US20170252892A1 - Polishing pad - Google Patents
Polishing pad Download PDFInfo
- Publication number
- US20170252892A1 US20170252892A1 US15/504,793 US201515504793A US2017252892A1 US 20170252892 A1 US20170252892 A1 US 20170252892A1 US 201515504793 A US201515504793 A US 201515504793A US 2017252892 A1 US2017252892 A1 US 2017252892A1
- Authority
- US
- United States
- Prior art keywords
- polishing
- resin layer
- grooves
- hard resin
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
- B24B37/245—Pads with fixed abrasives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/22—Lapping pads for working plane surfaces characterised by a multi-layered structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/26—Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
Definitions
- the present invention relates to a polishing pad.
- Buffing is known as a processing method for smoothing a polishing target having a curved surface, for example, a vehicle body painting surface of an automobile and the like (for example, PTL 1).
- the buffing is a method of polishing the polishing target in such a manner that a variety of polishing agents are applied onto a circumference (surface) of a polishing wheel (buff) made of cloth or other materials and are then rotated.
- a polishing pad including a structure that includes a polishing surface formed of a hard resin layer, the structure allowing the polishing surface to follow a curved surface of a polishing target.
- the above-described structure allowing the polishing surface to follow the curved surface of the polishing target may be a two-layer structure, which includes: a soft resin layer that supports the hard resin layer; and the hard resin layer.
- a groove may be formed in the polishing surface. This groove may divide the hard resin layer into a plurality of regions . Moreover, this groove may also be formed in the soft resin layer.
- the polishing pad capable of removing the waviness of the curved surface of the polishing target can be realized.
- FIG. lA is a perspective view of a polishing pad according to a first embodiment of the present invention.
- FIG. 1B is a cross-sectional view of the polishing pad illustrated in FIG. LA, taken along a line A-A;
- FIG. 2A is an explanatory view of a surface shape of an unpolished polishing target
- FIG. 2B is an explanatory view of a surface shape of an already buffed polishing target, the surface shape being taken as a comparative example;
- FIG. 2C is an explanatory view of a surface shape of the polishing target already polished by a polishing pad of FIG. 1A ;
- FIG. 2D is an explanatory view of a surface shape of the polishing target already subjected to secondary polishing
- FIG. 3A is a top view of a polishing pad according to a second embodiment of the present invention.
- FIG. 3B is a cross-sectional view of the polishing pad illustrated in FIG. 3A , taken along a line A-A;
- FIG. 4A is a cross-sectional view of a first modification example illustrated in FIG. 3A ;
- FIG. 4B is a cross-sectional view of a second modification example of the polishing pad illustrated in FIG. 3A ;
- FIG. 5A is a top view of a third modification example of the polishing pad illustrated in FIG. 3A ;
- FIG. 5B is a cross-sectional view of the polishing pad illustrated in FIG. 5A , taken along a line A-A;
- FIG. 6 is a view illustrating a configuration example of an automatic polisher that uses the polishing pad according to an embodiment of the present invention.
- a surface of a polishing target having a curved surface is polished by using a polishing pad having a polishing surface formed of a hard resin layer.
- This polishing pad has a structure of allowing a polishing surface, which is formed of the hard resin layer, to follow the curved surface of the polishing target.
- the polishing target may be, for example, a resin-coated surface having a curved surface.
- the resin-coated surface may be, for example, a coated surface of a vehicle body of a vehicle or the like.
- the structure of allowing the polishing surface of the polishing pad to follow the curved surface of the polishing target may have a two-layer structure, which includes the hard resin layer that forms the polishing surface and a soft resin layer that supports this hard resin layer.
- the soft resin layer is distorted depending on the curved surface, whereby the hard resin layer is warped, and the polishing surface follows the curved surface of the polishing target.
- the structure of allowing the polishing surface of the polishing pad to follow the curved surface of the polishing target may be a structure, in which the hard resin layer is supported by using an elastic member, whereby the elastic member is distorted and the hard resin layer forming the polishing surface is warped depending on the curved surface in the case where the polishing surface is pressed against the curved surface of the polishing target.
- the polishing pad according to the first embodiment has the two-layer structure including the hard resin layer that forms the polishing surface and the soft resin layer that supports this hard resin layer. Note that, in the following description, the hard resin layer that forms the polishing surface is simply written as a “hard resin layer”, and the soft resin layer that supports the hard resin layer is simply written as a “soft resin layer”.
- a polishing pad 10 has a two-layer structure, which includes a hard resin layer 40 and a soft resin layer 50 .
- the hard resin layer 40 forms a polishing surface 30 of the polishing pad 10 .
- the soft resin layer 50 supports the hard resin layer 40 .
- the soft resin layer 50 is warped along the curved surface, and the polishing surface 30 follows the curved surface of the polishing target.
- hardness of the hard resin layer 40 is preferably 50 degrees or more, more preferably 60 degrees or more. Moreover, the hardness of the hard resin layer 40 is preferably 95 degrees or less. For example, the hardness of the hard resin layer 40 is preferably 60 degrees or more and 80 degrees or less, or the hardness of the hard resin layer 40 is preferably 85 degrees or more and 95 degrees or less . When the hardness of the hard resin layer 40 remains within such a range, then the polishing for the curved surface of the polishing target by the polishing pad 10 becomes less likely to become copy polishing, and it becomes possible to remove waviness of the surface of the polishing target.
- a thickness of the hard resin layer 40 is not particularly limited; however, is preferably 3.0 mm or less. Moreover, the thickness of the hard resin layer 40 is preferably 0.5 mm or more. When the thickness of the hard resin layer 40 remains within such a range, then in the case where the polishing surface 30 is pressed against the curved surface of the polishing target, it becomes easy for the hard resin layer 40 to be warped along the curved surface of the polishing target, and followability of the polishing surface 30 with respect to the curved surface of the polishing target is enhanced. Therefore, such a waviness component of a surface shape of the polishing target can be removed, and in addition, polishing efficiency is enhanced since a contact area between the polishing surface 30 and the curved surface is increased.
- a material of the hard resin layer 40 is not particularly limited, and just needs to be a material having the above-described hardness.
- the material of the hard resin layer 40 may be, for example, a polyurethane foam body or nonwoven fabric.
- the material of the hard resin layer 40 may be, for example, nonwoven fabric in which A hardness is 60 degrees or more and 80 degrees of less, or may be a polyurethane foam body in which A hardness is 85 degrees or more and 95 degrees or less.
- hardness of the soft resin layer 50 is preferably 30 degrees or less.
- the hardness of the soft resin layer 50 remains within such a range, then it becomes easy for the soft resin layer 50 to be distorted in the case where the polishing surface 30 is pressed against the curved surface of the polishing target.
- a thickness of the soft resin layer 50 is not particularly limited; however, is preferably 5.0 mm or more. Moreover, the thickness of the soft resin layer 50 is preferably 50 mm or less . When the thickness of the soft resin layer 50 remains within such a range, a distortion amount of the soft resin layer 50 and a warp amount of the hard resin layer 40 can be ensured in the case where the polishing surface 30 is pressed against the curved surface of the polishing target.
- the material of the soft resin layer 50 is not particularly limited, and just needs to be a material having the above-described hardness.
- the material of the soft resin layer 50 may be, for example, a resin foam body such as a polyurethane foam body and a polyethylene foam body.
