層922においてクラック(ひび割れ)が生じる。その結果、フォトダイオード9に対する逆バイアス電圧による電流が大きくなり、図9に示すように、フォトダイオード9のオフリーク電流が大きくなってしまう。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、光電変換装置においてフォトダイオードのオフリーク電流を低減することにある。
 上記の課題を解決するために、本発明の一態様に係る光電変換装置は、基板上に形成された薄膜トランジスタと、上記薄膜トランジスタ上に積層された第1の絶縁層と、上部電極と下部電極との間に光電変換層が設けられたフォトダイオードと、を備え、上記第1の絶縁層に形成された第1のコンタクトホールを介して、上記薄膜トランジスタのドレイン電極に上記フォトダイオードの下部電極が接続され、上記第1のコンタクトホールの直上には、上記光電変換層が設けられていない。
 本発明の一態様によれば、光電変換装置においてフォトダイオードのオフリーク電流を低減することができるという効果を奏する。
本発明の実施形態1に係る光電変換装置に用いられるアレイ基板の構成を示す平面図である。 図1のA-A’断面図である。 図2の拡大図である。 本発明の実施形態1に係るフォトダイオードの特性例を示すグラフである。 本発明の実施形態2に係る光電変換装置に用いられるアレイ基板の構成を示す平面図である。 本発明の実施形態3に係る光電変換装置に用いられるアレイ基板の構成を示す平面図である。 従来技術に係る光電変換装置の一例を示す断面図である。 図7の拡大図である。 従来技術に係るフォトダイオードの特性例を示すグラフである。
 〔実施形態1〕
 以下、本発明の実施形態1について、図1から図4を用いて詳細に説明する。
 図1は、本実施形態に係る光電変換装置100に用いられるアレイ基板の構成を示す平面図である。図1に示すように、複数のゲート電極2と、複数のソース電極(ドレイン電極)4とが形成されている。複数のゲート電極2、および、複数のソース電極4は、それぞれ平行に設けられている。ゲート電極2は横方向に延在して形成され、ソース電極4は縦方向に延在して形成されている。ゲート電極2と、ソース電極4とは、ゲート絶縁膜3(図1において図示せず、図2参照)を介して互いに交差するように形成されている。
 酸化物半導体層5は、ゲート電極2の直上に設けられている。フォトダイオード9は、PINダイオードであり、隣接するソース電極4間に配置され、酸化物半導体層5の上に設けられている。フォトダイオード9は、下部電極91を備えている。
 ソース電極13は、フォトダイオード9上を通過するように形成される。ソース電極13は、隣接する酸化物半導体層5のソース電極4間(特に、隣接するソース電極4間の中央)に配置されている。ソース電極13と、ソース電極4とは、互いに略平行となるように配設されている。
 コンタクトホールは、素子が形成された層と、配線のための層とを接続するために、絶縁膜に穿たれた開口部である。コンタクトホール(第1のコンタクトホール)21は、ソース電極4と、下部電極91とを接続するために設けられる。空隙部22は、フォトダイオード9の光電変換層92を設けない部分である。コンタクトホール(第2のコンタクトホール)23は、フォトダイオード9の上部電極と、ソース電極13とを接続するために設けられる。光電変換装置100において、コンタクトホール21、および、23は、フォトダイオード9の内部(中央部付近)に配置される。隣接する酸化物半導体層5のソース電極4間の中央に、コンタクトホール21が形成される。
 図2は、図1のA-A’断面図である。図2に示すように、光電変換装置100は、基板1、ゲート電極2、ゲート絶縁膜3、ソース電極4、酸化物半導体層5、パッシベーション膜(第1の絶縁層)6、平坦化膜(第1の絶縁層)7、フォトダイオード9、SiNx絶縁膜(第2の絶縁層)11、平坦化膜(第2の絶縁層)12、および、ソース電極13を備えている。フォトダイオード9は、下部電極91、光電変換層92、および、上部電極93を備えている。
 基板1は、透明な絶縁性のガラス基板である。ゲート電極2は、基板1の上に形成されている。ゲート絶縁膜3は、基板1およびゲート電極2の上に形成されている。ソース電極4は、ゲート絶縁膜3の上に形成されている。ゲート電極2と、ソース電極4とを接続するために、ゲート絶縁膜3にコンタクトホール(図示せず)が形成されている。
 酸化物半導体層5は、薄膜トランジスタであり、基板1上に形成され、特に、ゲート絶縁膜3を介してゲート電極2の直上に形成されている。パッシベーション膜6、および、平坦化膜7は、酸化物半導体層5の上に積層されている。詳細には、パッシベーション膜6は、ゲート絶縁膜3、ソース電極4、および、酸化物半導体層5の上に形成されている。そして、平坦化膜7は、パッシベーション膜6の上に形成されている。
 パッシベーション膜6、および、平坦化膜7に形成されたコンタクトホール20、および、21を介して、酸化物半導体層5のソース電極4に、フォトダイオード9の下部電極91が接続されている。
 フォトダイオード9は、上部電極93と、下部電極91との間に光電変換層92が設けられた構造になっている。下部電極91は、コンタクトホール20、21により露出されたソース電極4の上に形成されている。光電変換層92は、下部電極91の上に形成されている。上部電極93は、IZO電極であり、光電変換層92の上に形成されている。
 SiNx絶縁膜11、および、平坦化膜12は、フォトダイオード9の上に積層されている。詳細には、SiNx絶縁膜11は、下部電極91、および、上部電極93の上に連続的に形成されている。そして、平坦化膜12は、SiNx絶縁膜11の上に形成されている。
