WO2017146006A1 - 研磨方法、研磨パッド - Google Patents

研磨方法、研磨パッド Download PDF

Info

Publication number
WO2017146006A1
WO2017146006A1 PCT/JP2017/006224 JP2017006224W WO2017146006A1 WO 2017146006 A1 WO2017146006 A1 WO 2017146006A1 JP 2017006224 W JP2017006224 W JP 2017006224W WO 2017146006 A1 WO2017146006 A1 WO 2017146006A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing pad
polished
layer
support layer
Prior art date
Application number
PCT/JP2017/006224
Other languages
English (en)
French (fr)
Inventor
透 鎌田
片山 浩二
均 森永
貴史 堀部
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016036183A external-priority patent/JP6700855B2/ja
Priority claimed from JP2016036182A external-priority patent/JP6693768B2/ja
Priority claimed from JP2016066307A external-priority patent/JP2017177265A/ja
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to KR1020187016610A priority Critical patent/KR20180113974A/ko
Priority to EP17756444.0A priority patent/EP3421174B1/en
Priority to CN201780013253.4A priority patent/CN108698195B/zh
Priority to US16/074,668 priority patent/US11498182B2/en
Publication of WO2017146006A1 publication Critical patent/WO2017146006A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/26Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding workpieces with arcuate surfaces, e.g. parts of car bodies, bumpers or magnetic recording heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/02Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents designed for particular workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • B24B37/245Pads with fixed abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D13/00Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor
    • B24D13/14Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by the front face
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D13/00Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor
    • B24D13/14Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by the front face
    • B24D13/142Wheels of special form

Definitions

  • the present invention relates to a polishing method and a polishing pad.
  • buffing As a processing method for smoothing an object to be polished having a curved surface, for example, a painted surface of a vehicle body such as an automobile, buffing is known (for example, Patent Document 1).
  • the buffing process is a method in which a polishing object is polished by attaching various abrasives or the like to the periphery (surface) of a polishing wheel (buff) made of cloth or other material, and rotated.
  • the buffing process cannot remove the waviness of the surface of the object to be polished, and it has been difficult to realize a beautiful surface finish.
  • the present inventors have proposed a polishing method capable of removing waviness on the surface of an object having a curved surface (see Patent Document 2).
  • the first object of the present invention is to provide a polishing method capable of suppressing the generation of polishing flaws even if the surface to be polished is a relatively soft concave surface such as a coating film.
  • a second object of the present invention is to provide a polishing pad having a higher utilization efficiency of slurry than conventional products as a polishing pad used in polishing with a polishing slurry.
  • the polishing method according to the first aspect of the present invention is characterized by having the following configurations (1) to (3).
  • a disc-shaped polishing pad, wherein the peripheral surface on the polishing surface side in the axial direction of the disk is a tapered surface whose diameter decreases toward the polishing surface, and the peripheral surface on the polishing surface side and the polishing surface A polishing pad having an angle of 125 ° or more and less than 180 ° is used.
  • the hardness of the polishing pad to be used is the hardness immediately after the pressing surface is in close contact with the test method specified in Appendix 2 “Spring Hardness Test Type C Test Method” of JIS K7312: 1996 (hereinafter referred to as “ It is referred to as “C hardness”).
  • a polishing method is characterized by having the above configurations (2) and (3) and the following configuration (4).
  • a disc-shaped polishing pad, and the circumferential surface on the polishing surface side in the axial direction of the disc is an arc surface.
  • the polishing method according to the third aspect of the present invention is characterized by having the following configurations (11) to (13).
  • (11) A slurry containing abrasive grains is supplied to a surface to be polished (surface of an object to be polished).
  • C hardness The hardness (hereinafter referred to as “C hardness”) immediately after the pressing surface is brought into close contact with the test method defined in Appendix 2 “Spring Hardness Test Type C Test Method” of JIS K7312: 1996. A polishing pad that is 80 or less is used.
  • the polishing pad according to the fourth aspect of the present invention is a polishing pad used in polishing with a polishing slurry, and a water stop portion is formed on a part or all of the surface. It is characterized by.
  • the polishing methods of the first to third aspects of the present invention it is possible to suppress the occurrence of polishing scratches even if the surface to be polished is a relatively soft concave surface such as a coating film.
  • the utilization efficiency of the slurry is higher than that of the conventional product in which the water stop portion is not formed.
  • 2A and 2B are a diagram illustrating a polishing pad used in the method of the first embodiment, a perspective view showing a polishing surface side, and an AA cross-sectional view of FIG. It is the schematic explaining the grinding
  • FIG. 2 is a schematic diagram illustrating the shape of a polishing pad used in a test in Example 1.
  • FIG. 2 is a schematic diagram illustrating the shape of a polishing pad used in a test in Example 1.
  • FIG. It is a graph which shows the relationship between the angle (theta) made by the peripheral surface of an edge part, and a grinding
  • FIG. 14 is a view showing a polishing pad of a comparative example with respect to the fifth and ninth embodiments, and is a plan view (a) of a polishing pad with a polishing surface facing down, and an AA sectional view (b) thereof.
  • FIG. 14 shows the polishing pad of the comparative example with respect to 6th and 10th Embodiment, Comprising: The top view (a) of the polishing pad which set
  • a disc-shaped polishing pad 1 shown in FIG. 1 is used.
  • the polishing pad 1 is a suede type or non-woven type polishing pad, and has a thickness of 0.5 mm to 5.0 mm.
  • the hardness of the polishing pad 1 is 40 or more and 90 or less in C hardness.
  • the polishing pad 1 is divided into a portion (end portion) 11 on the polishing surface 10 side and a portion (base portion) 12 on the opposite side to the polishing surface 10 in the axial direction of the disc.
  • the peripheral surface 111 of the end portion 11 is a tapered surface that decreases in diameter toward the polishing surface 10.
  • An angle ⁇ (see FIG. 2) formed by the peripheral surface 111 and the polishing surface 10 is 125 ° or more and less than 180 °. That is, the corner portion of the end portion 11 is chamfered in a slope shape.
  • An example of a method for chamfering the corner portion to 125 ° or more and less than 180 ° is a cutting method.
  • the cutting method include a method of moving a sander or a circular cutting blade rotating at high speed while pressing against a corner of a polishing pad, a method of cutting with a cutter blade, and a method of scraping with sandpaper.
  • groove processing is performed on a plywood or resin plate with a laser, and a blade is made by embedding a steel blade bent in the same shape as the groove into the groove, and this blade is pressed against the surface of the polishing pad and cut.
  • a method (Thomson processing) is also mentioned. In the polishing method of this embodiment, as shown in FIG.
  • slurry containing abrasive grains is supplied to a surface 50 to be polished that is larger than the polishing surface 10, and the polishing surface 10 of the polishing pad 1 is polished to the surface 50 to be polished.
  • the polishing surface 1 is polished by rotating the polishing pad 1 around the axis of the disk.
  • the polished surface 50 is a concave curved surface made of a synthetic resin coating.
  • polishing pad 1 having a tapered surface with an angle ⁇ between the peripheral surface 111 of the end portion 11 and the polishing surface 10 of 125 ° or more and less than 180 ° is used, Generation of polishing scratches on the surface 50 can be suppressed.
  • FIG. 2 (b) when a polishing pad 100 having a disk shape and having a right corner 101 is used, the corner 101 contacts the surface to be polished 50 before the polishing surface 102. Polishing scratches are likely to occur on the polished surface 50.
  • the concave surface to be polished include coating surfaces of various members and vehicles (for example, synthetic resin members, automobile bodies, railway vehicles, airplanes, bicycles, ships). Further, since the polishing pad 1 having a C hardness of 40 or more and 90 or less is used, the waviness of the polished surface 50 can be removed.
  • the polishing pad 3 with a support layer shown in FIG. 3 is used.
  • the polishing pad 3 with a support layer includes the polishing pad 1 of the first embodiment and the support layer 2 made of polyurethane foam that is softer than the polishing pad 1.
  • the support layer 2 is fixed to the surface 121 opposite to the polishing surface 10 of the polishing pad 1 with an adhesive or a double-sided tape.
  • the thickness of the support layer 2 is 2.0 mm or more and 50 mm or less. According to the polishing method of this embodiment, the same effect as the polishing method of the first embodiment can be obtained by the function of the polishing pad 1.
  • the polishing pad 3 with a support layer having a two-layer structure to which the soft support layer 2 is fixed is used, the following effects are also obtained.
  • the soft support layer 2 When the force applied to the soft support layer 2 from the polishing apparatus is transmitted to the polishing pad 1 and the polishing surface 10 is pressed against the surface to be polished 50, the soft support layer 2 has a concave curved surface 50 to be polished. Almost deforms along. Accordingly, the hard polishing pad 1 fixed to the support layer 2 is also deformed in the same manner as the support layer 2. As a result, the polishing surface 10 can easily follow the surface to be polished having a concave curved surface. Therefore, the polishing method of the second embodiment has a higher effect of removing the waviness of the curved surface to be polished as compared with the polishing method of the first embodiment.
  • a disk-shaped polishing pad 6 shown in FIG. 4 is used.
  • the polishing pad 6 is a suede type or non-woven type polishing pad, and has a thickness of 0.5 mm to 5.0 mm.
  • the hardness of the polishing pad 6 is 40 or more and 90 or less in C hardness.
  • the polishing pad 6 is divided into a portion (end portion) 61 on the polishing surface 60 side and a portion (base portion) 62 opposite to the polishing surface 60 in the axial direction of the disc.
  • the peripheral surface 611 of the end 61 is an arc surface. That is, the corner portion of the end portion 61 is rounded and chamfered.
  • An example of a method for chamfering a corner is a cutting method.
  • Examples of cutting include a method of moving a sander or a circular cutting blade rotating at high speed while pressing against a corner of a polishing pad, a method of cutting with a cutter blade, and a method of scraping with sandpaper.
  • groove processing is performed on a plywood or resin plate with a laser, and a blade is made by embedding a steel blade bent in the same shape as the groove into the groove, and this blade is pressed against the surface of the polishing pad and cut.
  • a method (Thomson processing) is also mentioned. In the polishing method of this embodiment, as shown in FIG.
  • a slurry containing abrasive grains is supplied to a surface 50 to be polished that is larger than the polishing surface 60, and the polishing surface 60 of the polishing pad 6 is made to be polished 50.
  • the surface 50 to be polished is polished by rotating the polishing pad 6 around the axis of the disk.
  • the polished surface 50 is a concave curved surface made of a synthetic resin coating.
  • the polishing pad 6 in which the peripheral surface 611 of the end portion 61 is an arc surface is used, generation of polishing scratches on the surface to be polished 50 can be suppressed.
  • the corners 101 come into contact with the surface to be polished 50 before the polishing surface 102. Polishing scratches are likely to occur on the polished surface 50.
  • the concave surface to be polished include coating surfaces of various members and vehicles (for example, synthetic resin members, automobile bodies, railway vehicles, airplanes, bicycles, ships). Further, since the polishing pad 6 having a C hardness of 40 or more and 90 or less is used, the waviness of the polished surface 50 can be removed.
  • a polishing pad 8 with a support layer shown in FIG. 6 is used.
  • the polishing pad 8 with a support layer includes the polishing pad 6 according to the third embodiment and the support layer 7 made of polyurethane foam that is softer than the polishing pad 6.
  • the support layer 7 is fixed to the surface 621 of the polishing pad 6 opposite to the polishing surface 60 with an adhesive or a double-sided tape.
  • the thickness of the support layer 7 is 2.0 mm or more and 50 mm or less. According to the polishing method of this embodiment, the same effect as the polishing method of the first embodiment can be obtained by the function of the polishing pad 6.
  • the polishing pad 8 with a support layer having a two-layer structure to which the soft support layer 7 is fixed is used, the following effects are also obtained.
  • the soft support layer 7 When the force applied to the soft support layer 7 from the polishing apparatus is transmitted to the polishing pad 6 and the polishing surface 60 is pressed against the surface 50 to be polished, the soft support layer 7 has a concave curved surface 50 to be polished. Almost deforms along. Along with this, the hard polishing pad 6 fixed to the support layer 7 is also deformed similarly to the support layer 7. As a result, the polishing surface 60 can easily follow the surface to be polished having a concave curved surface. Therefore, the polishing method of the fourth embodiment has a higher effect of removing the waviness of the curved surface to be polished as compared with the polishing method of the third embodiment.
  • the thickness of the polishing pad is preferably from 0.5 mm to 5.0 mm. Within such a range, the polishing pad can easily remove waviness, and the polishing pad to which the support layer is fixed is likely to be deformed similarly to the support layer.
  • the diameter of the polished surface is preferably 10 mm or more and 200 mm or less. Within such a range, the time required for the slurry to spread from the outer edge to the center of the polishing surface can be shortened, and the polishing surface can easily follow the curved surface to be polished.
  • the surface to be polished may be not only a surface made of a synthetic resin but also a metal surface, a silicon wafer surface, a glass surface, a sapphire surface, or the like.
  • the polishing pad to be used may be one having a C hardness of 40 or more and 90 or less.
  • Examples of the polishing pad other than the suede type and the non-woven fabric type include those made of hard polyurethane.
  • the polishing pad used preferably has a C hardness of 50 or more and 80 or less.
  • Examples of the material for the support layer include foamed polyethylene, foamed rubber, foamed melamine, foamed silicone, and the like, in addition to foamed polyurethane.
  • the hardness of the support layer is preferably 30 or more and 90 or less in terms of F hardness (hardness measured by “Asker Rubber Hardness Tester F type” manufactured by Kobunshi Keiki Co., Ltd.).
  • the F hardness 90 is less than 10 C hardness.
  • the Asker rubber hardness tester type F is a durometer with a large indenter and a pressure surface so that an appropriate value can be obtained when measuring the hardness of a soft sample.
  • the shape of the push needle is 2.54 mm high and 25.2 mm in diameter. It is a cylindrical shape.
  • Suede type For example, a nonwoven fabric or a woven fabric made of synthetic fiber and synthetic rubber, or a polyester film is used as a base material. A polyurethane-based solution is applied to the upper surface of the substrate, and the polyurethane-based solution is solidified by a wet coagulation method to form a porous skin layer having continuous pores. If necessary, the surface of the skin layer is ground and removed.
  • Non-woven fabric type For example, a needle-punched non-woven fabric made of polyester short fibers is impregnated with a polyurethane elastomer solution.
  • the nonwoven fabric in this state is immersed in water and wet solidified, then washed with water and dried, and both surfaces are ground after drying.
  • a needle-punched non-woven fabric made of polyester short fibers is impregnated with a thermosetting urethane resin solution. By drying the nonwoven fabric in this state, the thermosetting urethane resin is fixed to the nonwoven fabric, and then both surfaces are sanded to remove irregularities.
  • Abrasive grains contained in the slurry used in the polishing method of the first and second aspects of the present invention include silicon, metal oxides such as silica, alumina, ceria, titania, zirconia, iron oxide and manganese oxide. And abrasive grains selected from organic particles made of thermoplastic resin, organic-inorganic composite particles, and the like. For example, it is preferable to use an alumina slurry containing alumina particles because a high polishing rate is possible and it can be easily obtained.
  • Alumina includes those having different crystal forms such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina, and an aluminum compound called hydrated alumina also exists. From the viewpoint of the polishing rate, it is more preferable to use a slurry containing particles containing ⁇ -alumina as a main component as abrasive grains.
  • the average particle size of the abrasive grains is preferably 0.1 ⁇ m or more and 10.0 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 5.0 ⁇ m or less.
  • the polishing rate improves.
  • the average particle diameter is within the above range, it becomes easy to improve the polishing rate to a particularly suitable level for practical use.
  • the average particle size decreases, the dispersion stability of the abrasive grains improves, and the occurrence of scratches (scratches) on the polished surface is suppressed.
  • the average particle diameter is in the above range, it becomes easy to improve the dispersion stability of the abrasive grains and the surface accuracy of the polished surface to a practically particularly suitable level.
  • the content of abrasive grains in the slurry is preferably 0.1% by mass or more and 50% by mass or less, more preferably 0.2% by mass or more and 25% by mass or less, and further preferably 0.5% by mass. It is 20 mass% or less.
  • the polishing rate increases.
  • the slurry may appropriately contain other components such as a lubricating oil, an organic solvent, a surfactant, and a thickener as necessary, in addition to the abrasive grains and the dispersant thereof.
  • the lubricating oil may be a synthetic oil, mineral oil, vegetable oil or combination thereof.
  • the organic solvent may be alcohol, ether, glycols, glycerin or the like in addition to the hydrocarbon solvent.
  • the surfactant may be a so-called anion, cation, nonion, or amphoteric surfactant.
  • the thickener may be a synthetic thickener, a cellulose thickener, or a natural thickener.
  • a polishing pad 1A shown in FIG. 7A has a disc shape, and a portion (end portion) 11 on the polishing surface 10 side in the axial direction of the disc, and a portion (base portion) 12 on the opposite side of the polishing surface 10 , And a portion (intermediate portion) 13 therebetween.
  • the peripheral surface 111 of the end portion 11 is a tapered surface that decreases in diameter toward the polishing surface 10.
  • the peripheral surface 131 of the intermediate portion 13 is a tapered surface that decreases in diameter toward the polishing surface 10.
  • An angle ⁇ formed by the peripheral surface 111 and the peripheral surface 131 is smaller than an angle ⁇ formed by the peripheral surface 111 and the polishing surface 10.
  • the polishing pad 1B shown in FIG. 7B is disk-shaped, and includes a portion (end portion) 11 on the polishing surface 10 side in the axial direction of the disc, and a portion (base portion) 12 on the opposite side of the polishing surface 10. , And a portion (intermediate portion) 14 therebetween.
  • the peripheral surface 111 of the end portion 11 is a tapered surface that decreases in diameter toward the polishing surface 10.
  • the peripheral surface 141 of the intermediate part 14 is a circular arc surface.
  • the 7C has a disc shape, and a portion (end portion) 61 on the polishing surface 60 side in the axial direction of the disc, and a portion (base portion) 62 on the opposite side of the polishing surface 60, , And a portion (intermediate portion) 63 therebetween.
  • the peripheral surface 611 of the end 61 is an arc surface.
  • the peripheral surface 631 of the intermediate portion 63 is a tapered surface that decreases in diameter toward the polishing surface 60.
  • An angle ⁇ formed by a boundary line (a line parallel to the polishing surface) between the end portion 61 and the base portion 62 and the peripheral surface 631 is an obtuse angle.
  • the corner between the wall surface of the groove and the polishing surface may be chamfered or may be formed on an arc surface.
  • the corner between the wall surface of the hole and the polishing surface may be chamfered or may be formed in an arc surface.
  • the polishing methods of the first and second aspects are characterized by the polishing pad used.
  • the polishing pad can be mounted, and the polishing pad is pressed against the surface to be polished larger than the polishing surface. Any polishing apparatus that can be moved can be used.
  • An automatic polishing apparatus 400 shown in FIG. 24 is an example of a polishing apparatus that can be used in the polishing methods of the first and second embodiments.
  • An automatic polishing apparatus 400 illustrated in FIG. 24 includes a robot arm 420, a polishing pad 1, a polishing tool 440, a pressing force detection unit 450, and a controller 470.
  • the robot arm 420 includes a base portion 421, a plurality of arm portions 422, 423, a tip portion 424, and a plurality of joints 425, 426, 427.
  • a plurality of joints 425, 426, and 427 allow the distal end portion 424 to move in a plurality of directions.
  • a pressing force detector 450 and a polishing tool 440 are attached to the tip 424 in this order.
  • the automatic polishing apparatus 400 is used with the polishing pad 1 attached to the tip of the polishing tool 440.
  • the polishing tool 440 rotates the polishing pad 1 by a built-in driving means about a direction perpendicular to the polishing surface 10 of the polishing pad 1 as a rotation axis.
  • the driving means of the polishing tool 440 is not particularly limited, but generally a single action, a double action, a gear action or the like is used, and a double action is preferred for polishing a coating member.
  • the controller 470 controls the behavior of the robot arm 420 and the rotation of the polishing pad 1 by the polishing tool 440.
  • the pressing force detector 450 detects the pressing force of the polishing surface 10 of the polishing pad 1 against the surface 50 to be polished.
  • the controller 470 adjusts, for example, the pressing force of the polishing surface 10 against the surface 50 to be polished or the pressing force of the polishing surface 10 against the surface 50 to be polished is constant based on the detection result of the pressing force by the pressing force detector 450.
  • the robot arm 420 is controlled so that the polishing pad 1 moves on the surface 50 to be polished while keeping the position.
  • the automatic polishing apparatus 400 When starting polishing, the automatic polishing apparatus 400 is driven, and at the same time, polishing slurry is supplied to the surface 50 to be polished from a polishing slurry supply mechanism (not shown).
  • the robot arm 420 presses the polishing surface 10 of the polishing pad 1 against the surface to be polished 50 under the control of the controller 470, and the polishing pad 1 rotates.
  • a polishing apparatus that can be used in the polishing methods of the first and second embodiments is a hand polisher.
  • the polishing pad used in the polishing methods of the first and second aspects is attached to the tip of the hand polisher, and the polishing operator manually moves the hand polisher to polish the surface to be polished.
  • the driving means of the hand polisher is not particularly limited, but generally a single action, a double action, a gear action or the like is used, and a double action is preferred for polishing a coating member.
  • the polishing method of the third aspect in the polishing method for polishing the surface to be polished by supplying slurry containing abrasive grains to the surface to be polished, pressing the polishing surface against the surface to be polished and moving the polishing pad, By using a polishing pad having a thickness of 40 or more and 80 or less, the waviness of the surface to be polished can be removed.
  • the polishing pad having the above hardness when there is no groove on the polishing surface, when supplying the slurry outside the surface to be polished against which the polishing surface is pressed, it takes time for the slurry to reach the center of the polishing surface.
  • the polishing pad in a state where the supply of slurry is insufficient.
  • the foreign matter when foreign matter enters between the polished surface and the surface to be polished, the foreign matter is difficult to be discharged.
  • the foreign matter include those generated by polishing (those resulting from the slurry, the surface to be polished, and the polishing pad) in addition to those mixed from the outside.
  • a polishing pad 1 having a grid-like groove on the polishing surface 10 is used.
  • the polishing pad 1 is a suede type or non-woven type polishing pad, and has a thickness of 0.5 mm to 5.0 mm.
  • the hardness of the polishing pad 1 is 40 to 80 in terms of C hardness.
  • the polishing pad 1 is obtained, for example, by forming a suede type or non-woven fabric type polishing pad with the above-mentioned hardness and then forming lattice-like grooves on the polishing surface.
  • the lattice-shaped groove includes a plurality of first grooves 103 and second grooves 104 that are orthogonal to each other.
  • a method of forming the groove for example, there is a method of removing material of a portion to become the groove by etching or cutting.
  • a method of removing by cutting there is a method of moving a circular cutting blade rotating at high speed while pressing it against the surface of the polishing pad.
  • the slurry 15 containing abrasive grains is supplied to the surface 50 to be polished, the polishing surface of the polishing pad 1 is pressed against the surface 50 to be polished, and the polishing pad 1 is By rotating, the polished surface 50 is polished.
  • the polisher 9 in FIG. 12 includes a base 91 for attaching the polishing pad 1, a rotating shaft 92 fixed to the base 91, a main body 93 that houses a rotating mechanism of the rotating shaft 92, and the like.
  • the slurry 15 is supplied from the slurry supply device 16 toward the polished surface 50.
  • the polished surface 50 is an outer surface of a synthetic resin coating 510, and the coating 510 is formed on the surface of an object 520 such as a metal vehicle body.
  • the slurry 15 supplied to the outside of the surface to be polished 50 against which the polishing surface 10 is pressed is likely to reach the center of the polishing surface 10 along the lattice-shaped grooves.
  • the foreign material is easily discharged along the lattice-shaped grooves. Therefore, compared to a method using a polishing pad different from the polishing pad 1 only in that there is no groove, polishing scratches are less likely to occur on the polished surface 50 which is the outer surface of the coating film 510 made of synthetic resin.
  • the polishing pad 1 having a C hardness of 40 or more and 80 or less is used, the waviness of the polished surface 50 can be removed.
  • a polishing pad 3 with a support layer shown in FIG. 13 is used.
  • the polishing pad 3 with a support layer includes the polishing pad 1 of the first embodiment and the support layer 2 made of polyurethane foam that is softer than the polishing pad 1.
  • the support layer 2 is fixed to the surface 17 opposite to the polishing surface 10 of the polishing pad 1 with an adhesive or a double-sided tape.
  • the thickness of the support layer 2 is 2.0 mm or more and 50 mm or less.
  • the polishing pad 3 with a support layer is attached to the polisher 9 shown in FIG. 12 instead of the polishing pad 1, and the polished surface 50 is polished in the same manner as the polishing method of the first embodiment. To do.
  • the same effect as the polishing method of the first embodiment can be obtained by the function of the polishing pad 1.
  • the polishing pad 3 with a support layer having a two-layer structure to which the soft support layer 2 is fixed is used, the following effects are also obtained.
  • the force applied from the base 91 to the soft support layer 2 is transmitted to the polishing pad 1, and the polishing surface 10 is pressed against the surface to be polished 50.
  • the polished surface 50 is a curved surface
  • the soft support layer 2 is easily deformed along the curved surface.
  • the hard polishing pad 1 fixed to the support layer 2 is also deformed in the same manner as the support layer 2.
  • the polishing surface 10 follows the curved surface to be polished.
  • the polishing method of the sixth embodiment has a higher effect of removing the waviness of the curved surface to be polished as compared with the polishing method of the fifth embodiment.
  • the curved surface to be polished there is a coating surface of a vehicle body such as an automobile.
  • the width of the groove on the polished surface is preferably from 0.5 mm to 5.0 mm. If it is such a range, it will become easy to discharge
  • the pitch of the grooves is preferably 3.0 mm or more and 50 mm or less. Within such a range, it is easy to remove the waviness of the surface to be polished.
  • the depth of the groove is preferably 90% or less of the thickness of the polishing pad from the viewpoint of strength.
  • polishing surface stripe shape, radial form, and concentric form other than a grid
  • the thickness of the polishing pad is preferably from 0.5 mm to 5.0 mm. Within such a range, the polishing pad can easily remove waviness, and the polishing pad to which the support layer is fixed is likely to be deformed similarly to the support layer.
  • the diameter of the polished surface is preferably 10 mm or more and 200 mm or less. Within such a range, the time required for the slurry to spread from the outer edge to the center of the polishing surface can be shortened, and the polishing surface can easily follow the curved surface to be polished.
  • the polishing method according to the aspect of the present invention is suitable for applications in which the polishing surface is smaller than the surface to be polished.
  • the surface to be polished may be not only a surface made of a synthetic resin but also a metal surface, a silicon wafer surface, a glass surface, a sapphire surface, or the like.
  • the polishing pad to be used may be one having a C hardness of 40 or more and 80 or less.
  • Examples of the polishing pad other than the suede type and the nonwoven fabric type include those made of hard polyurethane.
  • the polishing pad used preferably has a C hardness of 50 or more and 80 or less.
  • Examples of the material for the support layer include foamed polyethylene, foamed rubber, foamed melamine, foamed silicone, and the like, in addition to foamed polyurethane.
  • the hardness of the support layer is preferably 30 or more and 90 or less in terms of F hardness (hardness measured by “Asker Rubber Hardness Tester F type” manufactured by Kobunshi Keiki Co., Ltd.).
  • the F hardness 90 is less than 10 C hardness.
  • the Asker rubber hardness tester type F is a durometer with a large indenter and a pressure surface so that an appropriate value can be obtained when measuring the hardness of a soft sample.
  • the shape of the push needle is 2.54 mm high and 25.2 mm in diameter. It is a cylindrical shape.
  • Suede type For example, a nonwoven fabric or a woven fabric made of synthetic fiber and synthetic rubber, or a polyester film is used as a base material. A polyurethane-based solution is applied to the upper surface of the substrate, and the polyurethane-based solution is solidified by a wet coagulation method to form a porous skin layer having continuous pores. If necessary, the surface of the skin layer is ground and removed.
  • Non-woven fabric type For example, a needle-punched non-woven fabric made of polyester short fibers is impregnated with a polyurethane elastomer solution.
  • the nonwoven fabric in this state is immersed in water and wet solidified, then washed with water and dried, and both surfaces are ground after drying.
  • a needle-punched non-woven fabric made of polyester short fibers is impregnated with a thermosetting urethane resin solution. By drying the nonwoven fabric in this state, the thermosetting urethane resin is fixed to the nonwoven fabric, and then both surfaces are sanded to remove irregularities.
  • abrasive grains contained in the slurry used in the polishing method of the third aspect of the present invention particles made of oxides of silicon or metal elements such as silica, alumina, ceria, titania, zirconia, iron oxide and manganese oxide, Abrasive grains selected from organic particles made of thermoplastic resin, organic-inorganic composite particles, and the like.
  • alumina slurry containing alumina particles because a high polishing rate is possible and it can be easily obtained.
  • Alumina includes those having different crystal forms such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina, and an aluminum compound called hydrated alumina also exists. From the viewpoint of the polishing rate, it is more preferable to use a slurry containing particles containing ⁇ -alumina as a main component as abrasive grains.
  • the average particle size of the abrasive grains is preferably 0.1 ⁇ m or more and 10.0 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 5.0 ⁇ m or less.
  • the polishing rate improves.
  • the average particle diameter is within the above range, it becomes easy to improve the polishing rate to a particularly suitable level for practical use.
  • the average particle size decreases, the dispersion stability of the abrasive grains improves, and the generation of scratches on the polished surface is suppressed.
  • the average particle diameter is in the above range, it becomes easy to improve the dispersion stability of the abrasive grains and the surface accuracy of the polished surface to a practically particularly suitable level.
  • the content of abrasive grains in the slurry is preferably 0.1% by mass or more and 50% by mass or less, more preferably 0.2% by mass or more and 25% by mass or less, and further preferably 0.5% by mass. It is 20 mass% or less.
  • the polishing rate increases.
  • the slurry may appropriately contain other components such as a lubricating oil, an organic solvent, a surfactant, and a thickener as necessary, in addition to the abrasive grains and the dispersant thereof.
  • the lubricating oil may be a synthetic oil, mineral oil, vegetable oil or combination thereof.
  • the organic solvent may be alcohol, ether, glycols, glycerin or the like in addition to the hydrocarbon solvent.
  • the surfactant may be a so-called anion, cation, nonion, or amphoteric surfactant.
  • the thickener may be a synthetic thickener, a cellulose thickener, or a natural thickener.
  • the polishing method according to the third aspect is characterized by a polishing pad to be used, and is a polishing apparatus that can be mounted and can move the polishing pad by pressing the polishing surface against the surface to be polished. Any polishing apparatus can be used as long as it is present.
  • the polisher 9 shown in FIG. 12 the automatic polishing apparatus 400 shown in FIG. 24, and a hand polisher are mentioned.
  • the polishing pad according to the fourth aspect is a polishing pad used in polishing with a polishing slurry, and is characterized in that a water stop portion is formed on a part or all of the surface.
  • the water stop portion is a portion that prevents the polishing slurry from entering the polishing pad.
  • the water stop portion is formed of, for example, a material that hardly allows the polishing slurry to permeate (water stop material) or a material having a structure that does not easily permeate the polishing slurry (water stop material).
  • the polishing pad of the fourth aspect includes a configuration in which a part or all of the polishing surface is a water stop portion.
  • the water stop portion is configured such that the portion that becomes the polishing surface of the water stop portion can exhibit the polishing function.
  • the polishing by the polishing slurry there is a polishing method in which the polishing slurry is supplied to the surface to be polished and moved while the polishing surface of the polishing pad is pressed against the surface to be polished.
  • the polishing slurry is less likely to soak into the polishing pad as compared to a polishing pad in which a water stop portion is not formed on a part or all of the surface.
  • the polishing pad according to the fourth aspect includes the following polishing pads (22) to (28).
  • the polishing pad of (22) is the polishing pad of the fourth aspect, and has a polishing layer and a support layer formed on the surface opposite to the polishing surface of the polishing layer, and the support layer is a water stop portion. is there.
  • the polishing pad of (22) since the support layer is a water stop portion, the support layer has a polishing slurry during polishing as compared to a polishing pad made of a porous material having an open cell structure such as polyurethane foam. Hard to penetrate into the support layer of the polishing pad.
  • the polishing pad of (23) is the polishing pad of the fourth aspect, has an open cell layer made of a porous material having an open cell structure, and a water stop portion is formed on the surface other than the polishing surface of the open cell layer. ing.
  • the polishing pad of (23) is a single layer, the polishing layer is an open cell layer, and when the polishing pad of (23) has a two-layer structure, the support layer is an open cell layer.
  • the polishing pad of (24) is the polishing pad of (23), and a water stop portion is formed on the side surface of the open cell layer.
  • the polishing pad of (25) is the polishing pad of (23), has a through hole extending in a direction intersecting with the polishing surface and penetrating the open cell layer, and a water stop portion is formed on the wall surface of the through hole.
  • the through hole penetrating the open cell layer is formed, for example, for the purpose of supplying the polishing slurry to the surface to be polished from the side opposite to the polishing surface of the polishing pad.
  • the polishing pad of (26) is the polishing pad of (23), and has a polishing layer and a support layer formed on the surface opposite to the polishing surface of the polishing layer, and the support layer is the open cell layer. It is.
  • the polishing pad of (27) is the polishing pad of (26), and extends in a direction intersecting with the polishing surface and penetrating the polishing layer, and extends in a direction intersecting with the polishing surface, and the support There is a second through hole penetrating the layer and continuing to the first through hole, and a water stop portion is formed on the wall surface of the second through hole.
  • the polishing pad (28) is the polishing pad (22), (26), or (27), and the polishing layer is made of a material harder than the support layer.
  • the polishing pad 1 of 7th Embodiment is disk shape, and is formed with the foaming rubber which is a porous material of a discontinuous cell structure.
  • the polishing pad 1 can be obtained by cutting a foamed rubber plate, which is a porous material having a discontinuous cell structure, into a disk shape. Examples of the method of cutting into a disk shape include a method of die cutting using a Thomson die having a cylindrical blade.
  • the thickness of the polishing pad 1 is 2.0 mm or more and 50 mm or less.
  • the water absorption of the polishing pad 1 measured by the method shown below is 5% or less. That is, the polishing pad 1 is made of a water-stop material, and a water-stop portion is formed on the entire surface.
  • the polishing pad 1 of this embodiment is used in a polishing method using a polishing slurry. For example, a polishing surface larger than the polishing surface 10 is polished using the polishing pad 1. Specifically, the polishing slurry is supplied to the surface to be polished, the polishing surface 10 of the polishing pad 1 is pressed against the surface to be polished, and the polishing pad 1 is rotated about the axis of the disk.
  • this polishing method When this polishing method is performed using a foamed polyurethane polishing pad, the slurry soaks into the polishing pad, and the soaked slurry scatters to the outside. The scattered slurry is not used for polishing. On the other hand, when the polishing pad 1 according to this embodiment is used, the slurry hardly penetrates into the polishing pad 1 made of a water-stopping material, so that the amount of the slurry scattered outside decreases. Therefore, the utilization efficiency of the slurry is increased.
  • the polishing pad 1 ⁇ / b> A of the eighth embodiment includes a disk-shaped polishing layer 20 having a polishing surface 10 and a disk-shaped support layer 30.
  • the support layer 30 is fixed to the surface 21 of the polishing layer 20 opposite to the polishing surface 10 with an adhesive or a double-sided tape.
  • the polishing layer 20 is a suede type or non-woven type polishing pad.
  • the support layer 30 is made of foamed rubber having a discontinuous cell structure. The water absorption rate of the support layer 30 measured by the above method is 5% or less.
  • the support layer 30 is made of a water-stop material, and a water-stop portion is formed on a part of the surface of the polishing pad 1A.
  • the thickness of the polishing layer 20 is not less than 0.5 mm and not more than 5.0 mm.
  • the thickness of the support layer 30 is 2.0 mm or more and 50 mm or less.
  • the polishing pad 1A can be obtained, for example, by the following method.
  • a polishing layer 20 is obtained by cutting a suede type or non-woven type polishing pad into a disk shape.
  • a support layer 30 is obtained by cutting a foamed rubber plate-like material, which is a porous material having a discontinuous cell structure, into a disc shape. Examples of the method of cutting into a disk shape include a method of die cutting using a Thomson die having a cylindrical blade.
  • a support layer 30 is attached to the surface 21 of the polishing layer 20 opposite to the polishing surface 10 with an adhesive or a double-sided tape.
  • the polishing pad 1A of this embodiment is used in a polishing method using a polishing slurry.
  • a polishing surface larger than the polishing surface 10 is polished using the polishing pad 1A.
  • the polishing slurry is supplied to the surface to be polished, the polishing surface 10 of the polishing pad 1A is pressed against the surface to be polished, and the polishing pad 1 is rotated around the axis of the disk.
  • this polishing method is performed using a polishing pad in which the support layer 30 of the polishing pad 1A is replaced with a support layer made of polyurethane foam, the slurry soaks into the support layer of the polishing pad, and the soaked slurry is scattered outside. To do. The scattered slurry is not used for polishing.
  • the polishing pad 1 ⁇ / b> B of the ninth embodiment includes a disk-shaped main body portion 4 and a water stop portion 5 formed on the outer peripheral surface thereof.
  • the main body 4 is made of polyurethane foam (a porous material having an open cell structure).
  • the water stop part 5 is made of foamed rubber (a porous material having a discontinuous cell structure).
  • the water absorption rate of the water stop part 5 measured by the above-mentioned method is 5% or less. That is, the main body portion 4 is an open cell layer, and the water stop portion 5 is formed on a part of the surface other than the polishing surface 10 of the open cell layer.
  • the thickness of the polishing pad 1B that is, the thickness of the main body 4 and the axial dimension of the water stop 5 are 2.0 mm or more and 50 mm or less.
  • the polishing pad 1B can be obtained, for example, by the following method.
  • the main body 4 is obtained by a method of punching out a foamed polyurethane plate into a disk shape using a Thomson mold having a cylindrical blade.
  • the water stop portion 5 is obtained by a method of punching out from a foamed rubber plate in an annular shape using a Thomson die having two cylindrical blades having different diameters.
  • the main body part 4 with the adhesive attached to the outer peripheral surface is fitted to the inner peripheral surface of the water stop part 5 to cure the adhesive.
  • the polishing pad 1B of this embodiment is used in a polishing method using a polishing slurry.
  • a polishing surface larger than the polishing surface 10 is polished using the polishing pad 1B.
  • the polishing slurry is supplied to the surface to be polished, the polishing surface 10 of the polishing pad 1B is pressed against the surface to be polished, and the polishing pad 1B is rotated about the axis of the disk.
  • the polishing pad 1 ⁇ / b> C of the tenth embodiment includes a disc-like polishing layer 20, a disc-like support layer 7, and a water stop portion 5 formed on the outer peripheral surface of the support layer 7. It consists of.
  • the polishing layer 20 is a suede type or non-woven type polishing pad.
  • the support layer 7 is made of foamed polyurethane (a porous material having an open cell structure).
  • the water stop part 5 is made of foamed rubber (a porous material having a discontinuous cell structure). The water absorption rate of the water stop part 5 measured by the above-mentioned method is 5% or less.
  • the support layer 7 is an open cell layer, and the water stop portion 5 is formed on a part of the surface other than the polishing surface 10 of the open cell layer.
  • the thickness of the polishing layer 20 is not less than 0.5 mm and not more than 5.0 mm.
  • the thickness of the support layer 7 is 2.0 mm or more and 50 mm or less.
  • the axial dimension of the water stop portion 5 is the same as the thickness of the support layer 7.
  • the polishing pad 1C can be obtained, for example, by the following method.
  • the polishing layer 20 is obtained by cutting a suede type or non-woven type polishing pad into a disk shape.
  • the support layer 7 is obtained by a method in which a Thomson mold having a cylindrical blade is used to die-mold a foamed polyurethane plate into a disk shape.
  • the water stop portion 5 is obtained by a method of punching out from a foamed rubber plate in an annular shape using a Thomson die having two cylindrical blades having different diameters.
  • the support layer 7, and the water stop portion 5 first, the support layer 7 with an adhesive on the outer peripheral surface is fitted and integrated on the inner peripheral surface of the water stop portion 5. Next, this integrated thing is affixed on the surface 21 opposite to the polishing surface 10 of the polishing layer 20 with an adhesive or a double-sided tape.
  • the polishing pad 1C of this embodiment is used in a polishing method using a polishing slurry.
  • a polishing surface larger than the polishing surface 10 is polished using the polishing pad 1C.
  • the polishing slurry is supplied to the surface to be polished, the polishing surface 10 of the polishing pad 1C is pressed against the surface to be polished, and the polishing pad 1C is rotated around the axis of the disk.
  • this polishing method is performed using a polishing pad in which only the support layer 7 made of polyurethane foam is formed on the surface 21 opposite to the polishing surface of the polishing layer 20, the slurry soaks into the support layer of the polishing pad, The soaked slurry is scattered outside.
  • the scattered slurry is not used for polishing.
  • the polishing pad 1C of this embodiment when used, the water stop portion 5 is formed on the outer peripheral surface of the support layer 7 made of polyurethane foam, so that the slurry from the outer peripheral portion to the support layer 7 is formed. Since it is difficult to penetrate, the amount of slurry scattered outside decreases. Therefore, the utilization efficiency of the slurry is increased.
  • the polishing pad 1 ⁇ / b> D of the eleventh embodiment includes a disk-shaped main body 4 having a center hole 41 and an annular water stop 51 formed on the wall surface of the center hole 41.
  • the main body 4 is made of polyurethane foam (a porous material having an open cell structure).
  • the center hole 41 is a through hole extending perpendicularly to the polishing surface 10.
  • the water stop portion 51 is made of foam rubber (a porous material having a discontinuous cell structure).
  • the water absorption rate of the water stop part 5 measured by the above-mentioned method is 5% or less.
  • the center hole 51 a of the water stop portion 51 is a through hole extending perpendicularly to the polishing surface 10.
  • the center hole 51a of the water stop part 51 exists as a center hole of the polishing pad 1D. That is, the main body 4 is an open cell layer, and the water stop 51 is formed on a part of the surface other than the polishing surface 10 of the open cell layer.
  • the center hole 41 is a through hole that penetrates the open cell layer.
  • the thickness of the polishing pad 1D that is, the thickness of the main body 4 and the axial dimension of the water stop 51 are 2.0 mm or more and 50 mm or less.
  • the polishing pad 1D can be obtained, for example, by the following method.
  • the main body 4 is obtained by a method in which a Thomson mold having two cylindrical blades having different diameters is punched out from a foamed polyurethane plate into a disk having a center hole 41.
  • the water stop part 51 is obtained by a method of punching out from a foamed rubber plate in an annular shape using a Thomson mold having two cylindrical blades having different diameters.
  • the water stop portion 51 with an adhesive on the outer peripheral surface is fitted into the center hole 41 of the main body portion 4 to cure the adhesive.
  • the polishing pad 1D of this embodiment is used in a polishing method using a polishing slurry.
  • a polishing surface larger than the polishing surface 10 is polished using the polishing pad 1D.
  • the polishing pad 1D is disposed above the surface to be polished, and the polishing surface 10 of the polishing pad 1D is pressed against the surface to be polished while dripping the polishing slurry from the center hole 51a onto the surface to be polished.
  • the pad 1D is rotated around the axis of the disk.
  • the polishing pad 1 ⁇ / b> E of the twelfth embodiment has a disc-like polishing layer 20 having a center hole (first through hole) 22 and a disc-like center hole (second through hole) 71. And the annular water stop 51 formed on the wall surface of the center hole 71.
  • the center of the center hole 22 of the polishing layer 20 and the center of the center hole 71 of the support layer 7 are the same.
  • the center hole 51a of the water stop portion 51 and the center hole 22 of the polishing layer 20 are the same, and these holes exist as the center hole of the polishing pad 1E.
  • the polishing layer 20 is a suede type or non-woven type polishing pad.
  • the support layer 7 is made of foamed polyurethane (a porous material having an open cell structure).
  • the water stop portion 51 is made of foam rubber (a porous material having a discontinuous cell structure).
  • the water absorption rate of the water stop part 5 measured by the above-mentioned method is 5% or less. That is, the support layer 7 is an open cell layer, and the water stop portion 51 is formed on a part of the surface other than the polishing surface 10 of the open cell layer.
  • the thickness of the polishing layer 20 is not less than 0.5 mm and not more than 5.0 mm.
  • the thickness of the support layer 7 is 2.0 mm or more and 50 mm or less.
  • the axial dimension of the water stop portion 51 is the same as the thickness of the support layer 7.
  • the polishing pad 1E can be obtained, for example, by the following method.
  • the polishing layer 20 is obtained by punching out a suede type or non-woven type polishing pad into a disk shape having a center hole 22 using a Thomson type having two cylindrical blades having different diameters.
  • the support layer 7 is obtained by a method in which a Thomson mold having two cylindrical blades having different diameters is punched out from a foamed polyurethane plate into a disk having a center hole 71.
  • the water stop part 51 is obtained by a method of punching out from a foamed rubber plate in an annular shape using a Thomson mold having two cylindrical blades having different diameters.
  • the polishing pad 1E of this embodiment is used in a polishing method using a polishing slurry. For example, a polishing surface larger than the polishing surface 10 is polished using the polishing pad 1E.
  • the polishing pad 1E is disposed above the surface to be polished, and polishing slurry is dropped onto the surface to be polished from the central hole 51a of the water stop portion 51 through the central hole 22 of the polishing layer 20 while polishing pad.
  • the polishing surface 10 of 1E is pressed against the surface to be polished, and the polishing pad 1E is rotated around the axis of the disk.
  • a polyurethane polyurethane support layer having a center hole at the same position as the center hole 22 of the polishing layer 20 without the water stop portion 51 is formed on the surface 21 opposite to the polishing surface of the polishing layer 20.
  • the slurry soaks into the support layer of the polishing pad. Since the soaked slurry is scattered to the outside by a strong centrifugal force, a lot of slurry is not used for polishing.
  • the polishing pad 1E of this embodiment is used, the water stop portion 51 is formed on the wall surface of the center hole 71, so that the slurry is difficult to soak into the support layer 7 made of urethane foam. For this reason, the amount of slurry scattered outside decreases. Therefore, the utilization efficiency of the slurry is increased.
  • the water stop portion preferably has a water absorption rate of 5% or less measured by the above-described method. Further, when the polishing pad is a single layer and is an open cell layer made of a porous material having an open cell structure, it is preferable that the water stop portion has the same or similar hardness as the open cell layer. Therefore, in this case, the water stop portion is preferably made of a porous material having a discontinuous cell structure. In addition, when the polishing pad has a two-layer structure consisting of a polishing layer and a support layer, and the support layer is an open-cell layer made of a porous material having an open-cell structure, the water stop portion has the same or similar hardness as the support layer.
  • the water stop portion is preferably made of a porous material having a discontinuous cell structure.
  • the thickness of the open-cell layer of the polishing layer is extremely thin compared to the thickness of the support layer, so it is necessary to provide a water-stop portion in the polishing layer.
  • the porous material having an open-cell structure constituting the polishing pad in the case of a single layer and the support layer in the case of a two-layer structure it is preferable to use foamed polyurethane or foamed polyethylene.
  • porous material having a non-open cell structure constituting the water stop portion examples include foamed rubber (chloroprene rubber foam, ethylene / propylene rubber foam, silicone rubber foam, fluororubber foam, polyurethane foam, polyethylene foam, etc.). Of these, chloroprene rubber foam and ethylene / propylene rubber foam are preferable because a discontinuous cell structure is easily obtained. In addition to the method described in the above embodiment, the following method may be used as a method for forming the water stop portion.
  • foamed rubber chloroprene rubber foam, ethylene / propylene rubber foam, silicone rubber foam, fluororubber foam, polyurethane foam, polyethylene foam, etc.
  • chloroprene rubber foam and ethylene / propylene rubber foam are preferable because a discontinuous cell structure is easily obtained.
  • the following method may be used as a method for forming the water stop portion.
  • the polishing layer may be made of a material harder than the support layer. preferable.
  • the support layer is preferably softer than the polishing layer, which makes it easier for the polishing surface of the polishing layer to follow the surface to be polished when the surface to be polished is a curved surface.
  • the hardness of the polishing layer is preferably 40 or more and 80 or less in C hardness
  • the hardness of the support layer is preferably 30 or more and 90 or less in F hardness.
  • the F hardness 90 is less than 10 C hardness.
  • the C hardness is the hardness immediately after the pressing surface is in close contact with the test method defined in Appendix 2 “Spring Hardness Test Type C Test Method” of JIS K7312: 1996.
  • this test method as a spring hardness tester, when the pressurization surface of the tester is brought into close contact with the surface of the test piece, the distance by which the push needle protruding from the center hole of the pressurization surface with the spring pressure is pushed back by the test piece Of the structure shown on the scale as hardness.
  • the measurement surface of the test piece should be at least as large as the pressure surface of the testing machine.
  • the F hardness is a hardness measured by “Asker Rubber Hardness Tester Type F” manufactured by Kobunshi Keiki Co., Ltd.
  • the Asker rubber hardness tester type F is a durometer with a large indenter and a pressure surface so that an appropriate value can be obtained when measuring the hardness of a soft sample.
  • the shape of the push needle is 2.54 mm high and 25.2 mm in diameter. It is a cylindrical shape.
  • the thickness of the polishing layer is 0.5 mm or more. It is preferable that it is 0 mm or less. Within such a range, the polishing layer can easily remove undulations, and the polishing layer can be easily deformed similarly to the support layer.
  • the diameter of the polished surface is preferably 10 mm or more and 200 mm or less.
  • the surface to be polished may be not only a surface made of a synthetic resin but also a metal surface, a silicon wafer surface, a glass surface, a sapphire surface, or the like.
  • Suede type For example, a nonwoven fabric or a woven fabric made of synthetic fiber and synthetic rubber, or a polyester film is used as a base material. A polyurethane-based solution is applied to the upper surface of the substrate, and the polyurethane-based solution is solidified by a wet coagulation method to form a porous skin layer having continuous pores. If necessary, the surface of the skin layer is ground and removed.
  • Non-woven fabric type For example, a needle-punched non-woven fabric made of polyester short fibers is impregnated with a polyurethane elastomer solution.
  • the nonwoven fabric in this state is immersed in water and wet solidified, then washed with water and dried, and both surfaces are ground after drying.
  • a needle-punched non-woven fabric made of polyester short fibers is impregnated with a thermosetting urethane resin solution. By drying the nonwoven fabric in this state, the thermosetting urethane resin is fixed to the nonwoven fabric, and then both surfaces are sanded to remove irregularities.
  • the polishing pad of the present invention is a polishing method using a polishing slurry, and is preferably used in a method for polishing a surface to be polished that is larger than the polishing surface.
  • the polishing pad is preferably used in a polishing method in which the polishing pad is moved by pressing the polishing surface against the surface to be polished.
  • polishing slurry you may use by methods other than these.
  • the polishing pad of the present invention When the polishing pad of the present invention has a through hole extending in a direction intersecting with the polishing surface, the polishing pad is disposed above the surface to be polished, and the polishing slurry is dropped onto the surface to be polished from the through hole.
  • a polishing method in which the polishing surface is pressed against the surface to be polished and the polishing pad is rotated can be employed.
  • the polishing slurry soaked into the open cell layer from the through hole is likely to be scattered outside the polishing pad by a strong centrifugal force when the polishing pad rotates. Therefore, the use efficiency of the slurry can be effectively increased by using the polishing pad having the water stop portion of the present invention.
  • Examples of the method for supplying the polishing slurry to the surface to be polished include a method of dripping through the above-described through holes, a method of dripping the outside of the polishing pad, and a method of spraying the slurry.
  • a slurry containing abrasive grains is used.
  • abrasive grains contained in the slurry particles made of oxides of silicon or metal elements such as silica, alumina, ceria, titania, zirconia, iron oxide and manganese oxide, organic particles made of thermoplastic resin, or organic-inorganic composite
  • Abrasive grains selected from particles and the like can be mentioned.
  • Alumina includes those having different crystal forms such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina, and an aluminum compound called hydrated alumina also exists. From the viewpoint of the polishing rate, it is more preferable to use a slurry containing particles containing ⁇ -alumina as a main component as abrasive grains.
  • the average particle size of the abrasive grains is preferably 0.1 ⁇ m or more and 10.0 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 5.0 ⁇ m or less.
  • the polishing rate improves.
  • the average particle diameter is within the above range, it becomes easy to improve the polishing rate to a particularly suitable level for practical use.
  • the average particle size decreases, the dispersion stability of the abrasive grains improves, and the occurrence of scratches (scratches) on the polished surface is suppressed.
  • the average particle diameter is in the above range, it becomes easy to improve the dispersion stability of the abrasive grains and the surface accuracy of the polished surface to a practically particularly suitable level.
  • the content of abrasive grains in the slurry is preferably 0.1% by mass or more and 50% by mass or less, more preferably 0.2% by mass or more and 25% by mass or less, and further preferably 0.5% by mass. It is 20 mass% or less.
  • the polishing rate increases.
  • the slurry may appropriately contain other components such as a lubricating oil, an organic solvent, a surfactant, and a thickener as necessary, in addition to the abrasive grains and the dispersant thereof.
  • the lubricating oil may be a synthetic oil, mineral oil, vegetable oil or combination thereof.
  • the organic solvent may be alcohol, ether, glycols, glycerin or the like in addition to the hydrocarbon solvent.
  • the surfactant may be a so-called anion, cation, nonion, or amphoteric surfactant.
  • the thickener may be a synthetic thickener, a cellulose thickener, or a natural thickener.
  • the polishing pad of the fourth aspect is a polishing pad used in polishing with a slurry
  • the polishing pad can be mounted, and the polishing pad can be moved by pressing the polishing surface against the surface to be polished.
  • Any polishing apparatus can be used as long as it is an apparatus.
  • the polisher 9 shown in FIG. 12 the automatic polishing apparatus 400 shown in FIG. 24, and a hand polisher are mentioned.
  • Example 1 examples of the polishing method of the first aspect and the second aspect and comparative examples will be described.
  • Samples No. 1 to No. 7 shown below were prepared.
  • the polishing pad of sample No. 1 is the polishing pad 8 with a support layer shown in FIG. 6, and the polishing pad 6 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, and is a suede type with a C hardness. Is 50.
  • the polishing pad 6 is divided into an end portion 61 and a base portion 62.
  • a peripheral surface 611 of the end 61 is an arc surface.
  • the support layer 7 is bonded to the surface 621 opposite to the polishing surface of the polishing pad 6.
  • the support layer 7 is a disc body having a diameter of 90 mm and a thickness of 10 mm, and is made of urethane foam and has an F hardness of 70.
  • the axial dimension T61 of the end 61 is 0.3 mm
  • the axial dimension T62 of the base 62 is 1.0 mm
  • An arc forming the peripheral surface 611 is a quarter arc of a circle whose radius is the axial dimension T61 of the end portion 61. That is, the center C of the circular arc forming the peripheral surface 611 is a point where the distance H from the peripheral surface of the base 62 is the same as T61.
  • the polishing pads of samples No. 2 to No. 6 are the polishing pads 3 with a support layer shown in FIG. 3, and the polishing pad 1 is a disc having a diameter of 90 mm and a thickness of 1.3 mm.
  • the type has a C hardness of 50.
  • the polishing pad 1 is divided into an end portion 11 and a base portion 12.
  • the peripheral surface 111 of the end 11 is a tapered surface that decreases in diameter toward the polishing surface 10, and an angle ⁇ formed by the peripheral surface 111 and the polishing surface 10 is an obtuse angle.
  • the support layer 2 is bonded to a surface 121 opposite to the polishing surface of the polishing pad 1.
  • the support layer 2 is a disc body having a diameter of 90 mm and a thickness of 10 mm, and is made of urethane foam and has an F hardness of 70.
  • the axial dimension T11 of the end 11 is 0.3 mm, and the axial dimension T12 of the base 12 is 1.3 mm.
  • 150 °
  • 125.
  • 120 °
  • 105 ° ( ⁇ 6 in FIG. 9).
  • the outer diameter of the polishing surface 10 changes due to the difference in the angle ⁇ .
  • a support layer is bonded to the surface of the polishing pad opposite to the polishing surface.
  • the support layer is a disc having a diameter of 90 mm and a thickness of 10 mm, and is made of urethane foam and has an F hardness of 70.
  • the corner formed by the peripheral surface on the polishing surface side and the polishing surface is 90 °.
  • the object to be polished is a 300 ⁇ 250 mm metal plate painted with a synthetic resin paint, and the thickness of the coating film is 20 ⁇ m. That is, the surface to be polished is a coating film surface made of a synthetic resin, and the surface to be polished is larger than the polishing surface.
  • the polishing apparatus used is an apparatus in which a double action polisher is attached to the tip of an arm of an industrial robot “M-20i” manufactured by FANUC CORPORATION.
  • the polishing pad was arranged so that the angle between the coating surface, which is the surface to be polished, and the polishing surface was 30 °. Further, while pressing the polishing pad of each sample against the surface to be polished with the pressing force applied to the arm, a slurry containing abrasive grains having an average particle size of 0.4 ⁇ m is supplied to the outside of the polishing pad on the surface to be polished. However, polishing was performed by rotating the polisher. The polishing conditions were the same for all samples.
  • Table 1 shows the configuration of the polishing pad of each sample and the results of evaluation. The result of evaluation has shown the average value of 2 sets. The results of No. 2 to No. 7 are shown in FIG. 10 as a graph showing the relationship between the angle ⁇ formed between the peripheral surface of the end portion and the polished surface and the number of scratches (average value).
  • the polishing method using No. 1 to No. 4 polishing pads corresponding to Examples of the present invention is compared with the polishing method using No. 5 to No. 7 polishing pads corresponding to Comparative Examples.
  • polished effectively is suppressed. Further, among the polishing pads of No. 2 to No.
  • peripheral surface of the end portion is a tapered surface whose diameter is reduced toward the polishing surface, and the angle ⁇ formed between the peripheral surface and the polishing surface is an obtuse angle, ⁇ is By adopting a polishing method using 125 ° or more, it is possible to suppress the occurrence of polishing flaws when polishing a concave curved surface made of a coating film, compared to a polishing method using ⁇ of 120 ° or less. Is significantly larger.
  • Example 2 an example and a comparative example of the polishing method of the third aspect will be described.
  • Samples No. 11 to No. 19 shown below were prepared.
  • the polishing pad of sample No. 11 has a disk shape with a diameter of 90 mm and a thickness of 10 mm, is made of urethane foam, and has an F hardness of 70.
  • No groove is formed on the polished surface.
  • the polishing pad of Sample No. 12 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, a suede type, and a C hardness of 30.
  • No groove is formed on the polished surface.
  • a support layer is bonded to the surface of the polishing pad opposite to the polishing surface.
  • the support layer is a disc having a diameter of 90 mm and a thickness of 10 mm, and is made of urethane foam and has an F hardness of 70.
  • the polishing pad of Sample No. 13 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, a suede type, and a C hardness of 30. Grid-like grooves are formed on the polished surface.
  • the groove forming method is a method of removing material of a portion to become a groove from a suede type polishing pad having no groove by cutting (hereinafter referred to as “cutting method”).
  • the groove width is 1 mm
  • the groove pitch is 6 mm
  • the groove depth is about 400 ⁇ m.
  • the same support layer as Sample No. 2 is adhered to the surface of the polishing pad opposite to the polishing surface.
  • the support layer 14 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, a suede type and a C hardness of 50. No groove is formed on the polished surface.
  • a support layer is bonded to the surface of the polishing pad opposite to the polishing surface.
  • the support layer is a disc having a diameter of 90 mm and a thickness of 10 mm, and is made of urethane foam and has an F hardness of 70.
  • the polishing pad of sample No. 15 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, a suede type, and a C hardness of 50.
  • a grid-like groove is formed on the polished surface by a cutting method.
  • the groove width is 1 mm
  • the groove pitch is 6 mm
  • the groove depth is about 400 ⁇ m.
  • the same support layer as Sample No. 2 is adhered to the surface of the polishing pad opposite to the polishing surface.
  • the polishing pad of Sample No. 16 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, a non-woven fabric type, and a C hardness of 80. No groove is formed on the polished surface.
  • the same support layer as Sample No. 2 is adhered to the surface of the polishing pad opposite to the polishing surface.
  • the polishing pad of sample No. 17 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, a non-woven fabric type, and a C hardness of 80.
  • a grid-like groove is formed on the polished surface by a cutting method.
  • the groove width is 1 mm
  • the groove pitch is 6 mm
  • the groove depth is about 400 ⁇ m.
  • the same support layer as Sample No. 2 is adhered to the surface of the polishing pad opposite to the polishing surface.
  • the polishing pad of sample No. 18 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, and is a nonwoven fabric type with a C hardness of 90. No groove is formed on the polished surface.
  • the same support layer as Sample No. 2 is adhered to the surface of the polishing pad opposite to the polishing surface.
  • the polishing pad of Sample No. 19 has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm, and is a nonwoven fabric type with a C hardness of 90.
  • a grid-like groove is formed on the polished surface by a cutting method.
  • the groove width is 1 mm
  • the groove pitch is 6 mm
  • the groove depth is about 400 ⁇ m.
  • the same support layer as Sample No. 2 is adhered to the surface of the polishing pad opposite to the polishing surface.
  • the object to be polished is a 300 ⁇ 250 mm metal plate painted with a synthetic resin paint, and the thickness of the coating film is 20 ⁇ m. That is, the surface to be polished is a coating film surface made of a synthetic resin, and the polishing surface is smaller than the surface to be polished.
  • the polishing apparatus used is an apparatus in which a double action polisher is attached to the tip of an arm of an industrial robot “M-20i” manufactured by FANUC CORPORATION. Polishing was performed by rotating the polisher while supplying the slurry to the outside of the polishing pad on the surface to be polished while pressing the polishing pad of each sample against the surface to be polished with the pressing force applied to the arm.
  • the polishing conditions were the same for all samples.
  • the used slurry contains alumina abrasive grains having an average particle diameter of 0.4 ⁇ m.
  • the viscosity of the slurry used is 0.11 Pa ⁇ s (1.1 cP) at 25 ° C.
  • the average particle size of the abrasive grains was measured using a particle size distribution measuring device “Horiba L-950” manufactured by Horiba, Ltd.
  • the waviness removal property and scratch resistance of the polished surface were evaluated.
  • a contact type surface roughness measuring device “SURFCOM 1500DX” manufactured by Tokyo Seimitsu Co., Ltd. was used for evaluation of swell removal.
  • the “filter center waviness” of the coating surface, which is the surface to be polished, was measured to obtain the arithmetic average waviness (Wa).
  • the calculated average waviness (Wa) before polishing was about 0.1 ⁇ m.
  • Scratch resistance that the surface to be polished is less likely to be scratched was evaluated by visually observing the surface to be polished after polishing and by the number of scratches contained in an area of 100 mm 2 .
  • Table 2 shows the configuration of the polishing pad of each sample and the results of evaluation. The result of evaluation has shown the average value of 2 sets.
  • Example 3 an example and a comparative example of the polishing pad of the fourth aspect will be described.
  • Samples No. 21 to No. 30 shown below were prepared.
  • the polishing pad of sample No. 21 corresponds to the polishing pad 1 of the seventh embodiment shown in FIG. 14, and has a disk shape with a diameter of 90 mm and a thickness of 10 mm.
  • a chloroprene rubber foam plate-like product having a water absorption of 5% or less measured by the above-described method is die-cut using a Thomson mold. That is, the entire polishing pad is formed of a water-stopping material.
  • the polishing pad of sample No. 22 corresponds to the polishing pad 1A of the eighth embodiment shown in FIG. 15 and includes a polishing layer 20 and a support layer 30.
  • the polishing layer 20 is a non-woven polishing pad and has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm.
  • the support layer 30 is fixed to the surface 21 of the polishing layer 20 opposite to the polishing surface 10.
  • the support layer 30 has a disk shape with a diameter of 90 mm and a thickness of 10 mm.
  • the support layer 30 is obtained by die-cutting using a Thomson mold from a chloroprene rubber foam plate-like material having a water absorption rate of 5% or less measured by the method described above. That is, the entire support layer 30 is formed of a water stop material.
  • the polishing pad of sample No. 23 corresponds to the polishing pad 1B of the ninth embodiment shown in FIG. 16 and includes a main body portion 4 and a water stop portion 5 fixed to the outer peripheral surface of the main body portion 4. That is, the water stop part 5 is formed in the outer peripheral part of the polishing pad.
  • the main body 4 is made of polyurethane foam and has a disk shape with a diameter of 80 mm and a thickness of 10 mm.
  • the water stop portion 5 has an annular shape with an inner diameter of 80 mm, an outer diameter of 90 mm, and an axial dimension of 10 mm.
  • the water stop portion 5 is a die cut using a Thomson die from a chloroprene rubber foam plate-like material having a water absorption rate of 5% or less as measured by the method described above.
  • the polishing pad of sample No. 24 corresponds to the polishing pad 1C of the tenth embodiment shown in FIG. 17 and includes a polishing layer 20, a support layer 7, and a water stop portion 5.
  • the polishing layer 20 is a non-woven polishing pad and has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm.
  • the support layer 7 is made of polyurethane foam and has a disk shape with a diameter of 80 mm and a thickness of 10 mm.
  • the water stop portion 5 has an annular shape with an inner diameter of 80 mm, an outer diameter of 90 mm, and an axial dimension of 10 mm.
  • the water stop portion 5 is a die cut using a Thomson die from a chloroprene rubber foam plate-like material having a water absorption rate of 5% or less as measured by the method described above.
  • a support layer 7 is fixed to the inner peripheral surface of the water stop portion 5. That is, the water stop portion 5 is formed on the outer peripheral portion of the support layer 7.
  • the support layer 7 and the water stop portion 5 are fixed to a surface 21 opposite to the polishing surface 10 of the polishing layer 20.
  • the polishing pad of sample No. 25 corresponds to the polishing pad 1D of the eleventh embodiment shown in FIG. 18, and includes a main body portion 4 having a center hole 41 and a water stop portion 51 formed on the wall surface of the center hole 41.
  • the main body 4 is made of polyurethane foam, has a diameter of 90 mm, a center hole of 20 mm, and a thickness of 10 mm.
  • the water stop 51 has an annular shape having an inner diameter (diameter of the center hole 51a) of 10 mm, an outer diameter of 20 mm, and an axial dimension of 10 mm.
  • the water-stop part 51 is die-cut using a Thomson mold from a plate made of chloroprene rubber foam having a water absorption rate of 5% or less as measured by the method described above.
  • the polishing pad of sample No. 26 corresponds to the polishing pad 1E of the twelfth embodiment shown in FIG. 19, and includes a polishing layer 20 having a center hole 22, a support layer 7 having a center hole 71, and a wall surface of the center hole 71. It consists of the water stop part 51 formed in this.
  • the polishing layer 20 is a non-woven polishing pad, has an outer diameter of 90 mm, a center hole 22 of 10 mm, and a thickness of 1.3 mm.
  • the support layer 7 is made of polyurethane foam, has a diameter of 90 mm, a center hole of 20 mm, and a thickness of 10 mm.
  • the water stop 51 has an annular shape having an inner diameter (diameter of the center hole 51a) of 10 mm, an outer diameter of 20 mm, and an axial dimension of 10 mm.
  • the water-stop part 51 is die-cut using a Thomson mold from a plate made of chloroprene rubber foam having a water absorption rate of 5% or less as measured by the method described above.
  • the water stop portion 5 is fixed to the inner peripheral surface of the support layer 7.
  • the support layer 7 and the water stop portion 5 are fixed to a surface 21 opposite to the polishing surface 10 of the polishing layer 20.
  • the polishing pad 100 of sample No. 27 is made of polyurethane foam and has a disk shape with a diameter of 90 mm and a thickness of 10 mm.
  • the polishing pad 100 ⁇ / b> A of sample No. 28 includes a polishing layer 20 and a support layer 30.
  • the polishing layer 20 is a non-woven polishing pad and has a disk shape with a diameter of 90 mm and a thickness of 1.3 mm.
  • the support layer 30 is made of polyurethane foam, has a disk shape with a diameter of 90 mm and a thickness of 10 mm, and is fixed to a surface 21 opposite to the polishing surface 10 of the polishing layer 20.
  • the polishing pad 100 ⁇ / b> B of Sample No. 29 is made of polyurethane foam and has a disk shape having a center hole 105.
  • the diameter of the polishing pad 100B is 90 mm, the center hole is 20 mm, and the thickness is 10 mm.
  • the polishing pad 100B of sample No. 30 includes the polishing layer 20 having the center hole 22 and the support layer 7 having the center hole 71a.
  • the polishing layer 20 is a non-woven polishing pad, has an outer diameter of 90 mm, a center hole 22 of 10 mm, and a thickness of 1.3 mm.
  • the support layer 7 is made of polyurethane foam, has a diameter of 90 mm, a center hole of 10 mm, and a thickness of 10 mm.
  • the support layer 7 is fixed to the surface 21 of the polishing layer 20 opposite to the polishing surface 10.
  • the polishing pad of each sample was a 300 ⁇ 250 mm metal plate painted with a synthetic resin paint, and the thickness of the coating film is 20 ⁇ m. That is, the surface to be polished is a flat coating film surface made of synthetic resin, and the polishing surface is smaller than the surface to be polished.
  • the polishing apparatus used is an apparatus in which a double action polisher is attached to the tip of an arm of an industrial robot “M-20i” manufactured by FANUC CORPORATION. Polishing was performed by rotating the polisher while dripping the slurry onto the surface to be polished while pressing the polishing pad of each sample against the surface to be polished held horizontally by the pressing force applied to the arm.
  • the slurry was dropped on the outside of the polishing pad (position 30 mm away from the outer peripheral surface), and for No. 25, 26, 29, 30, the polishing pad was Made from the center hole.
  • the other polishing conditions were the same for all samples.
  • the used slurry contains alumina abrasive grains having an average particle diameter of 0.4 ⁇ m.
  • the viscosity of the slurry used is 0.11 Pa ⁇ s (1.1 cP) at 25 ° C.
  • the average particle size of the abrasive grains was measured using a particle size distribution measuring device “Horiba L-950” manufactured by Horiba, Ltd.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

この発明の研磨方法では円板状の研磨パッド(1)を用いる。研磨パッド(1)の円板の軸方向で研磨面(10)側の周面(111)は、研磨面(10)に向けて縮径するテーパ面である。周面(111)と研磨面(10)とでなす角度が125°以上180°未満である。研磨パッド(1)は、JIS K7312:1996の付属書2「スプリング硬さ試験タイプC試験方法」で規定された試験方法による加圧面が密着した直後の硬さが40以上である。砥粒を含むスラリーを研磨面(10)より大きな被研磨面に供給し、研磨面(10)を被研磨面に押し当てて研磨パッド(1)を動かすことにより、被研磨面を研磨する。

Description

研磨方法、研磨パッド
 この発明は研磨方法および研磨パッドに関する。
 曲面を有する被研磨物、例えば自動車等の車体塗装面を平滑化する加工方法として、バフ研磨加工が知られている(例えば特許文献1)。バフ研磨加工は、布製またはその他の材料で作られた研磨輪(バフ)の周囲(表面)に種々の研磨剤などを付けて回転させ、研磨対象物を研磨する方法である。
 しかしながら、バフ研磨加工では被研磨物の表面のうねりを取り除くことができず、美しい表面仕上げを実現することが難しかった。
 これに対して、本発明者等は、曲面を有する被研磨物の表面のうねりを取り除くことが可能な研磨方法を提案した(特許文献2参照)。
特開2012-251099号公報 特開2016-47566号公報
 特許文献2の方法では、硬質の樹脂層で形成される研磨面を有する研磨パッドを用いるため、特に、塗膜等の比較的軟質な凹曲面を研磨する場合には、研磨傷の発生を抑制することが課題となる。
 この発明の第一の課題は、被研磨面が塗膜等の比較的軟質な凹曲面であっても研磨傷の発生が抑制できる研磨方法を提供することである。
 一方、研磨スラリー(砥粒を含むスラリー)による研磨を、発泡ポリウレタン等の連続気泡構造を有する多孔質材からなる研磨パッドを用いて行うと、研磨パッドにスラリーがしみ込み、しみ込んだスラリーが飛散して研磨に使用されないため、スラリーの利用効率が低いという問題点がある。
 この発明の第二の課題は、研磨スラリーによる研磨で使用される研磨パッドとして、従来品よりスラリーの利用効率が高い研磨パッドを提供することである。
 上記第一の課題を解決するために、この発明の第一態様である研磨方法は、以下の構成(1)~(3)を有することを特徴とする。
(1)円板状の研磨パッドであって、円板の軸方向で研磨面側の周面は研磨面に向けて縮径するテーパ面であり、研磨面側の周面と研磨面とでなす角度が125°以上180°未満である研磨パッドを用いる。
(2)使用する研磨パッドの硬さは、JIS K7312:1996の付属書2「スプリング硬さ試験タイプC試験方法」で規定された試験方法による加圧面が密着した直後の硬さ(以下、「C硬度」と称する。)で40以上である。
 この試験方法では、スプリング硬さ試験機として、試験片の表面に試験機の加圧面を密着させたとき、加圧面の中心の孔からばね圧力で突き出ている押針が試験片によって押し戻される距離を、硬さとして目盛に示す構造のものを用いる。試験片の測定面は、少なくとも試験機の加圧面以上の大きさのものとする。
(3)砥粒を含むスラリーを研磨面より大きな被研磨面(被研磨物の表面)に供給し、研磨面を被研磨面に押し当てて、研磨パッドを動かすことにより、被研磨面を研磨する。
 なお、上記構成(3)を有する研磨方法では、被研磨面が研磨面より小さい研磨方法と比較して、被研磨面に研磨傷が生じやすい。
 上記第一の課題を解決するために、この発明の第二態様である研磨方法は、上記構成(2)(3)と下記の構成(4)を有することを特徴とする。
(4)円板状の研磨パッドであって、円板の軸方向で研磨面側の周面は円弧面である。
 上記第一の課題を解決するために、この発明の第三態様である研磨方法は、以下の構成(11)~(13)を有することを特徴とする。
(11)砥粒を含むスラリーを被研磨面(被研磨物の表面)に供給する。
(12)JIS K7312:1996の付属書2「スプリング硬さ試験タイプC試験方法」で規定された試験方法による加圧面が密着した直後の硬さ(以下、「C硬度」と称する。)が40以上80以下である研磨パッドを用いる。
 この試験方法では、スプリング硬さ試験機として、試験片の表面に試験機の加圧面を密着させたとき、加圧面の中心の孔からばね圧力で突き出ている押針が試験片によって押し戻される距離を、硬さとして目盛に示す構造のものを用いる。試験片の測定面は、少なくとも試験機の加圧面以上の大きさのものとする。
(13)研磨面を前記被研磨面に押し当てて前記研磨パッドを動かすことにより、前記被研磨面を研磨する。
 上記第二の課題を解決するために、この発明の第四態様である研磨パッドは、研磨スラリーによる研磨で使用される研磨パッドであって、表面の一部または全部に止水部が形成されていることを特徴とする。
 この発明の第一乃至第三態様の研磨方法によれば、被研磨面が塗膜等の比較的軟質な凹曲面であっても研磨傷の発生が抑制できる。
 この発明の第四態様の研磨パッドによれば、止水部が形成されていない従来品よりスラリーの利用効率が高くなる。
第1実施形態の方法で使用する研磨パッドを示す図であって、研磨面側を示す斜視図(a)と、そのA-A断面図(b)である。 第1実施形態および第2実施形態の研磨方法(a)と、従来の研磨方法(b)を説明する概略図である。 第2実施形態の方法で使用する研磨パッドを示す図であって、研磨面を示す平面図(a)と、そのA-A断面図(b)である。 第3実施形態の方法で使用する研磨パッドを示す図であって、研磨面側を示す斜視図(a)と、そのA-A断面図(b)である。 第3実施形態および第四実施形態の研磨方法(a)と、従来の研磨方法(b)を説明する概略図である。 第4実施形態の方法で使用する研磨パッドを示す図であって、研磨面を示す平面図(a)と、そのA-A断面図(b)である。 端部の周面が軸方向で二段に形成されている研磨パッドを説明する図である。 実施例1で試験に使用した研磨パッドの形状を説明する概略図である。 実施例1で試験に使用した研磨パッドの形状を説明する概略図である。 実施例1の試験結果から得られた、端部の周面と研磨面とでなす角度θと傷の本数(平均値)との関係を示すグラフである。 第5実施形態の方法で使用する研磨パッドを示す図であって、研磨面を示す平面図(a)と、そのA-A断面図(b)である。 第5実施形態の方法を説明する概略図である。 第6実施形態の方法で使用する研磨パッドを示す図であって、研磨面を示す平面図(a)と、そのA-A断面図(b)である。 第7実施形態の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第8実施形態の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第9実施形態の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第10実施形態の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第11実施形態の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第12実施形態の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第5および第9実施形態に対する比較例の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第6および第10実施形態に対する比較例の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第11実施形態に対する比較例の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 第12実施形態に対する比較例の研磨パッドを示す図であって、研磨面を下に向けて置いた研磨パッドの平面図(a)と、そのA-A断面図(b)である。 この発明の各態様で使用可能な研磨装置の一例を示す概略構成図である。
 以下、この発明の実施形態について説明するが、この発明は以下に示す実施形態に限定されない。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この限定はこの発明の必須要件ではない。
〔第一態様、第二態様〕
[第1実施形態]
 第1実施形態の方法を図1および図2を用いて説明する。
 この実施形態の研磨方法では、図1に示す円板状の研磨パッド1を用いる。
 研磨パッド1は、スエードタイプまたは不織布タイプの研磨パッドであって、厚さが0.5mm以上5.0mm以下である。研磨パッド1の硬さはC硬度で40以上90以下である。
 研磨パッド1は、円板の軸方向で、研磨面10側の部分(端部)11と、研磨面10とは反対側の部分(基部)12とに分けられる。端部11の周面111は研磨面10に向けて縮径するテーパ面である。周面111と研磨面10とでなす角度θ(図2参照)が125°以上180°未満である。つまり、端部11の角部が斜面状に面取りされている。
 角部を125°以上180°未満に面取りする方法としては切削法が挙げられる。切削法の例としては、高速回転するサンダーもしくは円形の切刃を、研磨パッドの角部に押し当てながら移動する方法、カッターの刃で切り取る方法、サンドペーパーで削り取る方法が挙げられる。また、ベニヤ板や樹脂板にレーザーで溝加工を施し、その溝と同じ形状に曲げた鋼の刃物を溝に埋め込むことで刃型を作製し、この刃型を研磨パッド表面に押し当てて切削する方法(トムソン加工)も挙げられる。
 この実施形態の研磨方法では、図2(a)に示すように、砥粒を含むスラリーを、研磨面10より大きな被研磨面50に供給し、研磨パッド1の研磨面10を被研磨面50に押し当てて、研磨パッド1を円板の軸を中心に回転することにより、被研磨面50を研磨する。被研磨面50は、合成樹脂製の塗膜からなる凹曲面である。
 この実施形態の研磨方法によれば、端部11の周面111と研磨面10とでなす角度θが125°以上180°未満のテーパ面となっている研磨パッド1を使用するため、被研磨面50への研磨傷の発生が抑制できる。これに対して、図2(b)に示すように、円板状で角部101が直角の研磨パッド100を使用すると、研磨面102より先に角部101が被研磨面50に接触するため、被研磨面50に研磨傷が発生し易い。
 凹曲面状の被研磨面の例としては、各種部材や車両など(例えば、合成樹脂製部材、自動車の車体、鉄道車両、航空機、自転車、船舶)の塗膜面が挙げられる。
 また、C硬度が40以上90以下である研磨パッド1を用いているため、被研磨面50のうねりを取り除くことができる。
[第2実施形態]
 この実施形態の研磨方法では、図3に示す支持層付き研磨パッド3を用いる。
 支持層付き研磨パッド3は、第一実施形態の研磨パッド1と、研磨パッド1より軟らかい発泡ポリウレタン製の支持層2とからなる。支持層2は、研磨パッド1の研磨面10とは反対側の面121に、接着剤または両面テープで固定されている。支持層2の厚さは2.0mm以上50mm以下である。
 この実施形態の研磨方法によれば、研磨パッド1の機能により第一実施形態の研磨方法と同じ効果が得られる。これに加えて、軟質の支持層2が固定された二層構造の支持層付き研磨パッド3を使用するため、以下の効果も得られる。
 研磨装置から軟質の支持層2に付与された力が研磨パッド1に伝わって、研磨面10が被研磨面50に押し当てられると、軟質の支持層2は、凹曲面状の被研磨面50に沿って容易に変形する。これに伴い、支持層2に固定された硬質の研磨パッド1も支持層2と同様に変形する。その結果、研磨面10が凹曲面状の被研磨面に追従し易い。
 よって、第2実施形態の研磨方法は、第1実施形態の研磨方法と比較して、曲面状の被研磨面のうねりを取り除く効果が高い。
[第3実施形態]
 第3実施形態の方法を図4および図5を用いて説明する。
 この実施形態の研磨方法では、図4に示す円板状の研磨パッド6を用いる。
 研磨パッド6は、スエードタイプまたは不織布タイプの研磨パッドであって、厚さが0.5mm以上5.0mm以下である。研磨パッド6の硬さはC硬度で40以上90以下である。
 研磨パッド6は、円板の軸方向で、研磨面60側の部分(端部)61と、研磨面60とは反対側の部分(基部)62とに分けられる。端部61の周面611は円弧面である。つまり、端部61の角部が丸く面取りされている。
 角部を丸く面取りする方法としては切削法が挙げられる。切削の例としては、高速回転するサンダーもしくは円形の切刃を、研磨パッドの角部に押し当てながら移動する方法、カッターの刃で切り取る方法、サンドペーパーで削り取る方法が挙げられる。また、ベニヤ板や樹脂板にレーザーで溝加工を施し、その溝と同じ形状に曲げた鋼の刃物を溝に埋め込むことで刃型を作製し、この刃型を研磨パッド表面に押し当てて切削する方法(トムソン加工)も挙げられる。
 この実施形態の研磨方法では、図5(a)に示すように、砥粒を含むスラリーを、研磨面60より大きな被研磨面50に供給し、研磨パッド6の研磨面60を被研磨面50に押し当てて、研磨パッド6を円板の軸を中心に回転することにより、被研磨面50を研磨する。被研磨面50は、合成樹脂製の塗膜からなる凹曲面である。
 この実施形態の研磨方法によれば、端部61の周面611が円弧面となっている研磨パッド6を使用するため、被研磨面50への研磨傷の発生が抑制できる。これに対して、図5(b)に示すように、円板状で角部101が直角の研磨パッド100を使用すると、研磨面102より先に角部101が被研磨面50に接触するため、被研磨面50に研磨傷が発生し易い。
 凹曲面状の被研磨面の例としては、各種部材や車両など(例えば、合成樹脂製部材、自動車の車体、鉄道車両、航空機、自転車、船舶)の塗膜面が挙げられる。
 また、C硬度が40以上90以下である研磨パッド6を用いているため、被研磨面50のうねりを取り除くことができる。
[第4実施形態]
 この実施形態の研磨方法では、図6に示す支持層付き研磨パッド8を用いる。
 支持層付き研磨パッド8は、第3実施形態の研磨パッド6と、研磨パッド6より軟らかい発泡ポリウレタン製の支持層7とからなる。支持層7は、研磨パッド6の研磨面60とは反対側の面621に、接着剤または両面テープで固定されている。支持層7の厚さは2.0mm以上50mm以下である。
 この実施形態の研磨方法によれば、研磨パッド6の機能により第一実施形態の研磨方法と同じ効果が得られる。これに加えて、軟質の支持層7が固定された二層構造の支持層付き研磨パッド8を使用するため、以下の効果も得られる。
 研磨装置から軟質の支持層7に付与された力が研磨パッド6に伝わって、研磨面60が被研磨面50に押し当てられると、軟質の支持層7は、凹曲面状の被研磨面50に沿って容易に変形する。これに伴い、支持層7に固定された硬質の研磨パッド6も支持層7と同様に変形する。その結果、研磨面60が凹曲面状の被研磨面に追従し易い。
 よって、第4実施形態の研磨方法は、第3実施形態の研磨方法と比較して、曲面状の被研磨面のうねりを取り除く効果が高い。
<第一および第二態様の研磨方法で使用する研磨パッドの好ましい形態など>
 研磨パッドの厚さは0.5mm以上5.0mm以下であることが好ましい。このような範囲であれば、研磨パッドがうねりを除去し易く、支持層が固定された研磨パッドが支持層と同様に変形しやすい。
 研磨面の直径は10mm以上200mm以下であることが好ましい。このような範囲であれば、スラリーが研磨面の外縁部から中央部まで行き渡るまでにかかる時間が短くできるとともに、曲面状の被研磨面に研磨面が追従し易い。
 被研磨面は、合成樹脂からなる面だけでなく、金属面、シリコンウェーハ面、ガラス面、サファイア面などであってもよい。
 使用する研磨パッドは、C硬度が40以上90以下のものであればよく、スエードタイプや不織布タイプ以外では、硬質ポリウレタンなどで製造されたものが挙げられる。使用する研磨パッドは、C硬度が50以上80以下のものであることが好ましい。
 支持層の材質としては、発泡ポリウレタン以外に、発泡ポリエチレン、発泡ゴム、発泡メラミン、発泡シリコーンなどが挙げられる。支持層の硬さは、F硬度(高分子計器株式会社製「アスカーゴム硬度計F型」で測定した硬度)で30以上90以下であることが好ましい。F硬度90はC硬度10未満である。
 アスカーゴム硬度計F型は、特に軟らかい試料の硬さ測定で適切な指示値が得られるよう、大きなインデンタと加圧面を持ったデュロメータであり、押針の形状は高さ2.54mm直径25.2mmの円筒形である。
<第一および第二態様の研磨方法で使用する研磨パッドの製造方法の例示>
 スエードタイプ:例えば合成繊維と合成ゴム等からなる不織布や編織布、もしくはポリエステルフィルム等を基材にする。基材の上面に、ポリウレタン系溶液を塗布し、湿式凝固法によりポリウレタン系溶液を凝固することで、連続気孔を有する多孔層の表皮層を形成する。必要に応じてその表皮層の表面を研削、除去する。
 不織布タイプ:例えばポリエステル短繊維よりなるニードルパンチされた不織布に、ポリウレタンエラストマー溶液を含浸させる。この状態の不織布を、水に浸漬して湿式凝固した後、水洗、乾燥し、乾燥後に両表面を研削処理する。あるいは、例えばポリエステル短繊維よりなるニードルパンチされた不織布に、熱硬化性ウレタン樹脂溶液を含浸させる。この状態の不織布を乾燥することで、不織布に熱硬化性ウレタン樹脂を固着させた後、両表面をサンディング加工して、凹凸を除去する。
<第一および第二態様の研磨方法で使用されるスラリー>
 この発明の第一および第二態様の研磨方法で使用されるスラリーに含まれる砥粒としては、シリカ、アルミナ、セリア、チタニア、ジルコニア、酸化鉄及び酸化マンガン等のケイ素または金属元素の酸化物からなる粒子や、熱可塑性樹脂からなる有機粒子、又は有機無機複合粒子などから選ばれる砥粒が挙げられる。
 例えば、アルミナ粒子を含むアルミナスラリーを用いると、高研磨速度が可能になり、容易に入手が可能であるため好ましい。
 アルミナには、α-アルミナ、β-アルミナ、γ-アルミナ、θ-アルミナなどの結晶形態が異なるものがあり、また水和アルミナと呼ばれるアルミニウム化合物も存在する。研磨速度の観点からは、α-アルミナを主成分とする粒子を砥粒として含むスラリーを使用することがより好ましい。
 砥粒の平均粒子径は0.1μm以上10.0μm以下であることが好ましく、より好ましくは0.3μm以上5.0μm以下である。平均粒子径が大きくなるにつれて、研磨速度は向上する。平均粒子径が上記の範囲内にある場合、研磨速度を実用上特に好適なレベルにまで向上させることが容易となる。平均粒子径が小さくなるにつれて、砥粒の分散安定性は向上し、研磨面のスクラッチ(傷)発生が抑制される。
 平均粒子径が上記の範囲内にある場合、砥粒の分散安定性と、研磨面の表面精度を実用上特に好適なレベルにまで向上させることが容易となる。
 スラリー中の砥粒の含有量は、0.1質量%以上50質量%以下であることが好ましく、より好ましくは0.2質量%以上25質量%以下であり、さらに好ましくは0.5質量%以上20質量%以下である。砥粒の含有量が多くなるにつれて、研磨速度は向上する。砥粒の含有量が上記の範囲内にある場合、コストを抑えつつ、研磨速度を実用上特に好適なレベルにまで向上させることが容易となる。また、研磨後の研磨対象物の表面に表面欠陥が生じることをより抑えることができる。
 スラリーは、砥粒とその分散剤の他、必要に応じて潤滑油、有機溶剤、界面活性剤、増粘材などの他の成分を適宜含んでもよい。潤滑油は、合成油、鉱物油、植物性油脂又はそれらの組み合わせであってよい。有機溶剤は、炭化水素系溶剤の他、アルコール、エーテル、グリコール類やグリセリン等であってよい。界面活性剤は、いわゆるアニオン、カチオン、ノニオン、両性界面活性剤であってよい。増粘材は、合成系増粘材、セルロース系増粘材、又は天然系増粘材であってよい。
<端部の周面が軸方向で二段に形成されている研磨パッドについて>
 図7(a)に示す研磨パッド1Aは円板状であり、円板の軸方向で研磨面10側の部分(端部)11と、研磨面10とは反対側の部分(基部)12と、その間の部分(中間部)13に分けられる。端部11の周面111は研磨面10に向けて縮径するテーパ面である。中間部13の周面131は研磨面10に向けて縮径するテーパ面である。周面111と周面131とでなす角度βは周面111と研磨面10とでなす角度θより小さい。
 図7(b)に示す研磨パッド1Bは円板状であり、円板の軸方向で研磨面10側の部分(端部)11と、研磨面10とは反対側の部分(基部)12と、その間の部分(中間部)14に分けられる。端部11の周面111は研磨面10に向けて縮径するテーパ面である。中間部14の周面141は円弧面である。
 図7(c)に示す研磨パッド6Aは円板状であり、円板の軸方向で研磨面60側の部分(端部)61と、研磨面60とは反対側の部分(基部)62と、その間の部分(中間部)63に分けられる。端部61の周面611は円弧面である。中間部63の周面631は研磨面60に向けて縮径するテーパ面である。端部61と基部62との境界線(研磨面に平行な線)と、周面631とでなす角度γは鈍角である。
<第一および第二態様の研磨方法についての備考>
 例えば、研磨パッドの研磨面に溝が形成されている場合、溝の壁面と研磨面との角部が面取りされていてもよいし、円弧面に形成されていてもよい。また、研磨パッドの中央に軸方向に延びる穴が設けられている場合、穴の壁面と研磨面との角部が面取りされていてもよいし、円弧面に形成されていてもよい。
〔第一および第二態様の研磨方法で使用可能な研磨装置について〕
 第一および第二態様の研磨方法は使用する研磨パッドに特徴を有するものであり、この研磨パッドが装着可能であって、その研磨面を研磨面より大きな被研磨面に押し当てて研磨パッドを動かすことができる研磨装置であれば、どのような研磨装置でも使用することができる。図24に示す自動研磨装置400は、第一および第二態様の研磨方法で使用可能な研磨装置の一例である。
 図24に示す自動研磨装置400は、ロボットアーム420と、研磨パッド1と、研磨工具440と、押圧力検出部450と、コントローラ470を備える。ロボットアーム420は、土台部421と、複数の腕部422,423と、先端部424と、複数の関節425,426,427を有する。複数の関節425,426,427により、先端部424が複数方向に移動可能となっている。先端部424に、押圧力検出部450および研磨工具440がこの順に取り付けられている。自動研磨装置400は、研磨工具440の先端に研磨パッド1を取り付けて使用される。
 研磨工具440は、内蔵する駆動手段により、研磨パッド1の研磨面10に垂直な方向を回転軸として研磨パッド1を回転させる。研磨工具440の駆動手段は特に限定されないが、一般的にシングルアクション、ダブルアクション、ギアアクション等が用いられ、塗装部材の研磨ではダブルアクションが好まれる。コントローラ470は、ロボットアーム420の挙動と、研磨工具440による研磨パッド1の回転を制御する。
 押圧力検出部450は、被研磨面50に対する研磨パッド1の研磨面10の押圧力を検出する。コントローラ470は、押圧力検出部450による押圧力の検出結果に基づいて、例えば、研磨面10の被研磨面50に対する押し付け力を調整するか、被研磨面50に対する研磨面10の押圧力を一定にしたまま被研磨面50上を研磨パッド1が移動するように、ロボットアーム420を制御する。
 研磨を開始する際には、自動研磨装置400を駆動すると同時に、図示されない研磨スラリー供給機構から、被研磨面50に対して研磨スラリーを供給する。自動研磨装置400を駆動すると、コントローラ470の制御により、ロボットアーム420が研磨パッド1の研磨面10を被研磨面50に押し付け、研磨パッド1が回転する。
 第一および第二態様の研磨方法で使用可能な研磨装置の他の例としては、ハンドポリッシャが挙げられる。この場合には、第一および第二態様の研磨方法で使用する研磨パッドを、ハンドポリッシャの先端に取り付け、研磨作業者が手作業でハンドポリッシャを動かして被研磨面を研磨する。ハンドポリッシャの駆動手段は特に限定されないが、一般的にシングルアクション、ダブルアクション、ギアアクション等が用いられ、塗装部材の研磨ではダブルアクションが好まれる。
〔第三態様〕
 第三態様の研磨方法では、砥粒を含むスラリーを被研磨面に供給し、研磨面を被研磨面に押し当てて研磨パッドを動かすことにより、被研磨面を研磨する研磨方法において、C硬度が40以上80以下である研磨パッドを用いることで、被研磨面のうねりを取り除くことができる。
 前記硬さの研磨パッドの場合、研磨面に溝がないと、研磨面が押し当てられている被研磨面の外側にスラリーを供給する場合、研磨面の中央部までスラリーが行き渡るのに時間がかかり、スラリーの供給不足の状態で研磨パッドを動かす可能性がある。また、研磨面と被研磨面との間に異物が入った場合に、この異物が排出されにくい。なお、異物としては、外部から混入するもの以外に、研磨によって生じるもの(スラリー、被研磨面、および研磨パッドに起因するもの)が挙げられる。
 前記硬さの研磨パッドの場合、上記のような理由で、研磨面に溝がないと被研磨面に研磨傷が発生し易いと推定される。
 これに対して、研磨面に溝を設けることで、研磨面が押し当てられている被研磨面の外側にスラリーを供給する場合、この溝に沿ってスラリーが研磨面の中央部まで行き渡り易くなる。また、研磨面と被研磨面との間に異物が入った場合に、この異物が溝に沿って排出され易い。よって、被研磨面が塗膜等の比較的軟質な面であっても研磨傷の発生が防止できる。
 下記の第5および第6実施形態は第三態様の実施形態に相当する。
[第5実施形態]
 この実施形態の研磨方法では、図11に示すように、研磨面10に格子状の溝を有する研磨パッド1を用いる。
 研磨パッド1は、スエードタイプまたは不織布タイプの研磨パッドであって、厚さが0.5mm以上5.0mm以下である。研磨パッド1の硬さはC硬度で40以上80以下である。研磨パッド1は、例えば、スエードタイプまたは不織布タイプの研磨パッドを前記硬さで作製した後に、その研磨面に格子状の溝を形成することにより得られる。
 格子状の溝は、互いに直交する複数の第一溝103および第二溝104からなる。この溝の形成方法としては、例えば、溝となる部分の材料をエッチングや切削によって取り除く方法がある。切削によって取り除く方法としては、高速回転する円形の切刃を、研磨パッドの表面に押し当てながら移動する方法が挙げられる。
 この実施形態の研磨方法では、図12に示すように、砥粒を含むスラリー15を被研磨面50に供給し、研磨パッド1の研磨面を被研磨面50に押し当てて、研磨パッド1を回転することにより、被研磨面50を研磨する。図12のポリッシャー9は、研磨パッド1を取り付ける基部91と、基部91に固定された回転軸92と、回転軸92の回転機構などを収めた本体93を有する。スラリー15は、スラリー供給装置16から被研磨面50に向けて供給される。
 被研磨面50は、合成樹脂製の塗膜510の外面であり、塗膜510は金属製の車体などの物体520の表面に形成されている。
 この実施形態の研磨方法によれば、研磨面10が押し当てられている被研磨面50の外側に供給されたスラリー15が、格子状の溝に沿って研磨面10の中央部まで行き渡り易い。また、研磨面10と被研磨面50との間に異物が入った場合に、この異物が格子状の溝に沿って排出され易い。そのため、溝がない点だけが研磨パッド1と異なる研磨パッドを用いた方法と比較して、合成樹脂製の塗膜510の外面である被研磨面50に研磨傷が発生しにくい。
 また、C硬度が40以上80以下である研磨パッド1を用いているため、被研磨面50のうねりを取り除くことができる。
[第6実施形態]
 この実施形態の研磨方法では、図13に示す支持層付き研磨パッド3を用いる。
 支持層付き研磨パッド3は、第一実施形態の研磨パッド1と、研磨パッド1より軟らかい発泡ポリウレタン製の支持層2とからなる。支持層2は、研磨パッド1の研磨面10とは反対側の面17に、接着剤または両面テープで固定されている。支持層2の厚さは2.0mm以上50mm以下である。
 この実施形態の研磨方法では、図12に示すポリッシャー9に、研磨パッド1の代わりに支持層付き研磨パッド3を取りつけて、第一実施形態の研磨方法と同様にして、被研磨面50を研磨する。
 この実施形態の研磨方法によれば、研磨パッド1の機能により第一実施形態の研磨方法と同じ効果が得られる。これに加えて、軟質の支持層2が固定された二層構造の支持層付き研磨パッド3を使用するため、以下の効果も得られる。
 基部91から軟質の支持層2に付与された力が研磨パッド1に伝わって、研磨面10が被研磨面50に押し当てられる。被研磨面50が曲面の場合、軟質の支持層2は、その曲面に沿って容易に変形する。これに伴い、支持層2に固定された硬質の研磨パッド1も支持層2と同様に変形する。その結果、研磨面10が曲面状の被研磨面に追従する。
 よって、第6実施形態の研磨方法は、第5実施形態の研磨方法と比較して、曲面状の被研磨面のうねりを取り除く効果が高い。曲面状の被研磨面の例としては、自動車等の車体の塗膜面が挙げられる。
<第三態様の研磨方法で使用する研磨パッドの好ましい形態など>
 研磨面の溝の幅は0.5mm以上5.0mm以下であることが好ましい。このような範囲であれば、被研磨面に付着した異物等を排出しやすくなる。溝のピッチは3.0mm以上50mm以下であることが好ましい。このような範囲であれば、被研磨面のうねりを除去しやすい。溝の深さは、強度の観点から研磨パッドの厚みの90%以下であることが好ましい。
 研磨面の溝の平面形状としては、格子状以外に、例えば、縞状、放射状、同心円状が挙げられる。また、これらの形状を組み合わせた形状であってもよい。
 研磨パッドの厚さは0.5mm以上5.0mm以下であることが好ましい。このような範囲であれば、研磨パッドがうねりを除去し易く、支持層が固定された研磨パッドが支持層と同様に変形しやすい。
 研磨面の直径は10mm以上200mm以下であることが好ましい。このような範囲であれば、スラリーが研磨面の外縁部から中央部まで行き渡るまでにかかる時間が短くできるとともに、曲面状の被研磨面に研磨面が追従し易い。
 この発明の態様の研磨方法は、研磨面が被研磨面より小さい用途に好適である。
 被研磨面は、合成樹脂からなる面だけでなく、金属面、シリコンウェーハ面、ガラス面、サファイア面などであってもよい。
 使用する研磨パッドは、C硬度が40以上80以下のものであればよく、スエードタイプや不織布タイプ以外では、硬質ポリウレタンなどで製造されたものが挙げられる。使用する研磨パッドは、C硬度が50以上80以下のものであることが好ましい。
 支持層の材質としては、発泡ポリウレタン以外に、発泡ポリエチレン、発泡ゴム、発泡メラミン、発泡シリコーンなどが挙げられる。支持層の硬さは、F硬度(高分子計器株式会社製「アスカーゴム硬度計F型」で測定した硬度)で30以上90以下であることが好ましい。F硬度90はC硬度10未満である。
 アスカーゴム硬度計F型は、特に軟らかい試料の硬さ測定で適切な指示値が得られるよう、大きなインデンタと加圧面を持ったデュロメータであり、押針の形状は高さ2.54mm直径25.2mmの円筒形である。
<第三態様の研磨方法で使用する研磨パッドの製造方法の例示>
 スエードタイプ:例えば合成繊維と合成ゴム等からなる不織布や編織布、もしくはポリエステルフィルム等を基材にする。基材の上面に、ポリウレタン系溶液を塗布し、湿式凝固法によりポリウレタン系溶液を凝固することで、連続気孔を有する多孔層の表皮層を形成する。必要に応じてその表皮層の表面を研削、除去する。
 不織布タイプ:例えばポリエステル短繊維よりなるニードルパンチされた不織布に、ポリウレタンエラストマー溶液を含浸させる。この状態の不織布を、水に浸漬して湿式凝固した後、水洗、乾燥し、乾燥後に両表面を研削処理する。あるいは、例えばポリエステル短繊維よりなるニードルパンチされた不織布に、熱硬化性ウレタン樹脂溶液を含浸させる。この状態の不織布を乾燥することで、不織布に熱硬化性ウレタン樹脂を固着させた後、両表面をサンディング加工して、凹凸を除去する。
<第三態様の研磨方法で使用されるスラリー>
 この発明の第三態様の研磨方法で使用されるスラリーに含まれる砥粒としては、シリカ、アルミナ、セリア、チタニア、ジルコニア、酸化鉄及び酸化マンガン等のケイ素または金属元素の酸化物からなる粒子や、熱可塑性樹脂からなる有機粒子、又は有機無機複合粒子などから選ばれる砥粒が挙げられる。
 例えば、アルミナ粒子を含むアルミナスラリーを用いると、高研磨速度が可能になり、容易に入手が可能であるため好ましい。
 アルミナには、α-アルミナ、β-アルミナ、γ-アルミナ、θ-アルミナなどの結晶形態が異なるものがあり、また水和アルミナと呼ばれるアルミニウム化合物も存在する。研磨速度の観点からは、α-アルミナを主成分とする粒子を砥粒として含むスラリーを使用することがより好ましい。
 砥粒の平均粒子径は0.1μm以上10.0μm以下であることが好ましく、より好ましくは0.3μm以上5.0μm以下である。平均粒子径が大きくなるにつれて、研磨速度は向上する。平均粒子径が上記の範囲内にある場合、研磨速度を実用上特に好適なレベルにまで向上させることが容易となる。平均粒子径が小さくなるにつれて、砥粒の分散安定性は向上し、研磨面のスクラッチ発生が抑制される。
 平均粒子径が上記の範囲内にある場合、砥粒の分散安定性と、研磨面の表面精度を実用上特に好適なレベルにまで向上させることが容易となる。
 スラリー中の砥粒の含有量は、0.1質量%以上50質量%以下であることが好ましく、より好ましくは0.2質量%以上25質量%以下であり、さらに好ましくは0.5質量%以上20質量%以下である。砥粒の含有量が多くなるにつれて、研磨速度は向上する。砥粒の含有量が上記の範囲内にある場合、コストを抑えつつ、研磨速度を実用上特に好適なレベルにまで向上させることが容易となる。また、研磨後の研磨対象物の表面に表面欠陥が生じることをより抑えることができる。
 スラリーは、砥粒とその分散剤の他、必要に応じて潤滑油、有機溶剤、界面活性剤、増粘材などの他の成分を適宜含んでもよい。潤滑油は、合成油、鉱物油、植物性油脂又はそれらの組み合わせであってよい。有機溶剤は、炭化水素系溶剤の他、アルコール、エーテル、グリコール類やグリセリン等であってよい。界面活性剤は、いわゆるアニオン、カチオン、ノニオン、両性界面活性剤であってよい。増粘材は、合成系増粘材、セルロース系増粘材、又は天然系増粘材であってよい。
〔第三態様の研磨方法で使用可能な研磨装置について〕
 第三態様の研磨方法は使用する研磨パッドに特徴を有するものであり、この研磨パッドが装着可能であって、その研磨面を被研磨面に押し当てて研磨パッドを動かすことができる研磨装置であれば、どのような研磨装置でも使用することができる。例えば、上述した図12に示すポリッシャー9および図24に示す自動研磨装置400や、ハンドポリッシャが挙げられる。
〔第四態様〕
 第四態様の研磨パッドは、研磨スラリーによる研磨で使用される研磨パッドであって、表面の一部または全部に止水部が形成されていることを特徴とする。止水部とは、研磨スラリーが研磨パッドに入ることを妨げる部分である。止水部は、例えば、研磨スラリーを浸透させにくい材料(止水材料)で形成されているか、研磨スラリーを浸透させにくい構造の素材(止水素材)で形成されている。
 第四態様の研磨パッドは、研磨面の一部または全部が止水部となっている構成も含む。この場合には、止水部を、止水部の研磨面となる部分が研磨機能を発揮できるように構成する。
 研磨スラリーによる研磨の一例としては、研磨スラリーを被研磨面に供給し、研磨パッドの研磨面を被研磨面に押し当てた状態で移動する研磨方法が挙げられる。
 第四態様の研磨パッドによれば、表面の一部または全部に止水部が形成されていない研磨パッドと比較して、研磨パッドに研磨スラリーがしみ込みにくい。
 第四態様の研磨パッドには、下記の(22)~(28)の研磨パッドが含まれる。
(22)の研磨パッドは、第四態様の研磨パッドであって、研磨層と、研磨層の研磨面とは反対面に形成された支持層と、を有し、支持層が止水部である。(22)の研磨パッドによれば、支持層が止水部であるため、支持層が発泡ポリウレタンなどの連続気泡構造を有する多孔質材からなる研磨パッドと比較して、研磨中に研磨スラリーが研磨パッドの支持層にしみ込みにくい。
(23)の研磨パッドは、第四態様の研磨パッドであって、連続気泡構造の多孔質材からなる連続気泡層を有し、連続気泡層の研磨面以外の表面に止水部が形成されている。(23)の研磨パッドが単層である場合は研磨層が連続気泡層であり、(23)の研磨パッドが二層構造である場合は支持層が連続気泡層である。
(24)の研磨パッドは、(23)の研磨パッドであって、前記連続気泡層の側面に止水部が形成されている。
(25)の研磨パッドは、(23)の研磨パッドであって、研磨面と交差する方向に延びて前記連続気泡層を貫通する貫通穴を有し、貫通穴の壁面に止水部が形成されている。連続気泡層を貫通する貫通穴は、例えば、研磨パッドの研磨面とは反対側から研磨スラリーを被研磨面に供給する目的で形成されている。
(26)の研磨パッドは、(23)の研磨パッドであって、研磨層と、研磨層の研磨面とは反対面に形成された支持層と、を有し、支持層が前記連続気泡層である。
(27)の研磨パッドは、(26)の研磨パッドであって、研磨面と交差する方向に延びて研磨層を貫通する第一貫通穴と、研磨面と交差する方向に延びて、前記支持層を貫通し、第一貫通穴と連続する第二貫通穴と、を有し、第二貫通穴の壁面に止水部が形成されている。
(28)の研磨パッドは、(22)、(26)、または(27)の研磨パッドであって、研磨層は支持層より硬い材料で形成されている。
 下記の第7乃至第12実施形態は第四態様の実施形態に相当する。
[第7実施形態]
 図14に示すように、第7実施形態の研磨パッド1は円板状であり、非連続気泡構造の多孔質材である発泡ゴムで形成されている。研磨パッド1は、非連続気泡構造の多孔質材である発泡ゴムの板状物を、円板状に切り取ることで得られる。円板状に切り取る方法としては、円筒状の刃を有するトムソン型を用いて型抜きする方法が挙げられる。
 研磨パッド1の厚さは2.0mm以上50mm以下である。以下に示す方法で測定した研磨パッド1の吸水率は5%以下である。つまり、研磨パッド1は止水素材からなり、表面の全部に止水部が形成されている。
<吸水率の測定方法>
 先ず、50mm×50mm×厚さ10mmの板片状のサンプルを用意して、このサンプルの質量を測定する。次に、このサンプルが入る容器を用意し、この容器に純水を入れた後、全体が純水に浸漬するようにサンプルを沈めて、24時間静置する。次に、容器内からサンプルを取り出して、表面に付着した純水を乾いた布で軽く拭き取った後に、サンプルの質量を測定する。
 純水に浸漬させる前のサンプルの質量(W1:g)と、浸漬させて乾いた布による処理を行った後のサンプルの質量(W2:g)を、下記の(1) 式に代入して、吸水率(C)を算出する。
 吸水率(%)=((W2-W1)/25)×100…(1)式
 (1)式中の「25」はサンプルの体積(cm)であり、(1)式により、サンプルの1cm当たりの吸水量(g/cm)が「吸水率」として算出される。
 この実施形態の研磨パッド1は、研磨スラリーによる研磨方法で使用される。例えば、研磨パッド1を用いて、研磨面10より大きな被研磨面を研磨する。具体的には、研磨スラリーを被研磨面に供給し、研磨パッド1の研磨面10を被研磨面に押し当てて、研磨パッド1を円板の軸を中心に回転する。
 この研磨方法を、発泡ポリウレタン製の研磨パッドを用いて行った場合、スラリーが研磨パッドにしみ込み、このしみ込んだスラリーが外部に飛散する。飛散したスラリーは研磨に使用されない。これに対して、この実施形態の研磨パッド1を用いた場合には、止水素材からなる研磨パッド1にスラリーがしみ込みにくいため、スラリーが外部に飛散する量が減少する。よって、スラリーの利用効率が高くなる。
[第8実施形態]
 図15に示すように、第8実施形態の研磨パッド1Aは、研磨面10を有する円板状の研磨層20と、円板状の支持層30とからなる。支持層30は、研磨層20の研磨面10とは反対面21に接着剤または両面テープで固定されている。
 研磨層20は、スエードタイプまたは不織布タイプの研磨パッドである。支持層30は非連続気泡構造の発泡ゴムで形成されている。前述の方法で測定された支持層30の吸水率は5%以下である。つまり、支持層30は止水素材からなり、研磨パッド1Aの表面の一部に止水部が形成されている。
 研磨層20の厚さは0.5mm以上5.0mm以下である。支持層30の厚さは2.0mm以上50mm以下である。
 研磨パッド1Aは、例えば、以下の方法で得ることができる。
 スエードタイプまたは不織布タイプの研磨パッドを円板状に切り取ることで、研磨層20を得る。非連続気泡構造の多孔質材である発泡ゴムの板状物を円板状に切り取ることで、支持層30を得る。円板状に切り取る方法としては、円筒状の刃を有するトムソン型を用いて型抜きする方法が挙げられる。研磨層20の研磨面10とは反対面21に、支持層30を接着剤または両面テープで貼り付ける。
 この実施形態の研磨パッド1Aは研磨スラリーによる研磨方法で使用される。例えば、研磨パッド1Aを用いて、研磨面10より大きな被研磨面を研磨する。具体的には、研磨スラリーを被研磨面に供給し、研磨パッド1Aの研磨面10を被研磨面に押し当てて、研磨パッド1を円板の軸を中心に回転する。
 この研磨方法を、研磨パッド1Aの支持層30を発泡ポリウレタン製の支持層に代えた研磨パッドを用いて行った場合、スラリーが研磨パッドの支持層にしみ込み、このしみ込んだスラリーが外部に飛散する。飛散したスラリーは研磨に使用されない。これに対して、この実施形態の研磨パッド1Aを用いた場合には、止水素材からなる支持層30にスラリーがしみ込みにくいため、スラリーが外部に飛散する量が減少する。よって、スラリーの利用効率が高くなる。
[第9実施形態]
 図16に示すように、第9実施形態の研磨パッド1Bは、円板状の本体部4と、その外周面に形成された止水部5とからなる。本体部4は、発泡ポリウレタン(連続気泡構造の多孔質材)製である。止水部5は、発泡ゴム(非連続気泡構造の多孔質材)製である。前述の方法で測定された止水部5の吸水率は5%以下である。つまり、本体部4が連続気泡層であり、連続気泡層の研磨面10以外の表面の一部に止水部5が形成されている。
 研磨パッド1Bの厚さ、つまり、本体部4の厚さおよび止水部5の軸方向寸法は、2.0mm以上50mm以下である。
 研磨パッド1Bは、例えば、以下の方法で得ることができる。
 本体部4は、円筒状の刃を有するトムソン型を用いて、発泡ポリウレタンの板状物から円板状に型抜きする方法で得る。止水部5は、直径が異なる二つの円筒状の刃を有するトムソン型を用いて、発泡ゴムの板状物から円環状に型抜きする方法で得る。外周面に接着剤を付けた本体部4を止水部5の内周面に嵌めて、接着剤を硬化させる。
 この実施形態の研磨パッド1Bは研磨スラリーによる研磨方法で使用される。例えば、研磨パッド1Bを用いて、研磨面10より大きな被研磨面を研磨する。具体的には、研磨スラリーを被研磨面に供給し、研磨パッド1Bの研磨面10を被研磨面に押し当てて、研磨パッド1Bを円板の軸を中心に回転する。
 この研磨方法を、止水部5のない発泡ポリウレタン製の研磨パッドを用いて行った場合、研磨パッドの外側に存在するスラリーが研磨パッドの外周部から研磨パッドにしみ込み、このしみ込んだスラリーが外部に飛散する。飛散したスラリーは研磨に使用されない。これに対して、この実施形態の研磨パッド1Bを用いた場合には、外周面に止水部5が形成されていることで、発泡ポリウレタン製の本体部4に外周部からスラリーがしみ込みにくいため、スラリーが外部に飛散する量が減少する。よって、スラリーの利用効率が高くなる。
[第10実施形態]
 図17に示すように、第10実施形態の研磨パッド1Cは、円板状の研磨層20と、円板状の支持層7と、支持層7の外周面に形成された止水部5と、からなる。
 研磨層20は、スエードタイプまたは不織布タイプの研磨パッドである。支持層7は、発泡ポリウレタン(連続気泡構造の多孔質材)製である。止水部5は、発泡ゴム(非連続気泡構造の多孔質材)製である。前述の方法で測定された止水部5の吸水率は5%以下である。つまり、支持層7が連続気泡層であり、連続気泡層の研磨面10以外の表面の一部に止水部5が形成されている。
 研磨層20の厚さは0.5mm以上5.0mm以下である。支持層7の厚さは2.0mm以上50mm以下である。止水部5の軸方向寸法は支持層7の厚さと同じである。
 研磨パッド1Cは、例えば、以下の方法で得ることができる。
 研磨層20は、スエードタイプまたは不織布タイプの研磨パッドを円板状に切り取ることで得る。支持層7は、円筒状の刃を有するトムソン型を用いて、発泡ポリウレタンの板状物から円板状に型抜きする方法で得る。止水部5は、直径が異なる二つの円筒状の刃を有するトムソン型を用いて、発泡ゴムの板状物から円環状に型抜きする方法で得る。
 得られた研磨層20と支持層7と止水部5を用い、先ず、外周面に接着剤を付けた支持層7を止水部5の内周面に嵌めて一体化する。次に、この一体化されたものを、研磨層20の研磨面10とは反対面21に接着剤または両面テープで貼り付ける。
 この実施形態の研磨パッド1Cは研磨スラリーによる研磨方法で使用される。例えば、研磨パッド1Cを用いて、研磨面10より大きな被研磨面を研磨する。具体的には、研磨スラリーを被研磨面に供給し、研磨パッド1Cの研磨面10を被研磨面に押し当てて、研磨パッド1Cを円板の軸を中心に回転する。
 この研磨方法を、発泡ポリウレタン製の支持層7のみが研磨層20の研磨面とは反対面21に形成されている研磨パッドを用いて行った場合、スラリーが研磨パッドの支持層にしみ込み、このしみ込んだスラリーが外部に飛散する。飛散したスラリーは研磨に使用されない。これに対して、この実施形態の研磨パッド1Cを用いた場合には、発泡ポリウレタン製の支持層7の外周面に止水部5が形成されていることで、支持層7に外周部からスラリーがしみ込みにくいため、スラリーが外部に飛散する量が減少する。よって、スラリーの利用効率が高くなる。
[第11実施形態]
 図18に示すように、第11実施形態の研磨パッド1Dは、円板状で中心穴41を有する本体部4と、中心穴41の壁面に形成された円環状の止水部51とからなる。本体部4は、発泡ポリウレタン(連続気泡構造の多孔質材)製である。中心穴41は、研磨面10に対して垂直に延びる貫通穴である。止水部51は、発泡ゴム(非連続気泡構造の多孔質材)製である。前述の方法で測定された止水部5の吸水率は5%以下である。
 止水部51の中心穴51aは、研磨面10に対して垂直に延びる貫通穴である。止水部51の中心穴51aが研磨パッド1Dの中心穴として存在する。つまり、本体部4が連続気泡層であり、連続気泡層の研磨面10以外の表面の一部に止水部51が形成されている。また、中心穴41が、連続気泡層を貫通する貫通穴である。
 研磨パッド1Dの厚さ、つまり、本体部4の厚さおよび止水部51の軸方向寸法は、2.0mm以上50mm以下である。
 研磨パッド1Dは、例えば、以下の方法で得ることができる。
 本体部4は、直径が異なる二つの円筒状の刃を有するトムソン型を用いて、発泡ポリウレタンの板状物から、中心穴41を有する円板状に型抜きする方法で得る。止水部51は、直径が異なる二つの円筒状の刃を有するトムソン型を用いて、発泡ゴムの板状物から円環状に型抜きする方法で得る。外周面に接着剤を付けた止水部51を本体部4の中心穴41に嵌めて、接着剤を硬化させる。
 この実施形態の研磨パッド1Dは研磨スラリーによる研磨方法で使用される。例えば、研磨パッド1Dを用いて、研磨面10より大きな被研磨面を研磨する。具体的には、被研磨面の上側に研磨パッド1Dを配置し、中心穴51aから研磨スラリーを被研磨面に滴下しながら、研磨パッド1Dの研磨面10を被研磨面に押し当てて、研磨パッド1Dを円板の軸を中心に回転する。
 この研磨方法を、止水部51がなく、中心穴を有する発泡ポリウレタン製の研磨パッドを用いて行った場合、スラリーが研磨パッドにしみ込み、このしみ込んだスラリーが強い遠心力により外部に飛散するため、多くのスラリーが研磨に使用されない。これに対して、この実施形態の研磨パッド1Dを用いた場合には、中心穴41の壁面に止水部51が形成されていることで、発泡ウレタン製の本体部4にスラリーがしみ込みにくいため、スラリーが外部に飛散する量が減少する。よって、スラリーの利用効率が高くなる。
[第12実施形態]
 図19に示すように、第12実施形態の研磨パッド1Eは、円板状で中心穴(第一貫通穴)22を有する研磨層20と、円板状で中心穴(第二貫通穴)71を有する支持層7と、中心穴71の壁面に形成された円環状の止水部51と、からなる。研磨層20の中心穴22の中心と支持層7の中心穴71の中心は同じである。止水部51の中心穴51aおよび研磨層20の中心穴22は同じであり、これらの穴が研磨パッド1Eの中心穴として存在する。
 研磨層20は、スエードタイプまたは不織布タイプの研磨パッドである。支持層7は、発泡ポリウレタン(連続気泡構造の多孔質材)製である。止水部51は、発泡ゴム(非連続気泡構造の多孔質材)製である。前述の方法で測定された止水部5の吸水率は5%以下である。つまり、支持層7が連続気泡層であり、連続気泡層の研磨面10以外の表面の一部に止水部51が形成されている。
 研磨層20の厚さは0.5mm以上5.0mm以下である。支持層7の厚さは2.0mm以上50mm以下である。止水部51の軸方向寸法は支持層7の厚さと同じである。
 研磨パッド1Eは、例えば、以下の方法で得ることができる。
 研磨層20は、スエードタイプまたは不織布タイプの研磨パッドを、直径が異なる二つの円筒状の刃を有するトムソン型を用いて、中心穴22を有する円板状に型抜きする方法で得る。支持層7は、直径が異なる二つの円筒状の刃を有するトムソン型を用いて、発泡ポリウレタンの板状物から、中心穴71を有する円板状に型抜きする方法で得る。止水部51は、直径が異なる二つの円筒状の刃を有するトムソン型を用いて、発泡ゴムの板状物から円環状に型抜きする方法で得る。
 得られた研磨層20と支持層7と止水部51を用い、先ず、外周面に接着剤を付けた止水部51を、支持層7の中心穴71に嵌めて一体化する。次に、この一体化されたものを、研磨層20の研磨面10とは反対面21に接着剤または両面テープで貼り付ける。
 この実施形態の研磨パッド1Eは研磨スラリーによる研磨方法で使用される。例えば、研磨パッド1Eを用いて、研磨面10より大きな被研磨面を研磨する。具体的には、被研磨面の上側に研磨パッド1Eを配置し、止水部51の中心穴51aから研磨層20の中心穴22を介して研磨スラリーを被研磨面に滴下しながら、研磨パッド1Eの研磨面10を被研磨面に押し当てて、研磨パッド1Eを円板の軸を中心に回転する。
 この研磨方法を、止水部51がなく、研磨層20の中心穴22と同じ位置に中心穴を有する発泡ポリウレタン製の支持層が、研磨層20の研磨面とは反対面21に形成されている研磨パッドを用いて行った場合、スラリーが研磨パッドの支持層にしみ込む。しみ込んだスラリーが強い遠心力により外部に飛散するため、多くのスラリーが研磨に使用されない。これに対して、この実施形態の研磨パッド1Eを用いた場合には、中心穴71の壁面に止水部51が形成されていることで、発泡ウレタン製の支持層7にスラリーがしみ込みにくいため、スラリーが外部に飛散する量が減少する。よって、スラリーの利用効率が高くなる。
<止水部について>
 止水部は、前述の方法で測定された吸水率が5%以下であることが好ましい。また、研磨パッドが単層で、連続気泡構造の多孔質材からなる連続気泡層である場合、止水部は連続気泡層と同じか類似の硬さであることが好ましい。よって、この場合、止水部は非連続気泡構造の多孔質材からなることが好ましい。
 また、研磨パッドが研磨層と支持層とからなる二層構造で、支持層が連続気泡構造の多孔質材からなる連続気泡層である場合、止水部は支持層と同じか類似の硬さであることが好ましい。よって、この場合、止水部は非連続気泡構造の多孔質材からなることが好ましい。また、この場合、研磨層の一部が連続気泡層であっても、研磨層の連続気泡層の厚さは支持層の厚さと比較して極薄いため、研磨層に止水部を設ける必要はない。
 単層の場合の研磨パッドおよび二層構造の場合の支持層を構成する連続気泡構造の多孔質材としては、発泡ポリウレタンまたは発泡ポリエチレンを用いることが好ましい。
 止水部を構成する非連続気泡構造の多孔質材としては、発泡ゴム(クロロプレンゴムフォーム、エチレン・プロピレンゴムフォーム、シリコーンゴムフォーム、フッ素ゴムフォーム、ポリウレタンフォーム、ポリエチレンフォーム等)が挙げられる。これらのうち、クロロプレンゴムフォームおよびエチレン・プロピレンゴムフォームは、非連続気泡構造が得られやすいため好ましい。
 止水部の形成方法としては、上述の実施形態に記載された方法以外に以下の方法が挙げられる。止水材料を含む液体を塗布して乾燥させる方法、連続気泡層に接着剤などを含浸させて硬化することで連続気泡層の穴を塞ぐ方法、止水材料からなるテープを貼り付ける方法などである。
<支持層について>
 研磨パッドが研磨層と支持層とからなる二層構造の場合、つまり、研磨層の研磨面とは反対面に支持層が形成されている場合、研磨層は支持層より硬い材料からなることが好ましい。つまり、支持層は研磨層より軟質であることが好ましく、これにより、被研磨面が曲面の場合に、研磨層の研磨面が被研磨面に追従し易くなる。
 研磨パッドが、研磨層と支持層を有する場合、研磨層の硬さはC硬度で40以上80以下であり、支持層の硬さは、F硬度で30以上90以下であることが好ましい。F硬度90はC硬度10未満である。
 C硬度とは、JIS K7312:1996の付属書2「スプリング硬さ試験タイプC試験方法」で規定された試験方法による加圧面が密着した直後の硬さである。この試験方法では、スプリング硬さ試験機として、試験片の表面に試験機の加圧面を密着させたとき、加圧面の中心の孔からばね圧力で突き出ている押針が試験片によって押し戻される距離を、硬さとして目盛に示す構造のものを用いる。試験片の測定面は、少なくとも試験機の加圧面以上の大きさのものとする。
 F硬度とは、高分子計器株式会社製「アスカーゴム硬度計F型」で測定された硬度である。アスカーゴム硬度計F型は、特に軟らかい試料の硬さ測定で適切な指示値が得られるよう、大きなインデンタと加圧面を持ったデュロメータであり、押針の形状は高さ2.54mm直径25.2mmの円筒形である。
<第四態様の研磨パッドの好ましい形態など>
 研磨パッドが研磨層と支持層とからなる二層構造の場合、つまり、研磨層の研磨面とは反対面に支持層が形成されている場合、研磨層の厚さは0.5mm以上5.0mm以下であることが好ましい。このような範囲であれば、研磨層がうねりを除去し易く、研磨層が支持層と同様に変形しやすい。
 研磨面の直径は10mm以上200mm以下であることが好ましい。このような範囲であれば、スラリーが研磨面の外縁部から中央部まで行き渡るまでにかかる時間が短くできるとともに、曲面状の被研磨面に研磨面が追従し易い。
 被研磨面は、合成樹脂からなる面だけでなく、金属面、シリコンウェーハ面、ガラス面、サファイア面などであってもよい。
<第四態様の研磨パッドの研磨層の製造方法の例示>
 スエードタイプ:例えば合成繊維と合成ゴム等からなる不織布や編織布、もしくはポリエステルフィルム等を基材にする。基材の上面に、ポリウレタン系溶液を塗布し、湿式凝固法によりポリウレタン系溶液を凝固することで、連続気孔を有する多孔層の表皮層を形成する。必要に応じてその表皮層の表面を研削、除去する。
 不織布タイプ:例えばポリエステル短繊維よりなるニードルパンチされた不織布に、ポリウレタンエラストマー溶液を含浸させる。この状態の不織布を、水に浸漬して湿式凝固した後、水洗、乾燥し、乾燥後に両表面を研削処理する。あるいは、例えばポリエステル短繊維よりなるニードルパンチされた不織布に、熱硬化性ウレタン樹脂溶液を含浸させる。この状態の不織布を乾燥することで、不織布に熱硬化性ウレタン樹脂を固着させた後、両表面をサンディング加工して、凹凸を除去する。
<第四態様の研磨パッドを用いた研磨方法>
 この発明の研磨パッドは、研磨スラリーによる研磨方法であって、研磨面より大きな被研磨面を研磨する方法で使用されることが好ましい。また、研磨パッドの研磨面を被研磨面に押し当てて、研磨パッドを移動する研磨方法で使用されることが好ましい。なお、研磨スラリーによる研磨方法であれば、これら以外の方法で使用されてもよい。
 この発明の研磨パッドが研磨面と交差する方向に延びる貫通穴を有する場合、被研磨面の上側に研磨パッドを配置し、この貫通穴から研磨スラリーを被研磨面に滴下しながら、研磨パッドの研磨面を被研磨面に押し当てて、研磨パッドを回転する研磨方法を採用することができる。この研磨方法では、貫通穴から連続気泡層にしみ込んだ研磨スラリーが、研磨パッド回転時の強い遠心力で研磨パッドの外部に飛散し易い。そのため、この発明の止水部を有する研磨パッドを用いることで、スラリーの利用効率を効果的に上げることができる。
 また、研磨スラリーの被研磨面への供給方法としては、上述の貫通穴を介して滴下する方法、研磨パッドの外側に滴下する方法、スラリーを噴霧する方法などが挙げられる。
<第四態様の研磨パッドを用いた研磨方法で使用する研磨スラリー>
 研磨スラリーによる研磨方法では、砥粒を含むスラリーを使用する。スラリーに含まれる砥粒としては、シリカ、アルミナ、セリア、チタニア、ジルコニア、酸化鉄及び酸化マンガン等のケイ素または金属元素の酸化物からなる粒子や、熱可塑性樹脂からなる有機粒子、又は有機無機複合粒子などから選ばれる砥粒が挙げられる。
 例えば、アルミナ粒子を含むアルミナスラリーを用いると、高研磨速度が可能になり、容易に入手が可能であるため好ましい。
 アルミナには、α-アルミナ、β-アルミナ、γ-アルミナ、θ-アルミナなどの結晶形態が異なるものがあり、また水和アルミナと呼ばれるアルミニウム化合物も存在する。研磨速度の観点からは、α-アルミナを主成分とする粒子を砥粒として含むスラリーを使用することがより好ましい。
 砥粒の平均粒子径は0.1μm以上10.0μm以下であることが好ましく、より好ましくは0.3μm以上5.0μm以下である。平均粒子径が大きくなるにつれて、研磨速度は向上する。平均粒子径が上記の範囲内にある場合、研磨速度を実用上特に好適なレベルにまで向上させることが容易となる。平均粒子径が小さくなるにつれて、砥粒の分散安定性は向上し、研磨面のスクラッチ(傷)発生が抑制される。
 平均粒子径が上記の範囲内にある場合、砥粒の分散安定性と、研磨面の表面精度を実用上特に好適なレベルにまで向上させることが容易となる。
 スラリー中の砥粒の含有量は、0.1質量%以上50質量%以下であることが好ましく、より好ましくは0.2質量%以上25質量%以下であり、さらに好ましくは0.5質量%以上20質量%以下である。砥粒の含有量が多くなるにつれて、研磨速度は向上する。砥粒の含有量が上記の範囲内にある場合、コストを抑えつつ、研磨速度を実用上特に好適なレベルにまで向上させることが容易となる。また、研磨後の研磨対象物の表面に表面欠陥が生じることをより抑えることができる。
 スラリーは、砥粒とその分散剤の他、必要に応じて潤滑油、有機溶剤、界面活性剤、増粘材などの他の成分を適宜含んでもよい。潤滑油は、合成油、鉱物油、植物性油脂又はそれらの組み合わせであってよい。有機溶剤は、炭化水素系溶剤の他、アルコール、エーテル、グリコール類やグリセリン等であってよい。界面活性剤は、いわゆるアニオン、カチオン、ノニオン、両性界面活性剤であってよい。増粘材は、合成系増粘材、セルロース系増粘材、又は天然系増粘材であってよい。
〔第四態様の研磨パットを用いた研磨方法で使用可能な研磨装置について〕
 第四態様の研磨パッドは、スラリーによる研磨で使用される研磨パッドであるため、この研磨パッドが装着可能であって、その研磨面を被研磨面に押し当てて研磨パッドを動かすことができる研磨装置であれば、どのような研磨装置でも使用することができる。例えば、上述した図12に示すポリッシャー9および図24に示す自動研磨装置400や、ハンドポリッシャが挙げられる。
 実施例1では、第一態様および第二態様の研磨方法の実施例および比較例について説明する。
 以下に示すサンプルNo.1~No.7の各研磨パッドを用意した。
 サンプルNo.1の研磨パッドは、図6に示す支持層付き研磨パッド8であって、研磨パッド6は、直径が90mmで厚さが1.3mmの円板状であり、スエードタイプでC硬度が50である。研磨パッド6は端部61と基部62とに分けられる。端部61の周面611は円弧面になっている。研磨パッド6の研磨面とは反対側の面621に支持層7が接着されている。支持層7は、直径が90mmで厚さが10mmの円板体で、発泡ウレタン製でF硬度が70である。
 図8に示すように、端部61の軸方向寸法T61は0.3mmであり、基部62の軸方向寸法T62は1.0mmである。周面611をなす円弧は、端部61の軸方向寸法T61を半径とした円の四分の一円弧である。つまり、周面611をなす円弧の中心Cは、基部62の周面からの距離HがT61と同じになる点である。また、研磨パッド6の直径に沿った断面において、端部61と基部62の境界点と、研磨面60と周面611との境界点と、を結ぶ直線をLとしたとき、直線Lと研磨面60とでなす角度αは135°である。
 サンプルNo.2~No.6の研磨パッドは、図3に示す支持層付き研磨パッド3であって、研磨パッド1は、直径が90mmで厚さが1.3mmの円板状であり、スエードタイプでC硬度が50である。研磨パッド1は端部11と基部12とに分けられる。端部11の周面111は、研磨面10に向けて縮径するテーパ面であり、周面111と研磨面10とでなす角度θが鈍角である。研磨パッド1の研磨面とは反対側の面121に支持層2が接着されている。支持層2は、直径が90mmで厚さが10mmの円板体で、発泡ウレタン製でF硬度が70である。
 図9に示すように、端部11の軸方向寸法T11は0.3mmであり、基部12の軸方向寸法T12は1.3mmである。また、No.2ではθ=150°であり、No.3ではθ=135°(図9のθは135°であるため、θ3と括弧書きで表示)であり、No.4ではθ=125°であり、No.5ではθ=120°であり、No.6ではθ=105°(図9のθ6)である。角度θの違いにより、研磨面10の外径が変化する。
 サンプルNo.7の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、スエードタイプでC硬度が50である。研磨パッドの研磨面とは反対側の面に支持層が接着されている。支持層は、直径が90mmで厚さが10mmの円板体で、発泡ウレタン製でF硬度が70である。この研磨パッドでは、研磨面側の周面と研磨面とでなす角部が90°である。
 各サンプルの研磨パッドを用い、以下の方法で研磨試験を行った。
 研磨対象物は、合成樹脂塗料で塗装された300×250mmの金属板であり、塗膜の厚さは20μmである。つまり、被研磨面は合成樹脂からなる塗膜面であり、被研磨面は研磨面より大きい。
 使用した研磨装置は、ファナック(株)製の産業用ロボット「M-20i」のアームの先端に、ダブルアクションポリッシャを取り付けた装置である。曲率半径が50mmの凹曲面の研磨を想定し、被研磨面である塗膜面と研磨面との角度が30°となるように研磨パッドを配置した。また、アームに付与された押し付け力で各サンプルの研磨パッドを被研磨面に押し付けながら、平均粒径が0.4μmである砥粒を含むスラリーを、被研磨面の研磨パッドの外側に供給しながら、ポリッシャを回転することで研磨を行った。研磨条件は、全てのサンプルについて同じにした。
 この研磨を、各サンプルで2セット行なった後に、研磨後の被研磨面を目視で観察し、面積100mm2に含まれる傷の本数を算出した。面積100mm2に含まれる傷の本数は少ないほど好ましく、10本以上であると問題があると判断される。
 各サンプルの研磨パッドの構成と、評価の結果を表1に示す。評価の結果は、2セットの平均値を示している。また、No.2~No.7の結果を、図10に、端部の周面と研磨面とでなす角度θと傷の本数(平均値)との関係を示すグラフで示す。
Figure JPOXMLDOC01-appb-T000001
 この結果から以下のことが言える。
 この発明の実施例に相当するNo.1~No.4の研磨パッドを用いた研磨方法は、比較例に相当するNo.5~No.7の研磨パッドを用いた研磨方法と比較して、塗膜からなる凹曲面を研磨した場合の研磨傷の発生が効果的に抑制される。
 また、端部の周面が研磨面に向けて縮径するテーパ面であり、周面と研磨面とでなす角度θが鈍角であるNo.2~No.6の研磨パッドのうち、θが125°以上のものを用いた研磨方法を採用することで、θが120°以下のものを用いた研磨方法よりも、塗膜からなる凹曲面を研磨した場合の研磨傷の発生を抑制できる効果が著しく大きい。
 実施例2では、第三態様の研磨方法の実施例および比較例について説明する。
 以下に示すサンプルNo.11~No.19の各研磨パッドを用意した。
 サンプルNo.11の研磨パッドは、直径が90mmで厚さが10mmの円板状であり、発泡ウレタン製でF硬度が70である。研磨面に溝は形成されていない。
 サンプルNo.12の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、スエードタイプでC硬度が30である。研磨面に溝は形成されていない。研磨パッドの研磨面とは反対側の面に支持層が接着されている。支持層は、直径が90mmで厚さが10mmの円板体で、発泡ウレタン製でF硬度が70である。
 サンプルNo.13の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、スエードタイプでC硬度が30である。研磨面に格子状の溝が形成されている。溝の形成方法は、溝無しのスエードタイプの研磨パッドから、溝となる部分の材料を切削によって取り除く方法である(以下、「切削法」と称する。)。溝幅は1mmであり、溝ピッチは6mmであり、溝深さは約400μmである。研磨パッドの研磨面とは反対側の面に、サンプルNo.2と同じ支持層が接着されている。
 サンプルNo.14の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、スエードタイプでC硬度が50である。研磨面に溝は形成されていない。研磨パッドの研磨面とは反対側の面に支持層が接着されている。支持層は、直径が90mmで厚さが10mmの円板体で、発泡ウレタン製でF硬度が70である。
 サンプルNo.15の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、スエードタイプでC硬度が50である。研磨面に格子状の溝が切削法で形成されている。溝幅は1mmであり、溝ピッチは6mmであり、溝深さは約400μmである。研磨パッドの研磨面とは反対側の面に、サンプルNo.2と同じ支持層が接着されている。
 サンプルNo.16の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、不織布タイプでC硬度が80である。研磨面に溝は形成されていない。研磨パッドの研磨面とは反対側の面に、サンプルNo.2と同じ支持層が接着されている。
 サンプルNo.17の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、不織布タイプでC硬度が80である。研磨面に格子状の溝が切削法で形成されている。溝幅は1mmであり、溝ピッチは6mmであり、溝深さは約400μmである。研磨パッドの研磨面とは反対側の面に、サンプルNo.2と同じ支持層が接着されている。
 サンプルNo.18の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、不織布タイプでC硬度が90である。研磨面に溝は形成されていない。研磨パッドの研磨面とは反対側の面に、サンプルNo.2と同じ支持層が接着されている。
 サンプルNo.19の研磨パッドは、直径が90mmで厚さが1.3mmの円板状であり、不織布タイプでC硬度が90である。研磨面に格子状の溝が切削法で形成されている。溝幅は1mmであり、溝ピッチは6mmであり、溝深さは約400μmである。研磨パッドの研磨面とは反対側の面に、サンプルNo.2と同じ支持層が接着されている。
 各サンプルの研磨パッドを用い、以下の方法で研磨試験を行った。
 研磨対象物は、合成樹脂塗料で塗装された300×250mmの金属板であり、塗膜の厚さは20μmである。つまり、被研磨面は合成樹脂からなる塗膜面であり、研磨面は被研磨面より小さい。
 使用した研磨装置は、ファナック(株)製の産業用ロボット「M-20i」のアームの先端に、ダブルアクションポリッシャを取り付けた装置である。アームに付与された押し付け力で各サンプルの研磨パッドを被研磨面に押し付けながら、スラリーを被研磨面の研磨パッドの外側に供給しながら、ポリッシャを回転することで研磨を行った。研磨条件は、全てのサンプルについて同じにした。
 使用したスラリーは、平均粒径が0.4μmであるアルミナ砥粒を含む。使用したスラリーの粘度は25℃で0.11Pa・s(1.1cP)である。砥粒の平均粒径は、(株)堀場製作所製の粒子径分布測定装置「Horiba L-950」を用いて測定した。
 この研磨を、各サンプルで2セット行なった後に、被研磨面のうねり除去性と耐スクラッチ性について評価した。
 うねり除去性の評価には、(株)東京精密製の接触式表面粗さ測定器「SURFCOM 1500DX」を使用した。被研磨面である塗膜面の「ろ波中心うねり」を測定して、算術平均うねり(Wa)を得た。研磨前の算出平均うねり(Wa)の値は約0.1μmであった。研磨後の被研磨面のWaが0.03μm以下であると、うねりが特に小さい良好な面であると判断される。0.03μmを超え0.06μm未満であると、うねりが小さく問題ない範囲であると判断される。0.06μm以上であると、うねりが大きくて問題があると判断される。
 耐スクラッチ性(被研磨面に傷が生じにくいこと)は、研磨後の被研磨面を目視で観察し、面積100mm2に含まれる傷の本数で評価した。面積100mm2に含まれる傷の本数は少ないほど好ましく、10本以上であると問題があると判断される。
 各サンプルの研磨パッドの構成と、評価の結果を表2に示す。評価の結果は、2セットの平均値を示している。
Figure JPOXMLDOC01-appb-T000002
 この結果から以下のことが分かる。
 C硬度が50以上90以下であるNo.14~No.19の研磨パッドを用いることで、被研磨面のうねりを効果的に取り除くことができる。
 硬度が同じ研磨パッドを用いた方法(No.12とNo.13、No.14とNo.15、No.16とNo.17、No.18とNo.19)を比較すると、研磨面に溝を有する研磨パッドを用いることで、溝を有さない研磨パッドを用いた場合よりも、耐スクラッチ性が改善される。
 研磨面に同じ溝を有し硬度が異なる研磨パッドを用いた方法(No.13、No.15、No.17、およびNo.19)を比較すると、使用する研磨パッドが軟らかいほど耐スクラッチ性に優れている。
 研磨面に溝を有さず硬度が異なる研磨パッドを用いた方法(No.12、No.14、No.16、およびNo.18)を比較すると、使用する研磨パッドが軟らかいほど耐スクラッチ性に優れている。
 C硬度が50以上80以下であり、研磨面に溝を有するNo.15とNo.17の研磨パッドを用いることで、被研磨面が合成樹脂からなる塗膜面の場合に、被研磨面のうねりが効果的に除去され、研磨傷の発生も低減できる。
 なお、No.12~No.19の各研磨パッドで支持層が接着されていないものを使用して同じ試験を行ったところ、Waと傷の評価は表2のNo.12~No.19と同じ結果が得られた。また、支持層が接着されている研磨パッドは、支持層が接着されていない研磨パッドよりも、曲面への追従性が高かった。
 実施例3では、第四態様の研磨パッドの実施例および比較例について説明する。
 以下に示すサンプルNo.21~No.30の各研磨パッドを用意した。
[サンプルNo.21]
 サンプルNo.21の研磨パッドは、図14に示す第7実施形態の研磨パッド1に対応し、直径が90mmで厚さが10mmの円板状である。前述の方法で測定した吸水率が5%以下のクロロプレンゴムフォーム製板状物から、トムソン型を用いて型抜きされたものである。つまり、研磨パッドの全体が止水素材で形成されている。
[サンプルNo.22]
 サンプルNo.22の研磨パッドは、図15に示す第8実施形態の研磨パッド1Aに対応し、研磨層20と支持層30とからなる。
 研磨層20は、不織布タイプの研磨パッドであり、直径が90mmで厚さが1.3mmの円板状である。支持層30は、研磨層20の研磨面10とは反対面21に固定されている。支持層30は、直径が90mmで厚さが10mmの円板状である。
 支持層30は、前述の方法で測定した吸水率が5%以下のクロロプレンゴムフォーム製板状物から、トムソン型を用いて型抜きされたものである。つまり、支持層30の全体が止水素材で形成されている。
[サンプルNo.23]
 サンプルNo.23の研磨パッドは、図16に示す第9実施形態の研磨パッド1Bに対応し、本体部4と、本体部4の外周面に固定された止水部5とからなる。つまり、研磨パッドの外周部に止水部5が形成されている。
 本体部4は、発泡ポリウレタン製で直径が80mmで厚さが10mmの円板状である。止水部5は、内径が80mmで、外径が90mmで、軸方向寸法が10mmの円環状である。止水部5は、前述の方法で測定した吸水率が5%以下のクロロプレンゴムフォーム製板状物から、トムソン型を用いて型抜きされたものである。
[サンプルNo.24]
 サンプルNo.24の研磨パッドは、図17に示す第10実施形態の研磨パッド1Cに対応し、研磨層20と支持層7と止水部5からなる。
 研磨層20は、不織布タイプの研磨パッドであり、直径が90mmで厚さが1.3mmの円板状である。支持層7は、発泡ポリウレタン製で直径が80mmで厚さが10mmの円板状である。止水部5は、内径が80mmで、外径が90mmで、軸方向寸法が10mmの円環状である。止水部5は、前述の方法で測定した吸水率が5%以下のクロロプレンゴムフォーム製板状物から、トムソン型を用いて型抜きされたものである。
 止水部5の内周面に支持層7が固定されている。つまり、支持層7の外周部に止水部5が形成されている。支持層7と止水部5は、研磨層20の研磨面10とは反対面21に固定されている。
[サンプルNo.25]
 サンプルNo.25の研磨パッドは、図18に示す第11実施形態の研磨パッド1Dに対応し、中心穴41を有する本体部4と、中心穴41の壁面に形成された止水部51とからなる。
 本体部4は、発泡ポリウレタン製で、直径が90mmで、中心穴が20mmで、厚さが10mmである。止水部51は、内径(中心穴51aの直径)が10mmで、外径が20mmで、軸方向寸法が10mmの円環状である。止水部51は、前述の方法で測定した吸水率が5%以下のクロロプレンゴムフォーム製板状物から、トムソン型を用いて型抜きされたものである。
[サンプルNo.26]
 サンプルNo.26の研磨パッドは、図19に示す第12実施形態の研磨パッド1Eに対応し、中心穴22を有する研磨層20と、中心穴71を有する支持層7と、中心穴71の壁面に形成された止水部51とからなる。
 研磨層20は、不織布タイプの研磨パッドであり、外径が90mmで、中心穴22が10mmで、厚さが1.3mmである。支持層7は、発泡ポリウレタン製で、直径が90mmで、中心穴が20mmで、厚さが10mmである。止水部51は、内径(中心穴51aの直径)が10mmで、外径が20mmで、軸方向寸法が10mmの円環状である。止水部51は、前述の方法で測定した吸水率が5%以下のクロロプレンゴムフォーム製板状物から、トムソン型を用いて型抜きされたものである。
 支持層7の内周面に止水部5が固定されている。支持層7と止水部5は、研磨層20の研磨面10とは反対面21に固定されている。
[サンプルNo.27]
 図20に示すように、サンプルNo.27の研磨パッド100は、発泡ポリウレタン製で、直径が90mmで厚さが10mmの円板状である。
[サンプルNo.28]
 図21に示すように、サンプルNo.28の研磨パッド100Aは、研磨層20と支持層30とからなる。
 研磨層20は、不織布タイプの研磨パッドであり、直径が90mmで厚さが1.3mmの円板状である。支持層30は、発泡ポリウレタン製で、直径が90mmで厚さが10mmの円板状であり、研磨層20の研磨面10とは反対面21に固定されている。
[サンプルNo.29]
 図22に示すように、サンプルNo.29の研磨パッド100Bは、発泡ポリウレタン製で、中心穴105を有する円板状である。研磨パッド100Bの直径は90mmで、中心穴は20mmで、厚さは10mmである。
[サンプルNo.30]
 図23に示すように、サンプルNo.30の研磨パッド100Bは、中心穴22を有する研磨層20と、中心穴71aを有する支持層7とからなる。
 研磨層20は、不織布タイプの研磨パッドであり、外径が90mmで、中心穴22が10mmで、厚さが1.3mmである。支持層7は、発泡ポリウレタン製で、直径が90mmで、中心穴が10mmで、厚さが10mmである。支持層7は、研磨層20の研磨面10とは反対面21に固定されている。
[試験方法]
 各サンプルの研磨パッドを用い、以下の方法で研磨試験を行った。
 研磨対象物は、合成樹脂塗料で塗装された300×250mmの金属板であり、塗膜の厚さは20μmである。つまり、被研磨面は合成樹脂からなる平面状の塗膜面であり、研磨面は被研磨面より小さい。
 使用した研磨装置は、ファナック(株)製の産業用ロボット「M-20i」のアームの先端に、ダブルアクションポリッシャを取り付けた装置である。アームに付与された押し付け力で各サンプルの研磨パッドを、水平に保持された被研磨面に押し付けながら、スラリーを被研磨面に滴下しながら、ポリッシャを回転することで研磨を行った。
 スラリーの滴下は、No.21~No.24およびNo.27,30では研磨パッドの外側(外周面から30mm離れた位置)に対し行い、No.25,26,29,30では、研磨パッドの中心穴から行った。これ以外の研磨条件は、全てのサンプルについて同じにした。
 使用したスラリーは、平均粒径が0.4μmであるアルミナ砥粒を含む。使用したスラリーの粘度は25℃で0.11Pa・s(1.1cP)である。砥粒の平均粒径は、(株)堀場製作所製の粒子径分布測定装置「Horiba L-950」を用いて測定した。
 この研磨を、各サンプルで3セット行ない、滴下したスラリーが研磨パッドにしみ込んでいるかと、しみ込んだスラリーが外部に飛散しているかを調べた。その結果、止水部を有するNo.21~No.26の研磨パッドでは、しみ込みが認められなかったため、飛散も認められなかった。これに対して、止水部を有さないNo.27~No.30の研磨パッドでは、しみ込みが認められ、しみ込んだスラリーの飛散も認められた。
 各サンプルの研磨パッドの構成(相違点)と、試験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 この結果から、止水部を有することで、研磨パッドへスラリーがしみ込みにくくなり、スラリーの利用効率が高くなることが分かる。
 1 研磨パッド
 1A 研磨パッド
 1B 研磨パッド
 1C 研磨パッド
 1D 研磨パッド
 1E 研磨パッド
 10 研磨面
 11 研磨パッドの端部
 111 端部の周面(軸方向で研磨面側の周面)
 12 研磨パッドの基部
 121 研磨パッドの研磨面とは反対側の面
 2 支持層
 3 支持層付き研磨パッド
 4 研磨パッドの本体部
 41 本体部の中心穴(連続気泡層を貫通する貫通穴)
 5 止水部
 51 止水部
 51a 止水部の中心穴
 6 研磨パッド
 60 研磨面
 61 研磨パッドの端部
 611 端部の周面(軸方向で研磨面側の周面)
 62 研磨パッドの基部
 621 研磨パッドの研磨面とは反対側の面
 7 支持層
 71 支持層の中心穴(第二貫通穴)
 8 支持層付き研磨パッド
 9 ポリッシャー
 91 ポリッシャーの基部
 92 ポリッシャーの回転軸
 93 ポリッシャーの本体
 15 スラリー
 16 スラリー供給装置
 17 研磨パッドの研磨面とは反対側の面
 20研磨層
 21 研磨層の研磨面とは反対面
 22 研磨層の中心穴(第一貫通穴)
 30 支持層
 50 被研磨面
 103 第一溝
 104 第二溝
 θ 端部の周面と研磨面とでなす角度

Claims (19)

  1.  円板状の研磨パッドであって、前記円板の軸方向で研磨面側の周面は前記研磨面に向けて縮径するテーパ面であり、前記研磨面側の周面と前記研磨面とでなす角度が125°以上180°未満であり、JIS K7312:1996の付属書2「スプリング硬さ試験タイプC試験方法」で規定された試験方法による加圧面が密着した直後の硬さが40以上である研磨パッドを用い、
     砥粒を含むスラリーを前記研磨面より大きな被研磨面に供給し、
     前記研磨面を前記被研磨面に押し当てて、前記研磨パッドを動かすことにより、前記被研磨面を研磨する研磨方法。
  2.  円板状の研磨パッドであって、前記円板の軸方向で研磨面側の周面は円弧面であり、JIS K7312:1996の付属書2「スプリング硬さ試験タイプC試験方法」で規定された試験方法による加圧面が密着した直後の硬さが40以上である研磨パッドを用い、
     砥粒を含むスラリーを前記研磨面より大きな被研磨面に供給し、
     前記研磨面を前記被研磨面に押し当てて前記研磨パッドを動かすことにより、前記被研磨面を研磨する研磨方法。
  3.  前記研磨面の直径は10mm以上200mm以下である請求項1または2記載の研磨方法。
  4.  前記被研磨面は凹曲面である請求項1~3のいずれか一項に記載された研磨方法。
  5.  砥粒を含むスラリーを被研磨面に供給し、
     JIS K7312:1996の付属書2「スプリング硬さ試験タイプC試験方法」で規定された試験方法による加圧面が密着した直後の硬さが40以上80以下である研磨パッドを用い、
     研磨面を前記被研磨面に押し当てて前記研磨パッドを動かすことにより、前記被研磨面を研磨する研磨方法。
  6.  前記研磨面に溝を有する請求項5記載の研磨方法。
  7.  前記溝の幅は0.5mm以上5.0mm以下である請求項6記載の研磨方法。
  8.  前記研磨面の直径は10mm以上200mm以下であり、
     前記研磨面は前記被研磨面より小さい請求項5~7のいずれか一項に記載の研磨方法。
  9.  前記研磨パッドの前記研磨面とは反対側の面に、前記研磨パッドより軟らかい支持層が固定されている請求項1、2、5のいずれか一項に記載の研磨方法。
  10.  前記被研磨面は合成樹脂からなる面である請求項1、2、5のいずれか一項に記載された研磨方法。
  11.  前記被研磨面は塗膜面である請求項1、2、5のいずれか一項に記載された研磨方法。
  12.  研磨スラリーによる研磨で使用される研磨パッドであって、
     表面の一部または全部に止水部が形成されている研磨パッド。
  13.  研磨層と、前記研磨層の研磨面とは反対面に形成された支持層と、を有し、
     前記支持層が前記止水部である請求項12記載の研磨パッド。
  14.  連続気泡構造の多孔質材からなる連続気泡層を有し、
     前記連続気泡層の研磨面以外の表面に前記止水部が形成されている請求項12記載の研磨パッド。
  15.  前記連続気泡層の側面に前記止水部が形成されている請求項14記載の研磨パッド。
  16.  研磨面と交差する方向に延びて前記連続気泡層を貫通する貫通穴を有し、
     前記貫通穴の壁面に前記止水部が形成されている請求項14記載の研磨パッド。
  17.  研磨層と、前記研磨層の研磨面とは反対面に形成された支持層と、を有し、
     前記支持層が前記連続気泡層である請求項14記載の研磨パッド。
  18.  前記研磨面と交差する方向に延びて前記研磨層を貫通する第一貫通穴と、
     前記研磨面と交差する方向に延びて、前記支持層を貫通し、前記第一貫通穴と連続する第二貫通穴と、を有し、
     前記第二貫通穴の壁面に前記止水部が形成されている請求項17記載の研磨パッド。
  19.  前記研磨層は、前記支持層より硬い材料で形成されている請求項13、17、18のいずれか一項に記載の研磨パッド。
PCT/JP2017/006224 2016-02-26 2017-02-20 研磨方法、研磨パッド WO2017146006A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187016610A KR20180113974A (ko) 2016-02-26 2017-02-20 연마 방법, 연마 패드
EP17756444.0A EP3421174B1 (en) 2016-02-26 2017-02-20 Polishing method
CN201780013253.4A CN108698195B (zh) 2016-02-26 2017-02-20 抛光方法和抛光垫
US16/074,668 US11498182B2 (en) 2016-02-26 2017-02-20 Polishing method and polishing pad

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016036183A JP6700855B2 (ja) 2016-02-26 2016-02-26 研磨方法
JP2016-036183 2016-02-26
JP2016036182A JP6693768B2 (ja) 2016-02-26 2016-02-26 研磨方法
JP2016-036182 2016-02-26
JP2016066307A JP2017177265A (ja) 2016-03-29 2016-03-29 研磨パッド
JP2016-066307 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017146006A1 true WO2017146006A1 (ja) 2017-08-31

Family

ID=59685723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006224 WO2017146006A1 (ja) 2016-02-26 2017-02-20 研磨方法、研磨パッド

Country Status (5)

Country Link
US (1) US11498182B2 (ja)
EP (1) EP3421174B1 (ja)
KR (1) KR20180113974A (ja)
CN (1) CN108698195B (ja)
WO (1) WO2017146006A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102607582B1 (ko) * 2016-08-30 2023-11-30 삼성디스플레이 주식회사 커버 윈도우, 커버 윈도우를 포함하는 표시 장치 및 커버 윈도우의 제조 방법
TWI714444B (zh) * 2020-01-22 2020-12-21 國立虎尾科技大學 一種用於磨銳螺旋滾齒刀之砂輪的成形方法及以其得到的砂輪
WO2021257846A1 (en) * 2020-06-17 2021-12-23 Inovision Software Solutions, Inc. System and method for defect repair
JP2022033603A (ja) * 2020-08-17 2022-03-02 キオクシア株式会社 研磨装置および研磨方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170872A (ja) * 1999-12-14 2001-06-26 Yasuda Sansho Kk スポンジバフ
JP2002103239A (ja) * 2000-09-26 2002-04-09 Bridgestone Corp 弾性材料およびそれを用いた研掃用具
US20070049167A1 (en) * 2005-08-26 2007-03-01 Applied Materials, Inc. Sealed polishing pad, system and methods
JP2008512263A (ja) * 2004-09-10 2008-04-24 レイク カントリー マニュファクチャリング インコーポレーテッド 交換可能な作業面を有する、柔軟性が段階的に変化している研磨パッド
JP2009220265A (ja) * 2008-02-18 2009-10-01 Jsr Corp 化学機械研磨パッド
US20110189927A1 (en) * 2010-01-29 2011-08-04 Ronald Lipson Composite pads for buffing and polishing painted vehicle body surfaces and other applications
JP2013052506A (ja) * 2012-12-17 2013-03-21 Nitta Haas Inc 研磨パッド
JP2015503232A (ja) * 2011-11-29 2015-01-29 ネクスプラナー コーポレイション 下地層および研磨表面層を有する研磨パッド

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464576B1 (en) * 1999-08-31 2002-10-15 Rodel Holdings Inc. Stacked polishing pad having sealed edge
JP3945964B2 (ja) * 2000-06-01 2007-07-18 株式会社ルネサステクノロジ 研磨剤、研磨方法及び半導体装置の製造方法
JP2002028846A (ja) * 2000-07-13 2002-01-29 Kamigaki Takeo 研磨具
US6494765B2 (en) * 2000-09-25 2002-12-17 Center For Tribology, Inc. Method and apparatus for controlled polishing
JP3816817B2 (ja) * 2002-03-14 2006-08-30 株式会社クラレ 研磨用シート
US6783437B1 (en) * 2003-05-08 2004-08-31 Texas Instruments Incorporated Edge-sealed pad for CMP process
US7618306B2 (en) * 2005-09-22 2009-11-17 3M Innovative Properties Company Conformable abrasive articles and methods of making and using the same
US20070243798A1 (en) * 2006-04-18 2007-10-18 3M Innovative Properties Company Embossed structured abrasive article and method of making and using the same
CN101426618B (zh) * 2006-04-19 2013-05-15 东洋橡胶工业株式会社 抛光垫的制造方法
KR20090122302A (ko) * 2007-03-21 2009-11-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 표면 내의 결함 제거 방법
US8192248B2 (en) * 2008-05-30 2012-06-05 Memc Electronic Materials, Inc. Semiconductor wafer polishing apparatus and method of polishing
KR20120039523A (ko) * 2009-06-18 2012-04-25 제이에스알 가부시끼가이샤 폴리우레탄 및 그것을 함유하는 연마층 형성용 조성물, 및 화학 기계 연마용 패드 및 그것을 사용한 화학 기계 연마 방법
JP5911674B2 (ja) 2011-06-06 2016-04-27 石原ケミカル株式会社 バフ研磨方法、バフ研磨組成物及び自動車塗装面補修用の水性乳化バフ研磨組成物
US9067297B2 (en) 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with foundation layer and polishing surface layer
SG11201609296XA (en) 2014-05-21 2016-12-29 Fujibo Holdings Inc Polishing pad and method for manufacturing the same
JP2016047566A (ja) 2014-08-27 2016-04-07 株式会社フジミインコーポレーテッド 研磨パッド

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170872A (ja) * 1999-12-14 2001-06-26 Yasuda Sansho Kk スポンジバフ
JP2002103239A (ja) * 2000-09-26 2002-04-09 Bridgestone Corp 弾性材料およびそれを用いた研掃用具
JP2008512263A (ja) * 2004-09-10 2008-04-24 レイク カントリー マニュファクチャリング インコーポレーテッド 交換可能な作業面を有する、柔軟性が段階的に変化している研磨パッド
US20070049167A1 (en) * 2005-08-26 2007-03-01 Applied Materials, Inc. Sealed polishing pad, system and methods
JP2009220265A (ja) * 2008-02-18 2009-10-01 Jsr Corp 化学機械研磨パッド
US20110189927A1 (en) * 2010-01-29 2011-08-04 Ronald Lipson Composite pads for buffing and polishing painted vehicle body surfaces and other applications
JP2015503232A (ja) * 2011-11-29 2015-01-29 ネクスプラナー コーポレイション 下地層および研磨表面層を有する研磨パッド
JP2013052506A (ja) * 2012-12-17 2013-03-21 Nitta Haas Inc 研磨パッド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3421174A4 *

Also Published As

Publication number Publication date
EP3421174B1 (en) 2023-08-09
CN108698195B (zh) 2021-07-02
US20190070707A1 (en) 2019-03-07
EP3421174A4 (en) 2019-07-31
KR20180113974A (ko) 2018-10-17
EP3421174A1 (en) 2019-01-02
CN108698195A (zh) 2018-10-23
US11498182B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2017146006A1 (ja) 研磨方法、研磨パッド
US9089943B2 (en) Composite pads for buffing and polishing painted vehicle body surfaces and other applications
KR100772642B1 (ko) 연마구
JP2008229843A (ja) 平坦化するための窓を有する研磨パッド
JP2009535225A5 (ja)
TW201524676A (zh) 化學機械硏磨基材之方法
JP2005538571A5 (ja)
JP2017148920A (ja) 研磨方法
US20070015448A1 (en) Polishing pad having edge surface treatment
US20050032464A1 (en) Polishing pad having edge surface treatment
US10434622B2 (en) Polishing tool and polishing method for member having curved surface shape
IL265316A (en) Device for softening a mechanical chemical polishing surface
JP6693768B2 (ja) 研磨方法
US20170252892A1 (en) Polishing pad
JP7420728B2 (ja) 研磨パッド、及びそれを用いた研磨方法
JP2017177265A (ja) 研磨パッド
WO2020054823A1 (ja) 研磨パッド、研磨工具、及び研磨方法
WO2022181787A1 (ja) 研磨パッド、研磨方法
US20240131654A1 (en) Polishing pad and polishing method
RU2590749C2 (ru) Шлифовальник
JP2022008022A (ja) ロボットを用いた表面の超平滑鏡面研磨方法
JP2013123780A (ja) 研磨布

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756444

Country of ref document: EP

Effective date: 20180926

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756444

Country of ref document: EP

Kind code of ref document: A1