- the polishing pad 10 of the first embodiment has the polishing surface 30 formed of the hard resin layer 40 . Therefore, in comparison with the soft polishing surface, the polishing for the surface of the polishing target is less likely to become copy polishing. As a result, the waviness component of the surface shape of the polishing target can be removed.
- the polishing pad 10 of the first embodiment includes the structure of allowing the polishing surface 30 to follow the curved surface of the polishing target. Therefore, the polishing surface 30 follows the curved surface of the polishing target, and accordingly, the waviness component of the surface shape of the polishing target can be removed. In addition, the polishing efficiency is enhanced since the contact area of the polishing surface 30 in contact with the polishing target having the curved surface is increased, and a time required to polish such a relatively large polishing target can be shortened.
- FIG. 2A to FIG. 2D are referred to.
- FIG. 2A schematically shows a profile of the surface shape of the unpolished polishing target.
- the unpolished surface shape has a surface roughness component with a relatively high frequency and a waviness component with a relatively low frequency.
- FIG. 2B shows a profile of a surface shape of the already buffed polishing target.
- hardness of polishing cloth is relatively low, and the copy polishing is brought about. Therefore, though the surface roughness component is removed, the waviness component still remains even after the polishing.
- FIG. 2C schematically shows a profile of the surface shape of the polishing target already polished by the polishing pad 10 of the first embodiment.
- the polishing surface 30 is formed of the hard resin layer 40 , and accordingly, the polishing for the surface of the polishing target is less likely to become the copy polishing. Therefore, the waviness component of the surface shape of the polishing target is removed.
- FIG. 2D schematically shows a profile of the surface shape of the polishing target after the secondary polishing.
- the grooves formed on the polishing surface may have a depth sufficient to divide such a hard resin layer into a plurality of pieces.
- the hard resin layer is divided by the grooves, whereby it becomes possible for the hard resin layer to be displaced in an abutting direction depending on the curved surface in the case where the polishing surface is pressed against the curved surface of the polishing target. Therefore, it becomes easy for the polishing surface to follow the curved surface of the polishing target.
- the grooves as described above can be formed by removing the resin layer of portions, which serve as the grooves, by etching and the like, for example, after forming the two-layer structure including the hard resin layer and the soft resin layer, however, the present invention is not limited thereto.
- the grooves can be formed by scanning a surface of the pad by a circular cutting blade while pressing the circular cutting blade, which rotates at a high speed, against the pad by a predetermined amount after forming such a two-layer structure.
- the grooves which divide the hard resin layer into a plurality of pieces, may also be formed on the soft resin layer.
- the grooves are also formed on the soft resin layer, it becomes easier for the hard resin layer to be displaced in the case where the polishing surface is pressed against the surface of the polishing target, and it becomes easy for the polishing surface 30 to follow the curved surface of the polishing target.
- FIG. 3A and FIG. 3B are referred to.
- the same reference numerals are assigned to constituents having the same functions as those in FIG. 1A .
- First grooves 31 and second grooves 32 are formed on the polishing surface 30 of the polishing pad 10 .
- the first grooves 31 are extended in a first direction on the polishing surface 30
- the second grooves 32 are extended along a second direction on the polishing surface 30 , which is perpendicular to the first direction.
- a plurality of the first grooves 31 and a plurality of the second grooves 32 are formed on the polishing surface 30 , whereby the grooves are formed in a grid shape on the polishing surface 30 .
- the depth of the first grooves 31 and the second grooves 32 may be the same as the thickness of the hard resin layer 40 . That is to say, the hard resin layer 40 may be divided into a plurality of regions by the first grooves 31 and the second grooves 32 . Moreover, the first grooves 31 and the second grooves 32 are formed on only the hard resin layer 40 , and are not formed on the soft resin layer 50 .
- a groove width of the first grooves 31 and the second grooves 32 is preferably 0.5 mm or more for example. Moreover, the groove width of the first grooves 31 and the second grooves 32 is preferably 5.0 mm or less for example.
- the groove width remains within such a range, it can become easy for the polishing surface 30 to be warped since a displacement amount of the hard resin layer 40 in the case where the polishing surface 30 is pressed against the curved surface of the polishing target is ensured while suppressing a decrease of the contact area between the polishing surface 30 and the polishing target, the decrease being caused by forming the grooves.
- a pitch of the first grooves 31 and a pitch of the second grooves 32 are preferably 5.0 mm or more for example. Moreover, the pitch of the first grooves 31 and the pitch of the second grooves 32 are preferably 50 mm or less for example.
- FIG. 4A is referred to.
- the depth of the first grooves 31 and the second grooves 32 maybe smaller than the thickness of the hard resin layer 40 . That is to say, the hard resin layer 40 is not divided into the plurality of pieces by the first grooves 31 and the second grooves 32 , and a thickness of the hard resin layer 40 of portions of the first grooves 31 and the second grooves 32 is thinner than a thickness of other portions. Rigidity of the portions of the first grooves 31 and the second grooves 32 is decreased, and accordingly, it becomes easy for the hard resin layer 40 to be warped. Therefore, it becomes easy for the polishing surface 30 to follow the curved surface of the polishing target.
- FIG. 4B is referred to.
- the depth of the first grooves 31 and the second grooves 32 may be larger than the thickness of the hard resin layer 40 . That is to say, the first grooves 31 and the second grooves 32 may be formed in the hard resin layer 40 and the soft resin layer 50 .
- a support surface 51 of the soft resin layer 50 which supports the hard resin layer 40 , is also divided by the first grooves 31 and the second grooves 32 .
- a plurality of the divided hard resin layers 40 are supported individually by a plurality of the divided support surfaces 51 .
- the first grooves 31 and the second grooves 32 are also formed in the soft resin layer 50 , and accordingly, rigidity of the soft resin layer 50 is decreased, and it becomes easy for the soft resin layer 50 to be distorted depending on the curved surface in the case where the polishing surface 30 is pressed against the curved surface of polishing target.
- the support surface 51 that supports the hard resin layer 40 is divided, whereby binding force between the support surfaces 51 is decreased, and it becomes easy for the divided hard resin layers 40 to be displaced independently of one another. Therefore, the displacement amount of the hard resin layer 50 in the abutting direction is increased, and it becomes easy for the polishing surface 30 to follow the curved surface of the polishing target.
- FIG. 5A and FIG. 5B are referred to.
- the polishing surface 30 On the polishing surface 30 , only the first grooves 31 are formed, and the second grooves 32 are not formed.
- the plurality of first grooves 31 are formed on the polishing surface 30 , whereby the grooves are formed in a stripe shape on the polishing surface 30 .
- the depth of the first grooves 31 may be larger than the thickness of the hard resin layer 40 . That is to say, the first grooves 31 may be formed in the hard resin layer 40 and the soft resin layer 50 . Hence, the support surface 51 of the soft resin layer 50 , which supports the hard resin layer 40 , is also divided by the first grooves 31 . A plurality of the divided hard resin layers 40 are supported individually by a plurality of the divided support surfaces 51 . Note that the depth of the first grooves 31 may be the same as or smaller than the thickness of the hard resin layer 40 .
