WO2017145653A1 - インホイールモータ駆動装置 - Google Patents
インホイールモータ駆動装置 Download PDFInfo
- Publication number
- WO2017145653A1 WO2017145653A1 PCT/JP2017/003176 JP2017003176W WO2017145653A1 WO 2017145653 A1 WO2017145653 A1 WO 2017145653A1 JP 2017003176 W JP2017003176 W JP 2017003176W WO 2017145653 A1 WO2017145653 A1 WO 2017145653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- shaft
- output shaft
- bearing
- wheel hub
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/18—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/32—Balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/06—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to an in-wheel motor drive device that is disposed inside a wheel and drives the wheel, and more particularly to a rolling bearing that rotatably supports an output shaft of a speed reduction unit.
- Patent Document 1 a wheel hub bearing described in Japanese Patent No. 5676142 (Patent Document 1) includes a cylindrical outer ring type wheel hub that is coupled to a wheel of a rear wheel, a spindle that is passed through a center hole of the wheel hub, and a wheel. And a plurality of rolling elements installed in an annular gap between the hub and the spindle.
- the final gear is provided on the outer periphery of the wheel hub of Patent Document 1, and this final gear meshes with the pinion of the speed reducer.
- the reduction gear of Patent Document 1 includes a motor gear coupled to a central rotation shaft of a motor and a plurality of pinions, and transmits the rotation of the motor to a final gear attached to a wheel hub.
- the present inventor has found that there is a further improvement in the conventional wheel hub bearing.
- the load from the wheel hub bearing is added to the gear in addition to the load from the original tooth surface.
- the gearhead support bearings such as vibration of the speed reducer due to the contact with the tooth surface, damage to the tooth surface, and misalignment of each gear shaft, etc. This is a cause that the in-wheel motor's quietness and durability deteriorate.
- the final gear that transmits a large torque has no margin for the transmission of load from the outside, and it is directly combined with the wheel hub of the wheel hub bearing, which becomes the starting point of displacement transmission from the wheel hub bearing to the reducer. It is desirable to stably support the displacement transmission.
- the present invention provides a structure that stably supports the final gear of the speed reducer and has a necessary bearing life in the speed reducer that decelerates the rotation of the motor and transmits it to the wheel hub. With the goal.
- an in-wheel motor drive device includes a motor unit for driving wheels, a wheel hub bearing unit for rotatably supporting a wheel hub, and a motor unit that decelerates the rotation and transmits it to the wheel hub bearing unit. And a speed reducer.
- the reduction unit includes an input shaft coupled to the motor rotation shaft of the motor unit, an input gear coupled to the input shaft, an output shaft coupled to the wheel hub, an output gear coupled to the output shaft, and an output that rotatably supports the output shaft.
- a shaft transmission bearing is included, and a drive transmission path for decelerating the rotation of the input gear and transmitting it to the output gear is configured.
- the initial radial internal clearance of the output shaft rolling bearing is 20 to 60 ⁇ m.
- a larger torque than the other pinions acts on the final gear coupled to the wheel hub of the wheel hub bearing among the plurality of pinions and gears incorporated in the speed reducer.
- the present inventor has conceived that the final gear coupled to the wheel hub portion of the wheel hub bearing is rotatably supported by a rolling bearing different from the wheel hub bearing.
- the speed reducer in addition to the wheel hub bearing portion, includes the output shaft coupled to the wheel hub (rotating member) of the wheel hub bearing, and the output shaft rolling bearing that rotatably supports the output shaft.
- the output shaft can be stably supported. Therefore, even if an external force is applied from the wheel to the wheel hub of the wheel hub bearing, the output shaft rolling bearing suppresses the displacement of the output shaft. It is possible to prevent the shaft support bearing from being damaged early due to the occurrence of the above.
- the output shaft rolling bearing that rotatably supports the output shaft relates to the initial radial internal clearance of the output shaft rolling bearing of 20 to 60 ⁇ m.
- the initial radial internal clearance is set to 60 ⁇ m or less, so that generation of sound and vibration due to an excessive positive clearance can be suppressed.
- the initial radial internal clearance of the output shaft rolling bearing is 35 to 50 ⁇ m.
- the initial radial internal clearance of a rolling bearing refers to the radial internal clearance (diameter clearance) of the rolling bearing alone before assembling other members at room temperature.
- the output shaft rolling bearing that rotatably supports the output shaft is, for example, a ball bearing or a cylindrical roller bearing.
- the output shaft rolling bearing is a radial rolling bearing and not an angular bearing.
- the member constituting the inner raceway surface and / or the member constituting the outer raceway surface of the output shaft rolling bearing is made of carbonitrided bearing steel or carbonitrided carburized steel, and the surface layer.
- the retained austenite is 25 to 50%, and the retained austenite in the core is 15 to 20%. According to this embodiment, it is possible to improve the rolling fatigue life of the output shaft rolling bearing and to suppress the generation and development of cracks due to the retained austenite, thereby improving the durability of the in-wheel motor drive device ( (Long life) can be achieved. Further, in order to ensure the same life, it is possible to reduce the thickness of the bearing ring as compared to the case where the bearing ring not having the above configuration is employed.
- the in-wheel motor drive device can be reduced in size and weight through the reduction in the radial direction of the output shaft rolling bearing. Since the internal space of the wheel is narrow, there is no problem of the arrangement space when further providing a rolling bearing that rotatably supports the output shaft.
- the member which comprises the inner raceway surface of an output shaft rolling bearing means the shaft body which abbreviate
- the members constituting the outer raceway surface of the output shaft rolling bearing refer to the outer raceway and the output shaft body from which the outer raceway is omitted.
- the surface layer is a region where nitriding is performed to a depth that is affected by the surface pressure of the rolling elements on the raceway surface, and the core portion is a region where a nitrided layer is not formed deeper than the surface layer.
- the carbonitrided bearing steel or carburized steel refers to a material obtained by subjecting a bearing steel as a raw material to carbonitriding, or a material obtained by subjecting a carburized steel as a raw material to carbonitriding. Unlike mere bearing steel or carburized steel, the carbonitrided bearing steel or carburized steel according to this embodiment has a nitrided layer. Next, by performing heat treatment, the retained austenite of the surface layer is adjusted to 25 to 50%.
- the retained austenite of the surface layer By setting the retained austenite of the surface layer to 25% or more, the required rolling fatigue life can be satisfied, and a design life correction factor can be secured. By setting the retained austenite of the surface layer to 50% or less, an excessive aging change can be prevented.
- the composition of portions other than austenite is not particularly limited.
- the bearing steel contains 0.35 wt% or more of Si and 0.50 wt% or more of Mn.
- Si silicon
- Mn manganese
- the rolling element of the output shaft rolling bearing is made of carbonitrided bearing steel, and the surface layer has a retained austenite of 20 to 35%. According to this embodiment, the rolling fatigue life of the output shaft rolling bearing can be improved and the occurrence of cracks due to retained austenite and the progress thereof can be suppressed. Service life).
- the structure of the speed reduction part of the present invention is not particularly limited.
- the speed reduction unit includes a parallel shaft gear reducer, the input shaft and the output shaft of the speed reduction unit extend in parallel with each other, and the motor unit is arranged offset from the axis of the wheel hub bearing unit. According to this embodiment, the arrangement space of the speed reduction part can be ensured in the narrow internal space of the wheel.
- the speed reducer may be only a parallel shaft gear reducer, or may be a combination of a parallel shaft gear reducer and a planetary gear set.
- the wheel hub bearing portion includes an inner ring, an outer ring, and a plurality of rolling elements.
- the inner ring may be a substantially solid shaft.
- the wheel hub bearing portion may be an outer ring rotating and inner ring fixing, or an outer ring fixing and inner ring rotating.
- the wheel hub is an outer ring
- the wheel hub bearing portion includes an outer ring, a fixed shaft that passes through the center hole of the outer ring and rotatably supports the outer ring, and a space between the outer ring and the fixed shaft.
- a plurality of rolling elements arranged in the annular space are included, and the speed reduction unit includes a cylindrical output shaft coupled to the outer ring.
- the output shaft rolling bearing may support the outer peripheral surface of the cylindrical output shaft, or may support the inner peripheral surface.
- the wheel hub bearing portion includes a wheel hub, a fixed outer ring covering the outer periphery of the wheel hub, and a plurality of rolling elements arranged in an annular space between the wheel hub and the fixed outer ring.
- the output shaft is formed integrally with the output gear.
- the output shaft is a separate member from the output gear, and the output gear is connected and fixed to the output shaft.
- the output gear which is the final gear of the speed reduction unit. Therefore, even if an external force is applied from the wheel to the outer ring, the displacement of the output shaft is suppressed, vibration due to the contact of the gear of the reduction gear, damage to the tooth surface, and early failure of the shaft support bearing due to occurrence of misalignment, etc. And the quietness and durability of the in-wheel motor drive device are improved.
- a rolling bearing that rotatably supports an output gear it is possible to improve the rolling fatigue life of the rolling bearing and to suppress the generation and development of cracks, thereby improving the durability of the in-wheel motor drive device. (Long life) can be achieved.
- FIG. 1 is a developed cross-sectional view showing the in-wheel motor drive device according to the first embodiment of the present invention cut and developed on a predetermined plane.
- FIG. 2 is a rear view showing the inside of the in-wheel motor drive device of the first embodiment together with the wheels, and the motor unit 21 and the rear portion 43b of the main body casing 43 are removed from the in-wheel motor drive device 10 in FIG.
- the state which looked at the inside of the in-wheel motor drive device 10 from the paper surface right side of FIG. 1 is represented.
- 1 includes a plane including the axis M and the axis Nf, a plane including the axis Nf and the axis Nl, and a plane including the axis Nl and the axis O shown in FIG. It is a connected development plane.
- the in-wheel motor drive device 10 includes a wheel hub bearing portion 11, a motor portion 21 that drives the wheel wheel W (FIG. 2) of the wheel, and a wheel hub bearing portion that decelerates the rotation of the motor portion.
- 11 is disposed in a wheel housing (not shown) of the electric vehicle.
- the wheel hub bearing portion 11 is connected to the center of the wheel wheel W, and the axis of the wheel wheel W coincides with the axis O of the wheel hub bearing portion 11.
- the motor unit 21 and the speed reduction unit 31 are not arranged coaxially with the axis O of the wheel hub bearing unit 11 but are offset from the axis O of the wheel hub bearing unit 11 as shown in FIG.
- the wheel wheel W is well known, and a tire T is fitted on the outer periphery of the wheel wheel W, and is disposed on the front, rear, left and right sides of the vehicle body.
- a vehicle body constitutes an electric vehicle together with the wheels.
- the in-wheel motor drive device 10 can drive an electric vehicle at a speed of 0 to 180 km / h on a public road.
- the wheel hub bearing portion 11 includes an outer ring 12 as a wheel hub coupled to the wheel wheel W, an inner fixing member 13 passed through a center hole of the outer ring 12, an outer ring 12 and an inner fixing member 13.
- a plurality of rolling elements 14 disposed in the annular gap are configured to constitute an axle.
- the inner fixing member 13 includes a non-rotating fixing shaft 15, a pair of inner races 16, and a retaining nut 17.
- the fixed shaft 15 has a root portion 15r having a larger diameter than the tip portion 15e.
- the inner race 16 is fitted to the outer periphery of the fixed shaft 15 between the root portion 15r and the tip portion 15e.
- the retaining nut 17 is screwed into the tip portion 15e of the fixed shaft 15, and the inner race 16 is fixed between the retaining nut 17 and the root portion 15r.
- the fixed shaft 15 extends along the axis O, and the tip portion 15e of the fixed shaft 15 is directed outward in the vehicle width direction.
- the root portion 15 r of the fixed shaft 15 protrudes inward in the vehicle width O direction from the outer ring 12 and faces the back surface portion 43 b of the main body casing 43.
- the root portion 15r is attached and fixed to the back surface portion 43b inside the main body casing 43 by a bolt 13c. Further, the root portion 15r is connected to the carrier 18 outside the main body casing 43 by a bolt 13b.
- the rolling elements 14 are arranged in double rows with a separation in the direction of the axis O.
- the outer peripheral surface of one inner race 16 in the axis O direction constitutes the inner raceway surface of the rolling elements 14 in the first row, and faces one inner peripheral surface of the outer ring 12 in the axis O direction.
- the outer peripheral surface of the other inner race 16 in the direction of the axis O constitutes the inner raceway surface of the rolling elements 14 in the second row, and faces the other inner peripheral surface of the outer ring 12 in the direction of the axis O.
- the vehicle width direction outer side (outboard side) is also referred to as one axial direction
- the vehicle width direction inner side (inboard side) is also referred to as the other axial direction.
- the left-right direction in FIG. 1 corresponds to the vehicle width direction.
- the inner peripheral surface of the outer ring 12 constitutes the outer raceway surface of the rolling element 14.
- a flange portion 12f is formed at one end of the outer ring 12 in the axis O direction.
- the flange portion 12f constitutes a coupling seat portion for coupling coaxially with a brake rotor (not shown) and a spoke portion Ws (FIG. 2) of the wheel W.
- the outer ring 12 is coupled to the wheel wheel W at the flange portion 12f and rotates integrally with the wheel wheel W.
- the motor unit 21 has a motor rotating shaft 22, a rotor 23, a stator 24, a motor casing 25, and a motor casing cover 25v, and sequentially from the axis M of the motor unit 21 to the outer diameter side in this order. Be placed.
- the motor unit 21 is a radial gap motor of an inner rotor and outer stator type, but may be of other types.
- the motor unit 21 may be an axial gap motor.
- the axis M that is the rotation center of the motor rotation shaft 22 and the rotor 23 extends in parallel with the axis O of the wheel hub bearing portion 11. That is, the motor unit 21 is disposed offset from the axis O of the wheel hub bearing unit 11. Most of the axial positions of the motor unit 21 excluding the tip of the motor rotating shaft 22 do not overlap with the axial positions of the inner fixing member 13 as shown in FIG.
- the motor casing 25 has a substantially cylindrical shape.
- the motor casing 25 is coupled to the back surface portion 43b of the main body casing 43 at one end in the axis M direction, and is sealed with a bowl-shaped motor casing cover 25v at the other end in the axis M direction. Both end portions of the motor rotating shaft 22 are rotatably supported by the motor casing 25 via rolling bearings 27 and 28.
- the motor unit 21 drives the outer ring 12.
- the speed reduction unit 31 includes an input shaft 32, an input gear 33, an intermediate gear 34, an intermediate shaft 35, an intermediate gear 36, an intermediate gear 37, an intermediate shaft 38, an intermediate gear 39, an output gear 40, an output shaft 41, and a main body casing 43.
- the input shaft 32 is a cylindrical body having a larger diameter than the distal end portion 22 e of the motor rotation shaft 22, and extends along the axis M of the motor portion 21.
- the distal end portion 22 e is received in the center hole at the other end portion in the axis M direction of the input shaft 32, and the input shaft 32 is coupled coaxially with the motor rotation shaft 22. Both ends of the input shaft 32 are supported by the main body casing 43 via rolling bearings 42a and 42b.
- the input gear 33 is an external gear having a smaller diameter than the motor unit 21 and is coupled to the input shaft 32 coaxially. Specifically, the input gear 33 is integrally formed on the outer periphery of the central portion of the input shaft 32 in the axis M direction.
- the output shaft 41 is a cylindrical body having a diameter larger than that of the outer ring 12 and extends along the axis O of the wheel hub bearing portion 11.
- the other end of the outer ring 12 in the direction of the axis O is received in the center hole of one end of the output shaft 41 in the direction of the axis O, and the output shaft 41 is coupled to the outer ring 12 coaxially.
- a spline groove 41s is formed on the inner peripheral surface of the output shaft 41
- a spline groove 12s is formed on the outer peripheral surface of the other end of the outer ring 12 in the axis O direction
- the spline grooves 41s and 12s are spline-fitted.
- Such spline fitting connects the output shaft 41 and the outer ring 12 so that they cannot rotate relative to each other to realize torque transmission between the output shaft 41 and the outer ring 12 and allows relative movement in the direction perpendicular to the axis O of both.
- the one end of the output shaft 41 in the axis O direction is supported by the main body casing 43 via a rolling bearing 44 (first output shaft rolling bearing).
- the other end of the output shaft 41 in the direction of the axis O is supported by the root portion 15r of the fixed shaft 15 via a rolling bearing 46 (second output shaft rolling bearing).
- the output gear 40 is an external gear and is coupled to the output shaft 41 coaxially.
- the output gear 40 is integrally formed on the outer periphery of the other end of the output shaft 41 in the axis O direction.
- the two intermediate shafts 35 and 38 extend in parallel with the input shaft 32 and the output shaft 41. That is, the speed reduction unit 31 is a four-axis parallel shaft gear reducer, and the axis O of the output shaft 41, the axis Nf of the intermediate shaft 35, the axis Nl of the intermediate shaft 38, and the axis M of the input shaft 32 are parallel to each other. In other words, it extends in the vehicle width direction.
- the input shaft 32 is arranged in front of the vehicle relative to the output shaft 41 as shown in FIG.
- the intermediate shaft 35 is disposed in front of the vehicle with respect to the input shaft 32.
- the intermediate shaft 38 is arranged in front of the output shaft 41 and in the rear of the input shaft 32.
- the input shaft 32, the intermediate shaft 35, the intermediate shaft 38, and the output shaft 41 may be arranged in this order in the vehicle front-rear direction. This order is also the order in which the driving force is transmitted.
- the axis M of the input shaft 32 is arranged above the axis O of the output shaft 41 as shown in FIG.
- the intermediate shaft 35 is disposed above the input shaft 32.
- the intermediate shaft 38 is disposed above the intermediate shaft 35.
- the plurality of intermediate shafts 35 and 38 need only be disposed above the input shaft 32 and the output shaft 41, and the intermediate shaft 35 may be disposed above the intermediate shaft 38 as a modification (not shown).
- the output shaft 41 may be disposed above the input shaft 32.
- the intermediate gear 34 and the intermediate gear 36 are external gears, and are coupled coaxially with the central portion of the intermediate shaft 35 in the axis Nf direction as shown in FIG. Both ends of the intermediate shaft 35 are supported by the main body casing 43 via rolling bearings 45a and 45b.
- the intermediate gear 37 and the intermediate gear 39 are external gears, and are coupled coaxially with the central portion of the intermediate shaft 38 in the direction of the axis Nl. Both ends of the intermediate shaft 38 are supported by the main body casing 43 via rolling bearings 48a and 48b.
- the main body casing 43 forms an outer shell of the speed reduction part 31 and the wheel hub bearing part 11, is formed in a cylindrical shape, and surrounds axes O, Nf, Nl and M extending in parallel to each other as shown in FIG.
- the main body casing 43 is accommodated in the inner space of the wheel wheel W.
- the inner space of the wheel W is defined by the inner peripheral surface of the rim portion Wr and the spoke portion Ws that is coupled to one end of the rim portion Wr in the axis O direction.
- One area in the axial direction of the wheel hub bearing portion 11, the speed reduction portion 31, and the motor portion 21 is accommodated in the inner space region of the wheel wheel W. Further, the other axial region of the motor unit 21 protrudes from the wheel W to the other axial direction.
- the wheel wheel W accommodates most of the in-wheel motor drive device 10.
- the main body casing 43 protrudes downward at a position away from the axis O of the output gear 40 in the longitudinal direction of the vehicle, specifically, directly below the axis M of the input gear 33.
- This protruding portion forms an oil tank 47.
- a space S is secured between a portion 43c of the main body casing 43 directly below the axis O and a lower portion of the rim portion Wr.
- a suspension member 71 extending in the vehicle width direction is disposed in the space S, and the vehicle width direction outer end 72 of the suspension member 71 and the inner fixing member 13 are connected to each other via the ball joint 60 so as to be freely directional.
- the main body casing 43 has a cylindrical shape, and as shown in FIG. 1, the input shaft 32, the input gear 33, the intermediate gear 34, the intermediate shaft 35, the intermediate gear 36, the intermediate gear 37, the intermediate shaft 38, the intermediate gear 39, and the output gear. 40 and the output shaft 41 are accommodated, and the other end of the wheel hub bearing portion 11 in the axis O direction is covered. Lubricating oil is enclosed in the main body casing 43.
- the input gear 33, the intermediate gear 34, the intermediate gear 36, the intermediate gear 37, the intermediate gear 39, and the output gear 40 are helical gears.
- the main body casing 43 has a substantially flat front portion 43 f that covers one side in the axial direction of the cylindrical portion of the speed reduction portion 31 and a substantially flat surface that covers the other side in the axial direction of the cylindrical portion of the speed reduction portion 31. It includes a back portion 43b.
- the back surface portion 43 b is coupled to the motor casing 25. Further, the back surface portion 43 b is coupled to a suspension member (not shown) such as an arm or a strut via the carrier 18. Thereby, the in-wheel motor drive device 10 is supported by the suspension member.
- An opening 43p through which the outer ring 12 passes is formed in the front portion 43f.
- the opening 43p is provided with a sealing material 43s for sealing an annular gap with the outer ring 12.
- the outer ring 12 serving as a rotating body is accommodated in the main body casing 43 except for one end portion in the axis O direction.
- the small-diameter input gear 33 and the large-diameter intermediate gear 34 are arranged on one side in the axial direction of the speed reduction unit 31 and mesh with each other.
- the small-diameter intermediate gear 36 and the large-diameter intermediate gear 37 are arranged on the other side in the axial direction of the speed reduction portion 31 and mesh with each other.
- the small-diameter intermediate gear 39 and the large-diameter output gear 40 are disposed on one side in the axial direction of the speed reduction unit 31 and mesh with each other.
- the deceleration part 31 ensures a sufficient reduction ratio.
- the intermediate gear 34 is a first intermediate gear positioned on the input side of the drive transmission path.
- the intermediate gear 39 is a final intermediate gear located on the output side of the drive transmission path. In FIG. 2, the individual teeth of the gear are not represented, and the gear is represented by a tip circle.
- the output shaft 41, the intermediate shaft 38, and the input shaft 32 are arranged at intervals in the vehicle front-rear direction in this order. Further, the intermediate shaft 35 and the intermediate shaft 38 are disposed above the input shaft 32 and the output shaft 41.
- the intermediate shaft can be disposed above the outer ring 12 that serves as a wheel hub, and a space for the oil tank 47 can be secured below the outer ring 12, or the space S can be formed directly below the outer ring 12. Can be secured.
- the turning shaft extending in the vertical direction can be provided so as to intersect the space S, and the wheel wheel W and the in-wheel motor drive device 10 can be suitably turned around the turning shaft.
- the axis M of the motor portion 21 is arranged offset from the axis O of the wheel hub bearing portion in the vehicle front-rear direction, and the axis Nf of the intermediate shaft 35 is the wheel hub bearing.
- the axis Nl of the intermediate shaft 38 is offset upward from the axis O of the wheel hub bearing part.
- the input shaft 32 and the output shaft 41 extend in the vehicle width direction, and as shown in FIG. 2, the input gear 33 and the output gear 40 are set to stand up and down.
- the lower edge 40b of the output gear 40 is disposed below the lower edge 33b of the input gear 33.
- the plurality of intermediate shafts 35, 38 are arranged adjacent to each other above the input shaft 32 and are supplied with driving torque from the input shaft 32.
- a final intermediate shaft 38 that is disposed adjacent to the output shaft 41 and supplies driving torque to the output shaft 41, and includes the input shaft 32, the first intermediate shaft 35, the final intermediate shaft 38, and the output shaft 41.
- the reference lines sequentially connecting the centers of 41 (axis O) are arranged so as to draw an inverted U-shape.
- the outer ring 12 that becomes a wheel hub is a cylindrical body, and the wheel hub bearing portion 11 is disposed in the center hole of the outer ring 12 to rotatably support the outer ring 12.
- the fixed shaft 15 is further included.
- the output gear 40 can be coaxially coupled to the outer diameter side of the outer ring 12.
- the driving force can be transmitted to the outer ring 12 from the intermediate shaft 38 arranged to be offset with respect to the outer ring 12.
- the main body casing 43 further accommodates a pump shaft 51, rolling bearings 52a and 52b, a pump gear 53, and an oil pump 54 as shown in FIG.
- the axis P of the pump shaft 51 extends in parallel with the axis O of the output shaft 41.
- the pump shaft 51 is disposed away from the output shaft 41 in the vehicle front-rear direction, is supported rotatably at both ends in the axis P direction via rolling bearings 52a and 52b, and is coaxial with the pump gear 53 at the center in the axis P direction.
- the pump gear 53 meshes with the output gear 40.
- the oil pump 54 is disposed further on the other side in the axis P direction than the rolling bearing 52 b and is provided on the other end in the axis P direction of the pump shaft 51.
- the oil pump 54 sucks lubricating oil from the oil tank 47 and discharges the sucked lubricating oil to the motor unit 21 and the speed reducing unit 31. Thereby, the motor part 21 and the deceleration part 31 are lubricated.
- the pump shaft 51 of the present embodiment is disposed below the input shaft 32, and the oil tank 47 is disposed below the pump shaft 51.
- the oil pump 54 (FIG. 1) is disposed substantially coaxially with the pump shaft 51 and pumps the lubricating oil stored in the oil tank 47 directly above the oil tank 47.
- the pump shaft 51 and the oil tank 47 are disposed in front of the output shaft 41 in the vehicle. When the wheel is driven by the in-wheel motor drive device 10 and the vehicle travels, the oil tank 47 receives traveling wind from the front of the vehicle and is cooled by air.
- connection structure of the main body casing 43 and the inner fixing member 13 will be described.
- the inner fixing member 13 is cantilevered so that one end in the axial direction becomes a free end and the other end in the axial direction becomes a fixed end.
- the other end surface 15n in the axis O direction faces one wall surface 43bm in the axis O direction of the back surface portion 43b.
- the base portion 15r of the fixed shaft 15 is provided with a protruding portion 15p that protrudes in the outer diameter direction. The protruding portion 15p is fixed to the one wall surface 43bm in the axis O direction of the back surface portion 43b.
- the one wall surface 43 bm in the axis O direction refers to a wall surface that faces the outside in the vehicle width direction among the back surface portion 43 b that becomes the wall portion of the main body casing 43, and is an inner wall surface of the main body casing 43.
- the protruding portion 15p is fixed to the back surface portion 43b by a bolt 13c.
- a female screw hole 43t directed in one axial direction is formed in one wall surface 43bm in the axial O direction of the back surface portion 43b.
- the bolt 13c extends parallel to the axis O, has a head portion 13cd on one side in the axis O direction, has a shaft portion 13ct on the other side in the axis O direction, and the shaft portion 13ct penetrates the protruding portion 15p and is screwed into the female screw hole 43t. Match.
- FIG. 3 is a cross-sectional view showing a connection structure between the in-wheel motor drive device 10 and the suspension device 70, and shows a state seen in the vehicle front-rear direction.
- the spoke portion Ws of the wheel wheel W and the brake rotor BD are attached and fixed to the flange portion 12 f of the outer ring 12.
- a caliper (not shown) is attached and fixed to the vehicle rear portion of the main body casing 43.
- the caliper brakes the brake rotor BD.
- the brake rotor BD disposed in the inner space of the wheel W is omitted in the drawings excluding FIG.
- the outer ring 12 is disposed on the outer side in the vehicle width direction when viewed from the wheel center of the wheel wheel W (the center from one end to the other end of the wheel wheel W on the axis O).
- the suspension device 70 is a strut suspension device and includes two suspension members 71 and 76.
- the suspension member 76 is a strut extending in the vertical direction, and includes a shock absorber 76s and can be expanded and contracted in the vertical direction.
- a coil spring (not shown) is coaxially disposed on the outer periphery of the upper end region 77 of the suspension member 76 to relieve the vertical axial force acting on the suspension member 76.
- the upper end of the suspension member 76 supports a vehicle body side member (not shown).
- the suspension member 71 is a lower arm (suspension arm) that is disposed below the suspension member 76 and extends in the vehicle width direction.
- the end portions of the suspension member 71 constitute a vehicle width direction outer end 72 and a vehicle width direction inner end 73.
- the suspension member 71 is connected to the in-wheel motor drive device 10 via the ball joint 60 at the outer end 72 in the vehicle width direction.
- the suspension member 71 is connected to a vehicle body side member (not shown) at an inner end 73 in the vehicle width direction.
- the suspension member 71 can swing in the vertical direction with the vehicle width direction inner end 73 as a base end and the vehicle width direction outer end 72 as a free end.
- the vehicle body side member refers to a member that is attached to the vehicle body side as viewed from a member to be described.
- the ball joint 60 includes a ball stud 61 and a socket 62.
- the ball stud 61 extends in the vertical direction, and has a ball portion 61b formed at the upper end and a stud portion 61s formed at the lower end.
- the socket 62 is provided in the inner side fixing member 13, and accommodates the ball
- the stud portion 61s penetrates the vehicle width direction outer end 72 in the vertical direction.
- a male screw is formed on the outer periphery of the lower end of the stud portion 61s, and the stud portion 61s is attached and fixed to the suspension member 71 by screwing a nut 72n from below.
- the carrier 18 is coupled to the fixed shaft 15 and the back surface portion 43b by bolts 13b.
- a protruding portion 15 p is formed at the base portion 15 r of the fixed shaft 15.
- a female screw hole 15t is formed in the protruding portion 15p.
- the bolt 13b is inserted into the through hole of the carrier 18 and the through hole of the intermediate member 19 from the other in the axis O direction to the other, and the shaft portion of the bolt 13b is screwed into the female screw hole 15t.
- An intermediate member 19 is interposed between the protruding portion 15p and the carrier 18.
- the intermediate member 19 is fitted into an opening 43q formed in the back surface portion 43b.
- a sealing material 49 is provided on the entire circumference of the intermediate member 19. The sealing material 49 seals the annular gap between the opening 43q and the intermediate member 19.
- the fixed shaft 15 is arranged inside the main body casing 43 and the carrier 18 is arranged outside the main body casing 43 with the back surface portion 43b which is the wall portion of the main body casing 43 as a boundary.
- the carrier 18 has an upper arm portion 18a extending upward and a lower arm portion 18b extending downward as shown in FIG.
- the upper arm portion 18a protrudes upward beyond the wheel hub bearing portion 11, and is attached and fixed to the lower end portion 76b of the suspension member 76 (strut) by a bolt 78 at the tip portion.
- the lower arm portion 18b protrudes downward beyond the wheel hub bearing portion 11, and has a socket 62 of the ball joint 60 at the tip portion.
- the lower arm portion 18b changes its direction at the tip portion and extends in parallel with the axis O, and wraps directly under the wheel hub bearing portion 11. For this reason, the position of the socket 62 in the direction of the axis O overlaps the position of the fixed shaft 15 in the direction of the axis O.
- the ball portion 61b is allowed to rotate in a free direction as a connection point between the in-wheel motor drive device 10 and the suspension device 70.
- the straight line extending in the vertical direction through the upper end of the suspension member 76 (strut) and the ball portion 61b constitutes the wheel wheel W and the steered shaft K of the in-wheel motor drive device 10.
- the rolling bearing 44 rotatably supports the outer peripheral surface of the end of the output shaft 41 as a first output shaft bearing.
- the rolling bearing 46 rotatably supports the inner peripheral surface of the remaining end portion of the output shaft 41 positioned on the opposite side to the rolling bearing 44 as the second output shaft bearing.
- a first annular step 41t is formed on the outer periphery of one end of the output shaft 41 in the axial direction adjacent to the side surface of the output gear 40 so that the diameter near the center in the axial direction has a large diameter.
- the first rolling bearing 44 is in contact with the first annular step 41t, and the position in the axis O direction is defined.
- the first rolling bearing 44 can be fixed so as not to be displaced in the direction of the axis O.
- a second annular step 41u is formed on the inner periphery of the other end portion of the output shaft 41 in the axis O direction so that the diameter near the center in the axis direction becomes a small diameter.
- the second rolling bearing 46 is in contact with the second annular step 41u and has a position defined in the direction of the axis O. As a result, the second rolling bearing 46 can be fixed so as not to be displaced in the direction of the axis O.
- the output gear 40 is a helical gear
- the tooth contact with the intermediate gear 39 is improved, and an axial force acts on the output shaft 41.
- the axial force acting on the helical gear can be received by the first and second rolling bearings 44 and 46 that are fixed so as not to be displaced in the direction of the axis O.
- the second rolling bearing 46 is provided between the inner peripheral surface of the output shaft 41 and the outer peripheral surface of the fixed shaft 15. As a result, the output shaft 41 can be supported by the fixed shaft 15 that is stronger than the main body casing 43.
- the outer ring 12 is arranged on one side in the axis O direction, and the output shaft 41 is arranged on the other side in the axis O direction.
- the outer ring 12 and the output shaft 41 are coupled to each other so that the inner peripheral surface at one end portion in the axis O direction of the output shaft 41 covers the outer peripheral surface at the other end portion in the axis O direction of the outer ring 12.
- the first rolling bearing 44 rotatably supports the outer peripheral surface of one end of the output shaft 41 in the axis O direction.
- the second rolling bearing 46 rotatably supports the inner peripheral surface of the other end portion of the output shaft 41 in the axis O direction.
- the first rolling bearing 44 is disposed at the coupling portion between the outer ring 12 of the wheel hub bearing portion 11 and the output shaft 41 of the speed reduction portion 31, the position of the first rolling bearing 44 in the axis O direction is set to the outer ring. It is possible to overlap the positions of the twelve axial lines O, and the total axial dimension of the outer ring 12 and the output shaft 41 can be shortened.
- the output gear 40 is provided on the outer periphery of the other end portion of the output shaft 41 in the axis O direction, and the position of the output gear 40 in the axis O direction overlaps the position of the rolling bearing 46 in the axial direction. Thereby, the dimension of the output shaft 41 in the axis O direction can be shortened.
- the rolling bearing 44 includes an outer raceway surface 44f on the outer diameter side, an inner raceway surface 44g on the inner diameter side, a plurality of rolling elements 44b rolling on the outer raceway surface 44f and the inner raceway surface 44g, and adjacent rolling elements 44b. It is a radial bearing including a retainer (not shown) that defines the circumferential interval.
- the outer raceway surface 44f and the inner raceway surface 44g are circumferential grooves, and the cross sections of the outer raceway surface 44f and the inner raceway surface 44g are arc shapes less than a semicircle.
- the maximum outer diameter of the outer raceway surface 44f is smaller than the outer diameter of the tooth tip of the output gear 40. According to this embodiment, the diameter dimension of the first rolling bearing 44 is reduced, and as a result, the diameter dimension of the wheel hub bearing portion 11 can be further reduced. Therefore, the arrangement space of the wheel hub bearing portion 11 can be secured in the inner space of the wheel wheel W.
- the outer raceway constituting the outer raceway surface 44f is fitted into a circular opening 43p formed in the front portion 43f of the main body casing 43.
- the inner raceway constituting the inner raceway surface 44g is fitted to the outer peripheral surface of the output shaft 41.
- the rolling bearing 44 is disposed on the outer diameter side of the rolling element 14. Moreover, the rolling bearing 44 is arrange
- the pitch circle diameter of the rolling bearing 44 is larger than the pitch circle diameter of the rolling elements 14.
- the pitch circle diameter of the rolling bearing 46 is larger than the pitch circle diameter of the rolling element 14.
- the rolling bearing 46 is a radial bearing including an outer race ring on the outer diameter side, an inner race ring on the inner diameter side, a plurality of rolling elements, and a cage, and the outer race ring is an inner periphery of the output shaft 41.
- the inner race is fixed to the outer peripheral surface of the fixed shaft 15.
- the outer raceway and the inner raceway are simply referred to as raceways.
- the rolling bearings 44 and 46 that support the output shaft 41 rotate at the same speed as the wheels while receiving a radial load corresponding to the driving torque of the wheels. For this reason, the temperature of the rolling bearings 44 and 46 rises significantly compared with the time when the operation of the in-wheel motor drive device 10 is started and when the operation time has sufficiently passed. As a result, even when the initial clearance ⁇ i of the rolling bearings 44 and 46 is set to 0, the operating clearance ⁇ d of the rolling bearings 44 and 46 becomes a negative clearance, heat is generated, and there is a risk of early separation or seizure.
- the initial radial internal clearance (initial clearance ⁇ i) of each of the rolling bearings 44 and 46 is set to 20 to 60 ⁇ m, preferably 30 to 50 ⁇ m, in the deceleration unit 31 of the in-wheel motor drive device 10. This prevents seizure due to heat generation of the rolling bearings 44 and 46 even under conditions such as fitting (press-fitting) between the bearing rings of the rolling bearings 44 and 46 and the output shaft 41, temperature rise, and temperature difference between the inner and outer rings. In addition, it is possible to minimize the decrease in NVH characteristics due to the effects of abnormal noise and vibrations within a processable range.
- the rolling bearing 44 includes an outer race (a member constituting the outer race surface 44f), an inner race (a member constituting the inner race surface 44g), a rolling element 44b, and a cage (not shown).
- the radial internal clearance at normal temperature of the rolling bearing 44 alone before being fitted to the output shaft 41 becomes the initial clearance ⁇ i.
- the races of the rolling bearings 44 and 46 are made of bearing steel or carburized steel.
- the bearing steel for example, a high carbon chromium bearing steel defined in JIS G 4805 can be used, and in particular, SUJ3 or SUJ5 containing 0.35 wt% or more of Si and 0.50 wt% or more of Mn is preferable. Can be used.
- carburized steel SCM415, SCM420, SCr420 etc. can be used, for example.
- the race rings of the respective rolling bearings 44 and 46 are made of SUJ3.
- carbonitriding is performed using bearing steel or carburized steel as a raw material, and then quenching and tempering treatment is performed, thereby diffusing nitrogen into the surface layer portion (especially the raceway surface) of the bearing ring, so that 25-50% Residual austenite was held stably. At this time, the retained austenite at the core of the raceway is 15 to 20%.
- the rolling elements 44b of the rolling bearing 44 are made of bearing steel, subjected to carbonitriding treatment, and nitrogen is diffused in these surface layers to stably retain the retained austenite.
- Specific examples of the bearing steel that can be used as the material of the rolling element 44b are the same as described above, and therefore, a duplicate description is omitted.
- the rolling element 44b is made of SUJ3. Further, by making the heat treatment condition after the carbonitriding treatment of the rolling element 44b different from the heat treatment condition after the carbonitriding treatment of the raceway ring, the proportion of retained austenite in the surface layer portion of the rolling element 44b is slightly lowered (20 to 35%). ). The same applies to the rolling elements of the rolling bearing 46.
- the bearing ring is made thinner and the rolling bearings 44, 44 are compared to the case where the rolling bearing (the bearing ring or the rolling element) that does not have the specially processed configuration is employed. 46 can be downsized in the radial direction.
- the in-wheel motor drive device 10 that is rich in durability and that is small and light can be realized.
- the bearing ring by forming the bearing ring with a high carbon chromium bearing steel containing 0.35 wt% or more of Si and 0.50 wt% or more of Mn, the hardenability is improved, so that retained austenite is easily obtained.
- the material and heat treatment method of the bearing rings and rolling elements constituting the respective rolling bearings 44 and 46 are not limited to the above.
- the rolling element 44b may be heat-treated under the same conditions as the outer race or the inner race.
- some members of the inner race, the outer race, and the plurality of rolling elements constituting each of the rolling bearings 44 and 46 are made of bearing steel, and the amount of retained austenite in the surface layer portion is increased by carbonitriding. It is good also as the structure made into the range.
- FIG. 4 is a developed cross-sectional view showing the in-wheel motor drive device 20 according to the second embodiment of the present invention cut and developed on a predetermined plane.
- symbol is attached
- an opening 43q is formed in the back surface portion 43b of the main body casing 43, and the fixed shaft 15 is inserted into the opening 43q from the outside of the main body casing 43.
- the base portion 15r of the fixed shaft 15, the carrier 18, and the bolts 13c and 13b are arranged outside the main body casing 43 with the back surface portion 43b as a boundary, and the remaining portion of the fixed shaft 15 excluding the base portion 15r is inside the main body casing 43. Be placed.
- a female screw hole 43u oriented in the other axial direction is formed in the other wall surface 43bn in the axial O direction of the back surface portion 43b.
- the bolt 13c is reverse to the first embodiment described above, and is inserted into the through hole of the projecting portion 15p from the other in the axis O direction toward the other.
- the head portion 13cd of the bolt 13c contacts the protruding portion 15p from the outside of the main body casing 43.
- the shaft portion 13ct of the bolt 13c is screwed into the female screw hole 43u.
- the sealing material 49 seals the annular gap between the opening 43q and the fixed shaft 15.
- a bottomless female screw 15u is formed on the protruding portion 15p of the fixed shaft 15, and a bolt 13b penetrating the carrier 18 is screwed into the female screw 15u, whereby the carrier 18 is abutted against and fixed to the protruding portion 15p.
- the female screw 15u may have a bottom.
- the output shaft 41 can be supported stably.
- the fixed shaft 15 in the assembly of the in-wheel motor drive device 20, in the assembly of the in-wheel motor drive device 20, the fixed shaft 15 is inserted into the opening 43q of the main body casing 43 from the other side in the axis O direction, and the distal end portion 15e of the fixed shaft 15 is the rear portion 43b.
- the motor portion 21 and the root portion 15r of the fixed shaft 15 are both disposed on the other side in the axis O direction than the back surface portion 43b.
- the fixed shaft 15 and the motor unit 21 indicated by a virtual line approach each other. For this reason, for the convenience of assembly, the fixed shaft 15 is designed to be thin so that the fixed shaft 15 and the motor unit 21 do not interfere with each other.
- the fixed shaft 15 in the first embodiment shown in FIG. 1, in the assembly of the in-wheel motor drive device 20, the fixed shaft 15 may be inserted into the main body casing 43 from one side in the axis O direction and fixed to the back portion 43 b.
- the root portion 15r is disposed on one side in the axis O direction with respect to the back surface portion 43b, and the motor portion 21 is disposed on the other side in the axis O direction with respect to the back surface portion 43b.
- FIG. 5 is a developed cross-sectional view showing the in-wheel motor drive device 30 according to the third embodiment of the present invention cut and developed on a predetermined plane.
- the same components as those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and different configurations are described below.
- the cylindrical portion 43 y is formed on the back surface portion 43 b of the main body casing 43.
- the cylindrical portion 43y extends along the axis O, protrudes from the one wall surface 43bm in the axis O direction, passes through the intermediate gear 37, travels in one direction in the axis O, and is inserted into the center hole of the output shaft 41.
- the central hole of the cylindrical portion 43y becomes an opening 43q, and the fixed shaft 15 is inserted into the opening 43q from the outside of the main body casing 43.
- the second rolling bearing 46 is provided in an annular gap between the outer peripheral surface of the tip end portion of the cylindrical portion 43y and the inner peripheral surface of the other end portion in the axis O direction of the output shaft 41.
- the cylindrical portion 43y rotatably supports the other end portion of the output shaft 41 in the axis O direction.
- the third embodiment shown in FIG. 5 also has a first rolling bearing 44 and a second rolling bearing 46 as in the first embodiment described above.
- the output shaft 41 can be supported stably.
- the cylindrical portion 43y becomes thick, the diameter of the output shaft 41 increases. Or if the cylindrical part 43y becomes thin, the support rigidity of the cylindrical part 43y will become small. For this reason, the first and second embodiments described above are preferable.
- FIG. 6 is a developed cross-sectional view showing the in-wheel motor drive device 10A according to the fourth embodiment of the present invention cut and developed on a predetermined plane.
- the wheel hub bearing portion 11 of the fourth embodiment is common to the first to third embodiments described above in that it includes an inner ring, an outer ring, and a plurality of rolling elements.
- the wheel hub bearing portion 11 of the first to third embodiments is an outer ring rotating and inner ring fixed
- the wheel hub bearing portion 11 of the fourth embodiment is an outer ring fixing and inner ring rotating.
- the wheel hub bearing portion 11 is disposed in an inner ring member 81 as a wheel hub, a fixed outer ring 82 that covers the outer periphery of the inner ring member 81, and an annular space between the inner ring member 81 and the fixed outer ring 82.
- the wheel hub bearing portion 11 is disposed on one side of the axis O direction when viewed from the output shaft 41.
- the fixed outer ring 82 of the wheel hub bearing portion 11 has, for example, a flange, and a plurality of through holes are formed in the flange, and a bolt 83 is passed through each through hole.
- the bolt 83 is screwed into the front portion 43 f of the main body casing 43.
- the fixed outer ring 82 is connected and fixed to the main body casing 43.
- An annular gap between the fixed outer ring 82 and the inner ring member 81 is sealed with seal members 84 and 85.
- the sealing material 84 is disposed at one end of the fixed outer ring 82 in the axis O direction.
- the sealing material 85 is disposed at the other end of the fixed outer ring 82 in the axis O direction.
- the one end 41e of the output shaft 41 protrudes in the direction of the axis O and is inserted into the center hole of the inner ring member 81.
- a spline groove 41s is formed on the outer peripheral surface of the end portion 41e
- a spline groove 81s is formed on the inner peripheral surface of the inner ring member 81
- both the spline grooves 41s and 81s are spline fitted to each other.
- the output shaft 41 is integrally formed with the output gear 40 at the other end portion in the axis O direction.
- the other end of the output shaft 41 in the direction of the axis O is larger in diameter than the one end 41e, and the first rolling bearing 44 and the second rolling bearing 46 are arranged on both sides in the direction of the axis O when viewed from the output gear 40. Both ends are supported.
- the first rolling bearing 44 is interposed between the front portion 43 f and the outer peripheral surface of the output shaft 41.
- the second rolling bearing 46 is interposed between the back surface portion 43b and the outer peripheral surface of the output shaft 41.
- the rolling bearings 44 and 46 are arranged so as to be shifted to the other side in the axis O direction from the area in the axis O direction where the double row rolling elements 14 are arranged.
- the pitch circle diameter of the rolling bearings 44 and 46 is larger than the pitch circle diameter of the rolling elements 14.
- the pitch circle diameters of the rolling bearing 44 and the rolling bearing 46 are the same, but as a modification (not shown), the pitch circle diameters of the rolling bearing 44 and the rolling bearing 46 may be different.
- each of the rolling bearings 44 and 46 is set to 20 to 60 ⁇ m, the engagement between the bearing rings of the rolling bearings 44 and 46 and the output shaft 41 is increased, and the temperature rises. Even under the circumstances where the temperature difference between the inner and outer rings is widened, seizure due to heat generation of the rolling bearings 44 and 46 can be prevented, and the deterioration of the NVH characteristics due to the influence of abnormal noise and vibration is minimized within the processable range. Can be suppressed.
- the member constituting the inner raceway surface 44g and the member constituting the outer raceway surface 44f are made of carbonitrided bearing steel or carbonitrided carburized steel, and the surface layer remains.
- the austenite is 25 to 50%, and the retained austenite in the core is 15 to 20%.
- the rolling bearings 44 and 46 described above are radial ball bearings. However, as a modification (not shown), a cylindrical roller bearing or an angular bearing may be used.
- the in-wheel motor drive device according to the present invention is advantageously used in electric vehicles and hybrid vehicles.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Rolling Contact Bearings (AREA)
- Gear Transmission (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
減速部(31)は、モータ部(21)のモータ回転軸(22)と結合する入力軸(32)、入力軸と結合する入力歯車(33)、外輪(12)と結合する円筒形状の出力軸(41)、出力軸と結合する出力歯車(40)、および出力軸を回転自在に支持する転がり軸受(44,46)を含み、転がり軸受の初期のラジアル内部すきまが20~60μmである。
Description
本発明は、車輪内部に配置されて該車輪を駆動するインホイールモータ駆動装置に関し、特に減速部の出力軸を回転自在に支持する転がり軸受に関する。
車輪の内部に配置されて該車輪を駆動するインホイールモータは、車輪ハブを回転自在に支持する車輪ハブ軸受を備えることが常套である。車輪ハブは車輪ホイールと結合し、車輪ハブ軸受は輪荷重を支える。例えば特許第5677142号公報(特許文献1)に記載される車輪ハブ軸受は、後輪のホイールと結合する円筒状の外輪式の車輪ハブと、車輪ハブの中心孔に通されるスピンドルと、車輪ハブおよびスピンドルの環状隙間に設置される複数の転動体とを有する。特許文献1の車輪ハブの外周には最終歯車が設けられ、この最終歯車が減速機のピニオンと噛合する。特許文献1の減速機は、モータの中心回転軸と結合するモータ歯車と、複数のピニオンとを有し、モータの回転を車輪ハブに取り付けられた最終歯車に伝達する。
しかし、上記従来のような車輪ハブ軸受にあっては、さらに改善すべき点があることを本発明者は見いだした。つまり車輪から付与される外力によって車輪ハブ軸受の車輪ハブが変位する場合、この変位が減速機の各歯車に伝達されると、歯車には本来の歯面からの荷重に加えて車輪ハブ軸受から伝達された変位による荷重も負荷されることになるため、歯面に対する偏当たりによる減速機の振動や歯面の損傷、及び各歯車軸のミスアライメントの発生による歯車軸支持軸受の早期破損等の原因となり、インホイールモータの静粛性や耐久性が悪化するという点である。特に、大きなトルクを伝達する最終歯車は、外部からの荷重の伝達に対する余裕代が無く、さらに車輪ハブ軸受の車輪ハブと直接組み合わされ車輪ハブ軸受から減速機への変位伝達の起点となることから、変位の伝達を抑制できるよう安定して支持されることが望ましい。
そこで、車輪ハブ軸受の車輪ハブと最終歯車の結合、例えばスプライン結合に、すきまを設けて車輪ハブ軸受の車輪ハブの変位による減速機への影響を抑制することが対策として考えられる。しかし、このすきまが大きければ最終歯車への荷重伝達は抑制できるものの、駆動系のバックラッシが増大して騒音や振動の原因となる。一方で、このすきまを少なくすると、車輪ハブ軸受の車輪ハブの変位量が大きい場合に歯車への荷重伝達を完全にはゼロにできなくなる。すると、車輪ホイール内の狭小な凹部に収められる減速機に必要な小径で小型の軸受(車輪ハブ軸受)では、負荷容量が不足するため早期破損を防止できない。
本発明は、上述の実情に鑑み、モータの回転を減速して車輪ハブに伝達する減速部において、減速部の最終歯車を安定して支持し、かつ必要な軸受寿命を有する構造を提供することを目的とする。
この目的のため本発明によるインホイールモータ駆動装置は、車輪を駆動するモータ部と、車輪ハブを回転自在に支持する車輪ハブ軸受部と、モータ部の回転を減速して車輪ハブ軸受部に伝達する減速部とを備える。減速部は、モータ部のモータ回転軸と結合する入力軸、入力軸と結合する入力歯車、車輪ハブと結合する出力軸、出力軸と結合する出力歯車、および出力軸を回転自在に支持する出力軸転がり軸受を含み、入力歯車の回転を減速して出力歯車に伝達する駆動伝達経路を構成する。そして出力軸転がり軸受の初期のラジアル内部すきまが20~60μmである。
減速機に内蔵される複数のピニオンや歯車のうち車輪ハブ軸受の車輪ハブと結合する最終歯車には、他のピニオンよりも大きなトルクが作用する。このため車輪ハブ軸受の車輪ハブ部と結合する最終歯車を、車輪ハブ軸受とは別な転がり軸受で、回転自在に支持することに本発明者は着想した。
かかる本発明によれば、車輪ハブ軸受部とは別に、減速部が、車輪ハブ軸受の車輪ハブ(回転部材)と結合する出力軸と、出力軸を回転自在に支持する出力軸転がり軸受とを含むことから、出力軸を安定して支持することができる。したがって車輪ホイールから車輪ハブ軸受の車輪ハブに外力が付与されても、出力軸転がり軸受が出力軸の変位を抑制して、減速部の歯車の偏当たりによる振動や歯面の損傷、及びミスアライメントの発生による軸支持軸受の早期破損等を防止できる。
また本発明によれば、出力軸を回転自在に支持する出力軸転がり軸受に関し、出力軸転がり軸受の初期のラジアル内部すきまが20~60μmである。初期のラジアル内部すきまを20μm以上としたことにより、出力軸転がり軸受全体の温度上昇や軸受の内側軌道面と外側軌道面の温度差を考慮しても、運転時のラジアル内部すきま(運転すきま)が負すきまになることがなく、早期剥離や焼き付きを防止できる。また、上記の出力軸転がり軸受において、初期のラジアル内部すきまを60μm以下としたことにより、過大な正すきまに起因する音および振動の発生を抑制することができる。なお好ましくは、出力軸転がり軸受の初期のラジアル内部すきまは35~50μmである。転がり軸受の初期のラジアル内部すきまとは、他部材を組み付ける前の転がり軸受単体の常温下でのラジアル方向の内部すきま(直径すきま)のことを言う。出力軸を回転自在に支持する出力軸転がり軸受は、例えば玉軸受、または円筒ころ軸受である。また出力軸転がり軸受は、ラジアル転がり軸受であり、アンギュラ軸受ではない。
本発明の好ましい実施形態として出力軸転がり軸受の内側軌道面を構成する部材および/または外側軌道面を構成する部材が、浸炭窒化処理された軸受鋼または浸炭窒化処理された浸炭鋼からなり、表層の残留オーステナイトが25~50%であり、かつ、芯部の残留オーステナイトが15~20%である。かかる実施形態によれば、出力軸転がり軸受の転動疲労寿命を向上させることができると共に残留オーステナイトによりクラックの発生およびその進展を抑制することができるので、インホイールモータ駆動装置の耐久性向上(長寿命化)を図ることができる。また、同程度の寿命を確保する上では、上記構成を具備しない軌道輪を採用する場合に比べ、軌道輪の薄肉化を実現することができる。したがって、出力軸転がり軸受の径方向への小型化等を通じて、インホイールモータ駆動装置を小型化および軽量化することができる。車輪ホイールの内部空間は狭小なので、出力軸を回転自在に支持する転がり軸受をさらに設けるに際し、配置スペースの問題が生じない。なお出力軸転がり軸受の内側軌道面を構成する部材とは、内側軌道輪や、内側軌道輪を省略された軸体をいう。出力軸転がり軸受の外側軌道面を構成する部材とは、外側軌道輪や、外側軌道輪を省略された出力軸本体をいう。表層とは、軌道面において転動体の面圧の影響の及ぶ深さに窒化を施した領域であり、芯部とは、表層よりも深く窒化層が形成されていない領域のことを言う。浸炭窒化処理された軸受鋼または浸炭鋼とは、素材としての軸受鋼に浸炭窒化処理を施したもの、または素材としての浸炭鋼に浸炭窒化処理を施したものをいう。単なる軸受鋼または浸炭鋼とは異なり、本実施形態になる浸炭窒化処理された軸受鋼または浸炭鋼は、窒化層を有する。次に熱処理を施すことにより、表層の残留オーステナイトは、25~50%に調整される。表層の残留オーステナイトを25%以上にすることによって、必要な転動疲労寿命を満足させ、設計上の寿命補正係数を確保することができる。表層の残留オーステナイトを50%以下にすることによって、過大な経年寸法変化を防ぐことができる。オーステナイト以外の部分の組成は、特に限定されない。
本発明の好ましい実施形態として、軸受鋼はSiを0.35wt%以上、Mnを0.50wt%以上含む。Si(シリコン)はオーステナイトの安定性を高めることで、Mn(マンガン)は焼入れ性を確保することで、表層部の残留オーステナイト量の向上に寄与する。
本発明のより好ましい実施形態として出力軸転がり軸受の転動体が、浸炭窒化処理された軸受鋼からなり、表層の残留オーステナイトが20~35%である。かかる実施形態によれば出力軸転がり軸受の転動疲労寿命を向上させることができると共に残留オーステナイトによるクラックの発生およびその進展を抑制することができるので、インホイールモータ駆動装置の耐久性向上(長寿命化)を図ることができる。
本発明の減速部の構造は特に限定されない。一実施形態として減速部は平行軸歯車減速機を含み、減速部の入力軸と出力軸が互いに平行に延び、モータ部は車輪ハブ軸受部の軸線からオフセットして配置される。かかる実施形態によれば、車輪ホイールの狭小な内部空間の中で、減速部の配置スペースを確保することができる。減速部は平行軸歯車減速機のみであってもよいし、あるいは平行軸歯車減速機と遊星歯車組の組み合わせであってもよい。
車輪ハブ軸受部は、内輪と外輪と複数の転動体を含む。内輪は実質的に中実軸であってもよい。また車輪ハブ軸受部は、外輪回転かつ内輪固定であってもよいし、あるいは外輪固定かつ内輪回転であってもよい。外輪回転かつ内輪固定の実施形態として車輪ハブは外輪であり、車輪ハブ軸受部は、外輪、外輪の中心孔に通されて外輪を回転自在に支持する固定軸、および外輪と固定軸の間の環状空間に配置される複数の転動体を含み、減速部は外輪と結合する円筒形状の出力軸を含む。出力軸転がり軸受は、円筒形状の出力軸の外周面を支持してもよいし、あるいは内周面を支持してもよい。
外輪固定かつ内輪回転の実施形態として車輪ハブ軸受部は、車輪ハブ、車輪ハブの外周を覆う固定外輪、および車輪ハブと固定外輪との間の環状空間に配置される複数の転動体を含む。
好ましい実施形態として出力軸は、出力歯車と一体に形成される。他の実施形態として出力軸は、出力歯車と別部材であり、出力歯車は出力軸に連結固定される。
このように本発明によれば、減速部の最終歯車である出力歯車を安定して支持することができる。したがって車輪ホイールから外輪に外力が付与されても、出力軸の変位を抑制して、減速部の歯車の偏当たりによる振動や歯面の損傷、及びミスアライメントの発生による軸支持軸受の早期破損等を防止して、インホイールモータ駆動装置の静粛性及び耐久性が向上する。しかも出力歯車を回転自在に支持する転がり軸受に関し、転がり軸受の転動疲労寿命を向上させることができると共にクラックの発生およびその進展を抑制することができるので、インホイールモータ駆動装置の耐久性向上(長寿命化)を図ることができる。
以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は、本発明の第1実施形態になるインホイールモータ駆動装置を所定の平面で切断・展開して示す展開断面図である。図2は、第1実施形態のインホイールモータ駆動装置の内部を、車輪とともに示す背面図であり、図1中のインホイールモータ駆動装置10からモータ部21および本体ケーシング43の背面部分43bを取り外し、図1の紙面右側からインホイールモータ駆動装置10内部をみた状態を表す。なお図1で表される所定の平面は、図2に示す軸線Mおよび軸線Nfを含む平面と、軸線Nfおよび軸線Nlを含む平面と、軸線Nlおよび軸線Oを含む平面とを、この順序で接続した展開平面である。
インホイールモータ駆動装置10は、図1に示すように車輪ハブ軸受部11と、車輪の車輪ホイールW(図2)を駆動するモータ部21と、モータ部の回転を減速して車輪ハブ軸受部11に伝達する減速部31を備え、電動車両のホイールハウジング(図示せず)に配置される。車輪ハブ軸受部11は車輪ホイールWの中心と連結し、車輪ホイールWの軸線が車輪ハブ軸受部11の軸線Oに一致する。モータ部21および減速部31は、車輪ハブ軸受部11の軸線Oと同軸に配置されるのではなく、図2に示すように車輪ハブ軸受部11の軸線Oからオフセットして配置される。車輪ホイールWは周知のものであり、車輪ホイールWの外周にタイヤTが嵌合し、車体の前後左右に配置される。かかる車体は車輪とともに電動車両を構成する。インホイールモータ駆動装置10は、公道で電動車両を時速0~180km/hで走行させることができる。
車輪ハブ軸受部11は、図1に示すように車輪ホイールWと結合する車輪ハブとしての外輪12と、外輪12の中心孔に通される内側固定部材13と、外輪12と内側固定部材13との環状隙間に配置される複数の転動体14を有し、車軸を構成する。内側固定部材13は、非回転の固定軸15と、1対のインナーレース16と、抜け止めナット17を含む。固定軸15は根元部15rが先端部15eよりも大径に形成される。インナーレース16は、根元部15rと先端部15eの間で、固定軸15の外周に嵌合する。抜け止めナット17は固定軸15の先端部15eに螺合して、抜け止めナット17と根元部15rの間にインナーレース16を固定する。
固定軸15は軸線Oに沿って延び、固定軸15の先端部15eは、車幅方向外側を指向する。固定軸15の根元部15rは、外輪12よりも車幅O方向内側へ突出し、本体ケーシング43の背面部分43bと向き合う。根元部15rは、ボルト13cによって本体ケーシング43の内部で背面部分43bに取付固定される。さらに根元部15rは、ボルト13bによって本体ケーシング43の外方でキャリア18と連結する。
転動体14は、軸線O方向に離隔して複列に配置される。軸線O方向一方のインナーレース16の外周面は、第1列の転動体14の内側軌道面を構成し、外輪12の軸線O方向一方の内周面と対面する。軸線O方向他方のインナーレース16の外周面は、第2列の転動体14の内側軌道面を構成し、外輪12の軸線O方向他方の内周面と対面する。以下の説明において、車幅方向外側(アウトボード側)を軸線方向一方ともいい、車幅方向内側(インボード側)を軸線方向他方ともいう。図1の紙面左右方向は、車幅方向に対応する。外輪12の内周面は転動体14の外側軌道面を構成する。
外輪12の軸線O方向一方端にはフランジ部12fが形成される。フランジ部12fは図示しないブレーキロータおよび車輪ホイールWのスポーク部Ws(図2)と同軸に結合するための結合座部を構成する。外輪12はフランジ部12fで車輪ホイールWと結合して、車輪ホイールWと一体回転する。
モータ部21は図1に示すように、モータ回転軸22、ロータ23、ステータ24、モータケーシング25、およびモータケーシングカバー25vを有し、この順序でモータ部21の軸線Mから外径側へ順次配置される。モータ部21は、インナーロータ、アウターステータ形式のラジアルギャップモータであるが、他の形式であってもよい。例えば図示しなかったがモータ部21はアキシャルギャップモータであってもよい。
モータ回転軸22およびロータ23の回転中心になる軸線Mは、車輪ハブ軸受部11の軸線Oと平行に延びる。つまりモータ部21は、車輪ハブ軸受部11の軸線Oから離れるようオフセットして配置される。モータ回転軸22の先端部を除いたモータ部21の大部分の軸線方向位置は、図1に示すように内側固定部材13の軸線方向位置と重ならない。モータケーシング25は略円筒形状であり、軸線M方向一方端で本体ケーシング43の背面部分43bと結合し、軸線M方向他方端で椀状のモータケーシングカバー25vに封止される。モータ回転軸22の両端部は、転がり軸受27,28を介して、モータケーシング25およびに回転自在に支持される。モータ部21は外輪12を駆動する。
減速部31は、入力軸32、入力歯車33、中間歯車34、中間軸35、中間歯車36、中間歯車37、中間軸38、中間歯車39、出力歯車40、出力軸41、および本体ケーシング43を有する。入力軸32は、モータ回転軸22の先端部22eよりも大径の筒状体であって、モータ部21の軸線Mに沿って延びる。先端部22eは入力軸32の軸線M方向他方端部の中心孔に受け入れられて、入力軸32はモータ回転軸22と同軸に結合する。入力軸32の両端は転がり軸受42a,42bを介して、本体ケーシング43に支持される。入力歯車33は、モータ部21よりも小径の外歯歯車であり、入力軸32と同軸に結合する。具体的には入力歯車33は、入力軸32の軸線M方向中央部の外周に一体形成される。
出力軸41は、外輪12よりも大径の筒状体であって、車輪ハブ軸受部11の軸線Oに沿って延びる。外輪12の軸線O方向他方端は、出力軸41の軸線O方向一方端の中心孔に受け入れられて、出力軸41は外輪12と同軸に結合する。具体的には、出力軸41の内周面にスプライン溝41sが形成され、外輪12の軸線O方向他方端の外周面にスプライン溝12sが形成され、これらスプライン溝41s,12sがスプライン嵌合する。かかるスプライン嵌合は、出力軸41と外輪12を相対回転不能に連結して出力軸41および外輪12間のトルク伝達を実現するとともに、両者の軸線O直角方向の相対移動を許容する。
出力軸41の軸線O方向一方端は転がり軸受44(第1の出力軸転がり軸受)を介して、本体ケーシング43に支持される。出力軸41の軸線O方向他方端は転がり軸受46(第2の出力軸転がり軸受)を介して、固定軸15の根元部15rに支持される。出力歯車40は外歯歯車であり、出力軸41と同軸に結合する。具体的には出力歯車40は出力軸41の軸線O方向他方端の外周に一体形成される。
2本の中間軸35,38は入力軸32および出力軸41と平行に延びる。つまり減速部31は四軸の平行軸歯車減速機であり、出力軸41の軸線Oと、中間軸35の軸線Nfと、中間軸38の軸線Nlと、入力軸32の軸線Mは互いに平行に延び、換言すると車幅方向に延びる。
各軸の車両前後方向位置につき説明すると、図2に示すように入力軸32は出力軸41よりも車両前方に配置される。また中間軸35は入力軸32よりも車両前方に配置される。中間軸38は出力軸41よりも車両前方かつ入力軸32よりも車両後方に配置される。図示しない変形例として入力軸32と、中間軸35と、中間軸38と、出力軸41が、この順序で車両前後方向に配置されてもよい。この順序は駆動力の伝達順序でもある。
各軸の上下方向位置につき説明すると、図2に示すように入力軸32の軸線Mは出力軸41の軸線Oよりも上方に配置される。中間軸35は入力軸32よりも上方に配置される。中間軸38は中間軸35よりも上方に配置される。なお複数の中間軸35,38は、入力軸32および出力軸41よりも上方に配置されれば足り、図示しない変形例として中間軸35が中間軸38よりも上方に配置されてもよい。あるいは図示しない変形例として出力軸41が入力軸32よりも上方に配置されてもよい。
中間歯車34および中間歯車36は外歯歯車であり、図1に示すように中間軸35の軸線Nf方向中央部と同軸に結合する。中間軸35の両端部は、転がり軸受45a,45bを介して、本体ケーシング43に支持される。中間歯車37および中間歯車39は外歯歯車であり、中間軸38の軸線Nl方向中央部と同軸に結合する。中間軸38の両端部は、転がり軸受48a,48bを介して、本体ケーシング43に支持される。
本体ケーシング43は、減速部31および車輪ハブ軸受部11の外郭をなし、筒状に形成されて、図2に示すように互いに平行に延びる軸線O、Nf、Nl、Mを取り囲む。また本体ケーシング43は、車輪ホイールWの内空領域に収容される。車輪ホイールWの内空領域は、リム部Wrの内周面と、リム部Wrの軸線O方向一端と結合するスポーク部Wsとによって区画される。そして車輪ハブ軸受部11、減速部31、およびモータ部21の軸線方向一方領域が車輪ホイールWの内空領域に収容される。またモータ部21の軸線方向他方領域が車輪ホイールWから軸線方向他方へはみ出す。このように車輪ホイールWはインホイールモータ駆動装置10の大部分を収容する。
図2を参照して本体ケーシング43は、出力歯車40の軸線Oから車両前後方向に離れた位置、具体的には入力歯車33の軸線Mの真下で、下方へ突出する。この突出部分はオイルタンク47を形成する。これに対し本体ケーシング43のうち軸線Oの真下部分43cと、リム部Wrの下部との間には、空間Sを確保する。空間Sには、車幅方向に延びるサスペンション部材71が配置され、サスペンション部材71の車幅方向外側端72と内側固定部材13が、ボールジョイント60を介して方向自在に連結される。
本体ケーシング43は、筒状であり、図1に示すように入力軸32、入力歯車33、中間歯車34、中間軸35、中間歯車36、中間歯車37、中間軸38、中間歯車39、出力歯車40、および出力軸41を収容するとともに、車輪ハブ軸受部11の軸線O方向他方端を覆う。本体ケーシング43の内部には潤滑油が封入される。入力歯車33、中間歯車34、中間歯車36、中間歯車37、中間歯車39、出力歯車40ははすば歯車である。
本体ケーシング43は、図1に示すように減速部31の筒状部分の軸線方向一方側を覆う略平坦な正面部分43fと、減速部31の筒状部分の軸線方向他方側を覆う略平坦な背面部分43bを含む。背面部分43bは、モータケーシング25と結合する。また背面部分43bは、キャリア18を介して、アームやストラット等の図示しないサスペンション部材と結合する。これによりインホイールモータ駆動装置10は、該サスペンション部材に支持される。
正面部分43fには外輪12が貫通するための開口43pが形成される。開口43pには、外輪12との環状隙間を封止するシール材43sが設けられる。このため回転体になる外輪12は、軸線O方向一方端部を除いて本体ケーシング43に収容される。
小径の入力歯車33と大径の中間歯車34は、減速部31の軸線方向一方側に配置されて互いに噛合する。小径の中間歯車36と大径の中間歯車37は、減速部31の軸線方向他方側に配置されて互いに噛合する。小径の中間歯車39と大径の出力歯車40は、減速部31の軸線方向一方側に配置されて互いに噛合する。このようして入力歯車33と複数の中間歯車34、36,37,39と出力歯車40は、互いに噛合し、入力歯車33から複数の中間歯車34、36,37,39を経て出力歯車40に至る駆動伝達経路を構成する。そして上述した小径歯車および大径歯車の噛合により、入力軸32の回転は中間軸35で減速され、中間軸35の回転は中間軸38で減速され、中間軸38の回転は出力軸41で減速される。これにより減速部31は減速比を十分に確保する。複数の中間歯車のうち中間歯車34は、駆動伝達経路の入力側に位置する第1中間歯車となる。複数の中間歯車のうち中間歯車39は、駆動伝達経路の出力側に位置する最終中間歯車となる。なお図2では、歯車の個々の歯を表さず、歯車を歯先円で表す。
図2に示すように、出力軸41、中間軸38、および入力軸32は、この順序で車両前後方向に間隔を空けて配置される。さらに中間軸35および中間軸38は、入力軸32および出力軸41よりも上方に配置される。かかる第1実施形態によれば、車輪ハブになる外輪12の上方に中間軸を配置し得て、外輪12の下方にオイルタンク47の配置スペースを確保したり、外輪12の真下に空間Sを確保したりすることができる。したがって上下方向に延びる転舵軸を空間Sに交差して設けることができ、車輪ホイールWおよびインホイールモータ駆動装置10を転舵軸回りに好適に転舵させることができる。
また本実施形態によれば、図2に示すように、モータ部21の軸線Mが車輪ハブ軸受部の軸線Oから車両前後方向にオフセットして配置され、中間軸35の軸線Nfが車輪ハブ軸受部の軸線Oから上方にオフセットして配置され、中間軸38の軸線Nlが車輪ハブ軸受部の軸線Oから上方にオフセットして配置される。これにより、インホイールモータ駆動装置10における軸線Oの真下部分43cとリム部Wrの下部との間に空間Sを確保することができる。そして車輪の転舵軸を車輪ホイールWに交差するよう配置することができ、車輪の旋回特性が向上する。
また本実施形態によれば、図1に示すように入力軸32および出力軸41は車幅方向に延び、図2に示すように入力歯車33および出力歯車40は上下方向に起立した姿勢にされ、出力歯車40の下縁40bが入力歯車33の下縁33bよりも下方に配置される。これにより高速回転する入力歯車33が、本体ケーシング43の内部で減速部31の下部に貯留する潤滑油に浸漬することがなく、入力歯車33の攪拌抵抗を回避できる。
また本実施形態によれば、図2に示すように複数の中間軸35,38は、入力軸32の上方に隣り合うよう配置されて入力軸32から駆動トルクを供給される最初の中間軸35、および出力軸41の上方に隣り合うよう配置されて出力軸41に駆動トルクを供給する最終の中間軸38を含み、入力軸32と最初の中間軸35と最終の中間軸38と出力軸41は、複数の中間軸35,38の軸線方向にみて、入力軸の中心(軸線M)と最初の中間軸35の中心(軸線Nf)と最終の中間軸38の中心(軸線Nl)と出力軸41の中心(軸線O)とを順次結ぶ基準線が逆U字を描くよう、配置される。これにより駆動伝達経路を構成する複数の軸および歯車の全体配置が小型化されて、複数の軸および歯車を車輪ホイールWの内部に収納することができる。
また本実施形態によれば、図1に示すように、車輪ハブになる外輪12は筒状体であり、車輪ハブ軸受部11は外輪12の中心孔に配置されて外輪12を回転自在に支持する固定軸15をさらに含む。これにより出力歯車40を外輪12の外径側に同軸に結合し得る。そして、外輪12を中心としてオフセットするよう配置される中間軸38から、外輪12へ駆動力を伝達することができる。
本体ケーシング43は、図1に示すようにポンプ軸51、転がり軸受52a,52b、ポンプギヤ53、およびオイルポンプ54をさらに収容する。ポンプ軸51の軸線Pは、出力軸41の軸線Oと平行に延びる。またポンプ軸51は、出力軸41から車両前後方向に離れて配置され、軸線P方向両端で、転がり軸受52a,52bを介して回転自在に支持され、軸線P方向中央部でポンプギヤ53と同軸に結合する。ポンプギヤ53は出力歯車40と噛合する。
オイルポンプ54は、転がり軸受52bよりもさらに軸線P方向他方に配置され、ポンプ軸51の軸線P方向他方端に設けられる。オイルポンプ54が出力歯車40に駆動されることにより、オイルポンプ54はオイルタンク47から潤滑油を吸入し、吸入した潤滑油をモータ部21および減速部31へ吐出する。これによりモータ部21および減速部31は潤滑される。
図2を参照して本実施形態のポンプ軸51は入力軸32の下方に配置され、オイルタンク47はポンプ軸51の下方に配置される。オイルポンプ54(図1)は、ポンプ軸51と略同軸に配置され、オイルタンク47に貯留した潤滑油を、オイルタンク47の直上へ汲み上げる。またポンプ軸51およびオイルタンク47は、出力軸41の車両前方に配置される。車輪ホイールWがインホイールモータ駆動装置10に駆動されて車両が走行すると、オイルタンク47は車両前方から走行風を受けて、空気冷却される。
次に本体ケーシング43と内側固定部材13の連結構造につき説明する。
内側固定部材13は、軸線方向一方端が自由端となり、軸線方向他方端が固定端となるよう、片持ち支持される。具体的には図1に示すように、内側固定部材13の固定軸15のうち、軸線O方向他方端面15nが背面部分43bの軸線O方向一方壁面43bmと対面する。固定軸15の根元部15rには、外径方向に突出する突出部15pが設けられる。突出部15pは、背面部分43bの軸線O方向一方壁面43bmに固定される。なお軸線O方向一方壁面43bmとは、本体ケーシング43の壁部分になる背面部分43bのうち、車幅方向外側を指向する壁面をいい、本体ケーシング43の内側壁面になる。
突出部15pは、ボルト13cによって、背面部分43bに固定される。背面部分43bの軸線O方向一方壁面43bmには軸線方向一方に指向する雌ねじ穴43tが形成される。ボルト13cは軸線Oと平行に延び、軸線O方向一方に頭部13cdを有し、軸線O方向他方に軸部13ctを有し、軸部13ctが突出部15pを貫通して雌ねじ穴43tに螺合する。
次に図3を参照して、インホイールモータ駆動装置10とサスペンション部材71との連結構造につき説明する。
図3は、インホイールモータ駆動装置10とサスペンション装置70の連結構造を示す断面図であり、車両前後方向にみた状態を表す。外輪12のフランジ部12fには、車輪ホイールWのスポーク部WsおよびブレーキロータBDが取付固定される。本体ケーシング43の車両後方部分には図示しないキャリパが取付固定される。キャリパはブレーキロータBDを制動する。本発明の理解を容易にするため図3を除く図面では、車輪ホイールWの内空領域に配置されるブレーキロータBDを図略する。外輪12は、車輪ホイールWのホイールセンタ(軸線O上で車輪ホイールWの一端から他端までの中心)からみて、車幅方向外側に配置される。
サスペンション装置70は、ストラット式サスペンション装置であり、2本のサスペンション部材71,76を備える。サスペンション部材76は、上下方向に延びるストラットであり、ショックアブソーバ76sを内蔵して上下方向に伸縮可能である。サスペンション部材76の上端領域77の外周には図示しないコイルスプリングが同軸に配置され、サスペンション部材76に作用する上下方向の軸力を緩和する。サスペンション部材76の上端は、図示しない車体側メンバを支持する。
サスペンション部材71は、サスペンション部材76よりも下方に配置されて、車幅方向に延びるロアアーム(サスペンションアーム)である。サスペンション部材71の端部は車幅方向外側端72および車幅方向内側端73を構成する。サスペンション部材71は、車幅方向外側端72で、ボールジョイント60を介してインホイールモータ駆動装置10に連結される。またサスペンション部材71は車幅方向内側端73で図示しない車体側メンバに連結される。車幅方向内側端73を基端とし、車幅方向外側端72を遊端として、サスペンション部材71は上下方向に揺動可能である。なお車体側メンバとは説明される部材からみて車体側に取り付けられる部材をいう。
ボールジョイント60は、ボールスタッド61およびソケット62を含む。ボールスタッド61は上下方向に延び、上端に形成されるボール部61bおよび下端に形成されるスタッド部61sを有する。ソケット62は内側固定部材13に設けられて、ボール部61bを摺動可能に収容する。スタッド部61sは、車幅方向外側端72を上下方向に貫通する。スタッド部61sの下端外周には雄ねじが形成され、下方からナット72nが螺合することにより、スタッド部61sはサスペンション部材71に取付固定される。
キャリア18は図1に示すように、ボルト13bで固定軸15および背面部分43bに結合される。固定軸15の根元部15rには突出部15pが形成される。突出部15pには雌ねじ穴15tが形成される。ボルト13bは、軸線O方向他方から一方へ向かって、キャリア18の貫通孔と、中間部材19の貫通孔に差し込まれ、ボルト13bの軸部が雌ねじ穴15tに螺合する。
突出部15pとキャリア18の間には中間部材19が介在する。中間部材19は背面部分43bに形成される開口43qに嵌合する。中間部材19の全周にはシール材49が設けられる。シール材49は開口43qと中間部材19の環状隙間を封止する。
本体ケーシング43の壁部分である背面部分43bを境界として、固定軸15は本体ケーシング43の内部に配置され、キャリア18は本体ケーシング43の外部に配置される。
キャリア18は、図3に示すように上方に延びる上側アーム部18aと、下方に延びる下側アーム部18bとを有する。上側アーム部18aは、車輪ハブ軸受部11を超えて上方へ突出し、先端部でボルト78によってサスペンション部材76(ストラット)の下端部76bに取付固定される。下側アーム部18bは、車輪ハブ軸受部11を超えて下方へ突出し、先端部にボールジョイント60のソケット62を有する。なお下側アーム部18bは、先端部で向きを変えて軸線Oと平行に延び、車輪ハブ軸受部11の直下に回り込んでいる。このためソケット62の軸線O方向位置は、固定軸15の軸線O方向位置と重なる。
ボール部61bはインホイールモータ駆動装置10とサスペンション装置70の連結点として、自由な方向に回動することを許容する。サスペンション部材76(ストラット)の上端とボール部61bを通り上下方向に延びる直線は車輪ホイールWおよびインホイールモータ駆動装置10の転舵軸Kを構成する。
次に出力軸41を回転自在に支持する転がり軸受44,46につき詳しく説明する。
再び図1を参照して、転がり軸受44は、第1出力軸軸受として出力軸41の端部の外周面を回転自在に支持する。また転がり軸受46は、第2出力軸軸受として転がり軸受44と軸線O方向反対側に位置する出力軸41の残りの端部の内周面を回転自在に支持する。かかる本実施形態によれば、車輪ハブ軸受部11とは別に、減速部31が転がり軸受44,46で出力軸41を回転自在に支持することから、出力軸41を安定して支持することができる。したがって車輪ホイールWから外輪12に外力が付与されても、出力軸41の変位を抑制して、減速部31の出力歯車40の偏当たり等を防止できる。特に出力軸41は、出力軸41の内周面および出力軸41の外周面の双方で安定して支持される。
出力歯車40の側面に隣接して、出力軸41の軸線方向一方端部の外周には、軸線方向中央寄りが大径となるように第1環状段差41tが形成される。第1の転がり軸受44は、第1環状段差41tに当接して軸線O方向位置を規定される。これにより軸線O方向に変位しないよう第1の転がり軸受44を固定することができる。
出力軸41の軸線O方向他方端部の内周には、軸線方向中央寄りが小径となるように第2環状段差41uが形成される。第2の転がり軸受46は、第2環状段差41uに当接して軸線O方向位置を規定される。これにより軸線O方向に変位しないよう第2の転がり軸受46を固定することができる。
特に出力歯車40ははすば歯車であることから、中間歯車39との歯当たりが良くなる一方で出力軸41に軸方向力が作用する。本実施形態によれば、軸線O方向に変位しないよう固定される第1および第2の転がり軸受44,46によって、はすば歯車に作用する軸方向力を受け止めることができる。
第2の転がり軸受46は出力軸41の内周面と固定軸15の外周面の間に設けられる。これにより本体ケーシング43よりも強度の大きな固定軸15で出力軸41を支持することができる。
外輪12は軸線O方向一方に配置され、出力軸41は軸線O方向他方に配置される。そして出力軸41の軸線O方向一方端部の内周面が外輪12の軸線O方向他方端部の外周面に被さるよう、外輪12と出力軸41は互いに結合する。第1の転がり軸受44は、出力軸41の軸線O方向一方端部の外周面を回転自在に支持する。第2の転がり軸受46は、出力軸41の軸線O方向他方端部の内周面を回転自在に支持する。このように車輪ハブ軸受部11の外輪12と減速部31の出力軸41との結合箇所に、第1の転がり軸受44を配置することから、第1の転がり軸受44の軸線O方向位置を外輪12の軸線O方向位置に重ねることができ、外輪12および出力軸41の軸線方向合計寸法を短縮することができる。
出力歯車40は出力軸41の軸線O方向他方端部の外周に設けられ、出力歯車40の軸線O方向位置が転がり軸受46の軸線方向位置と重なる。これにより、出力軸41の軸線O方向寸法を短縮することができる。
転がり軸受44は、外径側の外側軌道面44fと、内径側の内側軌道面44gと、外側軌道面44fおよび内側軌道面44gを転走する複数の転動体44bと、隣り合う転動体44b同士の周方向間隔を規定する図示しない保持器とを含むラジアル軸受である。外側軌道面44fおよび内側軌道面44gは円周溝であり、外側軌道面44fおよび内側軌道面44gの断面は、半円未満の円弧形状である。そして外側軌道面44fの最大外径が、出力歯車40の歯先の外径よりも小さい。かかる本実施形態によれば、第1の転がり軸受44の径寸法が小さくなり、ひいては車輪ハブ軸受部11の径寸法をさらに小さくすることができる。したがって車輪ホイールWの内空領域において車輪ハブ軸受部11の配置スペースを確保することができる。
外側軌道面44fを構成する外側軌道輪は、本体ケーシング43の正面部分43fに形成される円形の開口43pに嵌合する。内側軌道面44gを構成する内側軌道輪は、出力軸41の外周面に嵌合する。
転がり軸受44は、転動体14よりも外径側に配置される。また転がり軸受44は、複列の転動体14が配置される軸線O方向領域と重なるように配置される。このため転がり軸受44のピッチ円径は、転動体14のピッチ円径よりも大きい。転がり軸受44と転がり軸受46のピッチ円径同士を比較すると、転がり軸受44は相対的に大径とされ、転がり軸受46は相対的に小径とされる。また転動体14のピッチ円径と比較して、転がり軸受46のピッチ円径は転動体14のピッチ円径よりも大径とされる。
転がり軸受46も同様に、外径側の外側軌道輪と、内径側の内側軌道輪と、複数の転動体と、保持器とを含むラジアル軸受であり、外側軌道輪が出力軸41の内周面に固定され、内側軌道輪が固定軸15の外周面に固定される。なお、以下の説明において、内側と外側を区別しない場合、外側軌道輪および内側軌道輪を単に軌道輪と称する。
出力軸41を支持する転がり軸受44,46は、車輪の駆動トルクに応じたラジアル荷重を受けながら、車輪と等速度で回転する。このため、転がり軸受44,46の温度は、インホイールモータ駆動装置10の運転開始時と運転時間が十分に経過した時と対比して、大幅に上昇する。そうすると、転がり軸受44,46の初期すきまδiを0に設定した場合でも、転がり軸受44,46の運転すきまδdが負すきまになり、発熱が起こり、早期はく離や焼き付きに至る虞がある。
かかる問題を回避するため、転がり軸受44,46の初期すきまδiを0よりも増加させることも考えられるが、初期すきまδiの値が過大であると、減速部31内に配置される種々の回転要素の振れ回りによる振動や異音が発生する。また、インホイールモータ駆動装置10はサスペンション装置70のばね下重量となる、という特殊条件が重畳することにより、上記の異音や振動を減衰させることが難しく、NVH(Noise,Vibration,Harshness)特性に悪影響を及ぼし、電動車両の運転者および搭乗者に不快感を与える。
そこで、本実施形態では、インホイールモータ駆動装置10の減速部31において、各転がり軸受44,46の初期のラジアル内部すきま(初期すきまδi)を20~60μm、好ましくは30~50μmに設定した。これにより、転がり軸受44,46の軌道輪と出力軸41との嵌め合い(圧入)、温度上昇、内外輪の温度差拡大といった状況下でも、転がり軸受44,46の発熱による焼き付きを防止することができ、しかも、異音や振動の影響によるNVH特性の低下を加工可能な範囲で最小限に抑制できる。これにより、ばね下重量となるインホイールモータ駆動装置10という特殊条件にも拘わらず、異音や振動の発生を抑え、NVH特性の優れたインホイールモータ駆動装置10を実現することができる。尚、本実施形態では、転がり軸受44が、外側軌道輪(外側軌道面44fを構成する部材)、内側軌道輪(内側軌道面44gを構成する部材)、転動体44b、および保持器(図示せず)で構成され、出力軸41に嵌合される前の転がり軸受44単体の常温下でのラジアル内部すきまが、初期すきまδiとなる。
また本実施形態では、各転がり軸受44,46の軌道輪を、軸受鋼または浸炭鋼で作製した。軸受鋼としては、例えば、JIS G 4805に規定された高炭素クロム軸受鋼を使用することができ、特に、Siを0.35wt%以上、Mnを0.50wt%以上含むSUJ3やSUJ5を好適に使用できる。また、浸炭鋼としては、例えば、SCM415、SCM420、SCr420などを使用することができる。本実施形態では、各転がり軸受44,46の軌道輪をSUJ3で作製した。
上記のように軸受鋼あるいは浸炭鋼を素材として浸炭窒化処理を施した後、焼入れ焼き戻し処理を施すことにより、軌道輪の表層部(特に軌道面)に窒素を拡散して25~50%の残留オーステナイトを安定保持させた。このとき、軌道輪の芯部の残留オーステナイトは、15~20%とする。
また、本実施形態では、転がり軸受44の転動体44bを軸受鋼で作製し、これらに浸炭窒化処理を施し、これらの表層部に窒素を拡散して残留オーステナイトを安定保持させた。転動体44bの材料として使用できる軸受鋼の具体例は、上記と同様であるため重複説明を省略する。本実施形態では、転動体44bをSUJ3で作製した。また、転動体44bの浸炭窒化処理後の熱処理条件を、軌道輪の浸炭窒化処理後の熱処理条件と異ならせることで、転動体44bの表層部の残留オーステナイトの割合を若干低め(20~35%)に設定した。転がり軸受46の転動体についても同様である。
上記の材料および熱処理により、残留オーステナイトが亀裂敏感性を低下させるため、補正定格寿命(ISO281)を向上させることができ、転がり軸受44,46が長寿命となる。逆を言えば、同等の寿命を確保する上では、上記の特殊処理された構成を具備しない転がり軸受(軌道輪や転動体)を採用する場合に比べ、軌道輪を薄肉化し、転がり軸受44,46を径方向に小型化することができる。このように、転がり軸受44,46の耐久性向上や小型化を通じて、耐久性に富み、しかも小型・軽量なインホイールモータ駆動装置10を実現することができる。特に、軌道輪を、Siを0.35wt%以上、Mnを0.50wt%以上含む高炭素クロム軸受鋼で形成することで、焼入れ性が向上するため、残留オーステナイトが得られやすくなる。
なお、各転がり軸受44,46を構成する軌道輪および転動体の材料や熱処理方法は上記に限られない。例えば転動体44bを、外側軌道輪あるいは内側軌道輪と同様の条件で熱処理を施してもよい。また、各転がり軸受44,46を構成する内側軌道輪、外側軌道輪、および複数の転動体のうちの一部の部材が、軸受鋼からなり、浸炭窒化処理により表層部の残留オーステナイト量が上記範囲とされた構成としてもよい。
次に本発明の第2実施形態を説明する。図4は本発明の第2実施形態になるインホイールモータ駆動装置20を所定の平面で切断・展開して示す展開断面図である。第2実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。第2実施形態では、本体ケーシング43の背面部分43bに開口43qが形成され、本体ケーシング43の外部から開口43qに固定軸15が差し込まれる。背面部分43bを境界として、固定軸15の根元部15r、キャリア18、およびボルト13c,13bは本体ケーシング43の外部に配置され、根元部15rを除く固定軸15の残部は本体ケーシング43の内部に配置される。
背面部分43bの軸線O方向他方壁面43bnには軸線方向他方に指向する雌ねじ穴43uが形成される。ボルト13cは、前述した第1実施形態と逆向きにされ、軸線O方向他方から一方へ向かって突出部15pの貫通孔に差し込まれる。ボルト13cの頭部13cdは、本体ケーシング43の外側から突出部15pに接触する。ボルト13cの軸部13ctは雌ねじ穴43uに螺合する。シール材49は開口43qと固定軸15の環状隙間を封止する。
固定軸15の突出部15pには無底の雌ねじ15uが形成され、キャリア18を貫通するボルト13bが雌ねじ15uに螺合することにより、キャリア18は突出部15pに突き当てられて固定される。なお図示はしなかったが、雌ねじ15uは有底であってもよい。
図4に示す第2実施形態も、前述した第1実施形態と同様に、第1の転がり軸受44と第2の転がり軸受46を有する。これにより、出力軸41を安定して支持することができる。
ここで付言すると第2実施形態では、インホイールモータ駆動装置20の組み立てにおいて、固定軸15を軸線O方向他方から本体ケーシング43の開口43qに挿入し、固定軸15の先端部15eが背面部分43bよりも軸線O方向一方側に配置され、モータ部21および固定軸15の根元部15rがともに背面部分43bよりも軸線O方向他方側に配置される。また図2を参照して、固定軸15と仮想線で示されるモータ部21が接近する。このため、組み立ての都合上、固定軸15とモータ部21が干渉しないよう、固定軸15は細く設計される。
これに対し図1に示す第1実施形態では、インホイールモータ駆動装置20の組み立てにおいて、固定軸15を軸線O方向一方から本体ケーシング43の内部に差し込んで背面部分43bに取付固定すればよく、根元部15rが背面部分43bよりも軸線O方向一方側に配置され、モータ部21が背面部分43bよりも軸線O方向他方側に配置される。このため第1実施形態の固定軸15を第2実施形態よりも太く設計しても、組み立ての不都合が生じない。
次に本発明の第3実施形態を説明する。図5は本発明の第3実施形態になるインホイールモータ駆動装置30を所定の平面で切断・展開して示す展開断面図である。第3実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。第3実施形態では、本体ケーシング43の背面部分43bに円筒部43yを形成する。
円筒部43yは、軸線Oに沿って延び、軸線O方向一方壁面43bmから突出し、中間歯車37を超えて軸線O方向一方へ向かい、出力軸41の中心孔に差し込まれる。円筒部43yの中心孔は開口43qになり、本体ケーシング43の外部から開口43qに固定軸15が差し込まれる。
第2の転がり軸受46は、円筒部43yの先端部外周面と、出力軸41の軸線O方向他方端部の内周面との環状隙間に設けられる。これにより円筒部43yは、出力軸41の軸線O方向他方端部を回転自在に支持する。
図5に示す第3実施形態も、前述した第1実施形態と同様に、第1の転がり軸受44と第2の転がり軸受46を有する。これにより、出力軸41を安定して支持することができる。ただし、円筒部43yが肉厚になってしまうと出力軸41の径寸法が大きくなる。あるいは円筒部43yが肉薄になってしまうと円筒部43yの支持剛性が小さくなる。このため、前述した第1および第2実施形態が好ましい。
次に本発明の第4実施形態を説明する。図6は本発明の第4実施形態になるインホイールモータ駆動装置10Aを所定の平面で切断・展開して示す展開断面図である。第4実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。第4実施形態の車輪ハブ軸受部11は、内輪と外輪と複数の転動体を含む点で、上述した第1~3実施形態と共通する。異なる点として第1~3実施形態の車輪ハブ軸受部11は、外輪回転かつ内輪固定であるのに対し、第4実施形態の車輪ハブ軸受部11は、外輪固定かつ内輪回転である。
図6に示すように、車輪ハブ軸受部11は、車輪ハブとしての内輪部材81、内輪部材81の外周を覆う固定外輪82、および内輪部材81と固定外輪82との間の環状空間に配置される複数の転動体14を含む。車輪ハブ軸受部11は、出力軸41からみて軸線O方向一方側に配置される。
車輪ハブ軸受部11の固定外輪82は例えばフランジを有し、フランジには複数の貫通孔が形成されて各貫通孔にボルト83を通される。ボルト83は、本体ケーシング43の正面部分43fに螺合する。これにより固定外輪82は本体ケーシング43に連結固定される。固定外輪82と内輪部材81との環状隙間は、シール材84,85に封止される。シール材84は固定外輪82の軸線O方向一方端に配置される。シール材85は固定外輪82の軸線O方向他方端に配置される。
出力軸41の一方端部41eは、軸線O方向一方へ突出し、内輪部材81の中心孔に差差し込まれる。一方端部41eの外周面にはスプライン溝41sが形成され、内輪部材81の内周面にはスプライン溝81sが形成され、両スプライン溝41s,81sは互いにスプライン嵌合する。
出力軸41は、軸線O方向他方端部に出力歯車40が一体形成される。出力軸41の軸線O方向他方端部は、一方端部41eよりも大径にされ、出力歯車40からみて軸線O方向両側に配置される第1の転がり軸受44および第2の転がり軸受46によって両持ち支持される。第1の転がり軸受44は正面部分43fと出力軸41外周面との間に介在する。第2の転がり軸受46は背面部分43bと出力軸41外周面との間に介在する。
転がり軸受44,46は、複列の転動体14が配置される軸線O方向領域よりも軸線O方向他方側にずらして配置される。転がり軸受44,46のピッチ円径は、転動体14のピッチ円径よりも大きい。図6に示す実施形態では転がり軸受44と転がり軸受46のピッチ円径が同じであるが、図示しない変形例として転がり軸受44と転がり軸受46のピッチ円径が異なっていてもよい。
図6に示す第4実施形態も、前述した第1実施形態と同様に、第1の転がり軸受44と第2の転がり軸受46を有する。これにより、出力軸41を安定して支持することができる。また各転がり軸受44,46の初期のラジアル内部すきま(初期すきまδi)を20~60μmに設定したことから、転がり軸受44,46の軌道輪と出力軸41との嵌め合い(圧入)、温度上昇、内外輪の温度差拡大といった状況下でも、転がり軸受44,46の発熱による焼き付きを防止することができ、しかも、異音や振動の影響によるNVH特性の低下を加工可能な範囲で最小限に抑制できる。
第4実施形態の転がり軸受44も、内側軌道面44gを構成する部材および外側軌道面44fを構成する部材が、浸炭窒化処理された軸受鋼または浸炭窒化処理された浸炭鋼からなり、表層の残留オーステナイトが25~50%であり、かつ、芯部の残留オーステナイトが15~20%である。転がり軸受46も同様である。これにより転がり軸受44,46の転動疲労寿命を向上させることができると共に残留オーステナイトによるクラックの発生およびその進展を抑制することができる。
以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。上述した転がり軸受44,46はラジアル玉軸受であるが、図示しない変形例として円筒ころ軸受や、アンギュラ軸受であってもよい。
この発明になるインホイールモータ駆動装置は、電気自動車およびハイブリッド車両において有利に利用される。
10 インホイールモータ駆動装置、11 車輪ハブ軸受部、12 外輪、12f フランジ部、13 内側固定部材、13b,13c ボルト、14 転動体、15 固定軸、15e 先端部、15n 軸線方向他方端面、15p 突出部、15r 根元部、16 インナーレース、17 抜け止めナット、18 キャリア、19 中間部材、21 モータ部、22 モータ回転軸、25 モータケーシング、25v モータケーシングカバー、31 減速部、32 入力軸、33 入力歯車、34,36,37,39 中間歯車、35,38 中間軸、40 出力歯車、41 出力軸、41t 第1環状段差、41u 第2環状段差、43 本体ケーシング、43b 背面部分、 43p,43q 開口、43y 円筒部、44 転がり軸受(第1出力軸転がり軸受)、44f 外側軌道面、44b 転動体、44g 内側軌道面、46 転がり軸受(第2出力軸転がり軸受)、47 オイルタンク、49 シール材、51 ポンプ軸、53 ポンプギヤ、54 オイルポンプ、60 ボールジョイント、61 ボールスタッド、61b ボール部、61s スタッド部、62 ソケット、70 サスペンション装置、71 サスペンション部材、72 車幅方向外側端、72n ナット、73 車幅方向内側端、76 サスペンション部材、76b 下端部、76s ショックアブソーバ、77 上端領域、K 転舵軸、M,Nf,Nl,O,P 軸線、S 空間、T タイヤ、W 車輪ホイール、Wr リム部、Ws スポーク部。
Claims (8)
- 車輪を駆動するモータ部と、車輪ハブを回転自在に支持する車輪ハブ軸受部と、前記モータ部の回転を減速して前記車輪ハブに伝達する減速部とを備え、
前記減速部は、前記モータ部のモータ回転軸と結合する入力軸、前記入力軸と結合する入力歯車、前記車輪ハブと結合する出力軸、前記出力軸と結合する出力歯車、および前記出力軸を回転自在に支持する出力軸転がり軸受を含み、前記入力歯車の回転を減速して前記出力歯車に伝達する駆動伝達経路を構成し、
前記出力軸転がり軸受の初期のラジアル内部すきまが20~60μmである、インホイールモータ駆動装置。 - 前記出力軸転がり軸受の内側軌道面を構成する部材および/または外側軌道面を構成する部材が、浸炭窒化処理された軸受鋼または浸炭窒化処理された浸炭鋼からなり、表層の残留オーステナイトが25~50%であり、かつ、芯部の残留オーステナイトが15~20%である、請求項1に記載のインホイールモータ駆動装置。
- 前記軸受鋼は、Siを0.35wt%以上、Mnを0.50wt%以上含む、請求項2に記載のインホイールモータ駆動装置。
- 前記出力軸転がり軸受の転動体が、浸炭窒化処理された軸受鋼からなり、表層の残留オーステナイトが20~35%である、請求項2または3に記載のインホイールモータ駆動装置。
- 前記減速部は平行軸歯車減速機であり、前記入力軸と前記出力軸が互いに平行に延び、
前記モータ部は、前記車輪ハブ軸受部の軸線からオフセットして配置される、請求項1~4のいずれかに記載のインホイールモータ駆動装置。 - 前記車輪ハブは外輪であり、
前記車輪ハブ軸受部は、前記外輪、前記外輪の中心孔に通されて前記外輪を回転自在に支持する固定軸、および前記外輪と前記固定軸の間の環状空間に配置される複数の転動体を含み、
前記減速部は前記外輪と結合する円筒形状の出力軸を含む、請求項1~5のいずれかに記載のインホイールモータ駆動装置。 - 前記車輪ハブ軸受部は、前記車輪ハブ、前記車輪ハブの外周を覆う固定外輪、および前記車輪ハブと前記固定外輪との間の環状空間に配置される複数の転動体を含む、請求項1~5のいずれかに記載のインホイールモータ駆動装置。
- 前記出力軸は、前記出力歯車と一体に形成される、請求項1~7のいずれかに記載のインホイールモータ駆動装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-035893 | 2016-02-26 | ||
JP2016035893A JP2017150640A (ja) | 2016-02-26 | 2016-02-26 | インホイールモータ駆動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017145653A1 true WO2017145653A1 (ja) | 2017-08-31 |
Family
ID=59685068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/003176 WO2017145653A1 (ja) | 2016-02-26 | 2017-01-30 | インホイールモータ駆動装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017150640A (ja) |
WO (1) | WO2017145653A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018104685A1 (de) * | 2018-03-01 | 2019-09-05 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Antriebsvorrichtung mit einem Elektromotor und einem Getriebe |
WO2020001362A1 (zh) * | 2018-06-29 | 2020-01-02 | 浙江超级电气科技有限公司 | 一种智能电动轮毂 |
CN111565958A (zh) * | 2018-01-16 | 2020-08-21 | Ntn株式会社 | 轮毂电动机驱动装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6917849B2 (ja) * | 2017-09-27 | 2021-08-11 | Ntn株式会社 | インホイールモータ駆動装置 |
CN111557075B (zh) * | 2018-01-10 | 2024-03-08 | 日本电产株式会社 | 电力转换装置、马达模块以及电动助力转向装置 |
WO2019142701A1 (ja) * | 2018-01-16 | 2019-07-25 | Ntn株式会社 | インホイールモータ駆動装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08318742A (ja) * | 1995-05-25 | 1996-12-03 | Nissan Motor Co Ltd | バッテリーフオークリフト用ドライブユニット |
JP2004321312A (ja) * | 2003-04-22 | 2004-11-18 | Suzuki Motor Corp | 小型電動車両 |
JP2010233372A (ja) * | 2009-03-27 | 2010-10-14 | Honda Motor Co Ltd | 電動車両 |
JP2013167346A (ja) * | 2012-02-17 | 2013-08-29 | Nsk Ltd | 転がり軸受 |
JP2013185701A (ja) * | 2012-03-12 | 2013-09-19 | Ntn Corp | 転がり軸受 |
JP2013209016A (ja) * | 2012-03-30 | 2013-10-10 | Honda Motor Co Ltd | 電動車両 |
JP2015021570A (ja) * | 2013-07-19 | 2015-02-02 | Ntn株式会社 | インホイールモータ駆動装置 |
-
2016
- 2016-02-26 JP JP2016035893A patent/JP2017150640A/ja active Pending
-
2017
- 2017-01-30 WO PCT/JP2017/003176 patent/WO2017145653A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08318742A (ja) * | 1995-05-25 | 1996-12-03 | Nissan Motor Co Ltd | バッテリーフオークリフト用ドライブユニット |
JP2004321312A (ja) * | 2003-04-22 | 2004-11-18 | Suzuki Motor Corp | 小型電動車両 |
JP2010233372A (ja) * | 2009-03-27 | 2010-10-14 | Honda Motor Co Ltd | 電動車両 |
JP2013167346A (ja) * | 2012-02-17 | 2013-08-29 | Nsk Ltd | 転がり軸受 |
JP2013185701A (ja) * | 2012-03-12 | 2013-09-19 | Ntn Corp | 転がり軸受 |
JP2013209016A (ja) * | 2012-03-30 | 2013-10-10 | Honda Motor Co Ltd | 電動車両 |
JP2015021570A (ja) * | 2013-07-19 | 2015-02-02 | Ntn株式会社 | インホイールモータ駆動装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111565958A (zh) * | 2018-01-16 | 2020-08-21 | Ntn株式会社 | 轮毂电动机驱动装置 |
DE102018104685A1 (de) * | 2018-03-01 | 2019-09-05 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Antriebsvorrichtung mit einem Elektromotor und einem Getriebe |
WO2020001362A1 (zh) * | 2018-06-29 | 2020-01-02 | 浙江超级电气科技有限公司 | 一种智能电动轮毂 |
US11873058B2 (en) | 2018-06-29 | 2024-01-16 | Zhejiang Chaoji Electrical Technology Co., Ltd. | Intelligent electric wheel hub |
Also Published As
Publication number | Publication date |
---|---|
JP2017150640A (ja) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017145653A1 (ja) | インホイールモータ駆動装置 | |
JP6792995B2 (ja) | インホイールモータ駆動装置 | |
US9033840B2 (en) | Speed reduction mechanism and motor torque transmission apparatus including the same | |
CN107848397B (zh) | 轮内电动机驱动装置 | |
JP4557223B2 (ja) | 駆動車輪用軸受装置 | |
US20120241233A1 (en) | In-wheel motor drive device | |
JP2007022386A (ja) | 電動式車輪駆動装置 | |
WO2013047695A1 (ja) | インホイール型モータ内蔵車輪用軸受装置 | |
JP2017165279A (ja) | インホイールモータ駆動装置とサスペンション装置の連結構造 | |
US20130257202A1 (en) | Speed reduction mechanism, and motor torque transmission device including the speed reduction mechanism | |
US10543742B2 (en) | In-wheel motor drive device | |
JP6799426B2 (ja) | インホイールモータ駆動装置 | |
JP2020093615A (ja) | インホイールモータ駆動装置 | |
JP2005212657A (ja) | 電動式車輪駆動装置 | |
WO2017158933A1 (ja) | インホイールモータ駆動装置 | |
WO2015137073A1 (ja) | インホイールモータ駆動装置 | |
JP2005140192A (ja) | 車輪用軸受装置 | |
JP2020046055A (ja) | インホイールモータ駆動装置 | |
JP2001294010A (ja) | 車輪駆動用軸受ユニット | |
WO2019049802A1 (ja) | インホイールモータ駆動装置 | |
US20190176610A1 (en) | In-wheel motor drive device for steered wheel | |
JP7303637B2 (ja) | インホイールモータ駆動装置 | |
JP4439334B2 (ja) | 車輪用軸受装置 | |
JP2020051543A (ja) | スプライン嵌合構造および車両駆動装置 | |
WO2021176951A1 (ja) | インホイールモータ駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17756095 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17756095 Country of ref document: EP Kind code of ref document: A1 |