WO2017150222A1 - 形状測定装置 - Google Patents

形状測定装置 Download PDF

Info

Publication number
WO2017150222A1
WO2017150222A1 PCT/JP2017/005963 JP2017005963W WO2017150222A1 WO 2017150222 A1 WO2017150222 A1 WO 2017150222A1 JP 2017005963 W JP2017005963 W JP 2017005963W WO 2017150222 A1 WO2017150222 A1 WO 2017150222A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
shape measuring
shape
support
bent
Prior art date
Application number
PCT/JP2017/005963
Other languages
English (en)
French (fr)
Inventor
幸紀 森谷
藤井 誠
博信 黒石
丈彰 小野
謙太 中村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN202311163098.8A priority Critical patent/CN117146758A/zh
Priority to JP2018503031A priority patent/JP6714882B2/ja
Priority to CN201780013839.0A priority patent/CN108779983A/zh
Priority to KR1020187018445A priority patent/KR20180116236A/ko
Publication of WO2017150222A1 publication Critical patent/WO2017150222A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/213Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures for measuring radius of curvature

Definitions

  • the present invention relates to a shape measuring apparatus.
  • Patent Document 1 As an apparatus for inspecting the curvature and dimensions of a glass plate, an apparatus described in Patent Document 1 is known. As shown in FIGS. 18 and 19, in the inspection apparatus 100 of Patent Document 1, first, the glass plate 100 ⁇ / b> A is aligned with the stopper 109 and placed on the upper surface of the inspection mold 101. Thereby, the glass plate 100 ⁇ / b> A is positioned on the mold body 103 in such a manner that the peripheral edge thereof follows the trim line 106. Then, the block body 110A of the inspection jig 102A is set on the mold body 103, and the measuring element 110 of the dial gauge 111 is abutted against the upper surface in the vicinity of the edge of the glass plate 100A.
  • the height of the upper surface of the glass plate 100A with respect to the curvature reference surface 107 is measured, and the curvature of the glass plate 100A is obtained based on the measured value.
  • the curvature reference surface 107 and the block body 110A in contact with the curvature reference surface 107A improve the position setting accuracy of the dial gauge 111 attached to the block body 110A, and the measurement by the dial gauge 111 can be performed with high accuracy. Trying to do.
  • the mold body 103 has a rectangular ring shape so that the periphery of the glass plate 100A is placed. Therefore, since only the periphery of the glass plate 100A is supported by the mold body 103, a force directed upward by the mold body 103 acts on the periphery of the glass plate 100A, and a force directed downward by gravity at the center of the glass plate 100A. Act. As a result, the glass plate 100A is bent and it is difficult to obtain a correct curvature. Moreover, since the center part of 100 A of glass plates is not supported, it is easy to shake and the error at the time of curvature measurement will become large. Further, the curvature is measured only at the periphery of the glass plate 100A, and it is not assumed that the curvature of the central portion is measured. The curvature of the entire glass plate 100A could not be measured.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a shape measuring apparatus capable of accurately measuring the curvature of a bent base material and a normal deviation from the design.
  • the base material support portion includes a curved surface parallel to the second surface, and the plurality of support pieces.
  • the base material support portion includes a surface that is not parallel to the second surface, and the plurality of support pieces.
  • the shape measuring apparatus according to (3) wherein a plurality of types of the plurality of support pieces are provided on the surface, whereby a virtual curved surface connecting tips of the plurality of support pieces is parallel to the second surface.
  • the shape measuring unit includes at least one shape measuring device that measures the shape of the bent base material, and a measuring device support unit that supports the at least one shape measuring device.
  • the shape measuring apparatus according to any one of the above.
  • the shape measuring device according to (6), wherein the measuring instrument support section is separate from the base material support section.
  • the shape measuring device according to (6) or (7), wherein the at least one shape measuring instrument is arranged in a direction perpendicular to a virtual curved surface connecting tips of the plurality of support pieces.
  • the shape measuring unit includes a plurality of the shape measuring devices, The shape measuring apparatus according to any one of (6) to (8), wherein corresponding portions of the plurality of shape measuring instruments exist on a virtual curved surface parallel to the first surface.
  • the shape measuring device according to any one of (6) to (9), wherein the shape measuring device is supported by the measuring device support portion so as to be movable.
  • (11) The shape measuring apparatus according to (10), wherein a virtual curved surface formed by a movement locus of the shape measuring instrument is parallel to the first surface.
  • (12) The shape measuring apparatus according to any one of (6) to (11), wherein the shape measuring device is a curvature measuring device.
  • the base material support portion includes a measuring element of a dimension measuring device that measures the dimension of the bent base material, and a measurement groove for bringing the measuring element into contact with a side surface of the bent base material.
  • (1)-(12) The shape measuring apparatus according to any one of (12).
  • (14) The shape measuring apparatus according to any one of (1) to (13), wherein the bent base material is glass.
  • the present invention it is possible to provide a shape measuring device capable of accurately measuring the curvature of the bent base material and the normal deviation from the design.
  • the bent base material of the present embodiment has a first surface and a second surface facing the first surface.
  • the bent base material is a base material having a three-dimensional shape, and has a bent portion at least partially.
  • the “bent portion” means a portion that is bent such that the first surface or the second surface is a curved surface and the average curvature is not zero.
  • Such a bent substrate forms a curved surface having a predetermined curvature as a whole. Examples of the form of the bent substrate include a plate and a film.
  • the material of the bent base material includes glass, metal, resin, silicon, wood, paper, and the like.
  • the resin include polyethylene terephthalate and triacetyl cellulose.
  • glass is preferable from the viewpoint of safety and strength. Furthermore, it is preferable from the viewpoint of high heat resistance and high weather resistance to use glass as a vehicle-mounted substrate.
  • inorganic glass and organic glass such as polycarbonate and acrylic can be used.
  • inorganic glass, organic glass, synthetic resin, and the like may be substrates of the same type or different types, and various adhesive layers may be inserted therebetween.
  • the thickness of the substrate used for the bent substrate is preferably 0.5 mm or more and 5 mm or less. Since the base material having a thickness equal to or greater than the lower limit has high strength and good texture, there is an advantage that a bent base material having both high strength and good texture can be obtained. Furthermore, since it becomes easy to bend in the case of the above thin base materials, using the shape measuring apparatus of this invention can reduce a bend and can implement an exact measurement.
  • the lower limit is more preferably 0.7 mm or more, and further preferably 1 mm or more.
  • the upper limit is more preferably 3 mm or less.
  • the radius of curvature of the bent portion of the bent substrate is preferably 5000 mm or less, more preferably 3000 mm or less, and even more preferably 1000 mm or less. Even a bent substrate having a bent portion having a radius of curvature as large as the upper limit value can be used to measure a subtle change by using the shape measuring apparatus according to the present invention, so that the shape can be measured accurately.
  • limiting in particular in the curvature radius of the bending part of a bending base material 1 mm or more is preferable, 5 mm or more is preferable and 10 mm or more is preferable.
  • the bent portion having a radius of curvature As small as the lower limit value, it is difficult to measure, but even if the width is narrow, it is possible to measure subtle changes by using the shape measuring apparatus according to the present invention.
  • the shape can be measured accurately.
  • a distance between a line segment connecting the two end portions and a tangent line in contact with the bent portion of the bent base material among the straight lines parallel to the end is defined as “bending depth h”
  • the bending depth h is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 20 mm or more.
  • the problem is that it is more difficult to confirm the forming accuracy as the bending substrate has a larger bending depth h.
  • the molding accuracy of such a substrate can also be measured accurately and easily.
  • a layer antiglare layer
  • AR layer antireflection layer
  • AFP layer anti-fingerprint layer
  • the bent base material may be subjected to processing such as chamfering, may be subjected to polishing treatment, and may be subjected to reinforcement treatment.
  • air cooling strengthening physical strengthening
  • chemical strengthening are known as typical strengthening treatment methods for forming a compressive stress layer.
  • the air cooling strengthening method is a method of rapidly cooling the main surface of the base material heated to near the softening point by air cooling or the like.
  • the substrate is immersed in molten potassium nitrate at a temperature not higher than the glass transition point, and ion exchange is performed.
  • alkali metal ions typically Li ions and Na ions
  • alkali ions typically Na ions for Li ions
  • K ions, and Na ions are K ions.
  • the above-mentioned bent base material can be used for various applications, and in particular, it can be suitably used by being mounted on a transport machine such as an automobile, a train, a ship, and an aircraft.
  • a transport machine such as an automobile, a train, a ship, and an aircraft.
  • interior parts of transport aircraft such as instrument panels, head-up displays (HUD), dashboards, center consoles, shift knobs, etc.
  • the interior parts can be given high designability and luxury, and the interior of the transport aircraft.
  • the design can be improved.
  • the first surface is also referred to as the upper surface
  • the second surface is also referred to as the lower surface.
  • FIG. 1 and FIG. 2 show a bent substrate 1 having a bent portion 7 and a side surface 9 that is sandwiched between a lower surface 3 and an upper surface 5 to connect them.
  • the Z direction in a figure is a direction parallel to the thickness direction in the center part of the bending base material 1, and the X and Y directions are directions perpendicular
  • the bent base material 1 in FIG. 1 includes a bent portion 7 that bends toward the lower surface 3 side (downward in the Z direction) as the whole moves toward both ends in the X direction.
  • the bent substrate 1 does not bend in the Z direction in the Y direction.
  • the lower surface 3 and the upper surface 5 are parallel to each other. Therefore, the bent base material 1 forms a curved surface shape having a predetermined curvature as a whole.
  • the bent base material 1 in FIG. 2 has the same cross-sectional shape as in FIG. 1, but in FIG. 1, the bent portion 7 extends only toward both ends in the X direction of the base material.
  • the configuration is different in that the bent portion 7 extends from the center of the bent base material 1 toward the peripheral portion (from the center toward the X and Y directions). Therefore, the bent base material 1 in FIG. 2 has a bottomed shape having an opening on the lower surface 3 side. In this bent base material 1, the lower surface 3 and the upper surface 5 are parallel to each other.
  • the lower surface in the Z direction is referred to as the lower surface 3 and the upper surface in the Z direction is referred to as the upper surface 5, but the lower surface in the Z direction is referred to as the upper surface 5 and the upper surface in the Z direction is referred to as the lower surface 3. It goes without saying.
  • the lower surface 3 and the upper surface 5 do not need to be parallel to each other, and the lower surface 3 and the upper surface 5 having an arbitrary shape may be applied to the bent base material 1.
  • the bending base 1 may have a lower surface 3 having a planar shape and an upper surface 5 having a curved shape.
  • the side surface 9 may be provided as a portion for connecting the upper surface 5 and the lower surface 3 as shown in FIG. 4A, and the side surface 9 may not be provided as shown in FIG.
  • the bent substrate 1 may have a lower surface 3 having a curved shape and an upper surface 5 having a planar shape.
  • the curvature and dimensions of the bent substrate 1 as described above completely match the design curvature and dimensions, but errors may occur depending on the conditions of the molding process and chemical strengthening process. .
  • the shape measuring apparatus 10 As shown in FIGS. 5 to 8, the shape measuring apparatus 10 according to the present embodiment includes a planar base 11 extending in the XY directions, and a substrate support that is disposed on the upper surface of the base 11 and supports the bent substrate 1. And a curvature measuring unit 20 that measures the curvature of the bent substrate 1.
  • the base material support part 12 has a support base 13 fixed to the upper surface of the base 11 and a plurality of support pieces 14 arranged on the upper surface 13 a of the support base 13.
  • the support base 13 is made of, for example, metal, carbon, glass, or ceramics
  • the support piece 14 is made of, for example, synthetic resin or rubber.
  • the support base 13 has a lower surface that is a plane parallel to the X and Y directions (a plane parallel to the base 11), and an upper surface 13 a that is a curved surface parallel to the lower surface 3 of the bending substrate 1.
  • the shape measuring device 10 measures the shape of the bent base material 1 (see FIGS. 1 and 3) configured by the bent portion 7 that bends toward the lower surface 3 as the whole goes toward both ends in the X direction. An example will be described. Therefore, similarly to the shape of the bent base 1, the upper surface 13a of the support base 13 has a shape that bends downward in the Z direction toward the both ends in the X direction and does not bend in the Z direction in the Y direction. is doing.
  • a plurality of support piece fixing grooves 13b are formed on the upper surface 13a of the support base 13 at equal intervals in the X and Y directions.
  • a total of 12 support piece fixing grooves 13b are provided, three at equal intervals in the X direction and four at equal intervals in the Y direction.
  • the support piece fixing groove 13b is recessed so as to be perpendicular to the upper surface 13a of the support base 13 (perpendicular to the tangent to the upper surface 13a).
  • the support piece 14 has a base portion 14a having a shape substantially equal to the support piece fixing groove 13b, and a spherical portion 14b formed at the tip of the base portion 14a. And the support piece 14 is provided in the upper surface 13a of the support stand 13 by the base part 14a being inserted in the support piece fixing groove 13b, and being fixed detachably. In the illustrated example, a total of twelve support pieces 14 having the same shape are provided, three at equal intervals in the X direction and four at equal intervals in the Y direction. The support piece 14 is arranged so as to be perpendicular to the upper surface 13 a of the support base 13.
  • the virtual curved surface A connecting the tips (upper ends in the Z direction) of the spherical portions 14 b of the plurality of support pieces 14 is parallel to the upper surface 13 a of the support base 13 and the lower surface 3 of the bent base material 1.
  • the support piece 14 is not fixed to the support base 13 and integrated as in the present embodiment, but the support piece 14 and the support base 13 are formed directly on the support base 13 as convex portions. May be integrated. Further, the number of support piece fixing grooves 13b and the support pieces 14 and the positions where they are provided are not particularly limited.
  • a stopper 16 for positioning the bent base material 1 at a desired position is provided on the upper surface 13 a of the support base 13.
  • one stopper 16 is provided on one end side in the X direction of the upper surface 13a and two stoppers 16 are provided on one end side in the Y direction.
  • the stopper 16 is detachably fixed to a stopper fixing groove 13c formed on the upper surface 13a. Therefore, by providing the stopper fixing groove 13c at various positions, the stopper fixing groove 13c for mounting the stopper 16 is selected according to the dimensions of the bent base material 1 in the X and Y directions, and the bent base material 1 is appropriately selected. Can be positioned. In the example of FIG.
  • a stopper 16 is mounted in the groove 13c.
  • the stopper 16 is mounted in the outer stopper fixing groove 13c.
  • the bending base material 1 is arrange
  • a plurality of stoppers 16 abut on the side surfaces of the bent base material 1 in the X and Y directions, and the bent base material 1 is positioned in the X and Y directions.
  • the shape change of the bending base material 1 can be suppressed, and the curvature measuring part 20 Accurate shape measurement by this is possible.
  • the base material support portion 12 has a plurality of support pieces 14 that are in point contact with the lower surface 3 of the bent base material 1, and a virtual curved surface A connecting the upper ends of the plurality of support pieces 14 is the lower surface of the bent base material 1. 3, the contact area between the bent base material 1 and the base material support portion 12 is reduced, and it is possible to prevent the bent base material 1 from being damaged. Furthermore, when the support piece 14 is made of a synthetic resin, it can be easily replaced. Therefore, the measurement accuracy can be maintained by appropriately replacing the support piece 14. In addition, when the support piece 14 is made of rubber, it is possible to prevent the bent base material 1 from being displaced due to vibration during measurement or the like, so that measurement accuracy can be maintained.
  • the measurement groove 13e is formed on the upper surface 13a of the support base 13 at a position facing the X-direction side surfaces 9a and the Y-direction side surfaces 9b of the bent base 1 in the Z direction.
  • a measuring element for example, a caliper jaw
  • the measuring element is in contact with the X-direction side surface 9a and the Y-direction side surface 9b of the bent base material 1.
  • the dimension of the X direction of the bending base material 1 is measured based on the distance of the measuring elements contact
  • the curvature measuring unit 20 includes a plurality of dial gauges 21 (curvature measuring devices) that measure the curvature of the bent base material 1, and a measuring instrument support unit 23 that supports the plurality of dial gauges 21.
  • the measuring instrument support portion 23 of the present embodiment has three portal brackets 24 arranged at equal intervals in the X direction.
  • the curvature measuring device only needs to be able to measure the distance and displacement from a certain reference.
  • a dial gauge or a laser displacement meter can be used, but is not particularly limited.
  • a plurality of objects to be measured can be measured in the plane by this curvature measuring device, and the curvature of the object to be measured and the normal deviation from the design can be estimated from the results.
  • the bracket 24 includes a pair of column portions 24a that are spaced apart from each other in the Y direction, and a beam portion 24b that connects the pair of column portions 24a in the Y direction.
  • the pair of column portions 24a are detachably fixed to bracket fixing grooves 13d provided on the upper surface 13a of the support base 13, respectively. Since the bracket fixing groove 13d is recessed so as to be perpendicular to the upper surface 13a of the support table 13 (perpendicular to the tangent to the upper surface 13a), the bracket 24 is similarly formed on the upper surface 13a of the support table 13. Is arranged in a plane. Note that it is not always necessary to provide a pair of column portions 24a.
  • the beam portion 24b may be supported by one column portion 24a.
  • the column part 24a may have a rotatable mechanism, and the beam part 24b may thereby be rotatable.
  • the bracket fixing groove 13d does not necessarily have to be recessed straight with respect to the upper surface 13a of the support base 13.
  • the beam part 24b of the bracket 24 has a plurality (nine in this example) of gauge fixing holes 24c at equal intervals in the Y direction.
  • four of the nine gauge fixing holes 24 c are formed at positions facing the support piece 14 in the direction perpendicular to the upper surface 13 a of the support base 13. That is, when the four gauge fixing holes 24c are extended to the upper surface 13a side of the support base 13, the support piece 14 is positioned on the extension line.
  • the four gauge fixing holes 24c formed at positions facing the support piece 14 are referred to as first gauge fixing holes 24h, and the other five gauge fixing holes 24c are referred to as second gauge fixing holes 24i.
  • the first and second gauge fixing holes 24h and 24i are alternately arranged in the Y direction.
  • the bracket 24 is arranged perpendicular to the upper surface 13 a of the support base 13. Therefore, as shown in FIG. 7, the stem 21a of the dial gauge 21 fixed to the gauge fixing hole 24c, the spindle 21b extending from the stem 21a, and the probe 21c are perpendicular to the upper surface 13a of the support base 13, that is, It extends in a direction perpendicular to the bent substrate 1.
  • the stem 21a, the spindle 21b, and the measuring element 21c of the dial gauge 21 fixed to the first gauge fixing hole 24h face the support piece 14. In this manner, the probe 21c is brought into contact with the upper surface 5 of the bent base material 1 in a plane, and the curvature and normal deviation of the bent base material 1 are obtained based on the measurement results of the plurality of dial gauges 21. .
  • the measurement result obtained by bringing the measuring element 21c into contact with the support piece 14 is a reference (so-called zero point) for determining the curvature of the bent base material 1.
  • Used as And the curvature of the bending base material 1 is calculated
  • the measurement result obtained by bringing the measuring element 21c into contact with the upper surface 13a of the support base 13 is used as a reference (zero) when calculating the curvature of the bent base material 1.
  • Point the curvature of the bending base material 1 is calculated
  • the dial gauge 21 may be fixed to a dedicated jig to obtain the zero point. That is, any method may be adopted as long as the zero point can be appropriately obtained.
  • the dial gauge 21 is arranged in a direction perpendicular to the measurement point on the upper surface 5 of the bent base 1 so that the measuring element 21c abuts the measurement point in a perpendicular direction. Can be improved.
  • a virtual curved surface B (in FIG. 7 and 8, a virtual curved surface connecting the upper ends of the stems 21a) connecting corresponding portions of the plurality of dial gauges 21 is connected to the upper surface 13a of the support base 13 or the bent base material 1. Parallel. As a result, even when the substrate is curved like the bent substrate 1, the deviation in the normal direction can be measured, so that measurement with a small error can be performed with respect to the measurement position deviation error.
  • the dial gauge 21 may be movably supported by the measuring instrument support portion 23 so that the curvature of the entire bent base material 1 can be measured. Further, even when a plurality of dial gauges 21 are provided, the dial gauge 21 may be movably supported by the measuring instrument support portion 23 (for example, the bracket 24).
  • the dial gauge 21 when the dial gauge 21 is movable, the virtual curved surface formed by the movement trajectory is similar to the above-described virtual curved surface B (see FIGS. 7 and 8), and the upper surface 5 of the bending base 1 or the support base 13. It is preferable to be parallel to the upper surface 13a.
  • the material of the probe 21c is preferably a material that can reduce friction with the upper surface, for example, a fluororesin.
  • the bracket 24 does not need to be fixed to the support base 13 integrally, but may be fixed to a structure such as a floor or a ceiling and separated from the support base 13.
  • a structure such as a floor or a ceiling and separated from the support base 13.
  • automatic measurement is possible. Further, in the repeated measurement, a portion where the play is likely to occur due to wear or the like at the contact portion between the bracket 24 and the measuring instrument can be easily replaced. Further, the change of the measuring element is facilitated by exchanging the bracket 24.
  • the shape and number of brackets 24 are not particularly limited.
  • the base material support part 12 does not need to have the support piece 14, and the lower surface 3 of the bending base material 1 is supported by the upper surface 13a of the support base 13 having a curvature equal to the design curvature of the bending base material 1. It doesn't matter. Even in this case, the bent base material 1 is supported by the base material support part 12 having a curvature equal to the curvature of the lower surface 3 on the design of the bent base material 1, so that the shape change of the bent base material 1 is suppressed. In addition, accurate shape measurement by the curvature measuring unit 20 is possible.
  • the base material support part 12 has the upper surface 13a of the support stand 13 parallel to the lower surface 3 of the bending base material 1, and the some support piece 14, and several support pieces of the same shape mutually.
  • the virtual curved surface A connecting the upper ends of the plurality of support pieces 14 is parallel to the lower surface 3 of the bent substrate 1. According to this, since it is only necessary to fix the plurality of support pieces 14 having the same shape to the upper surface 13a of the support base 13, it is very simple.
  • the configuration of the support base 13 and the plurality of support pieces 14 is not limited as long as the virtual curved surface A connecting the upper ends of the plurality of support pieces 14 is parallel to the lower surface 3 of the bent base material 1.
  • the upper surface 13 a of the support base 13 is a surface (for example, a plane) that is not parallel to the lower surface 3 of the bent base material 1, and a plurality of types of support pieces 14 having different lengths are used.
  • the virtual curved surface A connecting the tips of the plurality of support pieces 14 may be set to be parallel to the lower surface 3 of the bent base material 1. According to this, it is possible to cope with various bent base materials 1 having different curvatures and curved surfaces only by changing the length of the support piece 14.
  • the curvature measuring unit 20 may apply a laser displacement meter 25 instead of the dial gauge 21 as a curvature measuring device for measuring the curvature of the bent base material 1.
  • the measuring instrument support 23 that supports the plurality of laser displacement meters 25 differs from the example shown in FIGS. 5 to 9 in the configuration of the beam 24b.
  • the inner side of the two stopper fixing grooves 13 c provided on one end side in the X direction of the upper surface 13 a of the support base 13 in accordance with the dimensions in the X and Y directions of the bent base material 1.
  • a stopper 16 is mounted in the stopper fixing groove 13c.
  • Each of the beam portions 24b extends in the Y direction and connects the pair of long side portions 24d that are separated from each other in the X direction so as to sandwich the column portion 24a, and both ends in the Y direction of the pair of long side portions 24d.
  • a pair of pins 24g for fixing the fixing jig 26 of the laser displacement meter 25 is provided at both ends in the X direction of the connecting portion 24f.
  • the laser displacement meter 25 connected to the fixing jig 26 is configured to oscillate a laser perpendicular to the beam portion 24b (in the drawing). (See the dashed arrows in.)
  • the bracket 24 is arranged perpendicular to the upper surface 13a of the support base 13
  • the laser emitted from the laser displacement meter 25 is perpendicular to the upper surface 13a of the support base 13, that is, bent.
  • the process proceeds in a direction perpendicular to the substrate 1.
  • the curvature of the bending base material 1 is calculated
  • the laser displacement meter 25 is arranged in a direction perpendicular to the measurement point on the upper surface 5 of the bent substrate 1, so that the laser is irradiated perpendicularly to the measurement point, and the measurement point is applied to the measurement point.
  • the measurement accuracy can be improved.
  • the reflected light reflected vertically may be detected by the laser displacement meter 25, and the scattered light is detected at an arbitrary angle ⁇ .
  • Detection may be performed by a detector (not shown) arranged at a position that is tilted only.
  • a laser may be incident on the measurement point from a direction inclined by ⁇ from the normal line of the upper surface 5 and detected by a detector disposed at a position inclined by + ⁇ .
  • a laser may be incident on the measurement point from a direction inclined by the normal line - ⁇ of the upper surface 5 and detected by a detector arranged in a direction perpendicular to the surface.
  • a virtual curved surface connecting corresponding portions of the plurality of laser displacement meters 25 is parallel to the upper surface 13a of the support base 13 or the bent base material 1.
  • a plurality of laser displacement meters 25 are not necessarily provided, and at least one laser displacement meter may be provided.
  • the laser displacement meter 25 may be movably supported by the measuring device support portion 23 so that the curvature of the entire bent substrate 1 can be measured.
  • the laser displacement meters 25 may be movably supported by the measuring instrument support 23 (for example, the bracket 24).
  • the virtual curved surface formed by the movement locus is preferably parallel to the upper surface 5 of the bending base 1 or the upper surface 13a of the support base 13.
  • the laser displacement meter 25 can be continuously measured by moving it on the upper surface 5 of the bent base 1, so that the number of measurement points is increased and more accurate measurement is possible.
  • the laser displacement meter 25 can be moved in a non-contact manner with respect to the upper surface 5 of the bent base material 1, no scratches or the like occur on the upper surface 5.
  • the determination as to whether the bent base material 1 is a good product or a defective product is made, for example, as shown in FIG. This is performed based on whether or not it is between the standard upper limit Smax and the standard lower limit Smin.
  • the standard upper limit Smax is located above the reference surface Sbase having a curvature equal to the design curvature of the bent base material 1 by a predetermined tolerance
  • the standard lower limit Smin is relative to the reference surface Sbase. Therefore, it is positioned below the plane direction by a predetermined tolerance.
  • the reference surface Sbase, the standard upper limit Smax, and the standard lower limit Smin are parallel to each other.
  • the lower surface of the bent base material 1 is shown by the upper surface 13 a of the support base 13 having a curvature equal to the curvature of the lower surface 3 in the design of the bent base material 1. 3 is shown.
  • the upper surface 13a of the support base 13 coincides with the reference surface Sbase. In this case, since the bending base material 1 shown in FIG. 14 is disposed between the reference surface Sbase and the standard upper limit Smax, it is determined as a non-defective product.
  • the bent base material 1 shown in FIG. 15 should be judged as a non-defective product, but it is judged as a defective product because there is a portion located above the standard upper limit Smax. This is because the range from the reference surface Sbase to the standard lower limit Smin exists in the support base 13.
  • the bent base material 1 similar to FIG. 15 is also located between the standard lower limit Smin and the standard upper limit Smax. It is possible to accurately determine that the product is non-defective.
  • the position of the upper surface 13a of the support base 13 is not particularly limited as long as the upper surface 13a is between the standard lower limit Smin and the standard upper limit Smax. Preferably it is located.
  • FIG. 17 a configuration is adopted in which a plurality of support pieces 14 each in point contact with the lower surface 3 of the bent base 1 are arranged on the upper surface 13 a of the support base 13. It is preferable to do. According to this, the contact area of the bending base material 1 and the base material support part 12 becomes small, and it can suppress that a damage
  • FIG. 14 by configuring the support piece 14 from a material having a large friction coefficient such as rubber, it is possible to suppress the bending base material 1 from being displaced due to vibration during measurement or the like.
  • the tip of the support piece 14 coincides with the reference surface Sbase.
  • the range from the reference surface Sbase to the standard lower limit Smin does not exist in the support base 13. Therefore, the bent base material 1 similar to that in FIG. 15 is located between the standard lower limit Smin and the standard upper limit Smax, and can be accurately determined as a non-defective product.
  • the position of the tip of the support piece 14 is not particularly limited as long as it is between the standard lower limit Smin and the standard upper limit Smax. However, in order to accurately determine whether the bent base material 1 is good or bad, it is located on the reference surface Sbase. It is preferable.
  • the type of curvature measuring device is not limited to a dial gauge or a laser displacement meter, and an arbitrary displacement meter can be applied.
  • evaluation of optical properties such as substrate color, light transmittance, and reflectance, surface shape evaluation for surface roughness and waviness, contact angle measurement of water, etc. It can be used for surface strength evaluation using a contact such as a pencil.
  • the bent base material of the present invention may be a combination of a curved surface shape and a planar shape. Also in this case, the curved surface and the flat surface of the base material support portion, or the virtual curved surface and the virtual plane connecting the tips of the plurality of support pieces of the base material support portion are parallel to the second surface, for example, substantially the same shape. That's fine.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

形状測定装置は、第1面と第2面とを有する屈曲基材の形状を測定する形状測定装置である。形状測定装置は、屈曲基材の第2面を支持し、第2面と平行な基材支持部と、屈曲基材の形状を測定する形状測定部と、を備える。これにより、屈曲基材の曲率やデザインからの法線偏差を正確に測定可能となる。

Description

形状測定装置
 本発明は、形状測定装置に関する。
 ガラス板の曲率及び寸法を検査する装置として、特許文献1に記載の装置が知られている。図18及び図19に示すように、特許文献1の検査装置100では、先ずガラス板100Aをストッパ109に位置合わせして検査型101の上面に載置する。これにより、ガラス板100Aは、その周縁がトリム線106に沿うような形で型本体103上に位置する。そして、検査用治具102Aのブロック体110Aを型本体103に対してセットし、ダイヤルゲージ111の測定子110をガラス板100A縁部近傍の上面に突き当てる。これにより、曲率基準面107に対するガラス板100A上面の高さが測定され、この測定値に基づきガラス板100Aの曲率が求められる。このように、曲率基準面107と、これに当接させるブロック体110Aと、によって、ブロック体110Aに取り付けられたダイヤルゲージ111の位置設定の精度を向上させ、当該ダイヤルゲージ111による測定を精度良く行うことを図っている。
 しかしながら、型本体103は、ガラス板100Aの周縁が載置されるように、矩形環状とされている。したがって、ガラス板100Aの周縁のみが型本体103によって支持されるので、ガラス板100Aの周縁には型本体103によって上方に向かう力が作用し、ガラス板100Aの中央には重力によって下方に向かう力が作用する。この結果、ガラス板100Aに撓みが発生し、正しい曲率を求めることが困難となってしまう。また、ガラス板100Aの中央部が支持されていないので、揺れやすく、曲率測定時の誤差が大きくなってしまう。また、ガラス板100Aの周縁のみ曲率を測定しており、中央部の曲率を測定することは想定されておらず。ガラス板100A全体の曲率を測定できなかった。
日本国実開昭63-67903号公報
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、屈曲基材の曲率やデザインからの法線偏差を正確に測定可能な形状測定装置を提供することにある。
 本発明の上記目的は、下記構成により達成される。
(1) 第1面と第2面とを有する屈曲基材の形状を測定する形状測定装置であって、
 前記屈曲基材の第2面を支持する基材支持部と、
 前記屈曲基材の形状を測定する形状測定部と、
を備える形状測定装置。
(2) 前記基材支持部は、前記第2面を支持し、前記第2面と平行な曲面を有する、(1)に記載の形状測定装置。
(3) 前記基材支持部は、前記第2面とそれぞれ点接触する複数の支持片を有し、
 前記複数の支持片の先端を結んだ仮想曲面が、前記第2面と平行である、(1)に記載の形状測定装置。
(4) 前記基材支持部は、前記第2面と平行な曲面と、前記複数の支持片と、を有し、
 互いに同一形状の前記複数の支持片が前記曲面上に設けられることにより、前記複数の支持片の先端を結んだ仮想曲面が、前記第2面と平行である、(3)に記載の形状測定装置。
(5) 前記基材支持部は、前記第2面と平行ではない面と、前記複数の支持片と、を有し、
 複数種類の前記複数の支持片が前記面に設けられることにより、前記複数の支持片の先端を結んだ仮想曲面が、前記第2面と平行である、(3)に記載の形状測定装置。
(6) 前記形状測定部は、前記屈曲基材の形状を測定する少なくとも一つの形状測定器と、前記少なくとも一つの形状測定器を支持する測定器支持部と、を有する(1)~(5)の何れか一つに記載の形状測定装置。
(7) 前記測定器支持部は、前記基材支持部と別体である、(6)に記載の形状測定装置。
(8) 前記少なくとも一つの形状測定器は、前記複数の支持片の先端を結んだ仮想曲面に対して、面直方向に配置される、(6)又は(7)に記載の形状測定装置。
(9) 前記形状測定部は、複数の前記形状測定器を有し、
 前記複数の形状測定器同士の対応する部位が、前記第1面と平行となる仮想曲面上に存在する、(6)~(8)の何れか一つに記載の形状測定装置。
(10) 前記形状測定器は、前記測定器支持部に移動可能に支持される、(6)~(9)の何れか一つに記載の形状測定装置。
(11) 前記形状測定器の移動軌跡によってなる仮想曲面は、前記第1面と平行である、(10)に記載の形状測定装置。
(12) 前記形状測定器が曲率測定器である、(6)~(11)のいずれか一つに記載の形状測定装置。
(13) 前記基材支持部が、前記屈曲基材の寸法を測定する寸法測定装置の測定子と、当該測定子を前記屈曲基材の側面に当接させるための測定用溝と、を有する、(1)~(12)の何れか一つに記載の形状測定装置。
(14) 前記屈曲基材がガラスである、(1)~(13)の何れか一つに記載の形状測定装置。
 本発明によれば、屈曲基材の曲率やデザインからの法線偏差を正確に測定可能な形状測定装置を提供できる。
屈曲基材の断面図である。 屈曲基材の断面図である。 図1の屈曲基材の斜視図である。 (a)及び(b)はそれぞれ変形例の屈曲基材の断面図である。 形状測定装置の斜視図である。 屈曲基材及びダイヤルゲージを設置した形状測定装置の斜視図である。 図6の形状測定装置の断面図である。 図6の形状測定装置の断面図である。 屈曲基材及びダイヤルゲージを設置した形状測定装置の斜視図である。 変形例の形状測定装置の断面図である。 形状測定装置の斜視図である。 屈曲基材及びレーザー変位計を設置した形状測定装置の斜視図である。 屈曲基材及びレーザー変位計を設置した形状測定装置の斜視図である。 支持台の上面を基準面に一致させた状態を示す図である。 支持台の上面を基準面に一致させた状態を示す図である。 支持台の上面を規格下限に一致させた状態を示す図である。 支持片を基準面に一致させた状態を示す図である。 特許文献1の検査装置の斜視図である。 特許文献1の検査装置の部分断面図である。
 以下、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されることはない。また、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形及び置換等を加えられる。
(屈曲基材)
 本実施形態の屈曲基材は、第1面と、第1面に対向する第2面と、を有する。当該屈曲基材は、三次元形状を有する基材であって、少なくとも一部に屈曲部を有する。「屈曲部」とは、第1面または第2面が曲面となるように屈曲し、その平均曲率がゼロではない部分を意味する。このような屈曲基材は全体として所定の曲率を有する曲面形状を構成する。屈曲基材の形態としては、板、フィルム等が挙げられる。
 屈曲基材の材料としては、ガラス、金属、樹脂、シリコン、木材、紙等が挙げられる。樹脂としては、ポリエチレンテレフタレート、トリアセチルセルロース等が挙げられる。中でも安全性や強度の観点からガラスが好ましい。さらにガラスを車載用基材として使用するには高い耐熱性、高い耐候性の観点からも好ましい。ガラスとしては無機ガラスとポリカーボネートやアクリル等の有機ガラスを使用できる。
 また、無機ガラス、有機ガラスや合成樹脂等は、同種・異種問わず重ねられた基材でも良く、その間に各種接着層が挿入されていてもよい。
 屈曲基材に使用する基材の厚さとして、0.5mm以上5mm以下が好ましい。これは下限値以上の厚さを備えた基材であれば高い強度を有し、良好な質感も有するため、高い強度と良好な質感とを兼ね備えた屈曲基材を得られる利点がある。さらに前記のような薄い基材である場合、撓みやすくなるため、本発明の形状測定装置を使用することで撓みを低減でき正確な測定を実施できる。下限値は0.7mm以上がより好ましく、1mm以上がさらに好ましい。上限値は3mm以下がより好ましい。
 屈曲基材の屈曲部の曲率半径は5000mm以下が好ましく、3000mm以下がより好ましく、1000mm以下がさらに好ましい。上限値ほどの大きな曲率半径の屈曲部を有する屈曲基材であっても、本発明に係る形状測定装置を使用することで微妙な変化も測定でき、正確に形状測定を実施できる。
 屈曲基材の屈曲部の曲率半径は特に制限はないが、1mm以上が好ましく、5mm以上が好ましく、10mm以上が好ましい。下限値ほどの小さな曲率半径の屈曲部は幅が細くなり測定を実施することが困難であったが、本発明に係る形状測定装置を使用することで幅が狭くても微妙な変化を測定でき、正確に形状測定を実施できる。
 屈曲基材の厚さ方向断面視において、2つの端部を結ぶ線分と、これと平行となる直線のうち、屈曲基材の屈曲部に接する接線との距離を「曲げ深さh」と定義すると、曲げ深さhは5mm以上が好ましく、10mm以上がより好ましく、20mm以上がさらに好ましい。曲げ深さhが大きい屈曲基材であるほど、成形精度を確認することが難しいことが課題であった。本発明にかかる形状測定装置によれば、このような基材の成形精度も正確にかつ容易に測定できる。
 屈曲基材の第1面又は第2面に防眩層(AG層)、反射防止層(AR層)、耐指紋層(AFP層)などの表面処理などがなされていてもよい。また屈曲基材の第1面又は第2面に加飾や隠蔽のための印刷層や樹脂層が形成されていてもよい。
 屈曲基材は面取などの加工処理がなされていてもよく、研磨処理がなされていてもよく、強化処理がなされていてもよい。屈曲基材として無機ガラスを用いる場合、圧縮応力層を形成する強化処理方法としては、風冷強化法(物理強化法)および化学強化法が代表的なものとして知られている。風冷強化法(物理強化法)は、軟化点付近まで加熱した基材主面を風冷などにより急速に冷却する手法である。また、化学強化法は、ガラス転移点以下の温度で、硝酸カリウム溶融塩に基材を浸漬しイオン交換する。これにより、基材主面に存在するイオン半径が小さいアルカリ金属イオン(典型的にはLiイオン、Naイオン)を、イオン半径のより大きいアルカリイオン(典型的にはLiイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオンである。)に交換する手法である。
 上述のような比較的に薄い無機ガラスを強化処理する場合には、化学強化処理が適切である。
 上述した屈曲基材は、様々な用途に使用できるが、特に、自動車、電車、船舶、航空機等の輸送機に搭載され、好適に使用できる。また、インストルメントパネル、ヘッドアップディスプレイ(HUD)、ダッシュボード、センターコンソール、シフトノブ等の輸送機の内装部品に用いると、当該内装部品に高い意匠性や高級感等を付与でき、輸送機の内装デザインを向上させられる。また、高い寸法精度の屈曲基材が求められるディスプレイ用カバー部材に適している。なお、本実施形態において、第1面を上面、第2面を下面ともいう。
 例えば、図1及び図2には、屈曲部7と、下面3と上面5との間に挟まれて両者を接続する側面9と、を有する屈曲基材1が示されている。なお、図中のZ方向は、屈曲基材1の中央部における厚み方向と平行な方向であり、X及びY方向は、それぞれZ方向と垂直な方向である。
 図3も参照し、図1の屈曲基材1は、全体がX方向両端側に向かうにしたがって下面3側(Z方向下側)に屈曲する屈曲部7から構成される。なお、当該屈曲基材1は、Y方向においてはZ方向に屈曲しない。ここで、下面3及び上面5は互いに平行である。したがって、当該屈曲基材1は全体として所定の曲率を有する曲面形状を構成する。
 図2の屈曲基材1は、図1と同様な断面形状を有しているが、図1では、屈曲部7が基材のX方向両端側のみに向かって延在しているのに対して、図2では、屈曲部7が屈曲基材1の中心から周縁部に向かって(中心からX及びY方向に向かって)延在している点で構成が異なる。したがって、図2の屈曲基材1は、下面3側に開口を有する有底形状とされる。なお、この屈曲基材1においても、下面3及び上面5は互いに平行である。
 なお、上述した図1~2においては、Z方向下側表面を下面3とし、Z方向上側表面を上面5として表したが、Z方向下側表面を上面5とし、Z方向上側表面を下面3としても良いことはいうまでもない。
 また、屈曲基材1は、下面3及び上面5が互いに平行である必要はなく、任意の形状の下面3及び上面5を適用してよい。例えば、図4に示すように、屈曲基材1は、下面3が平面形状であり、上面5が曲面形状であってもよい。側面9は図4(a)のように上面5と下面3を接続する部位として有していてもよく、図4(b)のように側面9が無くてもよい。また、屈曲基材1は、下面3が曲面形状であり、上面5が平面形状であってもよい。
 上述したような屈曲基材1の曲率や寸法は、設計上の曲率や寸法と完全に一致することが理想的であるが、成形工程や化学強化工程の条件等により誤差が生じる可能性がある。そこで、屈曲基材1の実際の曲率や寸法が、設計上の曲率や寸法と比較して許容できる範囲内であるか、生産工程において全数検査することが望ましい。そこで、本発明者らは、以下に説明するような、簡易な構成で正確に屈曲基材1の形状を測定できる形状測定装置を発明した。
 (形状測定装置)
 図5~8に示すように、本実施形態の形状測定装置10は、XY方向に延びる平面状の基台11と、基台11の上面に配置され、屈曲基材1を支持する基材支持部12と、屈曲基材1の曲率を測定する曲率測定部20と、を備える。
 基材支持部12は、基台11の上面に固定された支持台13と、支持台13の上面13aに配置された複数の支持片14と、を有する。支持台13は例えば金属、カーボン、ガラス、セラミックスからなり、支持片14は例えば合成樹脂やゴム等からなる。
 支持台13は、X及びY方向と平行な平面(基台11と平行な平面)である下面と、屈曲基材1の下面3と平行な曲面である上面13aと、を有する。本実施形態では、全体がX方向両端側に向かうにしたがって下面3側に屈曲する屈曲部7から構成される屈曲基材1(図1及び3参照)の形状を、形状測定装置10が測定する例を説明する。したがって、支持台13の上面13aは、屈曲基材1の形状と同様に、X方向においては両端側に向かうにしたがってZ方向下側に屈曲し、Y方向においてはZ方向に屈曲しない形状を有している。
 図7に示すように支持台13の上面13aには、X及びY方向において等間隔に複数の支持片固定溝13bが形成される。図示の例では、支持片固定溝13bは、X方向において等間隔に三個、Y方向において等間隔に四個、合計12個設けられている。また、支持片固定溝13bは、支持台13の上面13aに対して面直(上面13aの接線に対して垂直)となるように凹設されている。
 支持片14は、支持片固定溝13bと略等しい形状を有する基部14aと、基部14aの先端に形成された球状部14bと、を有する。そして、基部14aが支持片固定溝13bに挿入されて着脱自在に固定されることで、支持片14は支持台13の上面13aに設けられる。図示の例では、互いに同一形状の支持片14が、X方向において等間隔に三個、Y方向において等間隔に四個、合計12個設けられる。また、支持片14は、支持台13の上面13aに対して面直となるように配置される。したがって、複数の支持片14の球状部14bの先端(Z方向上方端)を結んだ仮想曲面Aは、支持台13の上面13a及び屈曲基材1の下面3と平行である。なお、本実施形態のように支持片14を支持台13に固定して一体とするのではなく、凸部として支持片14を支持台13に直接形成することで支持片14と支持台13とを一体構造としても構わない。また、支持片固定溝13b及び支持片14の個数や設けられる位置は特に限定されない。
 図5及び図6に示すように支持台13の上面13aには、屈曲基材1を所望の位置に位置決めするためのストッパ16が設けられている。図示の例では、ストッパ16は、上面13aのX方向一端側に一個、Y方向一端側に二個設けられている。ここで、ストッパ16は、上面13aに形成されたストッパ固定溝13cに着脱自在に固定されている。したがって、ストッパ固定溝13cを様々な位置に設けておくことにより、屈曲基材1のX及びY方向の寸法に応じてストッパ16を装着するストッパ固定溝13cを選択し、適切に屈曲基材1の位置を決められる。図6の例では、屈曲基材1のX及びY方向の寸法に合わせて、支持台13の上面13aのX方向一端側に設けられた二個のストッパ固定溝13cのうち、内側のストッパ固定溝13cにストッパ16が装着される。また、図9の例では、図6の屈曲基材よりもX及びY方向の寸法が大きいため、支持台13の上面13aのX方向一端側に設けられた二個のストッパ固定溝13cのうち、外側のストッパ固定溝13cにストッパ16が装着される。なお、ストッパ固定溝13cのうち使用しない箇所には、上面13aと面一となるような蓋をしてもよい。
 そして、図7に示すように上記仮想曲面Aと屈曲基材1の下面3とが平行となるように、複数の支持片14の上部に屈曲基材1が配置される。したがって、屈曲基材1は、複数の支持片14の球状部14bの先端と点接触して支持される。また、屈曲基材1のX及びY方向側面は複数のストッパ16が当接して、当該屈曲基材1がX及びY方向に位置決めされる。
 このように、屈曲基材1の下面3が、当該屈曲基材1の下面3と平行な基材支持部12に支持されるので、屈曲基材1の形状変化を抑制でき、曲率測定部20による正確な形状測定が可能となる。
 また、基材支持部12は屈曲基材1の下面3とそれぞれ点接触する複数の支持片14を有し、複数の支持片14の上方端を結んだ仮想曲面Aが屈曲基材1の下面3と平行であるので、屈曲基材1と基材支持部12との接触面積が小さくなり、屈曲基材1に傷が発生することを抑制できる。さらに、支持片14が合成樹脂製である場合には、容易に交換可能であるので、適宜交換を行うことで測定精度を維持できる。また、支持片14がゴム製である場合には、測定中の振動等によって屈曲基材1がずれてしまうことを抑制できるので、測定精度を維持できる。
 また、図7及び図8に示すように、支持台13の上面13aには、屈曲基材1のX方向両側面9a及びY方向両側面9bと、Z方向で対向する位置に測定用溝13eが設けられる。測定用溝13eには、屈曲基材1のX及びY方向の寸法を測定する寸法測定装置の測定子(例えばノギスのジョウ)が挿入される。当該測定子は、屈曲基材1のX方向側面9a及びY方向側面9bに当接する。そして、一対のX方向側面9aに当接する測定子同士の距離に基づき屈曲基材1のX方向の寸法が測定され、一対のY方向側面9bに当接する測定子同士の距離に基づき屈曲基材1のY方向の寸法が測定される。
 図5及び図6に示すように曲率測定部20は、屈曲基材1の曲率を測定する複数のダイヤルゲージ21(曲率測定器)と、複数のダイヤルゲージ21を支持する測定器支持部23と、を有する。本実施形態の測定器支持部23は、X方向において等間隔に配置された三個の門型のブラケット24を有する。なお、曲率測定器としては、ある基準からの距離や変位量を測定できればよい。具体的には、ダイヤルゲージやレーザー変位計を使用できるが、特に限定されない。この曲率測定器により被測定物を面内で複数測定し、その結果から被測定物の曲率やデザインからの法線偏差を見積もることができる。
 ブラケット24は、Y方向に離間して配置された一対の柱部24aと、一対の柱部24aをY方向に連結する梁部24bと、を有する。一対の柱部24aは、支持台13の上面13aに設けられたブラケット固定溝13dにそれぞれ着脱自在に固定される。ブラケット固定溝13dは、支持台13の上面13aに対して面直(上面13aの接線に対して垂直)となるように凹設されているので、ブラケット24も同様に、支持台13の上面13aに対して面直に配置される。なお、柱部24aは、必ずしも一対設ける必要はなく、例えば一つの柱部24aによって梁部24bを支持してもよい。この場合、柱部24aが回動可能な機構を有していてもよく、これにより梁部24bも回動可能となっていても良い。また、ブラケット固定溝13dは、支持台13の上面13aに対して、必ずしも面直に凹設されている必要はない。
 ブラケット24の梁部24bは、Y方向に等間隔で複数(本例では九個)のゲージ固定孔24cを有している。図5において九個のうち四個のゲージ固定孔24cは、支持台13の上面13aの面直方向において、支持片14と対向する位置に形成される。すなわち、上記四個のゲージ固定孔24cを支持台13の上面13a側に延長した場合、その延長線上に支持片14が位置する。以後、支持片14と対向する位置に形成される四個のゲージ固定孔24cを第1ゲージ固定孔24hと呼び、それ以外の五個のゲージ固定孔24cを第2ゲージ固定孔24iと呼ぶことがある。本実施形態では、第1及び第2ゲージ固定孔24h、24iがY方向に交互に配置されている。
 また、上述したように、ブラケット24は、支持台13の上面13aに対して面直に配置される。したがって、図7に示すようにゲージ固定孔24cに固定されるダイヤルゲージ21のステム21a及び当該ステム21aから延びるスピンドル21b及び測定子21cは、支持台13の上面13aに対して面直方向、すなわち屈曲基材1に対して面直方向に延びる。特に、第1ゲージ固定孔24hに固定されるダイヤルゲージ21のステム21a、スピンドル21b、及び測定子21cは、支持片14と対向する。このようにして、測定子21cを屈曲基材1の上面5に面直に当接させて、複数のダイヤルゲージ21の測定結果に基づいて、屈曲基材1の曲率や法線偏差が求められる。
 なお、第1ゲージ固定孔24hに固定されたダイヤルゲージ21において、測定子21cを支持片14に当接させて測定した結果は、屈曲基材1の曲率を求める際の基準(いわゆるゼロ点)として用いられる。そして、当該ゼロ点を基準として、第2ゲージ固定孔24iに固定されたダイヤルゲージ21で測定を行うことで、屈曲基材1の曲率が求められる。
 また、第2ゲージ固定孔24iに固定されたダイヤルゲージ21において、測定子21cを支持台13の上面13aに当接させて測定した結果を、屈曲基材1の曲率を求める際の基準(ゼロ点)として用いてもよい。そして、当該ゼロ点を基準として、第1ゲージ固定孔24hに固定されたダイヤルゲージ21で測定を行うことで、屈曲基材1の曲率が求められる。
 また、上述した方法の他、ダイヤルゲージ21を専用治具に固定して、ゼロ点を求めてもよい。すなわち、適切にゼロ点を求められるのであれば、任意の方法を採用して構わない。
 本実施形態では特に、ダイヤルゲージ21が屈曲基材1の上面5の測定点に対して面直方向に配置されることにより、測定子21cが当該測定点に面直に当接するので、測定精度を向上できる。
 また、複数のダイヤルゲージ21同士の対応する部位を結んだ仮想曲面B(図7及び8では、ステム21aの上端同士を結んだ仮想曲面)が、支持台13の上面13a又は屈曲基材1と平行である。これにより屈曲基材1のように基材が湾曲している場合でも、法線方向の偏差を測定できる為、測定位置ズレ誤差に対して、誤差の小さな測定が可能となる。
 なお、ダイヤルゲージ21は、必ずしも複数個設けられる必要はなく、少なくとも一つ設けられればよい。例えば、ダイヤルゲージ21を一個のみ設ける場合には、屈曲基材1全体の曲率を測定できるように、ダイヤルゲージ21は測定器支持部23に移動可能に支持されてもよい。また、ダイヤルゲージ21を複数個設ける場合であっても、ダイヤルゲージ21は測定器支持部23(例えばブラケット24)に移動可能に支持されても構わない。このように、ダイヤルゲージ21が移動可能である場合、その移動軌跡によってなる仮想曲面は、上述した仮想曲面B(図7及び8参照)と同様、屈曲基材1の上面5又は支持台13の上面13aと平行であることが好ましい。これにより、ダイヤルゲージ21を、屈曲基材1の上面5上を移動させることで連続測定ができるため、測定点が増えより精確な測定が可能となる。なお、ダイヤルゲージ21を屈曲基材1の上面5上でスライドさせると、当該上面5に擦り傷が発生する可能性がある。したがって、測定子21cの材質は、上面との摩擦が低減できるもの、例えばフッ素樹脂とすることが好ましい。
 なお、ブラケット24は、支持台13に一体に固定される必要はなく、床や天井等の構造物に固定し、支持台13と別体としても構わない。ブラケット24を支持台13と別体とした場合、自動測定化が可能となる。また、繰り返し測定にて、ブラケット24と測定器との接触部において、摩耗等によりガタが生じやすい部分について、容易に交換が可能である。また、ブラケット24の交換により、測定子の変更が容易になる。なお、ブラケット24の形状や個数は特に限定されない。
 また、基材支持部12は支持片14を有さなくてもよく、屈曲基材1の設計上の曲率と等しい曲率を有する支持台13の上面13aによって、屈曲基材1の下面3を支持しても構わない。この場合であっても、屈曲基材1は当該屈曲基材1の設計上の下面3の曲率と等しい曲率を有する基材支持部12に支持されるので、屈曲基材1の形状変化を抑制でき、曲率測定部20による正確な形状測定が可能である。
 また、本実施形態では、基材支持部12が、屈曲基材1の下面3と平行である支持台13の上面13aと複数の支持片14とを有し、互いに同一形状の複数の支持片14が支持台13の上面13aに設けられることにより、複数の支持片14の上方端を結んだ仮想曲面Aが屈曲基材1の下面3と平行である。これによれば、同一形状の複数の支持片14を支持台13の上面13aに固定するだけでよいので、非常に簡便である。しかしながら、複数の支持片14の上方端を結んだ仮想曲面Aが、屈曲基材1の下面3と平行である限り、支持台13や複数の支持片14の構成は限定されない。例えば、図10に示すように、支持台13の上面13aを、屈曲基材1の下面3と平行ではない面(例えば平面)とし、長さの異なる複数種類の支持片14を支持台13の上面13aに設けることにより、複数の支持片14の先端を結んだ仮想曲面Aを、屈曲基材1の下面3と平行であるように設定しても構わない。これによれば、支持片14の長さを変更するだけで、異なる曲率や曲面形状を有する様々な屈曲基材1に対応できる。
 図11~13に示すように、曲率測定部20は、屈曲基材1の曲率を測定する曲率測定器としてダイヤルゲージ21の代わりにレーザー変位計25を適用してもよい。この場合、複数のレーザー変位計25を支持する測定器支持部23は、図5~9に示した例と比較し、梁部24bの構成において異なる。なお、図12の例では、屈曲基材1のX及びY方向の寸法に合わせて、支持台13の上面13aのX方向一端側に設けられた二個のストッパ固定溝13cのうち、内側のストッパ固定溝13cにストッパ16が装着される。また、図13の例では、図12の屈曲基材よりもX及びY方向の寸法が大きいため、支持台13の上面13aのX方向一端側に設けられた二個のストッパ固定溝13cのうち、外側のストッパ固定溝13cにストッパ16が装着される。
 梁部24bは、それぞれY方向に延び、柱部24aを挟むように互いにX方向に離間する一対の長辺部24dと、一対の長辺部24dのY方向両端部同士を連結し、その下方に柱部24aが固定される短辺部24eと、一対の長辺部24dのY方向中間部同士を連結する三個の連結部24fと、を有する。連結部24fのX方向両端には、レーザー変位計25の固定治具26を固定するための一対のピン24gが設けられている。
 一対のピン24gに固定治具26を固定した場合、固定治具26に連結されたレーザー変位計25は、梁部24bに対して面直にレーザーを発振するように構成されている(図中における破線の矢印を参照。)。ここで、ブラケット24は、支持台13の上面13aに対して面直に配置されるので、レーザー変位計25から発信されたレーザーは、支持台13の上面13aに対して面直方向、すなわち屈曲基材1に対して面直方向に進む。このようにして、レーザーを屈曲基材1の上面5に面直に照射させて、複数のレーザー変位計25の測定結果に基づいて、屈曲基材1の曲率が求められる。
 本実施形態では特に、レーザー変位計25が屈曲基材1の上面5の測定点に対して面直方向に配置されることにより、レーザーが当該測定点に面直に照射され、当該測定点に対して一定の角度で入射するので、測定精度を向上できる。
 なお、レーザーを屈曲基材1の上面5の測定点に対して面直方向に照射する場合、垂直に反射した反射光をレーザー変位計25で検知してもよく、散乱光を任意の角度θだけ傾いた位置に配置されたディテクタ(不図示)で検知してもよい。また、上記測定点に対して上面5の法線から-θ傾けた方向からレーザーを入射させ、+θ傾けた位置に配置されたディテクタで検知してもよい。また、上記測定点に対して上面5の法線-θ傾けた方向からレーザーを入射させ、面直方向に配置されたディテクタで検知してもよい。
 また、複数のレーザー変位計25同士の対応する部位同士を結んだ仮想曲面が、支持台13の上面13aと又は屈曲基材1と平行とされる。これにより法線方向の偏差を測定できるので、位置ズレによる誤差の影響を受けにくい。
 なお、レーザー変位計25は、必ずしも複数個設けられる必要はなく、少なくとも一つ設けられればよい。例えば、レーザー変位計25を一個のみ設ける場合には、屈曲基材1全体の曲率を測定できるように、レーザー変位計25は測定器支持部23に移動可能に支持されてもよい。また、レーザー変位計25を複数個設ける場合であっても、レーザー変位計25は測定器支持部23(例えばブラケット24)に移動可能に支持されても構わない。このように、レーザー変位計25が移動可能である場合、その移動軌跡によってなる仮想曲面は、屈曲基材1の上面5又は支持台13の上面13aと平行であることが好ましい。これによりレーザー変位計25を、屈曲基材1の上面5上を移動させることで連続測定できるため、測定点が増えより精確な測定が可能となる。しかも、レーザー変位計25を屈曲基材1の上面5に対して非接触で移動できるので、上面5に擦り傷等が生じない。
 上述したような方法で屈曲基材1の曲率を測定する場合、当該屈曲基材1が良品であるか不良品であるかの判断は、例えば、図14に示すように、屈曲基材1が規格上限Smaxと規格下限Sminとの間にあるか否かに基づいて行う。ここで、規格上限Smaxは、屈曲基材1の設計上の曲率と等しい曲率を有する基準面Sbaseに対して所定の公差だけ面直方向上方に位置し、規格下限Sminは、基準面Sbaseに対して所定の公差だけ面直方向下方に位置する。また、基準面Sbase、規格上限Smax、及び規格下限Sminは、互いに平行である。
 図14には、基材支持部12が支持片14を有さず、屈曲基材1の設計上の下面3の曲率と等しい曲率を有する支持台13の上面13aによって、屈曲基材1の下面3を支持する構成が示されている。支持台13の上面13aは、基準面Sbaseと一致する。この場合、図14に示される屈曲基材1は、基準面Sbaseと規格上限Smaxとの間に配置されるので、良品として判断される。
 しかしながら、図15に示される屈曲基材1は、本来的には良品と判断されるべきものであるが、規格上限Smaxよりも上方に位置する部分が存在するので、不良品と判断される。これは、基準面Sbaseから規格下限Sminまでの範囲が支持台13内に存在することが原因である。
 そこで、図16に示すように、支持台13の上面13aと規格下限Sminを一致させれば、図15と同様の屈曲基材1についても、規格下限Sminから規格上限Smaxの間に位置するので、正確に良品と判断することが可能である。
 支持台13の上面13aは、規格下限Sminから規格上限Smaxの間であれば、その位置は特に限定されないが、屈曲基材1について良又は不良を正確に判断するためには、規格下限Sminに位置することが好ましい。
 このように、屈曲基材1の下面3が支持台13の上面13aによって支持される場合、屈曲基材1と支持台13との接触面積が大きくなり、両者に傷が発生する可能性がある。また、屈曲基材1の形状測定時に、機械振動等が支持台13から屈曲基材1に伝わり易い点や、測定環境による粉塵に影響されやすい点等も問題点として挙げられる。
 これらの問題点を解決するためには、図17に示すように、屈曲基材1の下面3とそれぞれ点接触する複数の支持片14が、支持台13の上面13aに配置された構成を適用することが好ましい。これによれば、屈曲基材1と基材支持部12との接触面積が小さくなり、屈曲基材1に傷が発生することを抑制できる。さらに、また、支持片14をゴム等、摩擦係数の大きな材料から構成することで、測定中の振動等によって屈曲基材1がずれてしまうことを抑制できる。
 支持片14の先端は基準面Sbaseと一致する。この場合、図14及び図15の例と異なり、基準面Sbaseから規格下限Sminまでの範囲が支持台13内に存在しない。したがって、図15と同様の屈曲基材1についても、規格下限Sminから規格上限Smaxの間に位置し、正確に良品と判断できる。
 支持片14の先端の位置は、規格下限Sminから規格上限Smaxの間であれば、特に限定されないが、屈曲基材1について良又は不良を正確に判断するためには、基準面Sbaseに位置することが好ましい。
 尚、本発明は、前述した実施形態に限定されるものではなく、適宜変更、改良等できる。
 例えば、曲率測定器の種類は、ダイヤルゲージやレーザー変位計に限定されず、任意の変位計を適用できる。
 また、形状測定だけでなく、基材の色味や光の透過率、反射率などの光学特性評価、表面の粗さやうねりを求める表面形状評価、水などの接触角測定などの対液体界面評価、鉛筆などの接触子を使用した表面強度評価などに使用できる。
 本発明の屈曲基材としては、曲面形状と平面形状の組み合わせであってもよい。この場合にも、基材支持部の曲面及び平面、又は、基材支持部の複数の支持片の先端を結んだ仮想曲面及び仮想平面が、第2面と平行、例えば、略同一形状であればよい。
 本出願は、2016年2月29日出願の日本特許出願2016-38024に基づくものであり、その内容はここに参照として取り込まれる。
1 屈曲基材
3 下面(第2面)
5 上面(第1面)
7 屈曲部
9 側面
9a X方向側面
9b Y方向側面
10 形状測定装置
11 基台
12 基材支持部
13 支持台
13a 上面
13b 支持片固定溝
13c ストッパ固定溝
13d ブラケット固定溝
13e 測定用溝
14 支持片
14a 基部
14b 球状部
16 ストッパ
20 曲率測定部
21 ダイヤルゲージ(曲率測定器)
21a ステム
21b スピンドル
21c 測定子
23 測定器支持部
24 ブラケット
24a 柱部
24b 梁部
24c ゲージ固定孔
24d 長辺部
24e 短辺部
24g ピン
24h 第1ゲージ固定孔
24i 第2ゲージ固定孔
25 レーザー変位計
26 固定治具
A、B 仮想曲面
Sbase 基準面
Smax 規格上限
Smin 規格下限

Claims (14)

  1.  第1面と第2面とを有する屈曲基材の形状を測定する形状測定装置であって、
     前記屈曲基材の第2面を支持する基材支持部と、
     前記屈曲基材の形状を測定する形状測定部と、
    を備える形状測定装置。
  2.  前記基材支持部は、前記第2面を支持し、前記第2面と平行な曲面を有する、請求項1に記載の形状測定装置。
  3.  前記基材支持部は、前記第2面とそれぞれ点接触する複数の支持片を有し、
     前記複数の支持片の先端を結んだ仮想曲面が、前記第2面と平行である、請求項1に記載の形状測定装置。
  4.  前記基材支持部は、前記第2面と平行な曲面と、前記複数の支持片と、を有し、
     互いに同一形状の前記複数の支持片が前記曲面上に設けられることにより、前記複数の支持片の先端を結んだ仮想曲面が、前記第2面と平行である、請求項3に記載の形状測定装置。
  5.  前記基材支持部は、前記第2面と平行ではない面と、前記複数の支持片と、を有し、
     複数種類の前記複数の支持片が前記面に設けられることにより、前記複数の支持片の先端を結んだ仮想曲面が、前記第2面と平行である、請求項3に記載の形状測定装置。
  6.  前記形状測定部は、前記屈曲基材の形状を測定する少なくとも一つの形状測定器と、前記少なくとも一つの形状測定器を支持する測定器支持部と、を有する請求項1~5の何れか1項に記載の形状測定装置。
  7.  前記測定器支持部は、前記基材支持部と別体である、請求項6に記載の形状測定装置。
  8.  前記少なくとも一つの形状測定器は、前記複数の支持片の先端を結んだ仮想曲面に対して、面直方向に配置される、請求項6又は7に記載の形状測定装置。
  9.  前記形状測定部は、複数の前記形状測定器を有し、
     前記複数の形状測定器同士の対応する部位が、前記第1面と平行となる仮想曲面上に存在する、請求項6~8の何れか1項に記載の形状測定装置。
  10.  前記形状測定器は、前記測定器支持部に移動可能に支持される、請求項6~9の何れか1項に記載の形状測定装置。
  11.  前記形状測定器の移動軌跡によってなる仮想曲面は、前記第1面と平行である、請求項10に記載の形状測定装置。
  12.  前記形状測定器が曲率測定器である、請求項6~11のいずれか1項に記載の形状測定装置。
  13.  前記基材支持部が、前記屈曲基材の寸法を測定する寸法測定装置の測定子と、当該測定子を前記屈曲基材の側面に当接させるための測定用溝と、を有する、請求項1~12の何れか1項に記載の形状測定装置。
  14.  前記屈曲基材がガラスである、請求項1~13の何れか1項に記載の形状測定装置。
PCT/JP2017/005963 2016-02-29 2017-02-17 形状測定装置 WO2017150222A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202311163098.8A CN117146758A (zh) 2016-02-29 2017-02-17 形状测定装置
JP2018503031A JP6714882B2 (ja) 2016-02-29 2017-02-17 形状測定装置
CN201780013839.0A CN108779983A (zh) 2016-02-29 2017-02-17 形状测定装置
KR1020187018445A KR20180116236A (ko) 2016-02-29 2017-02-17 형상 측정 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038024 2016-02-29
JP2016038024 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150222A1 true WO2017150222A1 (ja) 2017-09-08

Family

ID=59743897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005963 WO2017150222A1 (ja) 2016-02-29 2017-02-17 形状測定装置

Country Status (5)

Country Link
JP (1) JP6714882B2 (ja)
KR (1) KR20180116236A (ja)
CN (2) CN108779983A (ja)
TW (1) TWI726056B (ja)
WO (1) WO2017150222A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966082A (zh) * 2017-11-27 2018-04-27 宁波邦盛汽车零部件有限公司 一种用于检测汽车曲面零件面轮廓度的检具
CN109772723A (zh) * 2019-03-14 2019-05-21 福耀集团长春有限公司 一种汽车玻璃检测系统及检测方法
CN110715793A (zh) * 2018-07-12 2020-01-21 住友化学株式会社 载物台、物性测定装置及测定方法
CN111928748A (zh) * 2019-05-13 2020-11-13 安徽科瑞特模塑有限公司 一种车辆导流罩加工用通用检具

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153231B2 (ja) * 2018-12-21 2022-10-14 日本電気硝子株式会社 ガラス板の撓み測定装置及びガラス板の製造方法
KR102142961B1 (ko) * 2019-03-20 2020-08-10 한전케이피에스 주식회사 보일러 주급수 펌프의 케이싱과 임펠러의 센터링 작업용 장치
CN110500935A (zh) * 2019-08-29 2019-11-26 京东方科技集团股份有限公司 曲率检测装置
CN111765836B (zh) * 2020-07-15 2022-04-19 东莞宇龙通信科技有限公司 一种弧度检测装置
KR102413483B1 (ko) * 2021-07-28 2022-06-28 주식회사 프로시스템 3차원 곡면 형상 검사 장치 및 3차원 곡면 형상 검사 방법
KR102599039B1 (ko) * 2021-08-13 2023-11-06 권중학 백패널 열변형 측정지그
CN115556025B (zh) * 2022-12-05 2023-03-14 成都市鸿侠科技有限责任公司 一种自适应曲率的蒙皮渗透检测托架
KR102611367B1 (ko) * 2023-03-30 2023-12-08 도림공업(주) 에어백박스 검사 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367903U (ja) * 1986-10-24 1988-05-07
JPS63142710U (ja) * 1987-03-12 1988-09-20
JPH06235603A (ja) * 1993-02-09 1994-08-23 Ngk Insulators Ltd 最大円筒度検査装置
CN102252643A (zh) * 2011-04-20 2011-11-23 中海阳新能源电力股份有限公司 太阳能热发电反射镜镜片曲面测试系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201780094U (zh) * 2010-06-22 2011-03-30 嘉兴海盛电子有限公司 一种研磨盘平面度测量仪
CN202885758U (zh) * 2012-05-04 2013-04-17 上海申菲激光光学系统有限公司 方形掩膜版玻璃基片平面度检测仪
KR102147084B1 (ko) 2012-11-15 2020-08-24 자피오텍 게엠베하 소염성 활성 물질 또는 면역 억제성 활성물질로서 델피니딘 복합제

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367903U (ja) * 1986-10-24 1988-05-07
JPS63142710U (ja) * 1987-03-12 1988-09-20
JPH06235603A (ja) * 1993-02-09 1994-08-23 Ngk Insulators Ltd 最大円筒度検査装置
CN102252643A (zh) * 2011-04-20 2011-11-23 中海阳新能源电力股份有限公司 太阳能热发电反射镜镜片曲面测试系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966082A (zh) * 2017-11-27 2018-04-27 宁波邦盛汽车零部件有限公司 一种用于检测汽车曲面零件面轮廓度的检具
CN110715793A (zh) * 2018-07-12 2020-01-21 住友化学株式会社 载物台、物性测定装置及测定方法
JP2020016645A (ja) * 2018-07-12 2020-01-30 住友化学株式会社 ステージ、物性測定装置および測定方法
JP7343314B2 (ja) 2018-07-12 2023-09-12 住友化学株式会社 ステージ、物性測定装置および測定方法
CN110715793B (zh) * 2018-07-12 2023-11-28 住友化学株式会社 载物台、物性测定装置及测定方法
CN109772723A (zh) * 2019-03-14 2019-05-21 福耀集团长春有限公司 一种汽车玻璃检测系统及检测方法
CN109772723B (zh) * 2019-03-14 2021-05-28 福耀集团长春有限公司 一种汽车玻璃检测系统及检测方法
CN111928748A (zh) * 2019-05-13 2020-11-13 安徽科瑞特模塑有限公司 一种车辆导流罩加工用通用检具
CN111928748B (zh) * 2019-05-13 2022-05-13 安徽科瑞特模塑有限公司 一种车辆导流罩加工用通用检具

Also Published As

Publication number Publication date
KR20180116236A (ko) 2018-10-24
CN108779983A (zh) 2018-11-09
JP6714882B2 (ja) 2020-07-01
JPWO2017150222A1 (ja) 2018-12-20
CN117146758A (zh) 2023-12-01
TWI726056B (zh) 2021-05-01
TW201734440A (zh) 2017-10-01

Similar Documents

Publication Publication Date Title
WO2017150222A1 (ja) 形状測定装置
US7440089B2 (en) Method of measuring decentering of lens
BR112015024512B1 (pt) Método e sistema para determinar a estrutura espacial de um objeto, método para determinar o efeito óptico dependente de localização e direção de um objeto e uso de um sistema
JP4049272B2 (ja) 光学式3次元測定機の検査マスタ用基準部材
WO2020004222A1 (ja) 検査マスタ
CN209842399U (zh) 机床几何误差及旋转台转角定位误差检定装置
CN111556953A (zh) 用于测量多个待评估材料的中凹表面和参考材料的中凹表面之间的几何偏差的方法
JP4584029B2 (ja) 3次元測定機の校正治具及び校正方法
CN102840833A (zh) 晶圆厚度测量方法及装置
US7349161B1 (en) Molding lens with indentation for measuring eccentricity and method for measuring eccentricity thereof
JP2008008879A (ja) 測定装置、測定基準及び精密工作機械
JP2013130417A (ja) ガラス板の反り測定方法およびガラス板の製造方法
CN103837091A (zh) 一种玻璃翘曲度测试装置及方法
Dong et al. Developing on-machine 3D profile measurement for deterministic fabrication of aspheric mirrors
Jäger Three-dimensional nanopositioning and nanomeasuring machine with a resolution of 0.1 nm
CN1327412C (zh) 硬磁盘驱动器磁头浮动高度测试仪的校准系统和方法
US20060192979A1 (en) Optical measuring process and precision measuring machine for determining the deviations from ideal shape of technically polished surfaces
JP4326356B2 (ja) 位相補正値測定方法
Michal et al. Swing arm profilometer as a tool for measuring the shape of large optical surfaces
JP7201208B2 (ja) 校正ゲージ及び校正方法
GB2499660A (en) Surface measurement apparatus and calibration method
CN106969682A (zh) 测量装置
KR20120075901A (ko) 사출물 검사 장치
KR200450894Y1 (ko) 고체의 굴절률 측정장치
JP6482061B2 (ja) マスクステージ及びステージ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187018445

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018503031

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759691

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759691

Country of ref document: EP

Kind code of ref document: A1