 SiNx絶縁膜11、および、平坦化膜12に形成されたコンタクトホール23を介して、フォトダイオード9のソース電極13にフォトダイオード9の上部電極93が接続されている。ソース電極13は、コンタクトホール23により露出された上部電極93の上に形成されている。換言すれば、ソース電極13の直下にコンタクトホール23が形成されている。
 図3は、図2の拡大図である。図3に示すように、コンタクトホール21の直上には、フォトダイオード9の光電変換層が設けられておらず、空隙部22になっている。すなわち、図3においては、図8に示す、従来技術に係る光電変換層92における傾斜部がないので、光電変換層92の膜厚が平坦部と比較して小さくなる箇所はない。従って、逆バイアス電圧による電流が大きくなることはない。
 図4は、本実施形態に係るフォトダイオード9の特性例を示すグラフである。図4において、横軸Vaはフォトダイオード9の下部電極91および上部電極93に印加される電圧を示し、縦軸Iaはフォトダイオード9に流れる電流を示す。また、「I photo」はフォトダイオード9に所定の照度(例えば、2000[lx])の光を照射した場合の特性例を示し、「I dark」はフォトダイオード9に光を照射しない場合の特性例を示す。
 図4においては、図8に示す、従来技術に係るフォトダイオード9の特性例と比較すると、オフリーク電流が低減されていることが分かる。
 〔実施形態1の効果〕
 上記の構成によれば、コンタクトホール21の直上にフォトダイオード9がないように空隙部22を設けることにより、フォトダイオード9におけるオフリーク電流を低減することができる。
 次に、フォトダイオード9上部のソース電極13を形成する場合、ソース電極13の直下にコンタクトホール21を形成することにより、フォトダイオード9のフィルファクター(フォトダイオードの性能を表す指標)を確保することができる。換言すれば、光電変換層が設けられていないコンタクトホール21の直上に、光を遮るソース電極13が形成されるため、光が当たりやすくなるので、効率的である。
 そして、コンタクトホール21、および、ソース電極13を、隣接するソース電極4の中央に形成することにより、ソース電極4と、ソース電極13との寄生容量を低減することができる。
 〔実施形態2〕
 本発明の実施形態2について、図5を用いて詳細に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図5(a)は、本実施形態に係る光電変換装置101に用いられるアレイ基板の構成を示す平面図である。図5(a)に示すように、光電変換装置101において、コンタクトホール21は、フォトダイオード9の周辺に配置されている。
 図5(b)は、本実施形態に係る光電変換装置102に用いられるアレイ基板の構成を示す平面図である。図5(b)に示すように、光電変換装置101において、コンタクトホール21は、フォトダイオード9のコーナー部に配置されている。
 〔実施形態3〕
 本発明の実施形態3について、図6を用いて詳細に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図6は、本実施形態に係る光電変換装置103に用いられるアレイ基板の構成を示す平面図である。図6に示すように、光電変換装置103を平面として上方から見た場合に、コンタクトホール21上の空隙部22がソース電極13からはみ出している。上記の構成であっても、コンタクトホール21上の空隙部22と、ソース電極13とが部分的にオーバーラップしていれば、光電変換層92(図6において図示せず、図2参照)において光が当たる面積を大きくすることができるという効果を奏する。
 〔まとめ〕
 本発明の態様1に係る光電変換装置100は、基板1上に形成された薄膜トランジスタ(酸化物半導体層5)と、上記薄膜トランジスタ上に積層された第1の絶縁層(パッシベーション膜6、平坦化膜7)と、上部電極93と下部電極91との間に光電変換層92が設けられたフォトダイオード9と、を備え、上記第1の絶縁層に形成された第1のコンタクトホール(コンタクトホール21)を介して、上記薄膜トランジスタのドレイン電極(ソース電極4)に上記フォトダイオードの下部電極が接続され、上記第1のコンタクトホールの直上には、上記光電変換層が設けられていない。
 上記の構成によれば、光電変換装置においてフォトダイオードのオフリーク電流を低減することができる。
 本発明の態様2に係る光電変換装置は、上記態様1において、上記第1のコンタクトホールの直上に、上記フォトダイオードのソース電極(13)が形成されてもよい。
 上記の構成によれば、光電変換層が設けられていない第1のコンタクトホールの直上に、光を遮るソース電極を形成することにより、光が当たりやすくなるので、効率的な配置になる。
 本発明の態様3に係る光電変換装置は、上記態様2において、隣接する上記薄膜トランジスタのドレイン電極間の中央に、上記第1のコンタクトホール、および、上記フォトダイオードのソース電極が形成されてもよい。
 上記の構成によれば、薄膜トランジスタのドレイン電極と、フォトダイオードのソース電極との間の寄生容量を低減させることができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1 基板
 2 ゲート電極
 3 ゲート絶縁膜
 4 ソース電極(ドレイン電極)
 5 酸化物半導体層(薄膜トランジスタ)
 6 パッシベーション膜(第1の絶縁層)
 7 平坦化膜(第1の絶縁層)
 9 フォトダイオード
 11 SiNx絶縁膜(第2の絶縁層)
 12 平坦化膜(第2の絶縁層)
 13 ソース電極
 21 コンタクトホール(第1のコンタクトホール)
 22 空隙部
 23 コンタクトホール(第2のコンタクトホール)
 91 下部電極
 92 光電変換層
 921 n+層
 922 i層
 93 上部電極

Claims (3)

  1.  基板上に形成された薄膜トランジスタと、
     上記薄膜トランジスタ上に積層された第1の絶縁層と、
     上部電極と下部電極との間に光電変換層が設けられたフォトダイオードと、
    を備え、
     上記第1の絶縁層に形成された第1のコンタクトホールを介して、上記薄膜トランジスタのドレイン電極に上記フォトダイオードの下部電極が接続され、
     上記第1のコンタクトホールの直上には、上記光電変換層が設けられていない、
    ことを特徴とする光電変換装置。
  2.  上記第1のコンタクトホールの直上に、上記フォトダイオードのソース電極が形成される、
    ことを特徴とする請求項1に記載の光電変換装置。
  3.  隣接する上記薄膜トランジスタのドレイン電極間の中央に、上記第1のコンタクトホール、および、上記フォトダイオードのソース電極が形成される、
    ことを特徴とする請求項2に記載の光電変換装置。
PCT/JP2017/006549 2016-02-29 2017-02-22 光電変換装置 WO2017150295A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/770,742 US10355040B2 (en) 2016-02-29 2017-02-22 Photoelectric conversion device
CN201780003629.3A CN108701701A (zh) 2016-02-29 2017-02-22 光电转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016037797 2016-02-29
JP2016-037797 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150295A1 true WO2017150295A1 (ja) 2017-09-08

Family

ID=59743822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006549 WO2017150295A1 (ja) 2016-02-29 2017-02-22 光電変換装置

Country Status (3)

