WO2017148373A1 - 能源补给站以及能源补给方法 - Google Patents

能源补给站以及能源补给方法 Download PDF

Info

Publication number
WO2017148373A1
WO2017148373A1 PCT/CN2017/075249 CN2017075249W WO2017148373A1 WO 2017148373 A1 WO2017148373 A1 WO 2017148373A1 CN 2017075249 W CN2017075249 W CN 2017075249W WO 2017148373 A1 WO2017148373 A1 WO 2017148373A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned
energy
unmanned device
energy supply
charging
Prior art date
Application number
PCT/CN2017/075249
Other languages
English (en)
French (fr)
Inventor
吴艳光
Original Assignee
北京佰才邦技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰才邦技术有限公司 filed Critical 北京佰才邦技术有限公司
Priority to US16/081,601 priority Critical patent/US10790684B2/en
Publication of WO2017148373A1 publication Critical patent/WO2017148373A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/44The network being an on-board power network, i.e. within a vehicle for aircrafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to the field of unmanned devices, and in particular to an energy supply station and an energy supply method.
  • Unmanned devices are widely used in the civilian and military fields.
  • the civil field mainly includes: map mapping, geological survey, disaster monitoring, meteorological detection, air traffic control, border control, communication relay, pesticide spraying, etc.
  • the military field mainly includes: electronic interference, high-altitude aerial photography, high-altitude guidance and other fields.
  • the flight time of a small unmanned device is generally short.
  • the related art also adopts other technical solutions for solving the battery of the driverless device, which mainly includes two categories: battery replacement and battery charging.
  • the replacement battery scheme proposes several technological innovations such as power failure protection and automatic battery replacement.
  • Battery charging offers some technical solutions from the aspects of rechargeable battery protection, automatic charging control, charging mode (wired or wireless), power supply type (gasoline generator, solar panel, car battery, battery, overhead transmission line, etc.).
  • Embodiments of the present invention provide an energy replenishment station and an energy replenishment method to at least solve the technical problem of low versatility and low openness caused by the unmanned device energy replenishment scheme being a proprietary dedicated scheme.
  • an energy supply station comprising: one or more berths for parking an unmanned device; and an energy supply device for an unmanned device parked on the berth Replenishing energy; a communication device for receiving an unmanned device energy replenishment request, and guiding the unmanned device to be replenished corresponding to the unmanned device energy replenishment request to be docked according to the received unmanned device energy replenishment request
  • the energy supply device for supplying energy to the above-mentioned energy supply device is replenished by the above-mentioned energy supply device.
  • the unmanned device energy replenishment request is an unmanned device charging request
  • the communication device is configured to guide a charging to be charged corresponding to the unmanned device charging request according to the received unmanned device charging request
  • the driverless device is parked on the berth and charges the unmanned device to be charged through the energy supply device.
  • the unmanned device energy replenishment request is an unmanned device battery replacement request
  • the communication device is configured to guide the unmanned device battery replacement request according to the received unmanned device battery replacement request
  • the unmanned battery to be replaced is docked on the berth, and the battery is replaced by the above-mentioned energy replenishing device.
  • the energy supply station further includes: a detecting device coupled to the communication device, configured to detect and feed back whether each of the berths has an unmanned device; and the communication device is further configured to receive feedback according to at least the detecting device The berth status determines and uploads berth information for the unmanned device to dock the berth through the communication device.
  • the communication device is further configured to acquire an unmanned device charging reservation request, and control the energy supply station to perform a charging capability self-test according to the acquired unmanned device charging reservation request, and respond to the above according to the charging capability self-checking result.
  • Unmanned device charging reservation request is further configured to acquire an unmanned device charging reservation request, and control the energy supply station to perform a charging capability self-test according to the acquired unmanned device charging reservation request, and respond to the above according to the charging capability self-checking result.
  • Unmanned device charging reservation request Unmanned device charging reservation request.
  • the communication device includes: a receiving module, configured to receive an unmanned device charging reservation request sent by the unmanned device to be charged to the energy supply station; or an obtaining module, configured to acquire the unmanned charging device to be sent to the service Unmanned device charging reservation request for the platform.
  • the energy supply station further includes: a blocking device configured to cooperate with the berth to allow or prohibit the unmanned device from docking at the berth; the communication device is further configured to confirm the unmanned device to be charged in the authentication
  • the above-mentioned blocking device is activated to be stowed and the unmanned device to be charged is docked on the berth, and the unmanned device to be charged is confirmed to be an unsuccessful unmanned device.
  • the above-mentioned blocking device is activated to open and the unmanned device to be charged is prohibited from being parked on the berth.
  • the unmanned device energy replenishment request received by the communication device includes an unmanned device energy replenishment request sent by the unmanned device or the service platform to the energy supply station.
  • an energy replenishing method which is applied to an energy replenishing station, the energy replenishing station comprising: one or more berths for parking an unmanned device, for parking at The energy supply device and the communication device for replenishing energy of the unmanned device in the berth, wherein the method comprises: receiving an unmanned device energy replenishment request by the communication device; and guiding and receiving the energy supply request according to the received unmanned device The unmanned device to be replenished corresponding to the unmanned device energy replenishment request is stopped at the berth; and the unmanned device to be replenished by the energy replenishing device supplies energy.
  • the unmanned device energy replenishment request includes: an unmanned device charging request, and before receiving the unmanned device energy replenishment request by the communication device, the method further includes: acquiring the unmanned device charging reservation by using the communication device And requesting, according to the obtained unmanned device charging reservation request, controlling the energy supply station to perform a charging capability self-test; and responding to the unmanned device charging reservation request according to the charging capability self-checking result.
  • acquiring the unmanned device charging reservation request by the communication device includes: receiving an unmanned device charging reservation request sent by the unmanned charging device to the energy supply station; or acquiring the unmanned charging device to be sent to the service Unmanned device charging reservation request for the platform.
  • the energy supply station further includes: a blocking device for cooperating with the berth to allow or prohibit the unmanned device from docking at the berth, wherein the charging of the unmanned device is answered in response to the self-checking result of the charging capability
  • the method further includes: after confirming that the unmanned device to be charged is a successful unmanned device, Activating the above-mentioned blocking device to stow and indicating that the unmanned device to be charged is docked on the berth; or in the case of confirming that the unmanned device to be charged is an unsuccessful unsuccessful device or an unscheduled driver device
  • the above-mentioned blocking device is activated by the above communication device and indicates that the unmanned device to be charged is prohibited from docking on the berth.
  • the energy supply station is provided in the manner common to the energy supply station by setting one or more berths for parking the unmanned device; and the energy supply device for parking on the berth.
  • An unmanned device replenishing energy; a communication device for receiving an unmanned device energy replenishment request, and guiding the unreserved energy supply corresponding to the unmanned device energy replenishment request according to the received unmanned device energy replenishment request.
  • the driving device is docked at the berth, and the energy supply device supplies the energy to the unmanned device to be replenished by the energy supply device, so that the energy supply station is not protected by the unmanned device when the unmanned device (such as the drone) is replenished with energy.
  • the purpose of its own model or brand restriction thus achieving the technical effect of improving the versatility and openness of the energy supply station, thereby solving the versatility and openness caused by the unmanned device energy supply scheme being a proprietary special solution. Low technical problems.
  • FIG. 1 is a schematic diagram of an energy supply station according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an alternative energy supply system in accordance with an embodiment of the present invention.
  • FIG. 3 is a flow chart of an energy replenishing method according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of an alternative energy replenishment method in accordance with an embodiment of the present invention.
  • an apparatus embodiment of an energy replenishment station is provided.
  • the energy supply station 10 includes: one or more berths 102 for parking unmanned devices (such as drones and An unmanned boat, etc.; an energy replenishing device 104 for replenishing energy to an unmanned device parked on each berth 102; a communication device 106 for receiving an unmanned device energy replenishment request, and based on the received unmanned
  • the driving device energy replenishment request guides the unmanned device to be replenished corresponding to the unmanned device energy replenishment request to be docked on the corresponding berth 102, and supplies energy to the unmanned device to be replenished by the energy replenishing device 104.
  • each energy supply station may include one or more berths, wherein, as shown in FIG. 1, the energy supply station 10 may include three berths 102, and each berth 102 can only park one drone. (or an unmanned boat); the energy replenishing device 104 is an energy replenishment subsystem that can simultaneously supply energy to an unmanned device parked on each berth 102 according to the command; the communication device 106 is a communication subsystem that can receive The unmanned device energy replenishment request, and guiding the unmanned device to be replenished corresponding to the unmanned device energy replenishment request to the corresponding berth 102 according to the received unmanned device energy replenishment request, and passing the energy The replenishing device 104 supplies energy to the unmanned device to be replenished with energy.
  • the berth 102 may exist in any state, as long as the unmanned device is fixed to the energy supply station 10, which may be in the form of a plane similar to the apron, or in the form of a grapple or a hook, as long as it can be achieved.
  • the unmanned device is fixed to the energy supply station 10 to supplement the energy to meet the demand.
  • the replenishment station may also include an authentication subsystem.
  • the various components of the energy supply station can be deployed in a single deployment or separately. For example, the authentication subsystem and the energy supply subsystem are separately deployed. After the authentication is successful, the authentication subsystem instructs the drone (or unmanned boat) to be docked at a specific energy supply location.
  • the energy supply station can be fixedly deployed or moved.
  • the process of refueling the drone by the energy supply station is as follows:
  • the drone In the networked state, if the drone needs to replenish energy, it can send an energy replenishment request to the energy supply station.
  • the drone can open the communication module and establish a connection with the wireless communication network to perform wireless communication when the monitored power is lower than the preset low battery threshold.
  • the specific technology of the wireless communication involved in the present invention is not limited, and may be WCDMA, CDMA2000, TD-SCDMA, WiMax, LTE/LTE-A, and the fifth, sixth generation, and N-generation mobile communication technologies; wireless communication technologies such as WiFi, Bluetooth, and infrared.
  • the present invention will take the fourth generation mobile communication system LTE/LTE-A as an example, wherein the mobile communication terminal is represented as a UE (User Equipment), and the access device is represented as a base station.
  • the drone when the drone uses LTE communication, in order to reduce power consumption and save power, it is conceivable to use Cat0 for communication.
  • the drone needs to apply for an energy supply station that meets the requirements before sending an energy replenishment request.
  • the drone needs to send information such as the current location, flight heading, flight destination, remaining power, requested power, and charging parameters to the drone service platform (hereinafter referred to as the service platform) to apply for the energy supply station.
  • the service platform receives the energy replenishment application information sent by the drone, transmits relevant information of the energy supply station (ie, the target energy supply station) that meets the requirements to the drone, and instructs the drone to move to the target energy supply station to supply energy.
  • the charging parameters may include: voltage, current, interface shape and the like; for wireless charging, the charging parameters may include: electromagnetic field frequency, power and other parameters.
  • the energy supply station directs the drone that sends the energy replenishment request to stop at the corresponding berth, thereby replenishing the energy.
  • the energy supply request can be sent to the energy supply station to achieve the purpose of replenishing energy, thereby achieving universal, open and complete.
  • Energy replenishment program can be driven by different manufacturers Driving devices (such as drones) provide energy replenishment services.
  • Driving devices such as drones
  • the purpose of enabling the energy supply station to supply the energy to the unmanned device is not restricted by the model or brand of the unmanned device itself, thereby realizing the improvement of energy supply.
  • the versatility and open technical effects of the station have solved the technical problems of low versatility and low openness due to the exclusive supply scheme of the unmanned vehicle energy supply scheme.
  • the unmanned device energy replenishment request may be an unmanned device charging request (the unmanned device energy replenishment request may correspondingly include information related to the energy replenishment type, and the energy replenishing station may determine the unmanned according to the information The type of energy supplied by the driving device, wherein the communication device is configured to guide the unmanned device to be charged corresponding to the unmanned device charging request to be docked on the berth according to the received charging request of the unmanned device, and supply the energy through the energy supply The device charges the unmanned device to be charged.
  • the energy supply station acts as a charging station, receives through the communication device, and guides the drone that issues the charging request according to the received charging request.
  • the drone is charged at the corresponding berth and through the energy supply device (in this case, the charging device).
  • the unmanned device energy replenishment request may further be an unmanned device battery replacement request, wherein the communication device is configured to guide and the unmanned device battery replacement request according to the received unmanned device battery replacement request.
  • the corresponding unmanned battery to be replaced is docked on the berth, and the battery is replaced by the energy supply device for the battery replacement drone.
  • the energy supply station acts as a power station, receives through the communication device, and directs and issues a battery replacement request according to the received battery replacement request.
  • the drone is docked at the corresponding berth and the battery is replaced by the energy supply device (in this case, the battery replacement device).
  • the energy replenishing station acts as a gas station, receives through the communication device, and directs and issues fuel replenishment according to the received fuel replenishment request.
  • the requested fuel drone is docked at the corresponding berth, and the fuel drone is refueled by the energy supply device (in this case, the fueling device).
  • the energy supply station also needs to upload its own related information, for example, the energy supply station can upload its own berth status information.
  • the energy supply station may further include: a detecting device coupled to the communication device for detecting and feeding back whether the unmanned device is docked on each berth; the communication device is further configured to at least be based on the berth state fed back by the detecting device Determine and upload the berth information for the unmanned device to dock the berth through the communication device.
  • the energy supply station can detect and feed back whether there is a drone on each berth through a detecting device (for example, various sensors), and determine at least according to the berth state fed back by the detecting device through the communication device. By uploading berth information for drones to dock berths.
  • a detecting device for example, various sensors
  • the energy supply station 10, the drone 20, and the service platform 30 can be networked to form a smart energy supply system.
  • the energy supply station 10 may include components such as a communication subsystem, an authentication subsystem, a charging subsystem, and/or a power-changing system, a mechanical blocking device, and the like.
  • the service platform 30 can provide the following services for the drone: energy supply station selection, berth reservation, charge/replacement billing, and the like. It should be noted that the service platform 30 may be separately configured or may be integrated with the energy supply station 10 (ie, the service platform 30 is disposed in the energy supply station 10).
  • the service platform 30 firstly selects the charging station that meets the conditions according to the requesting power, the charging parameter, and the like information sent by the drone 20, and then according to the current current sent by the drone. Parameters such as location, flight direction, flight destination, etc., preferentially select a charging station with a reachable range in the flight direction of the drone. If the drone of the drone does not select a charging station with a voyage reachable, select the nearest one. A charging station with a reachable range.
  • the service platform 30 can calculate the farthest flight distance of the drone 20 by the remaining power of the drone 20. At this time, a certain margin needs to be reserved to ensure that the wind resistance increases and the obstacle is avoided. In the abnormal scene such as the line, the drone 20 can still fly to the charging station smoothly. In addition, when selecting the charging station, the service platform 30 needs to determine whether the charging station satisfies the selection requirement by combining the remaining resource capacity of each charging station (the drone berth, the remaining power, and the charging parameter).
  • the service platform 30 can also predict future idle berths.
  • the service platform 30 refers to the speed of the unmanned aerial vehicle 20 to be charged, the distance between the drone 20 and the charging station, and calculates the time when the drone 20 flies to the charging station.
  • the service platform can also refer to the charging progress of the currently charging drone to determine whether there is a free berth at the charging station when the drone that is applying for charging flies to the charging station. Provide charging service.
  • the service platform 30 can also refer to the preset take-off and landing scheduling strategy, refer to the information about the remaining power of the unmanned aerial vehicle that is being charged, request the urgency, and the like, and prioritize the emergency dispatch. The low-power drone landed. Further, when there is no idle berth and the situation is urgent, the drone service platform can dispatch a drone that is fully charged at the berth to take off, and make a berth for the drone that is applying for charging.
  • the communication device is further configured to acquire an unmanned device charging reservation request, and control the energy supply station to perform a charging capability self-test according to the acquired unmanned device charging reservation request, and respond to the unmanned person according to the charging capability self-checking result.
  • the driving device charges a reservation request.
  • the drone may first initiate a charging request, but first initiate charging to the charging station. Make an appointment to reserve an appointment for this charge. After receiving the charging reservation request, the charging station needs to perform a self-checking of the charging capability to determine again whether the charging requirement is truly met.
  • the process of the drone reservation charging station is as follows:
  • the drone receives information about the charging station fed back by the service platform, sends a charging reservation request to the charging station, and carries the drone ID in the request.
  • the message can be forwarded through the service platform.
  • the charging station receives the charging reservation request sent by the drone, and performs a charging capability self-test according to the charging reservation request, for example, checking whether the remaining power of the charging station, the idle berth, the charging parameter, etc. can satisfy the current charging reservation request. Charging needs.
  • the charging station finds its own charging ability through self-test and can meet the current demand, it can send a charging reservation response to the drone, and carry the drone ID and the subscription success verification code for initiating the current charging reservation request in the response message. And other information; if the charging station finds that its charging ability cannot meet the current demand through self-test, it can not respond.
  • the drone After receiving the relevant information about the successful appointment, the drone flies to the charging station with which the reservation relationship is established, and initiates a charging request to the charging station, wherein the charging request message also needs to carry the drone ID and the reservation is successful. Verification code and other information.
  • the charging station receives the charging request sent by the drone, and analyzes the information such as the drone ID, the subscription success verification code, etc., and then confirms whether it is a previously reserved drone based on the analysis result.
  • the charging station will send a charging response message to the drone to accept its charging request.
  • the charging station will take up the blocking device (including the mechanical blocking device or the electromagnetic blocking device, and the specific structure of the blocking device can be designed according to the actual situation, as long as the unreserved drone can be prevented from being parked on the berth under the premise of safety. It can meet the demand) and instruct the drone to stop at the corresponding berth of the blocking device.
  • the blocking device including the mechanical blocking device or the electromagnetic blocking device, and the specific structure of the blocking device can be designed according to the actual situation, as long as the unreserved drone can be prevented from being parked on the berth under the premise of safety. It can meet the demand
  • the wireless communication network between the UAV and the charging station may be a shared communication network or a charging station dedicated communication network;
  • the service platform may be an actual physical device, or may be A software module that can be deployed locally or deployed in the cloud, and can be deployed in a distributed or centralized manner.
  • the communication device includes: a receiving module, configured to receive an unmanned device charging reservation request sent by the unmanned device to be charged to the energy supply station; or an obtaining module, configured to acquire the unmanned device to be charged and send the service to the service Unmanned device charging reservation request for the platform.
  • the drone when the energy supply station is reserved, the drone can directly send the charging reservation request to the energy supply station, make a reservation with the energy supply station itself, or send the charging reservation request to the service platform.
  • the service platform replaces the energy supply station with the drone to make an appointment. In this way, the appointment channel can be expanded to improve the intelligence of the energy supply system.
  • the energy supply station may further include: a blocking device configured to cooperate with the berth to allow or prohibit the unmanned device from docking on the berth; and the communication device is further configured to confirm, in the authentication, that the unmanned device to be charged is an appointment
  • the activation preventing device is stowed and indicates that the unmanned device to be charged is docked on the berth, and the unmanned device to be charged is confirmed to be an unsuccessful unsuccessful device or unscheduled.
  • the activation blocking device is turned on and indicates that the unmanned device to be charged is prohibited from docking on the berth.
  • the blocking means may be a mechanical blocking means or an electromagnetic blocking means. Preventing the normal state of the device from being open, at this time, prohibiting the unmanned device from docking on the berth; preventing the device from being activated after the device is activated Collapse, that is, from the open state to the stowed state, at this time, the unmanned device is allowed to dock on the berth.
  • the charging station when it arrives at the charging station to request charging, the charging station will authenticate it. If the authentication passes, it indicates that the drone is a previously reserved drone, and the charging station at this time It can be provided with a charging service, so that it can be activated to prevent the device from being stowed, so that the drone can be docked to the corresponding berth; if the authentication fails, it indicates that the drone is not a previously reserved drone (including However, it is not limited to the unsuccessful appointment of the drone or the reservation operation is not performed. At this time, the charging station may choose not to provide a charging service for it, so that the blocking device can be kept open, so that the drone cannot be docked to the corresponding On the berth. In this way, the safety of the energy supply system can be fully considered, and the unauthorized access of the unauthorized drone can be denied, and the effect of intelligent selection and charging reservation of the charging station can be realized.
  • the unmanned device energy replenishment request received by the communication device includes: an unmanned device or an unmanned device energy replenishment request sent by the service platform to the energy supply station.
  • the unmanned device can directly send an energy replenishment request to the energy supply station or forward the energy replenishment request via the service platform.
  • the former can be applied in a scenario where an unmanned device and an energy supply station can communicate, and the latter can be applied in a scenario where an unmanned device and an energy supply station cannot communicate.
  • the energy supply method is applied to an energy supply station, for example, to an energy supply station as shown in FIG. 1, the energy supply station includes: one or more berths for parking an unmanned device, and is used for parking at a berth
  • the energy supply device and the communication device of the unmanned device replenishing energy
  • FIG. 3 is a flowchart of an energy replenishing method according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step S302 receiving an unmanned device energy supply request through the communication device
  • Step S304 guiding the unmanned device to be replenished corresponding to the unmanned device energy replenishment request to be docked on the berth according to the received unmanned device energy replenishment request;
  • Step S306 the energy supply device supplies the energy to the unmanned device to be replenished by the energy supply device.
  • each energy supply station may include one or more berths, wherein, as shown in FIG. 1, the energy supply station 10 may include three berths 102, and each berth 102 can only park one drone. (or an unmanned boat); the energy replenishing device 104 is an energy replenishment subsystem that can simultaneously supply energy to an unmanned device parked on each berth 102 according to the command; the communication device 106 is a communication subsystem that can receive The unmanned device energy replenishment request, and guiding the unmanned device to be replenished corresponding to the unmanned device energy replenishment request to the corresponding berth 102 according to the received unmanned device energy replenishment request, and passing the energy The replenishing device 104 supplies energy to the unmanned device to be replenished with energy.
  • the above energy supply station may further include an authentication subsystem.
  • the various components of the energy supply station can be deployed in a single deployment or separately.
  • the authentication subsystem and the energy supply subsystem are separately deployed.
  • the authentication subsystem instructs the drone (or unmanned boat) to be docked at a specific energy supply location.
  • the energy supply station can be fixedly deployed or moved.
  • the process of refueling the drone by the energy supply station is as follows:
  • the drone In the networked state, if the drone needs to replenish energy, it can send an energy replenishment request to the energy supply station.
  • the drone can open the communication module and establish a connection with the wireless communication network to perform wireless communication when the monitored power is lower than the preset low battery threshold.
  • the specific technology of the wireless communication involved in the present invention is not limited, and may be WCDMA, CDMA2000, TD-SCDMA, WiMax, LTE/LTE-A, and the fifth, sixth generation, and N-generation mobile communication technologies; wireless communication technologies such as WiFi, Bluetooth, and infrared.
  • the present invention will take the fourth generation mobile communication system LTE/LTE-A as an example, wherein the mobile communication terminal is represented as a UE (User Equipment), and the access device is represented as a base station.
  • the drone when the drone uses LTE communication, in order to reduce power consumption and save power, it is conceivable to use Cat0 for communication.
  • the drone needs to apply for an energy supply station that meets the requirements before sending an energy replenishment request.
  • the drone needs to send information such as the current location, flight heading, flight destination, remaining power, requested power, and charging parameters to the drone service platform (hereinafter referred to as the service platform) to apply for the energy supply station.
  • the service platform receives the energy replenishment application information sent by the drone, and sends the energy supply station that meets the requirements to the drone (ie, the target energy supply) Information about the station and instruct the drone to move to the target energy supply station to replenish energy.
  • the charging parameters may include: voltage, current, interface shape and the like; for wireless charging, the charging parameters may include: electromagnetic field frequency, power and other parameters.
  • the energy supply station directs the drone that sends the energy replenishment request to stop at the corresponding berth, thereby replenishing the energy.
  • the energy supply request can be sent to the energy supply station to achieve the purpose of replenishing energy, thereby achieving universal, open and complete.
  • the energy replenishment program can provide energy replenishment services for unmanned devices (such as drones) from different manufacturers. It can be seen that by using the technical solution of the present invention, the purpose of enabling the energy supply station to supply the energy to the unmanned device (such as the drone) is not restricted by the model or brand of the unmanned device itself, thereby realizing the improvement of energy supply.
  • the versatility and open technical effects of the station have solved the technical problems of low versatility and low openness due to the exclusive supply scheme of the unmanned vehicle energy supply scheme.
  • the unmanned device energy replenishment request may include: an unmanned device charging request, and the method may further include: before receiving the unmanned device energy replenishment request by the communication device, the method may further include:
  • the drone may first initiate a charging request, but first initiate charging to the charging station. Make an appointment to reserve an appointment for this charge. After receiving the charging reservation request, the charging station needs to perform a self-checking of the charging capability to determine again whether the charging requirement is truly met.
  • the process of requesting charging by the drone is taken as an example, and the process of reserving the charging station by the drone is the same as that in the first embodiment, and details are not described herein again.
  • obtaining the unmanned device charging reservation request by using the communication device includes:
  • the drone when the energy supply station is reserved, the drone can directly send the charging reservation request to the energy supply station, make a reservation with the energy supply station itself, or send the charging reservation request to the service platform.
  • the service platform replaces the energy supply station with the drone to make an appointment. In this way, the appointment channel can be expanded to improve the intelligence of the energy supply system.
  • the energy replenishing station may further include: a blocking device for cooperating with the berth to allow or prohibit the unmanned device from docking on the berth, wherein the unmanned device charging reservation request is answered according to the charging capability self-checking result
  • the above method may further include:
  • the communication device activates the blocking device to be stowed and indicates that the unmanned device to be charged is docked at the berth;
  • the communication device activates the blocking device to open and indicates that the unmanned device to be charged is prohibited from docking at On the berth.
  • the blocking means may be a mechanical blocking means or an electromagnetic blocking means.
  • the normal state of the blocking device is turned on. At this time, the unmanned device is prohibited from docking on the berth; the blocking device is stowed after being activated, that is, from the open state to the stowed state, at this time, the unmanned device is allowed to stop at On the berth.
  • the charging station when it arrives at the charging station to request charging, the charging station will authenticate it. If the authentication passes, it indicates that the drone is a previously reserved drone, and the charging station at this time It can be provided with a charging service, so that it can be activated to prevent the device from being stowed, so that the drone can be docked to the corresponding berth; if the authentication fails, it indicates that the drone is not a previously reserved drone (including But not limited to the drone before the appointment failed or did not perform any reservation operation), charging at this time
  • the station may choose not to provide charging services for it, so it is possible to keep the blocking device open so that the drone cannot dock to the corresponding berth. In this way, the safety of the energy supply system can be fully considered, and the unauthorized access of the unauthorized drone can be denied, and the effect of intelligent selection and charging reservation of the charging station can be realized.
  • the drone When the drone detects that the power is lower than the preset low battery threshold, the drone opens the communication module and connects to the wireless communication network;
  • the drone sends the application parameters and applies for the relevant information of the charging station
  • the service platform selects the applicable charging station according to the current location, flight direction, flight destination and other application parameters sent by the drone;
  • the service platform sends relevant information of the selected charging station to the drone requesting charging;
  • the drone sends a charging station reservation request to the charging station
  • the charging station performs a capability self-test according to the charging reservation request to confirm whether the reservation request can be satisfied;
  • the charging station sends a charging reservation response according to the self-test result
  • the drone After the appointment is successful, the drone sends a charging request to the charging station;
  • the charging station confirms whether the drone is a previously reserved drone according to the charging request
  • the charging station sends a charging response to the drone.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module. It can be in electrical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the integrated unit can be implemented either in hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种能源补给站以及能源补给方法。其中,该能源补给站(10)包括:一个或多个泊位(102),用于停泊无人驾驶装置;能源补给装置(104),用于给停泊在泊位上的无人驾驶装置补给能源;通讯装置(106),用于接收无人驾驶装置能源补给请求,并根据接收到的无人驾驶装置能源补给请求引导与无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在泊位上,并通过能源补给装置为待补给的无人驾驶装置补给能源。

Description

能源补给站以及能源补给方法 技术领域
本发明涉及无人驾驶装置领域,具体而言,涉及一种能源补给站以及能源补给方法。
背景技术
无人驾驶装置在民用领域和军用领域应用广泛。民用领域主要包括:地图测绘、地质勘测、灾害监测、气象探测、空中交通管制、边境控制、通信中继、农药喷洒等。军用领域主要包括:电子干扰、高空航拍、高空制导等领域。但由于机载电池重量与机载电池功率的限制,小型无人驾驶装置的飞行时间一般都很短。
目前与无人驾驶装置电池相关的研究比较多,大家都希望突破无人驾驶装置电池限制,使无人驾驶装置可以在更广泛的领域得到应用。相关技术中除了采用降低无人驾驶装置的重量和提高电池续航能力这样的常规手段之外,还采用其他解决无人驾驶装置电池的技术方案,主要包括两大类:更换电池、电池充电。更换电池类方案提出了断电保护、电池自动更换等多个技术创新方案。电池充电从充电电池保护、充电自动控制、充电方式(有线或无线)、供电类型(汽油发电机、太阳能板、汽车电瓶、蓄电池、架空输电线等)等方面,都提出一些技术解决方案。
但是,当前的无人驾驶装置能源补给方案都属于专有专用方案。专用能源补给方案往往针对某一机型或某一厂家的系列产品,要求电池、无人驾驶装置、充电站、阻止装置等,必须全部匹配,否则不能正常工作。当前的能源补给方案没有考虑通用性和开放性,不能为其它厂家的无人驾驶装置充电或更换电池。当前的能源补给方案也没有考虑安全性,在无人场景下,不能有效阻止其它厂家无人驾驶装置闯入并进行充电/换电等非法操作。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种能源补给站以及能源补给方法,以至少解决由于无人驾驶装置能源补给方案都属于专有专用方案而造成的通用性和开放性低的技术问题。
根据本发明实施例的一个方面,提供了一种能源补给站,包括:一个或多个泊位,用于停泊无人驾驶装置;能源补给装置,用于给停泊在上述泊位上的无人驾驶装置补给能源;通讯装置,用于接收无人驾驶装置能源补给请求,并根据接收到的无人驾驶装置能源补给请求引导与上述无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在上述泊位上,并通过上述能源补给装置为上述待能源补给的无人驾驶装置补给能源。
进一步地,上述无人驾驶装置能源补给请求为无人驾驶装置充电请求,其中,上述通讯装置用于根据接收到的无人驾驶装置充电请求,引导与上述无人驾驶装置充电请求对应的待充电无人驾驶装置停靠在上述泊位上,并通过上述能源补给装置为上述待充电无人驾驶装置充电。
进一步地,上述无人驾驶装置能源补给请求为无人驾驶装置电池更换请求,其中,上述通讯装置用于根据接收到的无人驾驶装置电池更换请求,引导与上述无人驾驶装置电池更换请求对应的待换电池无人驾驶装置停靠在上述泊位上,并通过上述能源补给装置为上述换电池无人驾驶装置更换电池。
进一步地,上述能源补给站还包括:探测装置,与上述通讯装置耦合,用于探测并反馈每个上述泊位上是否停靠有无人驾驶装置;上述通讯装置,还用于至少根据上述探测装置反馈的泊位状态确定并通过上述通讯装置上传可供无人驾驶装置停靠泊位的泊位信息。
进一步地,上述通讯装置,还用于获取无人驾驶装置充电预约请求,并根据获取的上述无人驾驶装置充电预约请求控制能源补给站进行充电能力自检,并根据充电能力自检结果应答上述无人驾驶装置充电预约请求。
进一步地,上述通讯装置包括:接收模块,用于接收待充电无人驾驶装置发送给能源补给站的无人驾驶装置充电预约请求;或者获取模块,用于获取待充电无人驾驶装置发送给服务平台的无人驾驶装置充电预约请求。
进一步地,上述能源补给站还包括:阻止装置,用于与上述泊位配合,允许或禁止无人驾驶装置停靠在上述泊位上;上述通讯装置,还用于在鉴权确认待充电无人驾驶装置为预约成功的无人驾驶装置的情况下,激活上述阻止装置收起并指示待充电无人驾驶装置停靠在上述泊位上,在鉴权确认待充电无人驾驶装置为预约失败的无人驾驶装置或未预约的无人驾驶装置的情况下,激活上述阻止装置打开并指示待充电无人驾驶装置禁止停靠在上述泊位上。
进一步地,上述通讯装置接收的无人驾驶装置能源补给请求包括:无人驾驶装置或服务平台发送给能源补给站的无人驾驶装置能源补给请求。
根据本发明实施例的另一方面,还提供了一种能源补给方法,应用于能源补给站,上述能源补给站包括:一个或多个用于停泊无人驾驶装置的泊位、用于给停泊在上述泊位上的无人驾驶装置补给能源的能源补给装置和通讯装置,其中,上述方法包括:通过通讯装置接收无人驾驶装置能源补给请求;根据接收到的无人驾驶装置能源补给请求引导与上述无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在上述泊位上;通过上述能源补给装置为上述待能源补给的无人驾驶装置补给能源。
进一步地,上述无人驾驶装置能源补给请求包括:无人驾驶装置充电请求,在通过通讯装置接收无人驾驶装置能源补给请求之前,上述方法还包括:通过上述通讯装置获取无人驾驶装置充电预约请求;根据获取的上述无人驾驶装置充电预约请求控制上述能源补给站进行充电能力自检;根据充电能力自检结果应答上述无人驾驶装置充电预约请求。
进一步地,通过上述通讯装置获取无人驾驶装置充电预约请求包括:接收待充电无人驾驶装置发送给上述能源补给站的无人驾驶装置充电预约请求;或者获取待充电无人驾驶装置发送给服务平台的无人驾驶装置充电预约请求。
进一步地,上述能源补给站还包括:用于与上述泊位配合以允许或禁止无人驾驶装置停靠在上述泊位上的阻止装置,其中,在根据充电能力自检结果应答上述无人驾驶装置充电预约请求之后,上述方法还包括:在鉴权确认待充电无人驾驶装置为预约成功的无人驾驶装置的情况下,通过上述通讯装 置激活上述阻止装置收起并指示待充电无人驾驶装置停靠在上述泊位上;或者在鉴权确认待充电无人驾驶装置为预约失败的无人驾驶装置或未预约的无人驾驶装置的情况下,通过上述通讯装置激活上述阻止装置打开并指示待充电无人驾驶装置禁止停靠在上述泊位上。
在本发明实施例中,采用能源补给站公用的方式,通过设置如下部分的能源补给站:一个或多个泊位,用于停泊无人驾驶装置;能源补给装置,用于给停泊在泊位上的无人驾驶装置补给能源;通讯装置,用于接收无人驾驶装置能源补给请求,并根据接收到的无人驾驶装置能源补给请求引导与无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在泊位上,并通过能源补给装置为待能源补给的无人驾驶装置补给能源,达到了使能源补给站给无人驾驶装置(如无人机)补给能源时不受无人驾驶装置自身的型号或品牌限制的目的,从而实现了提高能源补给站的通用性和开放性的技术效果,进而解决了由于无人驾驶装置能源补给方案都属于专有专用方案而造成的通用性和开放性低的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种能源补给站的示意图;
图2是根据本发明实施例的一种可选的能源补给系统的示意图;
图3是根据本发明实施例的一种能源补给方法的流程图;
图4是根据本发明实施例的一种可选的能源补给方法的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
根据本发明实施例,提供了一种能源补给站的装置实施例。
图1是根据本发明实施例的一种能源补给站的示意图,如图1所示,该能源补给站10包括:一个或多个泊位102,用于停泊无人驾驶装置(如无人机和无人艇等);能源补给装置104,用于给停泊在各个泊位102上的无人驾驶装置补给能源;通讯装置106,用于接收无人驾驶装置能源补给请求,并根据接收到的无人驾驶装置能源补给请求引导与无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在对应的泊位102上,并通过能源补给装置104为待能源补给的无人驾驶装置补给能源。
需要说明的是,每个能源补给站可以包括一个或者多个泊位,其中,如图1所示,能源补给站10可以包括3个泊位102,每个泊位102上只能停泊一架无人机(或一艘无人艇);能源补给装置104就是能源补给子系统,它可以根据指令同时为停泊在各个泊位102上的无人驾驶装置补给能源;通讯装置106就是通信子系统,它可以接收无人驾驶装置能源补给请求,并根据接收到的无人驾驶装置能源补给请求引导与无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在对应的泊位102上,并通过能源补给装置104为待能源补给的无人驾驶装置补给能源。需要说明的是,泊位102可以以任意状态存在,只要便于无人驾驶装置固定于能源补给站10上,其可以是类似停机坪的平面形态,也可以以抓钩、挂钩的形态,只要能达到将无人驾驶装置固定于能源补给站10上以便补充能源即可满足需求。另外,上述能源 补给站还可以包括鉴权子系统。实施时,能源补给站的各个部件可以合一部署,也可以分离部署。例如,鉴权子系统和能源补给子系统分离部署,待鉴权成功后,鉴权子系统指示无人机(或无人艇)停靠在具体的能源补给位置。另外,能源补给站可以固定部署,也可以移动部署。
以无人机为例,能源补给站给无人机补给能源的流程如下:
1.1在联网状态下,无人机如果需要补给能源,则可以向能源补给站发送能源补给请求。
需要说明的是,为了节约能源,无人机可以在监测到电量低于预先设定的低电量阈值时,打开通信模块,与无线通信网络建立连接,进行无线通信。需要进一步说明的是,本发明中涉及的无线通信的具体技术不限,可以为WCDMA、CDMA2000、TD-SCDMA、WiMax、LTE/LTE-A以及后续可能出现的第五代、第六代、第N代等移动通信技术;也可以是WiFi、蓝牙、红外等无线通信技术。为便于描述,本发明将以第四代移动通信系统LTE/LTE-A为例,其中移动通信终端表示为UE(User Equipment),接入设备表示为基站。更进一步地,当无人机使用LTE通信时,为了降低功耗、节省电量,可以考虑使用Cat0进行通信。另外,在发送能源补给请求之前,无人机需要先申请满足要求的能源补给站。具体地,无人机需要将当前位置、飞行航向、飞行目的地、剩余电量、请求电量、充电参数等信息发送给无人机服务平台(以下简称为服务平台),以申请能源补给站的相关信息;服务平台接收无人机发送的能源补给申请信息,向无人机发送满足要求的能源补给站(即目标能源补给站)的相关信息,并指示无人机移动到目标能源补给站以补给能源。其中,以充电形式的能源补给为例,对于有线充电而言,充电参数可以包括:电压、电流、接口形状等参数;对于无线充电而言,充电参数可以包括:电磁场频率,功率等参数。
1.2能源补给站根据接收到的无人机发送的能源补给请求,引导发送该能源补给请求的无人机停靠在对应的泊位上,从而为其补给能源。
通过上述实施例,不管无人驾驶装置的型号和/或品牌如何,只要它们需要补给能源,都可以通过向能源补给站发送能源补给请求来达到补给能源的目的,因此实现通用、开放、完整的能源补给方案,可以为不同厂家无人驾 驶装置(如无人机)提供能源补给服务。可见,通过使用本发明技术方案,达到了使能源补给站给无人驾驶装置(如无人机)补给能源时不受无人驾驶装置自身的型号或品牌限制的目的,从而实现了提高能源补给站的通用性和开放性的技术效果,进而解决了由于无人驾驶装置能源补给方案都属于专有专用方案而造成的通用性和开放性低的技术问题。
能源补给可以以多种形式进行,如充电、更换电池、充电/更换电池等,甚至可以根据实际需求补充燃料。对应可选地,无人驾驶装置能源补给请求可以为无人驾驶装置充电请求(无人驾驶装置能源补给请求中相应可以包含能源补给类型的相关信息,能源补给站可以根据这个信息确定为无人驾驶装置补给的能源类型),其中,通讯装置用于根据接收到的无人驾驶装置充电请求,引导与无人驾驶装置充电请求对应的待充电无人驾驶装置停靠在泊位上,并通过能源补给装置为待充电无人驾驶装置充电。
例如,以无人机为例,当无人机发送充电请求以请求充电时,能源补给站充当充电站,通过通讯装置接收并根据接收到的充电请求,引导与发出充电请求的无人机停靠在对应的泊位上,并通过能源补给装置(此时为充电装置)为该无人机充电。
对应可选地,无人驾驶装置能源补给请求还可以为无人驾驶装置电池更换请求,其中,通讯装置用于根据接收到的无人驾驶装置电池更换请求,引导与无人驾驶装置电池更换请求对应的待换电池无人驾驶装置停靠在泊位上,并通过能源补给装置为换电池无人驾驶装置更换电池。
例如,以无人机为例,当无人机发送电池更换请求以请求更换电池时,能源补给站充当换电站,通过通讯装置接收并根据接收到的电池更换请求,引导与发出电池更换请求的无人机停靠在对应的泊位上,并通过能源补给装置(此时为电池更换装置)为该无人机更换电池。
例如,以燃油无人机为例,当燃油无人机发送燃油补给请求以请求补给燃油时,能源补给站充当加油站,通过通讯装置接收并根据接收到的燃油补给请求,引导与发出燃油补给请求的燃油无人机停靠在对应的泊位上,并通过能源补给装置(此时为加油装置)为该燃油无人机补给燃油。
为了提高无人机申请的能源补给站与该无人机的匹配度,优选地,能源补给站也需要上传自身的相关信息,例如,能源补给站可以上传自己的泊位状态信息。可选地,能源补给站还可以包括:探测装置,与通讯装置耦合,用于探测并反馈每个泊位上是否停靠有无人驾驶装置;通讯装置,还用于至少根据探测装置反馈的泊位状态确定并通过通讯装置上传可供无人驾驶装置停靠泊位的泊位信息。
例如,以无人机为例,能源补给站可以通过探测装置(例如各种传感器)探测并反馈每个泊位上是否停靠有无人机,并通过通讯装置至少根据探测装置反馈的泊位状态确定并通过上传可供无人机停靠泊位的泊位信息。
如图2所示,能源补给站10、无人机20和服务平台30之间可以组网,形成智能能源补给系统。其中,能源补给站10可以包括:通信子系统、鉴权子系统、充电子系统和/或换电子系统、机械阻止装置等部件。服务平台30可以为无人机提供以下服务:能源补给站选择、泊位预约、充/换电计费等。需要说明的是,服务平台30可以分离设置,也可以与能源补给站10合一设置(即服务平台30设置在能源补给站10内)。
以无人机请求充电为例,实施时,服务平台30先根据无人机20发送的请求电量、充电参数等申请信息,将符合条件的充电站进行初选,再根据无人机发送的当前位置、飞行航向、飞行目的地等参数,优先在该无人机的航向上选择航程可达的充电站,若该无人机的航向上没有选出航程可达的充电站,则选择就近的航程可达的充电站。
进一步地,服务平台30可以通过无人机20的剩余电量,计算无人机20的最远飞行距离时,此时需要预留一定余量,保证在风阻力增大、为躲避障碍物而绕行等异常场景下,无人机20仍然可以顺利飞抵充电站。另外,服务平台30在选择充电站时,需要结合每个充电站的剩余资源能力(无人机泊位、剩余电量、充电参数),确定充电站是否满足选择要求。
进一步地,服务平台30还可以预测未来空闲泊位。例如,服务平台30参考申请充电的无人机20的速度、无人机20与充电站的距离,计算无人机20飞抵充电站的时间。服务平台还可以参考当前正在充电的无人机的充电进度,确定正在申请充电的无人机飞抵充电站时,充电站是否还有空闲泊位以 提供充电服务。
进一步地,如果多个无人机同时申请充电,服务平台30还可以根据预先设定的起降调度策略,参考正在申请充电的无人机的剩余电量、请求紧急程度等信息,优先调度紧急的、低电量的无人机降落。更进一步地,在无空闲泊位且情况紧急时,无人机服务平台可以调度停靠在泊位上的电量较充足的无人机起飞,为正在申请充电的无人机让出泊位。
可选地,通讯装置,还用于获取无人驾驶装置充电预约请求,并根据获取的无人驾驶装置充电预约请求控制能源补给站进行充电能力自检,并根据充电能力自检结果应答无人驾驶装置充电预约请求。
例如,以无人机为例,在服务平台将选出的充电站的相关信息发送给请求充电的无人机后,该无人机可以先不发起充电请求,而是先向充电站发起充电预约请求,预约本次充电的相关事宜。充电站在收到充电预约请求后,需要进行充电能力自检,再次确定是否真正满足本次充电需求。
如图2所示,以无人机请求充电为例,无人机预约充电站的流程如下:
2.1实施时,无人机接收服务平台反馈的充电站的相关信息,向充电站发送充电预约请求,并在请求中携带无人机ID。
需要说明的是,如果无人机和充电站之间无法直接通信,可以通过服务平台转发消息。
2.2充电站接收无人机发送的充电预约请求,并根据该充电预约请求进行充电能力自检,例如,检查本充电站的剩余电量、空闲泊位、充电参数等是否可以满足当前充电预约请求对应的充电需求。
2.3如果充电站通过自检发现自身的充电能力可以满足当前需求,则可以向无人机发送充电预约应答,并在应答消息中携带发起本次充电预约请求的无人机ID、预约成功验证码等信息;如果充电站通过自检发现自身的充电能力无法满足当前需求,则可以不做任何回应。
2.4无人机在收到预约成功的相关信息后,飞抵与其建立预约关系的充电站,并向该充电站发起充电请求,其中,该充电请求消息中也需要携带无人机ID、预约成功验证码等信息。
2.5充电站接收无人机发送的充电请求,并解析其中的无人机ID、预约成功验证码等信息,进而根据解析结果确认是否是先前已预约的无人机。
2.6如果确认是先前已预约的无人机,充电站会向该无人机发送充电应答消息,接受其充电请求。同时,充电站会收起阻止装置(包括机械阻止装置或电磁阻止装置,阻止装置的具体结构可以根据实际情况设计,只要能在安全的前提下,阻止未预约的无人机停泊在泊位上即可满足需求),并指示无人机停靠在阻止装置对应的泊位上。
需要说明的是,在本发明实施例中,无人机和充电站之间的无线通信网络可以是共用通信网,也可以是充电站专用通信网;服务平台可以是实际物理设备,也可以是软件模块,它可以部署在本地,也可以部署在云端,并且其可以以分布式部署,也可以以集中式部署。
需要说明的是,以上描述的充电站对无人机的充电操作及其处理流程,同样适用于电池更换操作及其相关处理流程,在此不再赘述。
可选地,通讯装置包括:接收模块,用于接收待充电无人驾驶装置发送给能源补给站的无人驾驶装置充电预约请求;或者获取模块,用于获取待充电无人驾驶装置发送给服务平台的无人驾驶装置充电预约请求。
也即,以无人机为例,在预约能源补给站时,无人机可以直接将充电预约请求发送给能源补给站,与能源补给站自身预约,也可以将充电预约请求发送给服务平台,由服务平台代替能源补给站与无人机进行预约。这样,可以拓展预约渠道,提高能源补给系统的智能化。
可选地,能源补给站还可以包括:阻止装置,用于与泊位配合,允许或禁止无人驾驶装置停靠在泊位上;通讯装置,还用于在鉴权确认待充电无人驾驶装置为预约成功的无人驾驶装置的情况下,激活阻止装置收起并指示待充电无人驾驶装置停靠在泊位上,在鉴权确认待充电无人驾驶装置为预约失败的无人驾驶装置或未预约的无人驾驶装置的情况下,激活阻止装置打开并指示待充电无人驾驶装置禁止停靠在泊位上。
其中,阻止装置可以是机械阻止装置或电磁阻止装置。阻止装置的常态为打开状态,此时,禁止无人驾驶装置停靠在泊位上;阻止装置在激发后会 收起,即由打开状态变为收起状态,此时,允许无人驾驶装置停靠在泊位上。
以无人机为例,当其飞抵充电站请求充电时,充电站会对其进行鉴权,如果鉴权通过,则表明该无人机是之前已预约的无人机,此时充电站可以为其提供充电服务,因此,可以激发阻止装置收起,使得无人机能够停靠到对应的泊位上;如果鉴权未通过,则表明该无人机不是之前已预约的无人机(包括但不限于该无人机之前预约失败了或者并未执行任何预约操作),此时充电站可以选择不为其提供充电服务,因此,可以保持阻止装置打开,使得无人机无法停靠到对应的泊位上。这样,可以充分考虑能源补给系统的安全性,拒绝非授权无人机非法访问,实现了充电站智能选择、充电预约的效果。
可选地,通讯装置接收的无人驾驶装置能源补给请求包括:无人驾驶装置或服务平台发送给能源补给站的无人驾驶装置能源补给请求。
也即,无人驾驶装置可以直接给能源补给站发送能源补给请求,或者经由服务平台为其转发能源补给请求。前者可以在无人驾驶装置与能源补给站之间能够通信的场景中应用,后者可以在无人驾驶装置与能源补给站之间无法通信的场景中应用。
实施例2
根据本发明实施例,提供了一种能源补给方法的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
该能源补给方法应用于能源补给站,例如可以应用于如图1所示的能源补给站,该能源补给站包括:一个或多个用于停泊无人驾驶装置的泊位、用于给停泊在泊位上的无人驾驶装置补给能源的能源补给装置和通讯装置,其中,图3是根据本发明实施例的一种能源补给方法的流程图,如图3所示,该方法包括如下步骤:
步骤S302,通过通讯装置接收无人驾驶装置能源补给请求;
步骤S304,根据接收到的无人驾驶装置能源补给请求引导与无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在泊位上;
步骤S306,通过能源补给装置为待能源补给的无人驾驶装置补给能源。
需要说明的是,每个能源补给站可以包括一个或者多个泊位,其中,如图1所示,能源补给站10可以包括3个泊位102,每个泊位102上只能停泊一架无人机(或一艘无人艇);能源补给装置104就是能源补给子系统,它可以根据指令同时为停泊在各个泊位102上的无人驾驶装置补给能源;通讯装置106就是通信子系统,它可以接收无人驾驶装置能源补给请求,并根据接收到的无人驾驶装置能源补给请求引导与无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在对应的泊位102上,并通过能源补给装置104为待能源补给的无人驾驶装置补给能源。另外,上述能源补给站还可以包括鉴权子系统。实施时,能源补给站的各个部件可以合一部署,也可以分离部署。例如,鉴权子系统和能源补给子系统分离部署,待鉴权成功后,鉴权子系统指示无人机(或无人艇)停靠在具体的能源补给位置。另外,能源补给站可以固定部署,也可以移动部署。
以无人机为例,能源补给站给无人机补给能源的流程如下:
1.1在联网状态下,无人机如果需要补给能源,则可以向能源补给站发送能源补给请求。
需要说明的是,为了节约能源,无人机可以在监测到电量低于预先设定的低电量阈值时,打开通信模块,与无线通信网络建立连接,进行无线通信。需要进一步说明的是,本发明中涉及的无线通信的具体技术不限,可以为WCDMA、CDMA2000、TD-SCDMA、WiMax、LTE/LTE-A以及后续可能出现的第五代、第六代、第N代等移动通信技术;也可以是WiFi、蓝牙、红外等无线通信技术。为便于描述,本发明将以第四代移动通信系统LTE/LTE-A为例,其中移动通信终端表示为UE(User Equipment),接入设备表示为基站。更进一步地,当无人机使用LTE通信时,为了降低功耗、节省电量,可以考虑使用Cat0进行通信。另外,在发送能源补给请求之前,无人机需要先申请满足要求的能源补给站。具体地,无人机需要将当前位置、飞行航向、飞行目的地、剩余电量、请求电量、充电参数等信息发送给无人机服务平台(以下简称为服务平台),以申请能源补给站的相关信息;服务平台接收无人机发送的能源补给申请信息,向无人机发送满足要求的能源补给站(即目标能源补给 站)的相关信息,并指示无人机移动到目标能源补给站以补给能源。其中,以充电形式的能源补给为例,对于有线充电而言,充电参数可以包括:电压、电流、接口形状等参数;对于无线充电而言,充电参数可以包括:电磁场频率,功率等参数。
1.2能源补给站根据接收到的无人机发送的能源补给请求,引导发送该能源补给请求的无人机停靠在对应的泊位上,从而为其补给能源。
通过上述实施例,不管无人驾驶装置的型号和/或品牌如何,只要它们需要补给能源,都可以通过向能源补给站发送能源补给请求来达到补给能源的目的,因此实现通用、开放、完整的能源补给方案,可以为不同厂家无人驾驶装置(如无人机)提供能源补给服务。可见,通过使用本发明技术方案,达到了使能源补给站给无人驾驶装置(如无人机)补给能源时不受无人驾驶装置自身的型号或品牌限制的目的,从而实现了提高能源补给站的通用性和开放性的技术效果,进而解决了由于无人驾驶装置能源补给方案都属于专有专用方案而造成的通用性和开放性低的技术问题。
需要说明的是,能源补给站的其他组成部件及其各组成部件的连接关系、功能分别与实施例1中的描述对应相同,在此不再赘述。
能源补给可以以多种形式进行,如充电、更换电池、充电/更换电池等。对应可选地,无人驾驶装置能源补给请求可以包括:无人驾驶装置充电请求,因此,在通过通讯装置接收无人驾驶装置能源补给请求之前,上述方法还可以包括:
S2,通过通讯装置获取无人驾驶装置充电预约请求;
S4,根据获取的无人驾驶装置充电预约请求控制能源补给站进行充电能力自检;
S6,根据充电能力自检结果应答无人驾驶装置充电预约请求。
例如,以无人机为例,在服务平台将选出的充电站的相关信息发送给请求充电的无人机后,该无人机可以先不发起充电请求,而是先向充电站发起充电预约请求,预约本次充电的相关事宜。充电站在收到充电预约请求后,需要进行充电能力自检,再次确定是否真正满足本次充电需求。
如图2所示,以无人机请求充电为例,无人机预约充电站的流程同实施例1中的相应描述,在此不再赘述。
进一步可选地,通过通讯装置获取无人驾驶装置充电预约请求包括:
S8,接收待充电无人驾驶装置发送给能源补给站的无人驾驶装置充电预约请求;或者
S10,获取待充电无人驾驶装置发送给服务平台的无人驾驶装置充电预约请求。
也即,以无人机为例,在预约能源补给站时,无人机可以直接将充电预约请求发送给能源补给站,与能源补给站自身预约,也可以将充电预约请求发送给服务平台,由服务平台代替能源补给站与无人机进行预约。这样,可以拓展预约渠道,提高能源补给系统的智能化。
可选地,上述能源补给站还可以包括:用于与泊位配合以允许或禁止无人驾驶装置停靠在泊位上的阻止装置,其中,在根据充电能力自检结果应答无人驾驶装置充电预约请求之后,上述方法还可以包括:
S12,在鉴权确认待充电无人驾驶装置为预约成功的无人驾驶装置的情况下,通过通讯装置激活阻止装置收起并指示待充电无人驾驶装置停靠在泊位上;或者
S14,在鉴权确认待充电无人驾驶装置为预约失败的无人驾驶装置或未预约的无人驾驶装置的情况下,通过通讯装置激活阻止装置打开并指示待充电无人驾驶装置禁止停靠在泊位上。
其中,阻止装置可以是机械阻止装置或电磁阻止装置。阻止装置的常态为打开状态,此时,禁止无人驾驶装置停靠在泊位上;阻止装置在激发后会收起,即由打开状态变为收起状态,此时,允许无人驾驶装置停靠在泊位上。
以无人机为例,当其飞抵充电站请求充电时,充电站会对其进行鉴权,如果鉴权通过,则表明该无人机是之前已预约的无人机,此时充电站可以为其提供充电服务,因此,可以激发阻止装置收起,使得无人机能够停靠到对应的泊位上;如果鉴权未通过,则表明该无人机不是之前已预约的无人机(包括但不限于该无人机之前预约失败了或者并未执行任何预约操作),此时充电 站可以选择不为其提供充电服务,因此,可以保持阻止装置打开,使得无人机无法停靠到对应的泊位上。这样,可以充分考虑能源补给系统的安全性,拒绝非授权无人机非法访问,实现了充电站智能选择、充电预约的效果。
以下结合图4,以无人机申请充电为例详细阐述本发明:
4.1当无人机监测到电量低于预先设定的低电量阈值时,无人机打开通信模块,连接无线通信网络;
4.2无人机发送申请参数,申请充电站的相关信息;
4.3服务平台根据无人机发送的当前位置、飞行航向、飞行目的地等申请参数,选择适用的充电站;
4.4服务平台将选出的充电站的相关信息发送给请求充电的无人机;
4.5无人机向充电站发送充电站预约请求;
4.6充电站根据充电预约请求进行能力自检,确认是否可以满足该预约请求;
4.7充电站根据自检结果发送充电预约应答;
4.8预约成功后,无人机向充电站发送充电请求;
4.9充电站根据充电请求,确认该无人机是否是先前已预约的无人机;
4.10若是,充电站向无人机发送充电应答。
本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接, 可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种能源补给站,其特征在于,包括:
    一个或多个泊位,用于停泊无人驾驶装置;
    能源补给装置,用于给停泊在所述泊位上的无人驾驶装置补给能源;
    通讯装置,用于接收无人驾驶装置能源补给请求,并根据接收到的无人驾驶装置能源补给请求引导与所述无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在所述泊位上,并通过所述能源补给装置为所述待能源补给的无人驾驶装置补给能源。
  2. 根据权利要求1所述的能源补给站,其特征在于,所述无人驾驶装置能源补给请求为无人驾驶装置充电请求,其中,
    所述通讯装置用于根据接收到的无人驾驶装置充电请求,引导与所述无人驾驶装置充电请求对应的待充电无人驾驶装置停靠在所述泊位上,并通过所述能源补给装置为所述待充电无人驾驶装置充电。
  3. 根据权利要求1所述的能源补给站,其特征在于,所述无人驾驶装置能源补给请求为无人驾驶装置电池更换请求,其中,
    所述通讯装置用于根据接收到的无人驾驶装置电池更换请求,引导与所述无人驾驶装置电池更换请求对应的待换电池无人驾驶装置停靠在所述泊位上,并通过所述能源补给装置为所述换电池无人驾驶装置更换电池。
  4. 根据权利要求1至3中任一项所述的能源补给站,其特征在于,
    所述能源补给站还包括:探测装置,与所述通讯装置耦合,用于探测并反馈每个所述泊位上是否停靠有无人驾驶装置;
    所述通讯装置,还用于至少根据所述探测装置反馈的泊位状态确定并通过所述通讯装置上传可供无人驾驶装置停靠泊位的泊位信息。
  5. 根据权利要求4所述的能源补给站,其特征在于,
    所述通讯装置,还用于获取无人驾驶装置充电预约请求,并根据获取的所述无人驾驶装置充电预约请求控制能源补给站进行充电能力自检,并根据充电能力自检结果应答所述无人驾驶装置充电预约请求。
  6. 根据权利要求5所述的能源补给站,其特征在于,所述通讯装置包括:
    接收模块,用于接收待充电无人驾驶装置发送给能源补给站的无人驾驶装置充电预约请求;或者
    获取模块,用于获取待充电无人驾驶装置发送给服务平台的无人驾驶装置充电预约请求。
  7. 根据权利要求6所述的能源补给站,其特征在于,
    所述能源补给站还包括:阻止装置,用于与所述泊位配合,允许或禁止无人驾驶装置停靠在所述泊位上;
    所述通讯装置,还用于在鉴权确认待充电无人驾驶装置为预约成功的无人驾驶装置的情况下,激活所述阻止装置收起并指示待充电无人驾驶装置停靠在所述泊位上,在鉴权确认待充电无人驾驶装置为预约失败的无人驾驶装置或未预约的无人驾驶装置的情况下,激活所述阻止装置打开并指示待充电无人驾驶装置禁止停靠在所述泊位上。
  8. 根据权利要求1所述的能源补给站,其特征在于,所述通讯装置接收的无人驾驶装置能源补给请求包括:无人驾驶装置或服务平台发送给能源补给站的无人驾驶装置能源补给请求。
  9. 一种能源补给方法,应用于能源补给站,其特征在于,所述能源补给站包括:一个或多个用于停泊无人驾驶装置的泊位、用于给停泊在所述泊位上的无人驾驶装置补给能源的能源补给装置和通讯装置,其中,所述方法包括:
    通过通讯装置接收无人驾驶装置能源补给请求;
    根据接收到的无人驾驶装置能源补给请求引导与所述无人驾驶装置能源补给请求对应的待能源补给的无人驾驶装置停靠在所述泊位上;
    通过所述能源补给装置为所述待能源补给的无人驾驶装置补给能源。
  10. 根据权利要求9所述的方法,其特征在于,所述无人驾驶装置能源补给请求包括:无人驾驶装置充电请求,在通过通讯装置接收无人驾驶装置能源补给请求之前,所述方法还包括:
    通过所述通讯装置获取无人驾驶装置充电预约请求;
    根据获取的所述无人驾驶装置充电预约请求控制所述能源补给站进行充电能力自检;
    根据充电能力自检结果应答所述无人驾驶装置充电预约请求。
PCT/CN2017/075249 2016-03-01 2017-02-28 能源补给站以及能源补给方法 WO2017148373A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/081,601 US10790684B2 (en) 2016-03-01 2017-02-28 Energy supply depot and energy supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610116302.4 2016-03-01
CN201610116302.4A CN105790350A (zh) 2016-03-01 2016-03-01 能源补给站以及能源补给方法

Publications (1)

Publication Number Publication Date
WO2017148373A1 true WO2017148373A1 (zh) 2017-09-08

Family

ID=56387527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075249 WO2017148373A1 (zh) 2016-03-01 2017-02-28 能源补给站以及能源补给方法

Country Status (3)

Country Link
US (1) US10790684B2 (zh)
CN (1) CN105790350A (zh)
WO (1) WO2017148373A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790350A (zh) * 2016-03-01 2016-07-20 北京佰才邦技术有限公司 能源补给站以及能源补给方法
CN106527472B (zh) * 2016-10-25 2020-11-10 南京奇蛙智能科技有限公司 一种无人机全自主超远距离飞行系统及控制方法
CN106787258A (zh) * 2016-11-16 2017-05-31 深圳市元征科技股份有限公司 无人机、充电基站、无线充电系统及方法
DE112016007402T5 (de) * 2016-11-30 2019-07-18 Ford Motor Company Verfahren und gerät für fahrzeugbasiertes aufladen von drohnen
CN106899054A (zh) * 2016-12-15 2017-06-27 深圳市元征科技股份有限公司 无人机、无人机充电的控制方法及系统
CN107627867B (zh) * 2017-01-09 2020-12-08 上海蔚来汽车有限公司 待充电对象充电授权方法、充电设备自动授权方法和系统
CN106921200B (zh) * 2017-05-04 2021-10-22 北京新能源汽车股份有限公司 一种电动汽车无线充电电路、电动汽车及充电系统
CN107366463B (zh) * 2017-07-17 2019-09-13 国家电网公司 一种自动充电无人机库
US10567039B2 (en) * 2017-10-11 2020-02-18 GM Global Technology Operations LLC Packet communication to facilitate wireless charging of electric vehicles
CN108032742B (zh) * 2017-11-15 2020-02-11 上海交通大学 无人机高空非接触式能量补给系统和方法
CN109858656A (zh) * 2017-11-30 2019-06-07 阿尔派株式会社 驻车管理装置、驻车管理系统以及驻车管理方法
CN110722997B (zh) * 2018-06-29 2022-06-10 比亚迪股份有限公司 无人驾驶电动车的充电管理方法、装置及系统
CN110768397B (zh) * 2018-07-25 2022-01-07 Oppo广东移动通信有限公司 充电控制方法、装置、存储介质及无线充电设备
CN108995823B (zh) * 2018-07-26 2022-01-04 楚山(深圳)新能源科技有限公司 无人机无线共享充电停机坪及具有优先级的无线充电方法
CN109018412A (zh) * 2018-07-28 2018-12-18 深圳市烽焌信息科技有限公司 一种无人机基站服务类型的提供方法
CN109080841A (zh) * 2018-08-14 2018-12-25 深圳市烽焌信息科技有限公司 一种无人机续航基站
CN109062261A (zh) * 2018-08-14 2018-12-21 深圳市烽焌信息科技有限公司 一种引导无人机进入充电平台的方法
CN109144108A (zh) * 2018-08-14 2019-01-04 深圳市烽焌信息科技有限公司 一种引导无人机进入充电平台的设备
CN108910069A (zh) * 2018-08-14 2018-11-30 深圳市烽焌信息科技有限公司 一种无人机续航基站的电池配置方法
WO2020227247A1 (en) * 2019-05-03 2020-11-12 Dicosola Michele Smart drone rooftop and ground airport system
CN112396761A (zh) * 2019-08-13 2021-02-23 比亚迪股份有限公司 车辆及其充电方法和充电装置和充电设备
CN111196171A (zh) * 2020-03-02 2020-05-26 刘成成 一种新型无人驾驶停车系统
CN112911499A (zh) * 2021-01-14 2021-06-04 北京三快在线科技有限公司 一种补给方法、装置、存储介质及电子设备
DE102022115285A1 (de) 2022-06-20 2023-12-21 E.ON Digital Technology GmbH Stationsnetzwerk für autonome und/oder teilautonome unbemannte Luftfahrzeuge sowie Verfahren zur Steuerung von autonomen oder teilautonomen unbemannten Luftfahrzeugen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852475A (zh) * 2015-04-14 2015-08-19 中电科(德阳广汉)特种飞机系统工程有限公司 一种无人飞行器无线充电方法及系统
CN104908966A (zh) * 2015-05-10 2015-09-16 浙江空行飞行器技术有限公司 一种无人机补给平台及无人机
CN104973263A (zh) * 2015-06-23 2015-10-14 广东溢达纺织有限公司 自动更换电池装置及方法
CN105226836A (zh) * 2015-10-20 2016-01-06 杨珊珊 一种能够自动充电的无人机、无人机充电系统和充电方法
CN105790350A (zh) * 2016-03-01 2016-07-20 北京佰才邦技术有限公司 能源补给站以及能源补给方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2664539B1 (en) * 2012-05-17 2018-07-18 The Boeing Company A method of and apparatus for extending the operation of an unmanned aerial vehicle
CN103507651B (zh) * 2012-06-26 2017-09-26 国民大学校产学协力团 电动车辆、电池充电站、包括电动车辆和电池充电站的电池更换预约系统及其方法
JP6390022B2 (ja) * 2014-08-08 2018-09-19 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd エネルギー提供ステーション
CN104464106A (zh) * 2015-01-09 2015-03-25 中国市政工程西北设计研究院有限公司 具有车辆识别及车位控制功能的充电停车设备与使用方法
CN105048533B (zh) * 2015-06-26 2017-11-24 南京衡创天伟无人机技术有限公司 小型多旋翼无人机自动充电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852475A (zh) * 2015-04-14 2015-08-19 中电科(德阳广汉)特种飞机系统工程有限公司 一种无人飞行器无线充电方法及系统
CN104908966A (zh) * 2015-05-10 2015-09-16 浙江空行飞行器技术有限公司 一种无人机补给平台及无人机
CN104973263A (zh) * 2015-06-23 2015-10-14 广东溢达纺织有限公司 自动更换电池装置及方法
CN105226836A (zh) * 2015-10-20 2016-01-06 杨珊珊 一种能够自动充电的无人机、无人机充电系统和充电方法
CN105790350A (zh) * 2016-03-01 2016-07-20 北京佰才邦技术有限公司 能源补给站以及能源补给方法

Also Published As

Publication number Publication date
CN105790350A (zh) 2016-07-20
US20190097440A1 (en) 2019-03-28
US10790684B2 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2017148373A1 (zh) 能源补给站以及能源补给方法
CN110139776B (zh) 充电系统和程序
US9290277B2 (en) Surveillance system and surveillance method
KR101564254B1 (ko) 드론 무선충전 시스템
EP3545475B1 (en) Managing system and program
KR101118766B1 (ko) 무인 항공기 관리 시스템 및 이에 적용되는 스테이션 단말장치와 그의 동작 방법
CN109760547A (zh) 用于电动汽车的自动充电方法及充电系统
US20210129697A1 (en) System, apparatus and method for providing mobile charging service
CN105226836A (zh) 一种能够自动充电的无人机、无人机充电系统和充电方法
US11900821B2 (en) Fleet controller
US11625049B2 (en) Plurality of vehicles performing platoon travelling and control apparatus for controlling the same
WO2019135791A2 (en) Vertical takeoff and landing transportation system
CN108054453B (zh) 一种电力巡线无人机充电方法
WO2021027969A1 (zh) 可移动设备控制方法及装置、电子设备及存储介质
CN110555574B (zh) 一种无人驾驶车辆远程调度系统及控制方法
JP7479265B2 (ja) 移動体制御システム
US20240185730A1 (en) Fleet Controller
CN112977148B (zh) 对象更换系统、方法、装置及存储介质
CN114007910B (zh) 一种向车辆提供协助的方法
US20210141373A1 (en) System and method for aerial traffic management of unmanned aerial vehicles
CN116443045A (zh) 远程代驾服务的交互方法及装置和远程代驾服务的座舱
CN116468506A (zh) 反馈方法、终端设备及计算机可读存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759224

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/12/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 17759224

Country of ref document: EP

Kind code of ref document: A1