- the second grooves 32 are omitted, and the grooves in a stripe shape are formed on the polishing surface 30 , whereby strength of the polishing surface can be enhanced, and a number of man-hours for forming the grooves is reduced, resulting in contribution to cost reduction.
- the first grooves 31 are also formed in the hard resin layer 40 , whereby a decrease of the followability of the polishing surface 30 , which is caused since the second grooves 32 extended in the second direction are not formed, is reduced.
- a configuration of a polishing device using the polishing pad 10 and a polishing method using the polishing pad 10 are not particularly limited.
- the polishing pad 10 may be attached onto a tip end of a hand polisher, and may be used for a manual operation of polishing the surface of the polishing target having the curved surface.
- the polishing pad 10 may be used for polishing treatment by an automatic polisher as described below.
- An automatic polisher 1 includes: a robot arm 2 ; a polishing pad 10 ; a polishing tool 4 ; a pressing pressure detector 5 ; and a controller 7 .
- Reference numeral 90 denotes a polishing target.
- the polishing target 90 may be, for example, a vehicle body of an automobile or the like, in which a surface is coated with resin.
- the robot arm 2 has a plurality of joints 20 , 21 and 22 , and can move a tip end portion 23 , onto which the polishing pad 10 , the polishing tool 4 and the pressing pressure detector 5 are attached, in a plurality of directions.
- the polishing tool 4 is attached onto the tip end portion 23 through the pressing pressure detector 5 , and by driving means built in the polishing tool 4 , rotates the polishing pad 10 about a direction perpendicular to the polishing surface 30 , the direction being taken as a rotation axis.
- the controller 7 controls a behavior of the robot arm 2 and the rotation of the polishing pad 10 . From a polishing agent feeding mechanism (not shown), the polishing agent is fed between the polishing pad 10 and the polishing target 90 .
- the controller 7 presses the polishing pad 10 against a surface of the polishing target 90 by the robot arm 2 , then rotates the polishing pad 10 , and thereby polishes the surface of the polishing target 90 .
- the pressing pressure detector 5 detects pressing pressure of the polishing surface 30 against the polishing target 90 . Based on a detection result by the pressing pressure detector 5 , the controller 7 may adjust such force of pressing the polishing surface 30 against the polishing target 90 . The controller 7 may control the robot arm 2 so that the polishing surface 30 can move across the surface of the polishing target 90 while constantly maintaining the pressing force of the polishing surface 30 against the polishing target 90 .
- secondary polishing for removing the surface roughness component may be performed.
- the polishing pad attached onto the polishing tool 4 is replaced, and the surface of the polishing target 90 is polished by using a polishing pad having lower hardness than the polishing pad 10 .
- slurry can be used, which contains abrasive grains selected from: particles composed of an oxide of silicon or a metal element, such as silica, alumina, ceria, titania, zirconia, iron oxide and manganese oxide; organic particles composed of thermoplastic resin; and organic-inorganic composite particles.
- abrasive grains selected from: particles composed of an oxide of silicon or a metal element, such as silica, alumina, ceria, titania, zirconia, iron oxide and manganese oxide; organic particles composed of thermoplastic resin; and organic-inorganic composite particles.
- the polishing agent it is preferable to use alumina slurry, which enables a high polishing speed and is easily available.
- alumina there are ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and the like, which have crystal forms different from one another, and an alumina compound called hydrated alumina is also present. From a viewpoint of the polishing speed, those containing ⁇ -alumina as amain component are more preferable as the abrasive grains.
- a mean particle diameter of the abrasive grains is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more. As the mean particle diameter is becoming larger, the polishing speed is enhanced. In a case where the mean particle diameter remains within the above-described range, it becomes easy to enhance the polishing speed to a level that is particularly suitable for practical use.
- the mean particle diameter is preferably 10.0 ⁇ m or less, more preferably 5.0 ⁇ m or less. As the mean particle diameter is becoming smaller, dispersion stability of the polishing agent is enhanced, and a scratch is suppressed from occurring on the polishing surface.
- the mean particle diameter of the abrasive grains can be measured by a pore electrical resistance method (Coulter principle) method (measuring machine: Multisizer Type-III made by Beckman Coulter, Inc.).
- a content of the abrasive grains in the polishing agent is preferably 0.1 mass % or more, more preferably 0.2 mass % or more, still more preferably 0.5 mass % or more.
- the polishing speed is enhanced. In a case where the content of the abrasive grains remains within the above-described range, it becomes easy to enhance the polishing speed to the level that is particularly suitable for practical use.
- the content of the abrasive grains is preferably 50 mass % or less, more preferably 25 mass % or less, still more preferably 20 mass %.
- cost of the polishing agent can be suppressed.
- a surface defect can be further suppressed from occurring on the surface of the polishing target already polished by the polishing agent.
- the polishing agent may appropriately contain other components such as lubricating oil, an organic solvent, a surfactant, and a thickener.
- the lubricating oil may be synthetic oil, mineral oil, vegetable oil, or a combination of these.
- the organic solvent may be alcohol, ether, glycols or glycerins as well as a hydrocarbon-based solvent.
- the surfactant may be so-called anion, cation, nonion or amphoteric surfactant.
- the thickener may be a synthetic thickener, a cellulose thickener, or a natural thickener.
- Hardness of a polishing pad for use in the secondary polishing is preferably lower than the hardness of the hard resin layer 40 of the polishing pad 10 .
- the hardness of the polishing pad for use in the secondary polishing is preferably less than 50 degrees, more preferably 40 degrees of less.
- the hardness of the polishing pad for use in the secondary polishing is preferably 30 degrees or more. When the hardness of the polishing pad remains within such a range, it becomes possible to remove the fine surface roughness component on the surface of the polishing target.
- a material of the polishing pad for use in the secondary polishing is not particularly limited, and just needs to be a material having the above-described hardness.
- the material of the polishing pad for use in the secondary polishing may be, for example, nonwoven fabric or suede.
- the material of the polishing pad for use in the secondary polishing may be suede in which A hardness is 30 degrees or more to 40 degrees or less.
- the polishing pad for use in the secondary polishing may have a two-layer structure in a similar way to the polishing pad 10 . That is to say, the polishing pad for use in the secondary polishing may have a two-layer structure including: a relatively hard first layer that forms the polishing surface; and a relatively soft second layer that supports the first layer.
- Hardness of the first layer is preferably lower than the hardness of the hard resin layer 40 of the polishing pad 10 .
- the hardness of the first layer is preferably less than 50 degrees, more preferably 40 degrees of less.
- the hardness of the first layer is preferably 30 degrees or more.
- Thickness of the first layer is preferably 3.0 mm or less. Moreover, the thickness of the first layer is preferably 0.5 mm or more. When the thickness of the first layer remains within such a range, then in the case where the polishing surface is pressed against the curved surface of the polishing target, it becomes easy for the first layer to be warped along the curved surface of the polishing target, the contact area between the polishing surface and the curved surface is increased, and the polishing efficiency is enhanced.
- a material of the first layer is not particularly limited, and just needs to be a material having the above-described hardness .
- the material of the first layer may be, for example, nonwoven fabric or suede.
- the material of the first layer may be suede in which A hardness is 30 degrees or more to 40 degrees or less.
- a configuration of the second layer may be similar to the configuration of the soft resin layer 50 of the polishing pad 10 .