Country Link
US (1) US10355040B2 (ja)
CN (1) CN108701701A (ja)
WO (1) WO2017150295A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935601B (zh) * 2017-03-13 2019-08-23 京东方科技集团股份有限公司 半导体器件、阵列基板和半导体器件的制造方法
KR102461817B1 (ko) * 2017-09-05 2022-10-31 엘지디스플레이 주식회사 엑스레이 검출기용 어레이 기판과 이를 포함하는 엑스레이 검출기 및 그 제조 방법
KR20210013508A (ko) * 2019-07-26 2021-02-04 삼성디스플레이 주식회사 광 센서, 광 센서의 제조 방법 및 광 센서를 포함하는 표시 장치
US11984409B2 (en) * 2020-08-10 2024-05-14 Sharp Kabushiki Kaisha Photoelectric conversion panel
TW202332072A (zh) * 2022-01-19 2023-08-01 友達光電股份有限公司 感測裝置
JP2023168677A (ja) * 2022-05-16 2023-11-29 株式会社ジャパンディスプレイ 検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197660A (ja) * 1997-09-19 1999-04-09 Semiconductor Energy Lab Co Ltd イメージセンサおよびそれを用いた装置
JP2001135809A (ja) * 1999-11-02 2001-05-18 Sharp Corp アクティブマトリクス基板及びそれを備えた二次元画像検出器並びに二次元画像検出器の画素欠陥修正方法
JP2010161142A (ja) * 2009-01-07 2010-07-22 Seiko Epson Corp 光電変換装置、電気光学装置、電子機器
JP2014078651A (ja) * 2012-10-12 2014-05-01 Nlt Technologies Ltd 光電変換装置及びその製造方法並びにx線画像検出装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473591B1 (ko) * 2002-07-18 2005-03-10 엘지.필립스 엘시디 주식회사 듀얼패널타입 유기전계발광 소자 및 그의 제조방법
JP5043374B2 (ja) * 2005-07-11 2012-10-10 キヤノン株式会社 変換装置、放射線検出装置、及び放射線検出システム
JP4743269B2 (ja) * 2008-04-23 2011-08-10 エプソンイメージングデバイス株式会社 固体撮像装置
JP5330779B2 (ja) 2008-09-10 2013-10-30 三菱電機株式会社 光電変換装置、及びその製造方法
TWI585955B (zh) * 2008-11-28 2017-06-01 半導體能源研究所股份有限公司 光感測器及顯示裝置
KR102078213B1 (ko) * 2012-07-20 2020-02-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
WO2016167179A1 (ja) * 2015-04-13 2016-10-20 シャープ株式会社 撮像パネル、及びそれを備えたx線撮像装置
US9941324B2 (en) * 2015-04-28 2018-04-10 Nlt Technologies, Ltd. Semiconductor device, method of manufacturing semiconductor device, photodiode array, and imaging apparatus
JP2017152656A (ja) * 2016-02-26 2017-08-31 Tianma Japan株式会社 イメージセンサおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197660A (ja) * 1997-09-19 1999-04-09 Semiconductor Energy Lab Co Ltd イメージセンサおよびそれを用いた装置
JP2001135809A (ja) * 1999-11-02 2001-05-18 Sharp Corp アクティブマトリクス基板及びそれを備えた二次元画像検出器並びに二次元画像検出器の画素欠陥修正方法
JP2010161142A (ja) * 2009-01-07 2010-07-22 Seiko Epson Corp 光電変換装置、電気光学装置、電子機器
JP2014078651A (ja) * 2012-10-12 2014-05-01 Nlt Technologies Ltd 光電変換装置及びその製造方法並びにx線画像検出装置

Also Published As

Publication number Publication date
CN108701701A (zh) 2018-10-23
US10355040B2 (en) 2019-07-16
US20180301495A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017150295A1 (ja) 光電変換装置
JP6049764B2 (ja) 表示パネル
US10431701B2 (en) Semiconductor device, array substrate and method for fabricating semiconductor device
KR101645785B1 (ko) 반도체 장치
WO2015141777A1 (ja) 光検出装置
EP2800142B1 (en) Thin film transistor substrate and organic light emitting device using the same
JP2010256517A (ja) アクティブマトリクス型表示装置
US9502593B2 (en) Organic light-emitting diode (OLED) display
KR102410426B1 (ko) 유기 발광 표시 장치 및 그의 제조 방법
US10347683B2 (en) Photo detector device
TW201344519A (zh) 觸控面板
US11114630B2 (en) Display panel, manufacturing method thereof, display device
TW201324760A (zh) 畫素結構及其製造方法
US11133345B2 (en) Active matrix substrate, X-ray imaging panel with the same, and method of manufacturing the same
TW202207437A (zh) 光感測器及其製造方法
KR102019191B1 (ko) 유기전계발광표시장치 및 그 제조방법
TWI679788B (zh) 畫素結構
JP6017181B2 (ja) 半導体装置
JP3203749U (ja) 表示パネル
TWI569430B (zh) 感測裝置
JP6690509B2 (ja) 半導体装置
US10396213B2 (en) Active device array substrate and manufacturing method thereof
JP2019174366A (ja) 撮像パネル
US11811013B2 (en) Display panel
JP2019174365A (ja) 撮像パネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15770742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759761

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP