WO2017145472A1 - ネットワーク構造体、緩衝体、車両及びネットワーク構造体の設計方法 - Google Patents

ネットワーク構造体、緩衝体、車両及びネットワーク構造体の設計方法 Download PDF

Info

Publication number
WO2017145472A1
WO2017145472A1 PCT/JP2016/085059 JP2016085059W WO2017145472A1 WO 2017145472 A1 WO2017145472 A1 WO 2017145472A1 JP 2016085059 W JP2016085059 W JP 2016085059W WO 2017145472 A1 WO2017145472 A1 WO 2017145472A1
Authority
WO
WIPO (PCT)
Prior art keywords
network structure
polyhedral
connecting member
space
frames
Prior art date
Application number
PCT/JP2016/085059
Other languages
English (en)
French (fr)
Inventor
大詩 角
明夫 北田
俊雄 大沼
浩昭 高橋
鈴木 徹也
貴友 牛山
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP16891628.6A priority Critical patent/EP3421835A4/en
Priority to US16/078,781 priority patent/US10974770B2/en
Publication of WO2017145472A1 publication Critical patent/WO2017145472A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/043Superstructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2072Floor protection, e.g. from corrosion or scratching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/121Vibration-dampers; Shock-absorbers using plastic deformation of members the members having a cellular, e.g. honeycomb, structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/123Deformation involving a bending action, e.g. strap moving through multiple rollers, folding of members

Definitions

  • the present invention relates to a network structure, a buffer, a vehicle, and a network structure design method.
  • porous metal in which pores are formed is known (for example, see Patent Document 1).
  • the porous metal has a pore shape controlled by plasma spraying on the surface thereof.
  • a buffer material that satisfies the required performance is selected from various types of buffer materials.
  • an object of the present invention is to provide a network structure, a shock absorber, a vehicle, and a network structure design method capable of appropriately adjusting the performance related to deformation and energy absorption with a simple design change. .
  • the network structure of the present invention is a network structure having a three-dimensional network structure in which a plurality of polyhedral frames formed by a plurality of vertices arranged in a three-dimensional space and a connecting member that connects the vertices are arranged.
  • the plurality of polyhedral frames are provided in a regular array so as to be displaced at a constant rate when a constant load is applied.
  • the network structure when a constant load is applied to the network structure formed in a three-dimensional network, the network structure can be deformed with a constant displacement. At this time, the performance relating to the deformation and energy absorption of the network structure can be appropriately changed by adjusting the shape or material of the connecting member as a design parameter. In this way, the performance of the network structure can be adjusted appropriately with a simple design change.
  • the plurality of polyhedral frames are provided with one or more types of the polyhedral frames arranged side by side.
  • a network structure can be formed using one or more types of polyhedral frames.
  • the plurality of polyhedral frames are provided side by side so that one kind of the polyhedral frame is filled with space.
  • the network structure can be easily designed by using one type of polyhedron frame.
  • the polyhedral frame is preferably a truncated octahedron frame.
  • the connecting members can be arranged so that the longitudinal directions of the plurality of connecting members of the polyhedral frame that is a truncated octahedron are different from each other. For this reason, it can design so that the performance of a network structure may become a thing with small anisotropy.
  • the hollow space formed by the plurality of polyhedral frames is a space that allows bending of the connecting member.
  • the network structure when a load is applied to the network structure and the network structure is deformed, the bending of the connecting member is not hindered. Therefore, the network structure can be suitably deformed.
  • a space ratio which is a ratio of the hollow space, with respect to an arrangement space in which a plurality of the polyhedral frames are arranged is 50% or more.
  • the buffer of the present invention has the above-described network structure.
  • the network structure can be used as a buffer, a buffer satisfying the required performance can be provided.
  • a vehicle according to the present invention includes a vehicle main body, the buffer provided in the vehicle main body, and an attachment member for attaching the buffer to the vehicle main body.
  • the buffer body is divided and installed.
  • the network structure design method of the present invention is a three-dimensional network in which a plurality of polyhedral frames formed by a plurality of vertices arranged in a three-dimensional space and a connecting member that connects the vertices are arranged.
  • a structure design method wherein the network structure is designed based on a design parameter related to the polyhedron frame, and the design parameter is set to satisfy a required performance required for the network structure, It includes at least one of a parameter relating to the shape of the connecting member and a parameter relating to the material of the connecting member.
  • the network structure when a certain load is applied to the network structure formed in a three-dimensional network, the network structure can be designed to be deformed with a certain displacement. At this time, the performance relating to the deformation and energy absorption of the network structure can be appropriately changed by adjusting the shape or material of the connecting member as a design parameter. In this way, the performance of the network structure can be adjusted appropriately with a simple design change.
  • the parameters relating to the shape of the connecting member include the thickness of the connecting member and the length of the connecting member, and the parameters relating to the material of the connecting member include selection of material strength and use of different materials.
  • FIG. 1 is a schematic diagram showing a vehicle to which a shock absorber according to this embodiment is applied.
  • FIG. 2 is a perspective view showing a shock absorber according to this embodiment.
  • FIG. 3 is a graph relating to the performance of the buffer.
  • FIG. 4 is a flowchart relating to the shock absorber design method according to the present embodiment.
  • FIG. 1 is a schematic diagram showing a vehicle to which a shock absorber according to this embodiment is applied.
  • FIG. 2 is a perspective view showing a shock absorber according to this embodiment.
  • FIG. 3 is a graph relating to the performance of the buffer.
  • FIG. 4 is a flowchart relating to the shock absorber design method according to the present embodiment.
  • a network structure formed in a three-dimensional mesh shape is used as the buffer body 12, and the buffer body 12 is provided at the bottom of the vehicle 1, for example, and is provided to the bottom of the vehicle 1. Absorbs shock.
  • the shock absorber 12 is provided at the bottom of the vehicle 1 will be described.
  • the shock absorber 12 may be provided on the side surface or the top of the vehicle 1, and the location of the shock absorber 12 is particularly limited. Not. First, the vehicle 1 will be described with reference to FIG.
  • the vehicle 1 includes a vehicle main body 10, a casing 11 attached to the bottom of the vehicle main body 10, and a shock absorber 12 installed inside the casing 11.
  • the type of the vehicle 1 is not particularly limited.
  • the vehicle body 10 has a gap between the bottom surface and the ground.
  • the vehicle main body 10 is provided with wheels 15 on both sides thereof, and travels on the ground by rotating the wheels 15.
  • the casing 11 is fastened and fixed to the bottom of the vehicle body 10 by a fastening member (not shown).
  • the casing 11 forms an installation space 16 for installing the shock absorber 12 between the bottom surface of the vehicle body 10.
  • the casing 11 is formed using, for example, a steel plate, and is deformed so as to apply a surface pressure to the buffer body 12 installed in the installation space 16 when an impact is applied to the vehicle 1. .
  • the buffer body 12 is divided into a plurality of installation spaces 16 and installed, for example, side by side in the vehicle width direction of the vehicle body 10 (the direction connecting the wheels 15).
  • the plurality of divided buffer bodies 12 are formed in a block shape.
  • the buffer body 12 is formed in a three-dimensional net shape in which a plurality of polyhedral frames 21 are arranged.
  • Each polyhedral frame 21 is formed by a plurality of vertices arranged in a three-dimensional space and a connecting member 25 that connects the vertices, and a portion surrounded by the connecting member 25 is a mesh 26.
  • the connecting member 25 is formed in a cylindrical shape, and the shape thereof is designed according to design parameters described later.
  • a plurality of the buffer bodies 12 are regularly arranged in the vertical direction and the horizontal direction so that one kind of polyhedral frame 21 is filled with space.
  • a frame that is a truncated octahedron is applied as the polyhedral frame 21.
  • the polyhedral frame 21 is not limited to a truncated octahedron, and may be a cube, an Archimedean regular hexagonal column, a rhomboid dodecahedron, or the like, and is not particularly limited as long as it is a space-fillable shape.
  • the vertical axis is the load F
  • the horizontal axis is the displacement ⁇ .
  • the buffer body 12 is required to have a function (buffer performance) that is displaced uniformly when a constant load is applied.
  • the polyhedron frame 21 is a truncated octahedron frame
  • the longitudinal directions (axial directions) of the plurality of connecting members 25 are different from each other. It will be a thing.
  • the hollow space formed by the plurality of polyhedral frames 21 is a space that allows the connecting member 25 to be bent.
  • the hollow space is a space excluding the space occupied by the connecting member 25 in the arrangement space in which the buffer body 12 is disposed.
  • the space ratio that is the ratio of the hollow space to the arrangement space in which the buffer body 12 is arranged is 50% or more. In other words, the space filling rate, which is the ratio of the space occupied by the connecting member 25 to the arrangement space in which the buffer body 12 is arranged, is less than 50%.
  • the buffer body 12 is formed using a metal material, and is formed by, for example, a three-dimensional additive manufacturing method.
  • the material of the buffer body 12 is not limited to a metal material, For example, you may use resin or a ceramic material.
  • the formation method of the buffer body 12 is not limited to the three-dimensional additive manufacturing method, and may be formed by casting or cutting.
  • Such a buffer body 12 is designed based on the design parameters relating to the polyhedral frame 21, thereby adjusting the buffer performance of the buffer body 12, and also adjusting the buffer performance of the buffer body 12 to be isotropic or anisotropic. It can be adjusted to have
  • the design parameters include parameters relating to the shape of the connecting member 25 and parameters relating to the material of the connecting member 25. Specifically, parameters relating to the shape of the connecting member 25 include the thickness of the cylindrical connecting member 25 and the length of the connecting member 25 in the longitudinal direction. Then, by adjusting parameters related to the shape of the connecting member 25, the size of the mesh 26 of the polyhedral frame 21 can be adjusted, or the shape of the polyhedral frame 21 can be changed. Parameters relating to the material of the connecting member 25 include material strength. Two or more materials may be used for the buffer body 12. In this case, selection of the material to be used may be adopted as a design parameter.
  • the design performance of the shock absorber 12 is designed so as to satisfy the required performance as the shock absorber 12 required in advance.
  • the required performance of the buffer body 12 is set (step S1).
  • the required performance is, for example, a region E surrounded by a dotted line shown in FIG. 3, and a buffer in which the displacement ⁇ is constantly increased when a constant load F is applied within a predetermined load F range. Is performance.
  • the design parameters of the shock absorber 12 are set (step S2). Specifically, when the required performance of the shock absorber 12 set in step S1 reduces the displacement ⁇ with respect to the predetermined load F, in other words, the case where the shock absorber 12 is hard and is not easily deformed will be described. To do.
  • the thickness of the connecting member 25 is set as the design parameter
  • the design parameter is changed so that the thickness of the connecting member 25 is increased.
  • the length of the connecting member 25 is set as the design parameter
  • the design parameter is changed so that the size of the mesh 26 is reduced by reducing the length of the connecting member 25.
  • the material strength of the connecting member 25 is set as the design parameter
  • the design parameter is changed so that the material strength of the connecting member 25 is increased.
  • the space ratio is set as the design parameter, the design parameter is changed so that the space ratio becomes small.
  • the required performance of the shock absorber 12 set in step S1 increases the displacement ⁇ with respect to the predetermined load F, in other words, the case where the shock absorber 12 is made soft and easily deformed will be described.
  • the design parameter is changed so that the thickness of the connecting member 25 is reduced.
  • the length of the connecting member 25 is set as a design parameter
  • the design parameter is changed so that the size of the mesh 26 is increased by increasing the length of the connecting member 25.
  • the material strength of the connecting member 25 is set as the design parameter
  • the design parameter is changed so that the material strength of the connecting member 25 becomes weak.
  • the space ratio is set as the design parameter, the design parameter is changed so that the space ratio becomes large.
  • the design performance of the shock absorber 12 as shown by, for example, the solid line in FIG. 3 is derived by analysis based on the set design parameters (step S3).
  • step S4 it is determined whether or not the derived design performance of the buffer body 12 satisfies a preset required performance. That is, it is determined whether or not the design performance indicated by the solid line shown in FIG. 3 falls within the range of the region E shown in FIG. If it is determined that the design performance satisfies the required performance (step S4: Yes), the design parameter is determined (step S5).
  • the buffer body 12 is formed by a three-dimensional additive manufacturing method based on the design parameters determined in step S5. On the other hand, if it is determined that the design performance does not satisfy the required performance (step S4: No), the process proceeds to step S2 again, and the design parameters are reset.
  • the buffer body 12 when a constant load is applied to the buffer body 12 formed in a three-dimensional mesh shape, the buffer body 12 can be deformed with a constant displacement. At this time, the performance relating to the deformation and energy absorption of the buffer body 12 can be appropriately changed by adjusting the shape or material of the connecting member 25 as a design parameter. Thus, the performance of the shock absorber 12 can be appropriately adjusted with a simple design change.
  • one type of polyhedral frame 21 can be arranged side by side so as to fill the installation space 16, a plurality of polyhedral frames 21 can be arranged in the installation space 16 without gaps. it can. Moreover, since the number of design parameters can be suppressed by using one type of polyhedral frame 21, the design of the buffer 12 can be facilitated.
  • the longitudinal directions (axial directions) of the plurality of connecting members 25 are different from each other. For this reason, the buffering performance of the buffer 12 against the impact load can be made small in anisotropy.
  • an impact load is applied to the buffer body 12 by setting the hollow space formed by the plurality of polyhedral frames 21 to a space that allows the connecting member 25 to be bent, and thus the buffer body 12.
  • the bending of the connecting member 25 is not hindered when is deformed. For this reason, the buffer body 12 can be suitably deformed without reducing the buffer performance of the buffer body 12.
  • the space ratio to 50% or more, it is possible to appropriately secure a hollow space that can permit the connecting member 25 to be bent.
  • the plurality of buffer bodies 12 divided into a plurality of parts are easy to handle, so that the buffer bodies 12 can be appropriately installed in the installation space 16.
  • the buffer body 12 is formed by space-filling the installation space 16 with one type of polyhedral frame 21, but the buffer body 12 is formed using two or more types of polyhedral frame 21. Also good.
  • two types of polyhedral frames 21 may be arranged alternately in a predetermined direction. Examples of combinations of the two types of polyhedral frames 21 include regular tetrahedron and regular octahedron, regular tetrahedron and truncated tetrahedron, regular octahedron and truncated hexahedron, regular octahedron and cubic octahedron, and oblique truncated octahedron.
  • the three types of polyhedral frames 21 may be regularly arranged in a predetermined direction. Examples of combinations of the three types of polyhedral frames 21 include a truncated tetrahedron, a truncated octahedron, and a cubic octahedron, a truncated tetrahedron, a truncated hexahedron, an oblique truncated cubic octahedron, and a regular tetrahedron and a cube.
  • orthorhombic cubic octahedron a cube, a cubic octahedron, an orthorhombic cubic octahedron, a cube, a truncated octahedron, and an oblique truncated octahedron.
  • another type of polyhedron frame 21 may be space-filled inside one type of polyhedron frame 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

ネットワーク構造体である緩衝体12は、三次元空間に配置される複数の頂点と、頂点同士を連結する連結部材25とによって形成される多面体フレーム21を複数並べた、三次元の網状となる緩衝体12であって、複数の多面体フレーム21は、一定の荷重が与えられることで、一定に変位するように規則的に並べて設けられる。また、複数の多面体フレーム21は、切頂八面体となる一種類の多面体フレーム21が空間充填されるように並べて設けられる。

Description

ネットワーク構造体、緩衝体、車両及びネットワーク構造体の設計方法
 本発明は、ネットワーク構造体、緩衝体、車両及びネットワーク構造体の設計方法に関するものである。
 従来、内部に気孔が形成されるポーラス金属が知られている(例えば、特許文献1参照)。このポーラス金属は、その表面に対してプラズマ溶射が施されることにより、気孔形態が制御されている。
国際公開第2007/096957号
 ここで、ポーラス金属を緩衝体に用いる場合、緩衝体に要求される要求性能を満足するように、ポーラス金属を設計する必要がある。しかしながら、ポーラス金属において調整可能な設計性能の範囲は狭いことから、ポーラス金属の設計性能が、緩衝体の要求性能を満足することが困難な場合がある。この場合、様々な種類の緩衝材の中から、要求性能を満足する緩衝材を選定することになる。
 そこで、本発明は、簡易な設計変更で、変形及びエネルギ吸収に係る性能を適切に調整することができるネットワーク構造体、緩衝体、車両及びネットワーク構造体の設計方法を提供することを課題とする。
 本発明のネットワーク構造体は、三次元空間に配置される複数の頂点と、前記頂点同士を連結する連結部材とによって形成される多面体フレームを複数並べた、三次元の網状となるネットワーク構造体であって、複数の前記多面体フレームは、一定の荷重が与えられることで、一定に変位するように規則的に並べて設けられることを特徴とする。
 この構成によれば、三次元の網状に形成されたネットワーク構造体に、一定の荷重が与えられた場合、ネットワーク構造体を一定の変位で変形させることができる。このとき、ネットワーク構造体の変形及びエネルギ吸収に係る性能は、連結部材の形状または材料等を設計パラメータとして調整することで、適宜変化させることができる。このように、簡易な設計変更で、ネットワーク構造体の性能を適切に調整することができる。
 また、複数の前記多面体フレームは、一種類以上の前記多面体フレームが並べて設けられることが、好ましい。
 この構成によれば、一種類以上の多面体フレームを用いてネットワーク構造体を形成することができる。
 また、複数の前記多面体フレームは、一種類の前記多面体フレームが空間充填されるように並べて設けられることが、好ましい。
 この構成によれば、所定の空間に、複数の多面体フレームを隙間なく配置することができる。また、多面体フレームを一種類とすることで、ネットワーク構造体の設計を、容易なものとすることができる。
 また、多面体フレームは、切頂八面体となるフレームであることが、好ましい。
 この構成によれば、切頂八面体となる多面体フレームの複数の連結部材の長手方向が、それぞれ異なる方向となるように、連結部材を配置することができる。このため、ネットワーク構造体の性能が異方性の小さいものとなるように設計することができる。
 また、複数の前記多面体フレームによって形成される中空空間は、前記連結部材の屈曲を許容する空間となっていることが、好ましい。
 この構成によれば、ネットワーク構造体に荷重が与えられて、ネットワーク構造体が変形するときに、連結部材の屈曲が阻害されることがないため、ネットワーク構造体を好適に変形させることができる。
 また、複数の前記多面体フレームが配置される配置空間に対する、前記中空空間の割合である空間率は、50%以上であることが、好ましい。
 この構成によれば、屈曲する連結部材を許容可能な中空空間を、適切に確保することができる。
 本発明の緩衝体は、上記のネットワーク構造体を有することを特徴とする。
 この構成によれば、ネットワーク構造体を緩衝体として用いることができるため、要求性能を満足する緩衝体を提供することができる。
 本発明の車両は、車両本体と、前記車両本体に設けられる上記の緩衝体と、前記緩衝体を前記車両本体に取り付けるための取付部材と、を備えることを特徴とする。
 この構成によれば、要求性能を満足する緩衝体により、車両本体に与えられる衝撃荷重を吸収することができるため、衝撃荷重による車両本体への影響を軽減することができる。
 また、前記緩衝体は、複数に分割して設置されることが、好ましい。
 この構成によれば、緩衝体を分割することで、分割された緩衝体の取り扱いが容易となり、緩衝体を適切に設置することができる。
 本発明のネットワーク構造体の設計方法は、三次元空間に配置される複数の頂点と、前記頂点同士を連結する連結部材とによって形成される多面体フレームを複数並べた、三次元の網状となるネットワーク構造体の設計方法であって、前記ネットワーク構造体は、前記多面体フレームに関する設計パラメータに基づいて設計され、前記設計パラメータは、前記ネットワーク構造体に要求される要求性能を満足するように設定され、前記連結部材の形状に関するパラメータ及び前記連結部材の材料に関するパラメータの少なくともいずれかのパラメータを含むことを特徴とする。
 この構成によれば、三次元の網状に形成されたネットワーク構造体に、一定の荷重が与えられた場合、ネットワーク構造体を一定の変位で変形させるように設計することができる。このとき、ネットワーク構造体の変形及びエネルギ吸収に係る性能は、連結部材の形状または材料等を設計パラメータとして調整することで、適宜変化させることができる。このように、簡易な設計変更で、ネットワーク構造体の性能を適切に調整することができる。なお、連結部材の形状に関するパラメータとしては、連結部材の太さ及び連結部材の長さ等があり、連結部材の材料に関するパラメータとしては、材料強度及び異種材料の使用の選択等がある。
図1は、本実施形態に係る緩衝体が適用された車両を示す模式図である。 図2は、本実施形態に係る緩衝体を示す斜視図である。 図3は、緩衝体の性能に関するグラフである。 図4は、本実施形態に係る緩衝体の設計方法に関するフローチャートである。
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態]
 図1は、本実施形態に係る緩衝体が適用された車両を示す模式図である。図2は、本実施形態に係る緩衝体を示す斜視図である。図3は、緩衝体の性能に関するグラフである。図4は、本実施形態に係る緩衝体の設計方法に関するフローチャートである。
 本実施形態は、三次元の網状に形成されるネットワーク構造体を、緩衝体12として用いており、この緩衝体12を、例えば、車両1の底部に設けることで、車両1の底部に与えられる衝撃を吸収している。なお、本実施形態では、車両1の底部に緩衝体12を設ける場合について説明するが、緩衝体12を車両1の側面または上部に設けてもよく、緩衝体12の設置場所については、特に限定されない。先ず、図1を参照して、車両1について説明する。
 図1に示すように、車両1は、車両本体10と、車両本体10の底部に取り付けられるケーシング11と、ケーシング11の内部に設置される緩衝体12と、を備えている。なお、車両1の種類については、特に限定されない。
 車両本体10は、その底面と地面との間に隙間が設けられている。車両本体10は、その両側に車輪15が設けられ、車輪15を回転させることで、地面上を走行する。
 ケーシング11は、車両本体10の底部に図示しない締結部材によって締結固定されている。ケーシング11は、車両本体10の底面との間に、緩衝体12を設置する設置スペース16を形成している。このケーシング11は、例えば、鋼板を用いて形成されており、車両1に衝撃が与えられた場合に、設置スペース16に設置される緩衝体12に対して、面圧を付与するように変形する。
 緩衝体12は、設置スペース16に、複数に分割して設置されており、例えば、車両本体10の車幅方向(車輪15同士を結ぶ方向)に並べて設置されている。この分割された複数の緩衝体12は、ブロック状に形成されている。
 図2に示すように、緩衝体12は、複数の多面体フレーム21を並べた三次元の網状に形成されている。各多面体フレーム21は、三次元空間に配置される複数の頂点と、頂点同士を連結する連結部材25とによって形成されており、連結部材25によって囲まれる部分が網目26となる。連結部材25は、円柱状に形成されており、後述する設計パラメータによって、その形状が設計される。
 緩衝体12は、一種類の多面体フレーム21が空間充填されるように、鉛直方向及び水平方向に規則的に複数並べて設けられている。本実施形態では、多面体フレーム21として、切頂八面体となるフレームを適用している。なお、多面体フレーム21は、切頂八面体に限らず、立方体、アルキメデスの正六角柱、菱形十二面体等を適用してもよく、空間充填可能な形状であれば、特に限定されない。
 ここで、図3は、その縦軸が荷重Fとなっており、その横軸が変位δとなっている。図3に示すように、緩衝体12には、一定の荷重が与えられた場合に、一定に変位するという機能(緩衝性能)が求められる。このとき、多面体フレーム21は、切頂八面体のフレームとなることから、複数の連結部材25の長手方向(軸方向)が、それぞれ異なる方向となるため、衝撃に対する緩衝性能が異方性の小さいものとなる。そして、図3に示すような緩衝体12としての機能を発揮するように、緩衝体12は、多面体フレーム21を規則的に複数並べて配置されている。
 また、緩衝体12は、衝撃荷重によって変位する場合、連結部材25が屈曲するが、このとき、連結部材25の屈曲が阻害されると、緩衝体12としての機能が低下する。このため、本実施形態において、緩衝体12は、複数の多面体フレーム21によって形成される中空空間が、連結部材25の屈曲を許容する空間となっている。ここで、中空空間は、緩衝体12が配置される配置空間において、連結部材25が占める空間を除く空間である。具体的に、緩衝体12が配置される配置空間に対する、中空空間の割合である空間率は、50%以上となっている。換言すれば、緩衝体12が配置される配置空間に対する、連結部材25が占める空間の割合である空間充填率は、50%未満となっている。
 上記の緩衝体12は、金属材料を用いて形成され、例えば、三次元積層造形法により形成される。なお、緩衝体12の材料は、金属材料に限定されず、例えば、樹脂またはセラミックス材料を用いてもよい。また、緩衝体12の形成方法は、三次元積層造形法に限定されず、鋳造または切削加工等によって形成してもよい。
 このような緩衝体12は、多面体フレーム21に関する設計パラメータに基づいて設計されることで、緩衝体12の緩衝性能を調整したり、また、緩衝体12の緩衝性能を等方性または異方性を有するように調整したりすることが可能となる。設計パラメータは、連結部材25の形状に関するパラメータ及び連結部材25の材料に関するパラメータを含んでいる。具体的に、連結部材25の形状に関するパラメータとしては、円柱形状の連結部材25の太さ及び連結部材25の長手方向における長さ等がある。そして、連結部材25の形状に関するパラメータを調整することで、多面体フレーム21の網目26の大きさを調整したり、多面体フレーム21の形状を変更したりすることが可能となる。連結部材25の材料に関するパラメータとしては、材料強度等がある。なお、緩衝体12に使用される材料は、二種以上であってもよく、この場合、使用する材料の選択を設計パラメータとして採用してもよい。
 このように構成された車両1は、車両本体10の底部に衝撃が与えられると、緩衝体12には、衝撃荷重が、ケーシング11により面圧として付与される。そして、緩衝体12は、衝撃荷重により変形することで、衝撃荷重を吸収する。このため、車両1に与えられる衝撃は、緩衝体によって軽減される。
 次に、図3及び図4を参照して、上記の緩衝体12を設計する設計方法について説明する。緩衝体12の設計方法では、緩衝体12の設計性能が、予め要求される緩衝体12としての要求性能を満足するように設計される。
 緩衝体12の設計方法では、先ず、緩衝体12の要求性能が設定される(ステップS1)。要求性能としては、例えば、図3に示す点線で囲んだ領域Eであり、所定の荷重Fの範囲内において、一定の荷重Fが与えられた場合に、一定に変位δが大きくなるような緩衝性能である。
 ステップS1の実行後、続いて、緩衝体12の設計パラメータが設定される(ステップS2)。具体的に、ステップS1で設定される緩衝体12の要求性能が、所定の荷重Fに対する変位δを小さくする場合、換言すれば、緩衝体12を硬くして変形し難いものとする場合について説明する。設計パラメータとして、連結部材25の太さを設定する場合、連結部材25の太さが太くなるように設計パラメータを変化させる。また、設計パラメータとして、連結部材25の長さを設定する場合、連結部材25の長さを短くすることで網目26の大きさが小さくなるように設計パラメータを変化させる。また、設計パラメータとして、連結部材25の材料強度を設定する場合、連結部材25の材料強度が強くなるように設計パラメータを変化させる。また、設計パラメータとして、空間率を設定する場合、空間率が小さくなるように設計パラメータを変化させる。
 一方で、ステップS1で設定される緩衝体12の要求性能が、所定の荷重Fに対する変位δを大きくする場合、換言すれば、緩衝体12を柔らかくして変形し易いものとする場合について説明する。設計パラメータとして、連結部材25の太さを設定する場合、連結部材25の太さが細くなるように設計パラメータを変化させる。また、設計パラメータとして、連結部材25の長さを設定する場合、連結部材25の長さを長くすることで網目26の大きさが大きくなるように設計パラメータを変化させる。また、設計パラメータとして、連結部材25の材料強度を設定する場合、連結部材25の材料強度が弱くなるように設計パラメータを変化させる。また、設計パラメータとして、空間率を設定する場合、空間率が大きくなるように設計パラメータを変化させる。
 そして、設定された設計パラメータに基づく解析等によって、例えば、図3の実線で示すような、緩衝体12の設計性能が導出される(ステップS3)。
 この後、導出した緩衝体12の設計性能が、予め設定した要求性能を満足するか否かを判定する(ステップS4)。つまり、図3に示す実線となる設計性能が、図3に示す領域Eの範囲内に収まるか否かを判定する。設計性能が要求性能を満足すると判定する(ステップS4:Yes)と、設計パラメータを決定する(ステップS5)。そして、緩衝体12は、ステップS5において決定された設計パラメータに基づいて、三次元積層造形法により形成される。一方で、設計性能が要求性能を満足していないと判定する(ステップS4:No)と、再び、ステップS2に進み、設計パラメータの再設定を行う。
 以上のように、本実施形態によれば、三次元の網状に形成された緩衝体12に、一定の荷重が与えられた場合、緩衝体12を一定の変位で変形させることができる。このとき、緩衝体12の変形及びエネルギ吸収に係る性能は、連結部材25の形状または材料等を設計パラメータとして調整することで、適宜変化させることができる。このように、簡易な設計変更で、緩衝体12の性能を適切に調整することができる。
 また、本実施形態によれば、一種類の多面体フレーム21を設置スペース16に対して空間充填するように並べて設けることができるため、設置スペース16に複数の多面体フレーム21を隙間なく配置することができる。また、多面体フレーム21を一種類とすることで、設計パラメータの数が増大することを抑制することができるため、緩衝体12の設計を、容易なものとすることができる。
 また、本実施形態によれば、多面体フレーム21として、切頂八面体となるフレームを適用することにより、複数の連結部材25の長手方向(軸方向)が、それぞれ異なる方向となる。このため、衝撃荷重に対する緩衝体12の緩衝性能を、異方性の小さいものとすることができる。
 また、本実施形態によれば、複数の多面体フレーム21によって形成される中空空間を、連結部材25の屈曲を許容する空間とすることで、緩衝体12に衝撃荷重が与えられて、緩衝体12が変形するときに、連結部材25の屈曲が阻害されることがない。このため、緩衝体12の緩衝性能を低下させることなく、緩衝体12を好適に変形させることができる。
 また、本実施形態によれば、空間率を50%以上とすることで、屈曲する連結部材25を許容可能な中空空間を、適切に確保することができる。
 また、本実施形態によれば、要求性能を満足する緩衝体12を設置スペース16に設置することにより、車両本体10に与えられる衝撃荷重を吸収することができるため、衝撃荷重による車両本体10への影響を軽減することができる。
 また、本実施形態によれば、複数に分割された複数の緩衝体12は、取り扱いが容易なものとなることから、緩衝体12を設置スペース16に適切に設置することができる。
 なお、本実施形態では、設置スペース16に対して、一種類の多面体フレーム21を空間充填して緩衝体12を形成したが、二種類以上の多面体フレーム21を用いて緩衝体12を形成してもよい。例えば、二種類の多面体フレーム21を所定の方向において交互となるように配置してもよい。二種類の多面体フレーム21の組み合わせとしては、例えば、正四面体と正八面体、正四面体と切頂四面体、正八面体と切頂六面体、正八面体と立方八面体、斜方切頂八面体と正八角柱等がある。また、三種類の多面体フレーム21を所定の方向において規則的に配置してもよい。三種類の多面体フレーム21の組み合わせとしては、例えば、切頂四面体と切頂八面体と立方八面体、切頂四面体と切頂六面体と斜方切頂立方八面体、正四面体と立方体と斜方立方八面体、立方体と立方八面体と斜方立方八面体、立方体と切頂八面体と斜方切頂立方八面体等がある。さらに、一種類の多面体フレーム21の内部に、別の種類の多面体フレーム21を空間充填してもよい。
 1 車両
 10 車両本体
 11 ケーシング
 12 緩衝体
 15 車輪
 16 設置スペース
 21 多面体フレーム
 25 連結部材
 26 網目
 E 領域

Claims (10)

  1.  三次元空間に配置される複数の頂点と、前記頂点同士を連結する連結部材とによって形成される多面体フレームを複数並べた、三次元の網状となるネットワーク構造体であって、
     複数の前記多面体フレームは、一定の荷重が与えられることで、一定に変位するように規則的に並べて設けられることを特徴とするネットワーク構造体。
  2.  複数の前記多面体フレームは、一種類以上の前記多面体フレームが並べて設けられることを特徴とする請求項1に記載のネットワーク構造体。
  3.  複数の前記多面体フレームは、一種類の前記多面体フレームが空間充填されるように並べて設けられることを特徴とする請求項2に記載のネットワーク構造体。
  4.  前記多面体フレームは、切頂八面体となるフレームであることを特徴とする請求項3に記載のネットワーク構造体。
  5.  複数の前記多面体フレームによって形成される中空空間は、前記連結部材の屈曲を許容する空間となっていることを特徴とする請求項1から4のいずれか1項に記載のネットワーク構造体。
  6.  複数の前記多面体フレームが配置される配置空間に対する、前記中空空間の割合である空間率は、50%以上であることを特徴とする請求項5に記載のネットワーク構造体。
  7.  請求項1から6のいずれか1項に記載のネットワーク構造体を有することを特徴とする緩衝体。
  8.  車両本体と、
     前記車両本体に設けられる、請求項7に記載の緩衝体と、
     前記緩衝体を前記車両本体に取り付けるための取付部材と、を備えることを特徴とする車両。
  9.  前記緩衝体は、複数に分割して設置されることを特徴とする請求項8に記載の車両。
  10.  三次元空間に配置される複数の頂点と、前記頂点同士を連結する連結部材とによって形成される多面体フレームを複数並べた、三次元の網状となるネットワーク構造体の設計方法であって、
     前記ネットワーク構造体は、前記多面体フレームに関する設計パラメータに基づいて設計され、
     前記設計パラメータは、前記ネットワーク構造体に要求される要求性能を満足するように設定され、前記連結部材の形状に関するパラメータ及び前記連結部材の材料に関するパラメータの少なくともいずれかのパラメータを含むことを特徴とするネットワーク構造体の設計方法。
PCT/JP2016/085059 2016-02-24 2016-11-25 ネットワーク構造体、緩衝体、車両及びネットワーク構造体の設計方法 WO2017145472A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16891628.6A EP3421835A4 (en) 2016-02-24 2016-11-25 NETWORK STRUCTURE, PADDING BODY, VEHICLE, AND METHOD FOR DESIGNING NETWORKED STRUCTURE
US16/078,781 US10974770B2 (en) 2016-02-24 2016-11-25 Network structure, shock-absorbing body, vehicle, and design method of network structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016033467A JP6789640B2 (ja) 2016-02-24 2016-02-24 ネットワーク構造体、緩衝体、及び車両
JP2016-033467 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017145472A1 true WO2017145472A1 (ja) 2017-08-31

Family

ID=59686039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085059 WO2017145472A1 (ja) 2016-02-24 2016-11-25 ネットワーク構造体、緩衝体、車両及びネットワーク構造体の設計方法

Country Status (4)

Country Link
US (1) US10974770B2 (ja)
EP (1) EP3421835A4 (ja)
JP (1) JP6789640B2 (ja)
WO (1) WO2017145472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230015489A1 (en) * 2021-07-13 2023-01-19 Honeywell Federal Manufacturing & Technologies, Llc Lattice design for energy absorption and vibration damping applications

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108730390A (zh) * 2018-03-15 2018-11-02 南京航空航天大学 一种碳纤维蜂窝管结构
JP7410637B2 (ja) * 2018-05-29 2024-01-10 住友ゴム工業株式会社 三次元構造物
CA3121204A1 (en) * 2018-11-28 2020-06-04 President And Fellows Of Harvard College Structural design principles for diagonal bracings in truss and beam support systems
US11801904B2 (en) * 2021-11-16 2023-10-31 Textron Systems Corporation Techniques involving a modular vehicle belly armor kit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747046A (en) * 1980-09-05 1982-03-17 Energy Absorption System Energy absorbing device
JPH0868436A (ja) * 1994-08-26 1996-03-12 Nippon Light Metal Co Ltd 発泡アルミニウム製衝撃エネルギー吸収部材及び製造方法
JP2004142607A (ja) * 2002-10-24 2004-05-20 Aisin Seiki Co Ltd 衝撃エネルギー吸収体
JP2013216228A (ja) * 2012-04-10 2013-10-24 Toyota Auto Body Co Ltd 車両の衝撃吸収構造

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587541A (en) * 1978-12-27 1980-07-02 Kogyo Gijutsuin Grateelike porous structure portion material
US4336296A (en) 1978-12-27 1982-06-22 Agency Of Industrial Science & Technology Three-dimensionally latticed flexible-structure composite
US5540972A (en) 1993-05-28 1996-07-30 Hexacomb Corporation Prestressed honeycomb, method and apparatus therefor
JP2601974Y2 (ja) 1993-09-30 1999-12-13 昭和飛行機工業株式会社 緩衝材
US6076324A (en) * 1996-11-08 2000-06-20 Nu-Cast Inc. Truss structure design
US6682128B2 (en) * 1998-02-04 2004-01-27 Oakwood Energy Management, Inc. Composite energy absorber
JPH11351328A (ja) 1998-06-12 1999-12-24 Toyobo Co Ltd 衝撃吸収体及びそれを用いた衝撃吸収方法
JP2001246995A (ja) 2000-03-02 2001-09-11 Tokai Rubber Ind Ltd 衝撃及び振動エネルギ吸収部材
JP3928038B2 (ja) 2002-05-08 2007-06-13 独立行政法人産業技術総合研究所 衝撃エネルギー吸収体
US20090087584A1 (en) 2006-02-22 2009-04-02 Kawasaki Jukogyo Kabushiki Kaisha Method of controlling pore conditions of porous metal
DE202009016759U1 (de) * 2009-12-11 2010-04-08 Peguform Gmbh Energieabsorber
WO2013188967A1 (en) * 2012-06-21 2013-12-27 Pantero Technologies Inc. Planar space frame for vehicle structure and housing of components
WO2014193511A2 (en) * 2013-03-07 2014-12-04 Massachusetts Institute Of Technology Flexural digital material construction and transduction
EP2965034B1 (en) * 2013-03-08 2019-11-06 HRL Laboratories LLC Energy absorbing truss structures for mitigation of injuries from blasts and impacts
WO2015105859A1 (en) * 2014-01-07 2015-07-16 Nama Development Llc 3-d honeycomb foam structure
US9162416B1 (en) * 2014-08-18 2015-10-20 Hrl Laboratories, Llc Basal plane reinforced microlattice

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747046A (en) * 1980-09-05 1982-03-17 Energy Absorption System Energy absorbing device
JPH0868436A (ja) * 1994-08-26 1996-03-12 Nippon Light Metal Co Ltd 発泡アルミニウム製衝撃エネルギー吸収部材及び製造方法
JP2004142607A (ja) * 2002-10-24 2004-05-20 Aisin Seiki Co Ltd 衝撃エネルギー吸収体
JP2013216228A (ja) * 2012-04-10 2013-10-24 Toyota Auto Body Co Ltd 車両の衝撃吸収構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3421835A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230015489A1 (en) * 2021-07-13 2023-01-19 Honeywell Federal Manufacturing & Technologies, Llc Lattice design for energy absorption and vibration damping applications
US11761503B2 (en) * 2021-07-13 2023-09-19 Honeywell Federal Manufacturing & Technologies, Llc Lattice design for energy absorption and vibration damping applications

Also Published As

Publication number Publication date
US20190084626A1 (en) 2019-03-21
JP6789640B2 (ja) 2020-11-25
JP2017149267A (ja) 2017-08-31
EP3421835A4 (en) 2019-04-10
US10974770B2 (en) 2021-04-13
EP3421835A1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
WO2017145472A1 (ja) ネットワーク構造体、緩衝体、車両及びネットワーク構造体の設計方法
CN105350673B (zh) 非线性颗粒碰撞阻尼器
CN206367515U (zh) 用于机动车辆的加强构件
KR102383940B1 (ko) 제어된 변형 배향을 갖는 금속 부품
KR101840022B1 (ko) 3차원 트러스 충진 구조체를 이용한 진동저감용 댐퍼
JP2008223422A (ja) 階段の取付け構造
KR101787590B1 (ko) 조적벽체용 내진보강장치
CN105020331A (zh) 轻质结构
JP2009249973A (ja) 制振構造物
CN103590503B (zh) 饱水海绵吸能减振装置
JP5575838B2 (ja) 建築物の梁支持構造
JP2017149267A5 (ja)
CN107882177B (zh) 自复位混凝土框架柱滑移节点
CN103016605A (zh) 一种参数可调的液阻式动力吸振器
JP2016094945A (ja) エネルギー吸収部材
JP5720718B2 (ja) 制振建物
JP6202711B2 (ja) 建築構造
JP2009209635A (ja) 塔状構造物
CN101432491A (zh) 建筑结构体
JP6677480B2 (ja) 履歴型ダンパー及び建物の制振構造
JP6568724B2 (ja) コンクリート構造物
JP6259211B2 (ja) 合成セグメントの製造方法
CN106021801A (zh) 一种基于特征参量的弧形钢闸门优化设计方法
JP2019108902A (ja) 動吸振器
JP2006132137A (ja) 法面安定化方法及び法面安定化構造物

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016891628

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016891628

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891628

Country of ref document: EP

Kind code of ref document: A1