- Grooves may also be formed on the polishing surface of the polishing pad for use in the secondary polishing in a similar way to the polishing pad 10 according to the second embodiment.
- a hard resin layer in which a thickness is 1.5 mm, a material is a polyurethane foam body, and A hardness is 90, and a soft resin layer, in which a thickness is 30.0 mm, a material is a polyurethane foam body, and E hardness is 20, were laminated on each other to form a polishing pad, and a resin-coated surface thereof was polished.
- grid-like grooves in which a width is 2.0 mm, a pitch is 20.0 mm, and a depth is 3.0 mm, were formed by scanning a surface of the pad by a circular cutting blade while pressing the circular cutting blade, which rotates at a high speed, against the pad by a predetermined amount after forming such a two-layer structure.
- alumina slurry was used as a polishing agent.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
A polishing pad capable of removing waviness of a surface of a polishing target having a curved surface is provided. A polishing pad (10) includes a structure (40, 50) including a polishing surface (30) formed of a hard resin layer (40), the structure (40, 50) allowing the polishing surface (30) to follow a curved surface of a polishing target (90).
Description
- The present invention relates to a polishing pad.
- Buffing is known as a processing method for smoothing a polishing target having a curved surface, for example, a vehicle body painting surface of an automobile and the like (for example, PTL 1). The buffing is a method of polishing the polishing target in such a manner that a variety of polishing agents are applied onto a circumference (surface) of a polishing wheel (buff) made of cloth or other materials and are then rotated.
- PTL 1: JP 2012-251099 A
- However, by the buffing, it has been impossible to remove waviness of the surface of the polishing target, and it has been difficult to realize a beautiful surface finish.
- It is an object of the present invention to provide a polishing pad capable of removing waviness of a surface a polishing target having a curved surface.
- In order to solve the above-described problem, according to an aspect of the present invention, there is provided a polishing pad including a structure that includes a polishing surface formed of a hard resin layer, the structure allowing the polishing surface to follow a curved surface of a polishing target.
- The above-described structure allowing the polishing surface to follow the curved surface of the polishing target may be a two-layer structure, which includes: a soft resin layer that supports the hard resin layer; and the hard resin layer.
- A groove may be formed in the polishing surface. This groove may divide the hard resin layer into a plurality of regions . Moreover, this groove may also be formed in the soft resin layer.
- In accordance with the present invention, the polishing pad capable of removing the waviness of the curved surface of the polishing target can be realized.
- The object and advantages of the present invention are concretized and achieved by using the elements illustrated in the scope of claims and combinations of the elements. It should be interpreted that both of the above-mentioned general description and the following detailed description are merely illustrations and explanations, and do not limit the present invention like the scope of claims.
- FIG. lA is a perspective view of a polishing pad according to a first embodiment of the present invention;
-
FIG. 1B is a cross-sectional view of the polishing pad illustrated in FIG. LA, taken along a line A-A; -
FIG. 2A is an explanatory view of a surface shape of an unpolished polishing target; -
FIG. 2B is an explanatory view of a surface shape of an already buffed polishing target, the surface shape being taken as a comparative example; -
FIG. 2C is an explanatory view of a surface shape of the polishing target already polished by a polishing pad ofFIG. 1A ; -
FIG. 2D is an explanatory view of a surface shape of the polishing target already subjected to secondary polishing; -
FIG. 3A is a top view of a polishing pad according to a second embodiment of the present invention; -
FIG. 3B is a cross-sectional view of the polishing pad illustrated inFIG. 3A , taken along a line A-A; -
FIG. 4A is a cross-sectional view of a first modification example illustrated inFIG. 3A ; -
FIG. 4B is a cross-sectional view of a second modification example of the polishing pad illustrated inFIG. 3A ; -
FIG. 5A is a top view of a third modification example of the polishing pad illustrated inFIG. 3A ; -
FIG. 5B is a cross-sectional view of the polishing pad illustrated inFIG. 5A , taken along a line A-A; and -
FIG. 6 is a view illustrating a configuration example of an automatic polisher that uses the polishing pad according to an embodiment of the present invention. - Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
- In a first embodiment, a surface of a polishing target having a curved surface is polished by using a polishing pad having a polishing surface formed of a hard resin layer. This polishing pad has a structure of allowing a polishing surface, which is formed of the hard resin layer, to follow the curved surface of the polishing target. The polishing target may be, for example, a resin-coated surface having a curved surface. The resin-coated surface may be, for example, a coated surface of a vehicle body of a vehicle or the like.
- For example, the structure of allowing the polishing surface of the polishing pad to follow the curved surface of the polishing target may have a two-layer structure, which includes the hard resin layer that forms the polishing surface and a soft resin layer that supports this hard resin layer. In a case where the polishing surface is pressed against the curved surface of the polishing target, then the soft resin layer is distorted depending on the curved surface, whereby the hard resin layer is warped, and the polishing surface follows the curved surface of the polishing target.
- The structure of allowing the polishing surface of the polishing pad to follow the curved surface of the polishing target may be a structure, in which the hard resin layer is supported by using an elastic member, whereby the elastic member is distorted and the hard resin layer forming the polishing surface is warped depending on the curved surface in the case where the polishing surface is pressed against the curved surface of the polishing target.
- Hereinafter, a description will be made of a case where the polishing pad according to the first embodiment has the two-layer structure including the hard resin layer that forms the polishing surface and the soft resin layer that supports this hard resin layer. Note that, in the following description, the hard resin layer that forms the polishing surface is simply written as a “hard resin layer”, and the soft resin layer that supports the hard resin layer is simply written as a “soft resin layer”.
- Hereinafter, the first embodiment will be described in detail.
-
FIG. 1A andFIG. 1B are referred to. Apolishing pad 10 has a two-layer structure, which includes ahard resin layer 40 and asoft resin layer 50. Thehard resin layer 40 forms a polishingsurface 30 of thepolishing pad 10. Thesoft resin layer 50 supports thehard resin layer 40. In addition, in a case where the polishingsurface 30 is pressed against the curved surface of the polishing target, thesoft resin layer 50 is distorted depending on the curved surface. Therefore, thehard resin layer 40 is warped along the curved surface, and the polishingsurface 30 follows the curved surface of the polishing target. - In terms of A hardness defined in conformity with JIS K 6253, hardness of the
hard resin layer 40 is preferably 50 degrees or more, more preferably 60 degrees or more. Moreover, the hardness of thehard resin layer 40 is preferably 95 degrees or less. For example, the hardness of thehard resin layer 40 is preferably 60 degrees or more and 80 degrees or less, or the hardness of thehard resin layer 40 is preferably 85 degrees or more and 95 degrees or less . When the hardness of thehard resin layer 40 remains within such a range, then the polishing for the curved surface of the polishing target by thepolishing pad 10 becomes less likely to become copy polishing, and it becomes possible to remove waviness of the surface of the polishing target. - A thickness of the
hard resin layer 40 is not particularly limited; however, is preferably 3.0 mm or less. Moreover, the thickness of thehard resin layer 40 is preferably 0.5 mm or more. When the thickness of thehard resin layer 40 remains within such a range, then in the case where the polishingsurface 30 is pressed against the curved surface of the polishing target, it becomes easy for thehard resin layer 40 to be warped along the curved surface of the polishing target, and followability of the polishingsurface 30 with respect to the curved surface of the polishing target is enhanced. Therefore, such a waviness component of a surface shape of the polishing target can be removed, and in addition, polishing efficiency is enhanced since a contact area between the polishingsurface 30 and the curved surface is increased. - A material of the
hard resin layer 40 is not particularly limited, and just needs to be a material having the above-described hardness. The material of thehard resin layer 40 may be, for example, a polyurethane foam body or nonwoven fabric. The material of thehard resin layer 40 may be, for example, nonwoven fabric in which A hardness is 60 degrees or more and 80 degrees of less, or may be a polyurethane foam body in which A hardness is 85 degrees or more and 95 degrees or less. - In terms of E hardness defined in conformity with JIS K 6253, hardness of the
soft resin layer 50 is preferably 30 degrees or less. When the hardness of thesoft resin layer 50 remains within such a range, then it becomes easy for thesoft resin layer 50 to be distorted in the case where the polishingsurface 30 is pressed against the curved surface of the polishing target. As a result, it becomes easy for thehard resin layer 40 to be warped along the curved surface of the polishing target, and the followability of the polishingsurface 30 with respect to the curved surface of the polishing target is enhanced. Therefore, such a waviness component of the surface shape of the polishing target can be removed, and in addition, the polishing efficiency is enhanced since the contact area between the polishingsurface 30 and the curved surface is increased. - A thickness of the
soft resin layer 50 is not particularly limited; however, is preferably 5.0 mm or more. Moreover, the thickness of thesoft resin layer 50 is preferably 50 mm or less . When the thickness of thesoft resin layer 50 remains within such a range, a distortion amount of thesoft resin layer 50 and a warp amount of thehard resin layer 40 can be ensured in the case where the polishingsurface 30 is pressed against the curved surface of the polishing target. - The material of the
soft resin layer 50 is not particularly limited, and just needs to be a material having the above-described hardness. The material of thesoft resin layer 50 may be, for example, a resin foam body such as a polyurethane foam body and a polyethylene foam body. - The
polishing pad 10 of the first embodiment has the polishingsurface 30 formed of thehard resin layer 40. Therefore, in comparison with the soft polishing surface, the polishing for the surface of the polishing target is less likely to become copy polishing. As a result, the waviness component of the surface shape of the polishing target can be removed. - Moreover, the
polishing pad 10 of the first embodiment includes the structure of allowing the polishingsurface 30 to follow the curved surface of the polishing target. Therefore, the polishingsurface 30 follows the curved surface of the polishing target, and accordingly, the waviness component of the surface shape of the polishing target can be removed. In addition, the polishing efficiency is enhanced since the contact area of the polishingsurface 30 in contact with the polishing target having the curved surface is increased, and a time required to polish such a relatively large polishing target can be shortened. -
FIG. 2A toFIG. 2D are referred to.FIG. 2A schematically shows a profile of the surface shape of the unpolished polishing target. The unpolished surface shape has a surface roughness component with a relatively high frequency and a waviness component with a relatively low frequency. -
FIG. 2B shows a profile of a surface shape of the already buffed polishing target. In such buffing, hardness of polishing cloth is relatively low, and the copy polishing is brought about. Therefore, though the surface roughness component is removed, the waviness component still remains even after the polishing. -
FIG. 2C schematically shows a profile of the surface shape of the polishing target already polished by thepolishing pad 10 of the first embodiment. The polishingsurface 30 is formed of thehard resin layer 40, and accordingly, the polishing for the surface of the polishing target is less likely to become the copy polishing. Therefore, the waviness component of the surface shape of the polishing target is removed. - Ina case of removing a fine surface roughness component after the polishing performed by the
polishing pad 10, secondary polishing for removing the surface roughness component may be performed after such primary polishing performed by thepolishing pad 10.FIG. 2D schematically shows a profile of the surface shape of the polishing target after the secondary polishing. By the polishing performed by thepolishing pad 10 and the secondary polishing subsequent thereto, both of the surface roughness and waviness of the polishing target are removed. - Subsequently, a second embodiment of the present invention will be described. Grooves are formed on a polishing surface of a polishing pad according to the second embodiment. By a fact that the grooves are formed on the polishing surface, it becomes easy for the polishing surface to follow the curved surface of the polishing surface in the case where the polishing surface is pressed against the curved surface of the polishing target.
- The grooves formed on the polishing surface may have a depth sufficient to divide such a hard resin layer into a plurality of pieces. The hard resin layer is divided by the grooves, whereby it becomes possible for the hard resin layer to be displaced in an abutting direction depending on the curved surface in the case where the polishing surface is pressed against the curved surface of the polishing target. Therefore, it becomes easy for the polishing surface to follow the curved surface of the polishing target.
- The grooves as described above can be formed by removing the resin layer of portions, which serve as the grooves, by etching and the like, for example, after forming the two-layer structure including the hard resin layer and the soft resin layer, however, the present invention is not limited thereto. Moreover, the grooves can be formed by scanning a surface of the pad by a circular cutting blade while pressing the circular cutting blade, which rotates at a high speed, against the pad by a predetermined amount after forming such a two-layer structure.
- The grooves, which divide the hard resin layer into a plurality of pieces, may also be formed on the soft resin layer. By a fact that the grooves are also formed on the soft resin layer, it becomes easier for the hard resin layer to be displaced in the case where the polishing surface is pressed against the surface of the polishing target, and it becomes easy for the polishing
surface 30 to follow the curved surface of the polishing target. -
FIG. 3A andFIG. 3B are referred to. The same reference numerals are assigned to constituents having the same functions as those inFIG. 1A .First grooves 31 andsecond grooves 32 are formed on the polishingsurface 30 of thepolishing pad 10. Thefirst grooves 31 are extended in a first direction on the polishingsurface 30, and thesecond grooves 32 are extended along a second direction on the polishingsurface 30, which is perpendicular to the first direction. A plurality of thefirst grooves 31 and a plurality of thesecond grooves 32 are formed on the polishingsurface 30, whereby the grooves are formed in a grid shape on the polishingsurface 30. - The depth of the
first grooves 31 and thesecond grooves 32 may be the same as the thickness of thehard resin layer 40. That is to say, thehard resin layer 40 may be divided into a plurality of regions by thefirst grooves 31 and thesecond grooves 32. Moreover, thefirst grooves 31 and thesecond grooves 32 are formed on only thehard resin layer 40, and are not formed on thesoft resin layer 50. - A groove width of the
first grooves 31 and thesecond grooves 32 is preferably 0.5 mm or more for example. Moreover, the groove width of thefirst grooves 31 and thesecond grooves 32 is preferably 5.0 mm or less for example. When the groove width remains within such a range, it can become easy for the polishingsurface 30 to be warped since a displacement amount of thehard resin layer 40 in the case where the polishingsurface 30 is pressed against the curved surface of the polishing target is ensured while suppressing a decrease of the contact area between the polishingsurface 30 and the polishing target, the decrease being caused by forming the grooves. - A pitch of the
first grooves 31 and a pitch of thesecond grooves 32 are preferably 5.0 mm or more for example. Moreover, the pitch of thefirst grooves 31 and the pitch of thesecond grooves 32 are preferably 50 mm or less for example. - When the pitches remain within such a range, a warp amount of the whole of the polishing
surface 30 in the case where the polishingsurface 30 is pressed against the curved surface of the polishing target can be ensured while suppressing the decrease of the contact area between the polishingsurface 30 and the polishing target, the decrease being caused by forming the grooves. - Dimensions of these groove width and pitches are also applied to first to third modification examples to be described below.
-
FIG. 4A is referred to. The depth of thefirst grooves 31 and thesecond grooves 32 maybe smaller than the thickness of thehard resin layer 40. That is to say, thehard resin layer 40 is not divided into the plurality of pieces by thefirst grooves 31 and thesecond grooves 32, and a thickness of thehard resin layer 40 of portions of thefirst grooves 31 and thesecond grooves 32 is thinner than a thickness of other portions. Rigidity of the portions of thefirst grooves 31 and thesecond grooves 32 is decreased, and accordingly, it becomes easy for thehard resin layer 40 to be warped. Therefore, it becomes easy for the polishingsurface 30 to follow the curved surface of the polishing target. -
FIG. 4B is referred to. The depth of thefirst grooves 31 and thesecond grooves 32 may be larger than the thickness of thehard resin layer 40. That is to say, thefirst grooves 31 and thesecond grooves 32 may be formed in thehard resin layer 40 and thesoft resin layer 50. Hence, asupport surface 51 of thesoft resin layer 50, which supports thehard resin layer 40, is also divided by thefirst grooves 31 and thesecond grooves 32. A plurality of the divided hard resin layers 40 are supported individually by a plurality of the divided support surfaces 51. Thefirst grooves 31 and thesecond grooves 32 are also formed in thesoft resin layer 50, and accordingly, rigidity of thesoft resin layer 50 is decreased, and it becomes easy for thesoft resin layer 50 to be distorted depending on the curved surface in the case where the polishingsurface 30 is pressed against the curved surface of polishing target. - Moreover, the
support surface 51 that supports thehard resin layer 40 is divided, whereby binding force between the support surfaces 51 is decreased, and it becomes easy for the divided hard resin layers 40 to be displaced independently of one another. Therefore, the displacement amount of thehard resin layer 50 in the abutting direction is increased, and it becomes easy for the polishingsurface 30 to follow the curved surface of the polishing target. -
FIG. 5A andFIG. 5B are referred to. On the polishingsurface 30, only thefirst grooves 31 are formed, and thesecond grooves 32 are not formed. The plurality offirst grooves 31 are formed on the polishingsurface 30, whereby the grooves are formed in a stripe shape on the polishingsurface 30. - The depth of the
first grooves 31 may be larger than the thickness of thehard resin layer 40. That is to say, thefirst grooves 31 may be formed in thehard resin layer 40 and thesoft resin layer 50. Hence, thesupport surface 51 of thesoft resin layer 50, which supports thehard resin layer 40, is also divided by thefirst grooves 31. A plurality of the divided hard resin layers 40 are supported individually by a plurality of the divided support surfaces 51. Note that the depth of thefirst grooves 31 may be the same as or smaller than the thickness of thehard resin layer 40. - The
second grooves 32 are omitted, and the grooves in a stripe shape are formed on the polishingsurface 30, whereby strength of the polishing surface can be enhanced, and a number of man-hours for forming the grooves is reduced, resulting in contribution to cost reduction. Moreover, thefirst grooves 31 are also formed in thehard resin layer 40, whereby a decrease of the followability of the polishingsurface 30, which is caused since thesecond grooves 32 extended in the second direction are not formed, is reduced. - A configuration of a polishing device using the
polishing pad 10 and a polishing method using thepolishing pad 10 are not particularly limited. For example, thepolishing pad 10 may be attached onto a tip end of a hand polisher, and may be used for a manual operation of polishing the surface of the polishing target having the curved surface. Moreover, thepolishing pad 10 may be used for polishing treatment by an automatic polisher as described below. -
FIG. 6 is referred to. Anautomatic polisher 1 includes: arobot arm 2; apolishing pad 10; a polishing tool 4; apressing pressure detector 5; and acontroller 7.Reference numeral 90 denotes a polishing target. The polishingtarget 90 may be, for example, a vehicle body of an automobile or the like, in which a surface is coated with resin. Therobot arm 2 has a plurality ofjoints tip end portion 23, onto which thepolishing pad 10, the polishing tool 4 and thepressing pressure detector 5 are attached, in a plurality of directions. - The polishing tool 4 is attached onto the
tip end portion 23 through thepressing pressure detector 5, and by driving means built in the polishing tool 4, rotates thepolishing pad 10 about a direction perpendicular to the polishingsurface 30, the direction being taken as a rotation axis. Thecontroller 7 controls a behavior of therobot arm 2 and the rotation of thepolishing pad 10. From a polishing agent feeding mechanism (not shown), the polishing agent is fed between the polishingpad 10 and the polishingtarget 90. Thecontroller 7 presses thepolishing pad 10 against a surface of the polishingtarget 90 by therobot arm 2, then rotates thepolishing pad 10, and thereby polishes the surface of the polishingtarget 90. - The
pressing pressure detector 5 detects pressing pressure of the polishingsurface 30 against the polishingtarget 90. Based on a detection result by thepressing pressure detector 5, thecontroller 7 may adjust such force of pressing the polishingsurface 30 against the polishingtarget 90. Thecontroller 7 may control therobot arm 2 so that the polishingsurface 30 can move across the surface of the polishingtarget 90 while constantly maintaining the pressing force of the polishingsurface 30 against the polishingtarget 90. - In a case of removing a fine surface roughness component after the polishing performed by the
polishing pad 10, secondary polishing for removing the surface roughness component may be performed. In this case, after the polishing by thepolishing pad 10 is performed, the polishing pad attached onto the polishing tool 4 is replaced, and the surface of the polishingtarget 90 is polished by using a polishing pad having lower hardness than thepolishing pad 10. - A description will be made of an example of the abrasives for use in the above-described polishing method.
- As the polishing agent, slurry can be used, which contains abrasive grains selected from: particles composed of an oxide of silicon or a metal element, such as silica, alumina, ceria, titania, zirconia, iron oxide and manganese oxide; organic particles composed of thermoplastic resin; and organic-inorganic composite particles.
- For example, for the polishing agent, it is preferable to use alumina slurry, which enables a high polishing speed and is easily available.
- As alumina, there are α-alumina, β-alumina, Υ-alumina, θ-alumina and the like, which have crystal forms different from one another, and an alumina compound called hydrated alumina is also present. From a viewpoint of the polishing speed, those containing α-alumina as amain component are more preferable as the abrasive grains.
- A mean particle diameter of the abrasive grains is preferably 0.1 μm or more, more preferably 0.3 μm or more. As the mean particle diameter is becoming larger, the polishing speed is enhanced. In a case where the mean particle diameter remains within the above-described range, it becomes easy to enhance the polishing speed to a level that is particularly suitable for practical use.
- Moreover, the mean particle diameter is preferably 10.0 μm or less, more preferably 5.0 μm or less. As the mean particle diameter is becoming smaller, dispersion stability of the polishing agent is enhanced, and a scratch is suppressed from occurring on the polishing surface.
- In such a case where the mean particle diameter remains within the above-described range, it becomes easy to enhance the dispersion stability of the polishing agent and surface accuracy of the polishing surface to levels which are particularly suitable for practical use. Note that the mean particle diameter of the abrasive grains can be measured by a pore electrical resistance method (Coulter principle) method (measuring machine: Multisizer Type-III made by Beckman Coulter, Inc.).
- A content of the abrasive grains in the polishing agent is preferably 0.1 mass % or more, more preferably 0.2 mass % or more, still more preferably 0.5 mass % or more. As the content of the abrasive grains is becoming larger, the polishing speed is enhanced. In a case where the content of the abrasive grains remains within the above-described range, it becomes easy to enhance the polishing speed to the level that is particularly suitable for practical use.
- Moreover, the content of the abrasive grains is preferably 50 mass % or less, more preferably 25 mass % or less, still more preferably 20 mass %. In a case where the content of the abrasive grains remains within the above-described range, cost of the polishing agent can be suppressed. Moreover, a surface defect can be further suppressed from occurring on the surface of the polishing target already polished by the polishing agent.
- Besides the above-described abrasive grains, the polishing agent may appropriately contain other components such as lubricating oil, an organic solvent, a surfactant, and a thickener.
- The lubricating oil may be synthetic oil, mineral oil, vegetable oil, or a combination of these.
- The organic solvent may be alcohol, ether, glycols or glycerins as well as a hydrocarbon-based solvent.
- The surfactant may be so-called anion, cation, nonion or amphoteric surfactant.
- The thickener may be a synthetic thickener, a cellulose thickener, or a natural thickener.
- Hardness of a polishing pad for use in the secondary polishing is preferably lower than the hardness of the
hard resin layer 40 of thepolishing pad 10. In terms of A hardness, for example, the hardness of the polishing pad for use in the secondary polishing is preferably less than 50 degrees, more preferably 40 degrees of less. Moreover, the hardness of the polishing pad for use in the secondary polishing is preferably 30 degrees or more. When the hardness of the polishing pad remains within such a range, it becomes possible to remove the fine surface roughness component on the surface of the polishing target. - A material of the polishing pad for use in the secondary polishing is not particularly limited, and just needs to be a material having the above-described hardness. The material of the polishing pad for use in the secondary polishing may be, for example, nonwoven fabric or suede. For example, the material of the polishing pad for use in the secondary polishing may be suede in which A hardness is 30 degrees or more to 40 degrees or less.
- The polishing pad for use in the secondary polishing may have a two-layer structure in a similar way to the
polishing pad 10. That is to say, the polishing pad for use in the secondary polishing may have a two-layer structure including: a relatively hard first layer that forms the polishing surface; and a relatively soft second layer that supports the first layer. - Hardness of the first layer is preferably lower than the hardness of the
hard resin layer 40 of thepolishing pad 10. In terms of A hardness, for example, the hardness of the first layer is preferably less than 50 degrees, more preferably 40 degrees of less. Moreover, the hardness of the first layer is preferably 30 degrees or more. - Thickness of the first layer is preferably 3.0 mm or less. Moreover, the thickness of the first layer is preferably 0.5 mm or more. When the thickness of the first layer remains within such a range, then in the case where the polishing surface is pressed against the curved surface of the polishing target, it becomes easy for the first layer to be warped along the curved surface of the polishing target, the contact area between the polishing surface and the curved surface is increased, and the polishing efficiency is enhanced.
- A material of the first layer is not particularly limited, and just needs to be a material having the above-described hardness . The material of the first layer may be, for example, nonwoven fabric or suede. For example, the material of the first layer may be suede in which A hardness is 30 degrees or more to 40 degrees or less.
- A configuration of the second layer may be similar to the configuration of the
soft resin layer 50 of thepolishing pad 10. - Grooves may also be formed on the polishing surface of the polishing pad for use in the secondary polishing in a similar way to the
polishing pad 10 according to the second embodiment. - A hard resin layer, in which a thickness is 1.5 mm, a material is a polyurethane foam body, and A hardness is 90, and a soft resin layer, in which a thickness is 30.0 mm, a material is a polyurethane foam body, and E hardness is 20, were laminated on each other to form a polishing pad, and a resin-coated surface thereof was polished. On the hard resin layer, grid-like grooves, in which a width is 2.0 mm, a pitch is 20.0 mm, and a depth is 3.0 mm, were formed by scanning a surface of the pad by a circular cutting blade while pressing the circular cutting blade, which rotates at a high speed, against the pad by a predetermined amount after forming such a two-layer structure. Moreover, alumina slurry was used as a polishing agent.
- As a result, a finish of a flat glossy surface, in which arithmetic mean waviness (Wa) is 0.05 μm or less, and filterable maximum waviness (Wcm) is 0.3 μm or less, was able to be realized.
- All the examples and conditional terms, which are described herein, are intended for instructive purposes for helping readers understand the present invention and a concept thereof given by the inventors for the progress of the technology. The present invention should be interpreted without being limited to the examples and the conditions, which are specifically described above, and to the configurations of the examples in this specification, which are related to exemplification of superiority and inferiority of the present invention. While the embodiments of the present invention have been described in detail, it should be understood that it is possible to add various changes, substitutions, and modifications to the present invention without departing from the spirit and scope of the present invention.
-
- 1 automatic polisher
- 2 robot arm
- 4 polishing tool
- 5 pressing pressure detector
- 7 controller
- 10 polishing pad
- 30 polishing surface
- 31 first groove
- 32 second groove
- 40 hard resin layer
- 50 soft resin layer
- 51 support surface
Claims (7)
1. A polishing pad comprising:
a structure including a polishing surface formed of a hard resin layer, the structure allowing the polishing surface to follow a curved surface of a polishing target.
2. The polishing pad according to claim 1 , wherein the structure allowing the polishing surface to follow the curved surface of the polishing target is a two-layer structure including: a soft resin layer that supports the hard resin layer; and the hard resin layer.
3. The polishing pad according to claim 2 , wherein a groove is formed in the polishing surface.
4. The polishing pad according to claim 3 , wherein the groove divides the hard resin layer into a plurality of regions.
5. The polishing pad according to claim 4 , wherein the groove is also formed in the soft resin layer.
6. The polishing pad according to claim 1 , wherein a groove is formed in the polishing surface.
7. The polishing pad according to claim 6 , wherein the groove divides the hard resin layer into a plurality of regions.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-172978 | 2014-08-27 | ||
JP2014172978A JP2016047566A (en) | 2014-08-27 | 2014-08-27 | Polishing pad |
PCT/JP2015/003854 WO2016031143A1 (en) | 2014-08-27 | 2015-07-30 | Polishing pad |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170252892A1 true US20170252892A1 (en) | 2017-09-07 |
Family
ID=55399064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/504,793 Abandoned US20170252892A1 (en) | 2014-08-27 | 2015-07-30 | Polishing pad |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170252892A1 (en) |
EP (1) | EP3195979A4 (en) |
JP (1) | JP2016047566A (en) |
CN (1) | CN106660190A (en) |
TW (1) | TW201628786A (en) |
WO (1) | WO2016031143A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210347007A1 (en) * | 2018-09-28 | 2021-11-11 | Fujimi Incorporated | Polishing pad and polishing method using same |
US11498182B2 (en) | 2016-02-26 | 2022-11-15 | Fujimi Incorporated | Polishing method and polishing pad |
USD1004393S1 (en) * | 2021-11-09 | 2023-11-14 | Ehwa Diamond Industrial Co., Ltd. | Grinding pad |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6089966A (en) * | 1997-11-25 | 2000-07-18 | Arai; Hatsuyuki | Surface polishing pad |
US20080064302A1 (en) * | 2006-09-11 | 2008-03-13 | Nec Electronics Corporation | Polishing apparatus, polishing pad, and polishing method |
US20140154962A1 (en) * | 2011-07-15 | 2014-06-05 | Toray Industries, Inc. | Polishing pad |
US20140378035A1 (en) * | 2011-09-15 | 2014-12-25 | Toray Industries, Inc. | Polishing pad |
US20150158141A1 (en) * | 2012-07-13 | 2015-06-11 | 3M Innovative Properties Company | Abrasive pad and method for abrading glass, ceramic, and metal materials |
US20150202732A1 (en) * | 2014-01-17 | 2015-07-23 | San Fang Chemical Industry Co., Ltd. | Polishing pad, polishing apparatus and method for manufacturing polishing pad |
US20150224622A1 (en) * | 2014-02-13 | 2015-08-13 | Kabushiki Kaisha Toshiba | Polish cloth and method of manufacturing polish cloth |
US20160089764A1 (en) * | 2014-09-25 | 2016-03-31 | San Fang Chemical Industry Co., Ltd. | Polishing pad and method for making the same |
US20160375545A1 (en) * | 2015-06-26 | 2016-12-29 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Chemical mechanical polishing pad composite polishing layer formulation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5212910A (en) * | 1991-07-09 | 1993-05-25 | Intel Corporation | Composite polishing pad for semiconductor process |
TW479285B (en) * | 1997-04-30 | 2002-03-11 | Minnesota Mining & Mfg | Method of modifying a wafer suited for semiconductor fabrication |
JP2001038589A (en) * | 1999-08-03 | 2001-02-13 | Speedfam Co Ltd | Polishing device for outer peripheral part of work |
JP2002283220A (en) * | 2001-03-23 | 2002-10-03 | Nippon Electric Glass Co Ltd | Polishing device for glass articles |
TWI228768B (en) * | 2002-08-08 | 2005-03-01 | Jsr Corp | Processing method of polishing pad for semiconductor wafer and polishing pad for semiconductor wafer |
JP2005131720A (en) * | 2003-10-29 | 2005-05-26 | Toray Ind Inc | Method of manufacturing polishing pad |
US7169029B2 (en) * | 2004-12-16 | 2007-01-30 | 3M Innovative Properties Company | Resilient structured sanding article |
JP5292958B2 (en) * | 2007-07-18 | 2013-09-18 | 東レ株式会社 | Polishing pad |
-
2014
- 2014-08-27 JP JP2014172978A patent/JP2016047566A/en active Pending
-
2015
- 2015-07-30 WO PCT/JP2015/003854 patent/WO2016031143A1/en active Application Filing
- 2015-07-30 US US15/504,793 patent/US20170252892A1/en not_active Abandoned
- 2015-07-30 CN CN201580045399.8A patent/CN106660190A/en active Pending
- 2015-07-30 EP EP15837016.3A patent/EP3195979A4/en not_active Withdrawn
- 2015-08-20 TW TW104127178A patent/TW201628786A/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6089966A (en) * | 1997-11-25 | 2000-07-18 | Arai; Hatsuyuki | Surface polishing pad |
US20080064302A1 (en) * | 2006-09-11 | 2008-03-13 | Nec Electronics Corporation | Polishing apparatus, polishing pad, and polishing method |
US20140154962A1 (en) * | 2011-07-15 | 2014-06-05 | Toray Industries, Inc. | Polishing pad |
US20140378035A1 (en) * | 2011-09-15 | 2014-12-25 | Toray Industries, Inc. | Polishing pad |
US20150158141A1 (en) * | 2012-07-13 | 2015-06-11 | 3M Innovative Properties Company | Abrasive pad and method for abrading glass, ceramic, and metal materials |
US20150202732A1 (en) * | 2014-01-17 | 2015-07-23 | San Fang Chemical Industry Co., Ltd. | Polishing pad, polishing apparatus and method for manufacturing polishing pad |
US20150224622A1 (en) * | 2014-02-13 | 2015-08-13 | Kabushiki Kaisha Toshiba | Polish cloth and method of manufacturing polish cloth |
US20160089764A1 (en) * | 2014-09-25 | 2016-03-31 | San Fang Chemical Industry Co., Ltd. | Polishing pad and method for making the same |
US20160375545A1 (en) * | 2015-06-26 | 2016-12-29 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Chemical mechanical polishing pad composite polishing layer formulation |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11498182B2 (en) | 2016-02-26 | 2022-11-15 | Fujimi Incorporated | Polishing method and polishing pad |
US20210347007A1 (en) * | 2018-09-28 | 2021-11-11 | Fujimi Incorporated | Polishing pad and polishing method using same |
USD1004393S1 (en) * | 2021-11-09 | 2023-11-14 | Ehwa Diamond Industrial Co., Ltd. | Grinding pad |
Also Published As
Publication number | Publication date |
---|---|
EP3195979A1 (en) | 2017-07-26 |
JP2016047566A (en) | 2016-04-07 |
WO2016031143A1 (en) | 2016-03-03 |
CN106660190A (en) | 2017-05-10 |
EP3195979A4 (en) | 2017-09-20 |
TW201628786A (en) | 2016-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10759075B2 (en) | Blade sharpening system for a log saw machine | |
US10434622B2 (en) | Polishing tool and polishing method for member having curved surface shape | |
US11498182B2 (en) | Polishing method and polishing pad | |
US9089943B2 (en) | Composite pads for buffing and polishing painted vehicle body surfaces and other applications | |
CN103084957B (en) | Glass plate and manufacture method, the Ginding process of glass plate end edge portion and device | |
CN102049723B (en) | Method for polishing semiconductor wafer | |
JP6100541B2 (en) | Polishing method | |
JPH06315864A (en) | Polishing apparatus | |
JP6700855B2 (en) | Polishing method | |
US20170252892A1 (en) | Polishing pad | |
US9149906B2 (en) | Apparatus for CMP pad conditioning | |
JP7420728B2 (en) | Polishing pad and polishing method using it | |
JP6693768B2 (en) | Polishing method | |
CN115551676A (en) | Polishing device for wafer outer periphery | |
CN102626896A (en) | Silicon chip polishing method for cutting polishing cloth of fixed plate edge | |
WO2019058871A1 (en) | Polishing head and method for manufacturing polishing head | |
WO2022181787A1 (en) | Polishing pad, and polishing method | |
JP2005342837A (en) | Grinding device and grinding method | |
TW201634184A (en) | Retaining ring for chemical-mechanical polishing process | |
CN104128879A (en) | Technological method for thinning and polishing hard materials | |
JP6021577B2 (en) | Polishing method | |
KR101162759B1 (en) | Dressing method for pad conditioner and pad conditioner dressed thereby | |
JP2008093779A (en) | Smoothing tool and smoothing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJIMI INCORPORATED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KATAYAMA, KOJI;OHASHI, KEIGO;YAMADA, EIICHI;AND OTHERS;REEL/FRAME:041286/0919 Effective date: 20170110 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |