WO2017141935A1 - 光学的立体造形用組成物 - Google Patents

光学的立体造形用組成物 Download PDF

Info

Publication number
WO2017141935A1
WO2017141935A1 PCT/JP2017/005413 JP2017005413W WO2017141935A1 WO 2017141935 A1 WO2017141935 A1 WO 2017141935A1 JP 2017005413 W JP2017005413 W JP 2017005413W WO 2017141935 A1 WO2017141935 A1 WO 2017141935A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
composition
optical
mass
styrene
Prior art date
Application number
PCT/JP2017/005413
Other languages
English (en)
French (fr)
Inventor
博明 岡本
雅郎 中塚
Original Assignee
岡本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡本化学工業株式会社 filed Critical 岡本化学工業株式会社
Priority to EP17753191.0A priority Critical patent/EP3418313B1/en
Priority to JP2018500138A priority patent/JPWO2017141935A1/ja
Priority to US16/077,290 priority patent/US20190049841A1/en
Publication of WO2017141935A1 publication Critical patent/WO2017141935A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0385Macromolecular compounds which are rendered insoluble or differentially wettable using epoxidised novolak resin

Definitions

  • the present invention relates to a composition for optical three-dimensional modeling.
  • optical three-dimensional modeling technology for producing a three-dimensional model by laminating a hardened layer formed by curing a photocurable resin by scanning with an ultraviolet laser based on three-dimensional CAD data.
  • optical three-dimensional modeling is also referred to as “optical modeling”
  • a prototype can be easily and quickly produced without preparing a mold or a mold.
  • the time and cost required from product development design to production can be reduced.
  • stereolithography technology has been adopted in a wide variety of industrial fields such as automobile parts, electrical equipment, and medical equipment.
  • the performance required for photo-curing resins is increasing due to the expansion of the application field of optical three-dimensional modeling technology. 3D objects that have high curing speed, excellent dimensional stability and dimensional accuracy during curing, and are not easily damaged even when external stress such as bending is applied. There is a need for a photo-curable resin that can form.
  • Patent Document 1 A composition in which a specific organic compound or a specific compound having two oxetanyl groups is blended has been proposed (Patent Document 1, Patent Document 2, and Patent Document 3).
  • a three-dimensional modeled object is formed by stacking a plurality of thin cured film layers having a thickness of about 20 to 100 microns formed by scanning an ultraviolet laser on the composition for optical modeling. To manufacture. At this time, if the thin cured film layers do not adhere to each other, the strength of the three-dimensional structure may be affected. Further, the conventional stereolithographic composition has a problem that the three-dimensional model is warped during production and may be caught by an ultraviolet laser scanning machine.
  • Patent Document 1 In order to improve the heat resistance of the three-dimensional structure, it is generally performed after the composition is cured by light irradiation and further heated at, for example, 60 to 250 ° C. (Patent Document 1). However, when the heat treatment is performed in this manner, the number of steps increases, and the work efficiency may be deteriorated.
  • the object of the present invention is to complete the optical modeling (photocuring) in a shorter time, and to perform mechanical processing (bending strength and flexural modulus) after the optical modeling without performing a heat treatment operation (heating at 60 ° C. or higher).
  • An excellent composition for optical three-dimensional modeling is provided.
  • a cationically polymerizable epoxy resin which is an epoxy resin having the structure: (B) a cationically polymerizable compound having a glycidyl ether structure other than the component (A), (C) a radically polymerizable compound having a methacryl group and / or an acrylic group; (D) a copolymer resin of styrene and maleic anhydride, wherein the maleic anhydride repeating unit is ring-opened into an ester and an acid to form a half ester, and / or styrene and methacrylic acid or A styrene-containing copolymer resin that is a copolymer resin with acrylic acid; (E) a cationically polymerizable epoxy resin which is an epoxy resin having the structure: (B) a cationically polymerizable compound having a glycidyl ether structure other than the component (A), (C) a radically polymerizable compound having a methacryl
  • the present invention it is possible to shorten the photocuring time when producing a three-dimensional structure, and the cured film layers are in close contact with each other in the manufacturing process of the three-dimensional structure, and the warpage deformation of the three-dimensional object is small. And it becomes possible to manufacture the three-dimensional molded item which has the outstanding mechanical characteristic.
  • composition for optical three-dimensional modeling contains at least components (A) to (G), and further contains other components as necessary.
  • Component (A) is a novolak type epoxy resin and / or the following formula (I) (In the formula, m represents an integer of 1 or more.) Or the following formula (II) (In the formula, n represents an integer of 1 or more.) It is a cationically polymerizable epoxy resin that is an epoxy resin having the following structure.
  • the novolak type epoxy resin is a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of novolak, for example, and generally has excellent heat resistance.
  • the novolac type epoxy resin is generally oil-soluble and is preferably liquid at room temperature.
  • the novolac epoxy resin may be, for example, a liquid phenol novolac epoxy resin.
  • the epoxy equivalent of the novolac type epoxy resin is preferably 170 to 190 g / equivalent.
  • As the novolac type epoxy resin a commercially available product may be used.
  • the novolak type epoxy resin Epicron N-730A (epoxy equivalent 172 to 179 g / equivalent) manufactured by DIC Corporation, Epicron N-770 (epoxy equivalent 183 to 187 g / equivalent), Mitsubishi Chemical Corporation JER152 (epoxy equivalent 176 to 178 g / equivalent), JER154 (epoxy equivalent 176 to 180 g / equivalent), YDPN-638 (epoxy equivalent 175 to 176 g / equivalent) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., YDCN-700-3 (epoxy equivalent) 195 to 205 g / equivalent), YDCN-700-5 (epoxy equivalent 196 to 206 g / equivalent), EOCN-1025 (epoxy equivalent 205 to 217 g / equivalent) manufactured by Nippon Kayaku Co., Ltd., and the like.
  • the epoxy equivalent is the number of grams of a resin containing 1 gram equivalent of an epoxy group measured by a method
  • the cationically polymerizable epoxy resin of component (A) has the following formula (I)
  • An epoxy resin having a structure (wherein m represents an integer of 1 or more, preferably 1 to 3) may be used. Specific examples include NC-3000 (epoxy equivalents 265-285 g / equivalent), NC-3000-L (epoxy equivalents 261-282 g / equivalent), NC-3000-H (epoxy equivalents 280- 300 g / equivalent), NC-3100 (epoxy equivalents 245 to 270 g / equivalent), and the like.
  • the cationically polymerizable epoxy resin of component (A) also has the following formula (II)
  • a cation polymerizable epoxy resin which is an epoxy resin having a structure (wherein n represents an integer of 1 or more, preferably 1 or 2) may be used.
  • Specific examples include EPPN-501H (epoxy equivalents 162 to 172 g / equivalent), EPPN-501HY (epoxy equivalents 163 to 175 g / equivalent), EPPN-502H (epoxy equivalents 158 to 178 g / equivalent) manufactured by Nippon Kayaku Co., Ltd. Etc.
  • the content of the cationically polymerizable epoxy resin of component (A) is 5 to 50% by mass, preferably 10 to 40% by mass, based on the total amount of the optical three-dimensional composition.
  • the content of the cationically polymerizable epoxy resin of component (A) is less than 5% by mass, mechanical properties and heat resistance become insufficient when the three-dimensional modeling is performed. If it exceeds 50% by mass, the toughness becomes insufficient when a three-dimensional model is formed.
  • the cationically polymerizable epoxy resin of component (A) preferably has an epoxy equivalent of 100 to 300 g / equivalent, and more preferably 150 to 300 g / equivalent.
  • the crosslinking density of a composition increases, it becomes easy to form a three-dimensional structure in a composition, and a mechanical characteristic can be improved when it is set as three-dimensional modeling.
  • mechanical properties such as tensile strength, elongation, bending strength, and bending elastic modulus of the obtained three-dimensional structure can be further improved, and heat resistance is also improved. Can do.
  • Component (B) is a cationically polymerizable compound having a glycidyl ether structure other than the component (A).
  • the component (B) has a solubility in water at room temperature (25 ° C.) of preferably 5 g / 100 ml, more preferably 40 g / 100 ml or more, and still more preferably 50 g / 100 ml or more.
  • the cationically polymerizable compound having a glycidyl ether structure as component (B) may be an ether derivative of sorbitol.
  • sorbitol may be either D-form or L-form, and sorbitol may be a mixture of D-form and L-form.
  • the ether derivative of sorbitol having a glycidyl ether structure as component (B) is, for example, the following formula (I): At least one of the hydrogen atoms of the six hydroxyl groups of sorbitol is represented by the following glycidyl group: May be substituted.
  • the ether derivative of sorbitol having a glycidyl ether structure as the component (B) has, for example, at least one hydrogen atom of six hydroxyl groups of sorbitol represented by the following glycidyl polyoxyethylene group: (In the formula, n independently represents an integer of 1 to 50.) May be substituted.
  • the ether derivative of sorbitol having the glycidyl ether structure of component (B) is such that at least one hydrogen of the six hydroxyl groups of sorbitol is substituted with a glycidyl group, and at least one hydrogen of the remaining hydroxyl groups of sorbitol is glycidyl.
  • the ether derivative of sorbitol having the glycidyl ether structure of component (B) further substituted with a glycidyl polyoxyethylene group is also referred to as “glycidyl ether of sorbitol polyoxyethylene ether”.
  • cationically polymerizable compound having a glycidyl ether structure of component (B) include polyglycerin polyglycidyl ether, glycerin polyglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol # 200 diglycidyl ether, and polyethylene glycol # 400 diglycidyl.
  • Polyethylene glycol diglycidyl ether such as ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol # 400 diglycidyl ether, etc.
  • the epoxy equivalent of the cationically polymerizable compound other than the component (A) having the glycidyl ether structure of the component (B) is preferably 100 to 300 g / equivalent, more preferably 120 to 300 g / equivalent.
  • the component (B) cationically polymerizable compound is preferably liquid at room temperature.
  • the component (B) cationically polymerizable compound can be synthesized by referring to a known method (for example, JP-A-2001-39960, Experimental Chemistry Course, 4th edition, Volume 28, P428), and a commercially available product is used. You can also.
  • a commercially available product for example, in the case of a sorbitol polyglycidyl ether product, Denacol EX-611 (epoxy equivalent 167 g / equivalent), Denacol EX-612 (epoxy equivalent 166 g / equivalent), Denacol EX-614 manufactured by Nagase Chemitech Co., Ltd. (Epoxy equivalent 167 g / equivalent), Denacol EX-614B (epoxy equivalent 173 g / equivalent), and ERISYS GE-60 (epoxy equivalent 160-195 g / equivalent) manufactured by Emerald.
  • a known method for example, JP-A-2001-39960, Experimental Chemistry Course, 4th edition, Volume 28, P428, and
  • the content of the cationically polymerizable compound as the component (B) is 5 to 70% by mass, preferably 20 to 60% by mass, and more preferably 30 to 50% by mass in the total amount of the optical three-dimensional modeling composition. %.
  • the content of the cationically polymerizable compound of the component (B) is less than 5% by mass, the flexibility becomes insufficient when a three-dimensional model is formed, and when it exceeds 70% by mass, the adhesion between the cured thin film layers is weak. Become.
  • the adhesion between the cured thin film layers is good, the warpage deformation during the production of the three-dimensional structure is improved, and mechanical properties such as tensile strength, elongation, bending strength, and bending elastic modulus of the three-dimensional structure are obtained. Can be improved.
  • the composition for optical three-dimensional modeling is other cationically polymerizable It may further contain a compound.
  • the other cationically polymerizable compound is preferably a polyfunctional monomer having two or more cationically polymerizable bonds in one molecule.
  • Other cationically polymerizable compounds are, for example, cationically polymerizable compounds having an epoxy group, a vinyl ether group, or an oxetane group. This cationically polymerizable compound having an epoxy group is not the cationically polymerizable epoxy resin of the component (A).
  • the cationically polymerizable compound having an epoxy group examples include hexahydrophthalic acid diglycidyl ester (epoxy equivalent 155 g / equivalent, SR-HHPA, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.), 3,4-epoxycyclohexylmethyl methacrylate (epoxy Equivalents 195 to 215 g / equivalent, Cyclomer M100, manufactured by Daicel) 2,2-bis (hydroxymethyl) -1-butanol 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct (epoxy equivalents 170- 190 g / equivalent, EHPE3150, manufactured by Daicel), epoxidized polybutadiene (epoxy equivalents 152-178 g / equivalent, Epolide PB4700, manufactured by Daicel), butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) modified
  • the cationically polymerizable compound having a vinyl ether group examples include cyclopentadiene vinyl ether, tricyclodecane vinyl ether, benzyl vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether.
  • the cationically polymerizable compound having an oxetane group include (3-ethyl-oxetane-3-yl) -methanol, 3- (3-ethyl-oxetane-3-ylmethoxy) -propan-1-ol, 4- (3-ethyl-oxetane-3-ylmethoxy) -butan-1-ol, 3- (3-ethyl-oxetane-3-ylmethoxy) -propane-1,2-diol, 1- (3-ethyl-oxetane-3 -Ylmethoxy) -propan-2-ol, 1- [2- (3-ethyl-oxetane-3-ylmethoxy) -1-methyl-ethoxy-ethanol, 2- [2- (3-ethyl-oxetane-3-ylmethoxy) ) -Ethoxy] -ethanol xylylene bisoxe
  • the above-mentioned cationic polymerizable compounds having an epoxy group, a vinyl ether group or an oxetane group can be used singly or in combination of two or more.
  • the cationically polymerizable compound having an epoxy group, vinyl ether group or oxetane group examples thereof include Crossmer manufactured by Nippon Carbide Industry Co., Ltd., Celoxide manufactured by Daicel Co., Ltd., Epolide, vinyl ether manufactured by Maruzen Petrochemical Co., Ltd., Sumi Epoxy manufactured by Sumitomo Chemical Co., Ltd.
  • the content of the cationically polymerizable compound other than the component (A) and the component (B) is preferably less than the total content of the cationically polymerizable compounds of the component (A) and the component (B).
  • the total amount of the composition is preferably 1 to 30% by mass, more preferably 1 to 20% by mass.
  • Component (C) is a radically polymerizable compound having a methacryl group and / or an acryl group.
  • Component (C) is in an uncured state, for example, has a solubility in water at room temperature (25 ° C.) of preferably 5 g / 100 ml or more, more preferably 40 g / 100 ml or more, and even more preferably 50 g / 100 ml or more. It is.
  • the radically polymerizable compound of component (C) is preferably a liquid at normal temperature.
  • a methacryl group or an acrylic group is also referred to as “(meth) acryloyl group”
  • a methacrylate or acrylate is also referred to as “(meth) acrylate”.
  • the radically polymerizable compound having a methacryl group and / or an acryl group of component (C) may be monofunctional, bifunctional, or trifunctional or higher, and is compatible with the cationically polymerizable compound of component (B).
  • the following compounds may be mentioned.
  • Monofunctional group compounds include (meth) acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, glycerin ( (Meth) acrylate, nonylphenol EO-modified (meth) acrylate, reaction product of 2-hydroxyethyl (meth) acrylate and phosphoric anhydride, reaction product of hexahydroxy addition polymer of 2-hydroxyethyl (meth) acrylate and phosphoric anhydride Etc.
  • bifunctional compound examples include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (400) di (meth) acrylate, polyethylene glycol (600) di (meth) acrylate, polypropylene glycol ( 400) di (meth) acrylate, ethoxylated (4) bisphenol A di (meth) acrylate, ethoxylated (10) bisphenol A di (meth) acrylate, ethoxylated (30) bisphenol A di (meth) acrylate, ethoxylated ( 4) Hydrogenated bisphenol A di (meth) acrylate, ethoxylated (30) hydrogenated bisphenol A di (meth) acrylate, EO-modified (10) hydrogenated bisphenol A di (meth) acrylate, and the like.
  • trifunctional or higher functional compound examples include ethoxylated (9) glycerin tri (meth) acrylate, ethoxylated (20) glycerin tri (meth) acrylate, and polyether-based urethane trifunctional (meth) acrylate.
  • the radical polymerizable compound having a methacryl group and / or an acryl group can be synthesized by a known method, or a commercially available one can be used.
  • Aronix series manufactured by Toa Gosei Co., Ltd., Bremer series manufactured by NOF Corporation Light ester series manufactured by Kyoeisha Chemical Co., Ltd., Light acrylate series, Epoxy ester series, Urethane acrylate series, NK ester series manufactured by Shin-Nakamura Chemical Co., Ltd. NK Oligo series, Nippon Kayaku Co., Ltd. KAYARAD series, Osaka Organic Chemical Co., Ltd. biscoat series.
  • the content of the component (C) radical polymerizable compound is 5 to 50% by mass, preferably 10 to 40% by mass, based on the total amount of the optical three-dimensional composition.
  • the content of the component (C) radical polymerizable compound is 5 to 50% by mass, preferably 10 to 40% by mass, based on the total amount of the optical three-dimensional composition.
  • the content of the component (C) radical polymerizable compound is preferably less than the content of the component (B) cationic polymerizable compound. Hardness of hardened
  • cured material can be raised because content of the radically polymerizable compound of a component (C) is less than content of the cationically polymerizable compound of a component (B).
  • the optical three-dimensional modeling composition may further contain other radically polymerizable compounds to the extent that they do not depart from the spirit of the invention.
  • the content of the other radical polymerizable compound is preferably 5 to 30% by mass in the total amount of the optical three-dimensional modeling composition, for example.
  • monofunctional monomers of other radical polymerizable compounds include, for example, acrylamide, 7-amino-3,7-dimethyloctyl (meth) acrylate, isobutoxymethyl (meth) acrylamide, isobornyl (meth) acrylate, 2- Ethylhexyl (meth) acrylate, diacetone (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, lauryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate , N, N-dimethyl (meth) acrylamide, tetrahydrofurfuryl (meth) acrylate, vinylcaprolactam, N-vinylpyrrolidone, phenoxyethyl (meth) acrylate, butto Shiechiru (
  • bifunctional monomer of other radical polymerizable compound examples include, for example, ethylene glycol di (meth) acrylate, tricyclodecanediyldimethylene di (meth) acrylate, tripropylene glycol di (meth) acrylate, neopentyl glycol di ( (Meth) acrylate, bisphenol A diglycidyl ether end (meth) acrylic acid adduct, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyester di (meth) acrylate And polyester-based urethane bifunctional (meth) acrylate.
  • trifunctional or higher polyfunctional monomers of other radical polymerizable compounds include, for example, tris (acryloyloxyethyl) isocyanurate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate.
  • Component (D) is a copolymer resin of styrene and maleic anhydride.
  • the maleic anhydride unit is converted into an ester and a carboxylic acid by, for example, alcohol.
  • It is a styrene-containing copolymer resin that is a copolymer resin that is ring-opened and half-esterified and / or a copolymer resin of styrene and methacrylic acid or acrylic acid.
  • the “copolymer resin of styrene and maleic anhydride” is a resin having a molar ratio of styrene units to maleic anhydride units of preferably 1: 1 to 8: 1.
  • all (for example, 80 to 100 mol%) are cleaved to be half-esterified, that is, an ester and a carboxylic acid, and the alcohol-derived portion of this ester is preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl , 2-ethylhexyl or the like is an alkyl group having 1 to 18 carbon chains.
  • the “copolymer resin of styrene and methacrylic acid or acrylic acid” is a resin obtained by copolymerizing styrene and methacrylic acid or acrylic acid.
  • the acid value of these styrene-containing copolymer resins is preferably in the range of 120 to 250 mgKOH / g.
  • the molecular weight of the styrene-containing copolymer resin is preferably in the range of 7,000 to 30,000.
  • the acid value of the styrene-containing copolymer resin can be measured, for example, based on JIS K0070 (chemical acid acid number test method).
  • the molecular weight of the styrene-containing copolymer resin can be measured as a weight average molecular weight using, for example, polystyrene-performed gel permeation chromatography (GPC).
  • a specific example of a copolymer resin of styrene and maleic anhydride, in which maleic anhydride units are half-esterified among styrene units and maleic anhydride units, which are repeating units, is Kawa Crude Co., Ltd.
  • SMA 1440 (acid value 165 to 205 mg KOH / g, molecular weight 7000), SMA 17352 (acid value 255 to 285 mg KOH / g, molecular weight 7000), SMA 2625 (acid value 200 to 240 mg KOH / g, molecular weight 9000), SMA 3840 (Acid value 95-120 mgKOH / g, molecular weight 10500), Hiros US-1243 (acid value 180-200 mgKOH / g, molecular weight 5500-7600) manufactured by Seiko PMC Co., Ltd., Hiros X-200 (acid value 180-200 mgKOH / g) , Molecular weight 1000 To 14000), high loss X-205 (acid value 240 to 260 mg KOH / g, molecular weight 10,000 to 14000), high loss X-220 (acid value 145 to 165 mg KOH / g, molecular weight 11000 to 15000), high loss X-2
  • copolymer resin of styrene and methacrylic acid or acrylic acid examples include Hiros VS-1047 (acid value 230 to 250 mg KOH / g, molecular weight 8,000 to 12,000) manufactured by Seiko PMC Co., Ltd., Toa Gosei Co., Ltd.
  • ARUFON UC-3080 (acid value 230 mgKOH / g, molecular weight 14000) manufactured by company, AFURON UF-5022 (acid value 235 mgKOH / g, molecular weight 14000), Joncrill 67 manufactured by BASF (acid value 213 mgKOH / g, molecular weight 12, 500), Joncryl 678 (acid value 215 mgKOH / g, molecular weight 8,500), Joncryl 680 (acid value 215 mgKOH / g, molecular weight 4,900), Joncryl 682 (acid value 238 mgKOH / g, molecular weight 1,700) And Jongkrill 690 (acid value 240 mg OH / g, molecular weight 16,500), and the like.
  • the content of the component (D) styrene-containing copolymer resin is 1 to 30% by mass, preferably 3 to 20% by mass, based on the total amount of the optical three-dimensional composition.
  • the mechanical strength becomes insufficient when it is made into three-dimensional modeling, and when it exceeds 30% by mass, it becomes difficult to disperse or dissolve in the composition when producing a composition for optical three-dimensional modeling. .
  • the mechanical strength can be improved when the three-dimensional modeling is performed.
  • Component (E) is a cationic polymerization initiator that is a sulfonium compound or a bis (alkylphenyl) iodonium compound.
  • cationic polymerization initiators for component (E) can be used.
  • San-Aid SI series manufactured by Sanshin Chemical Industry Co., Ltd. WPI series manufactured by Wako Pure Chemical Industries, Ltd.
  • SP series manufactured by Adeka Co., Ltd. SP series manufactured by Adeka Co., Ltd.
  • CPI series manufactured by San Apro Co., Ltd. and the like can be mentioned.
  • the content of the cationic polymerization initiator as the component (E) is in the range of 0.1 to 20% by mass, preferably in the range of 0.5 to 10% by mass, based on the total amount of the optical three-dimensional modeling composition. is there. When it is less than 0.1% by mass, the cationic polymerization reaction rate becomes slow. When content exceeds 20 mass%, the hardening characteristic of the composition for optical three-dimensional modeling is reduced.
  • Component (F) is a radical polymerization initiator.
  • the radical polymerization initiator is not particularly limited as long as it is a compound capable of generating radical species by irradiation of active energy rays and initiating a radical reaction of the radical polymerizable compound.
  • a commercially available thing can be used for the radical polymerization initiator of a component (F).
  • a component for example, BASF's IRGACURE series, DAROCUR series, LUCIRIN series, SB-PI series by Sort Co., Ltd., Adekaoptomer series by ADEKA Co., Ltd., Organic boron compound series by Showa Denko Co., Ltd. There are series, etc.
  • the content of the radical polymerization initiator of component (F) is in the range of 0.1 to 20% by mass, preferably in the range of 0.5 to 10% by mass, based on the total amount of the optical three-dimensional modeling composition. is there. When it is less than 0.1% by mass, the radical polymerization reaction rate of the optical three-dimensional modeling composition is slow. When content exceeds 20 mass%, the hardening characteristic of the composition for optical three-dimensional modeling is reduced.
  • Component (G) is a sensitizer.
  • the sensitizer is not particularly limited as long as it is a compound that can increase the photosensitivity of the optical three-dimensional composition (preferably one that is understood to absorb a wavelength of 300 to 500 nm). Is preferred.
  • polyfunctional thiol compound examples include 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, , 4-bis (3-mercaptobutyryloxy) butane, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] -Isocyanurate, pentaerythritol tetrakis (3-mercaptopropionate) and the like.
  • polyfunctional thiol compound as the sensitizer of component (E), commercially available products can be used.
  • QX40 manufactured by Mitsubishi Chemical Corporation, Adeka Hardener EH-317 manufactured by Adeka Corporation, SC Organic Chemical Co., Ltd.
  • PEMP TBMPIC
  • TMPMP manufactured by Showa Denko K.K.
  • sensitizers other than polyfunctional thiol compounds include benzophenone, acridine series, 9-phenylacridine, 9- (p-methylphenyl) acridine, 9- (o-methylphenyl) acridine, 9- (o -Chlorophenyl) acridine, 9- (o-fluorophenyl) acridine, coumarin series, 7,7- (diethylamino) (3,3-carbonylbiscoumarin), 3-benzoyl-7-diethylaminocoumarin, 7,7-bis
  • Examples of (methoxy) (3,3-carbonylbiscoumarin) and anthracene include 9,10-dimethoxyanthracene, 9,10-ethoxyanthracene, and 9,10-butoxyanthracene.
  • the content of the sensitizer of component (G) is in the range of 0.05 to 5.0% by mass, preferably in the range of 3 to 5% by mass, based on the total amount of the optical three-dimensional modeling composition. .
  • the content exceeds 5.0% by mass, the sensitivity is locally lowered, or only the surface portion is cured.
  • the photo-curing reaction is further promoted, and all the polymerization components in the composition are cured (bonded) to obtain a three-dimensional model. High mechanical strength and heat resistance can be obtained.
  • the composition for optical three-dimensional modeling is a composition for optical three-dimensional modeling including, as other components, a solvent for dissolving or dispersing component (E) and / or component (F), a curing accelerator, a colorant, and the like.
  • a solvent for dissolving or dispersing component (E) and / or component (F) a curing accelerator, a colorant, and the like.
  • the composition for optical three-dimensional modeling comprises 5 to 50% by mass of the cationic polymerizable epoxy resin of component (A), 5 to 70% by mass of the cationic polymerizable compound other than component (A) of component (B), 5 to 50% by mass of the radically polymerizable compound (C), 1 to 30% by mass of the styrene-containing copolymer resin of component (D), 0.1 to 20% by mass of the cationic polymerization initiator of component (E), Containing 0.1 to 20% by mass of the radical polymerization initiator of component (F) and 0.05 to 5.0% by mass of the sensitizer of component (G), optionally other cationically polymerizable compounds; It further contains other radical polymerizable compounds and / or other components.
  • the total of the cationically polymerizable epoxy resin of component (A), the cationically polymerizable compound of component (B), and the radically polymerizable compound of component (C) is preferably 50 from the viewpoint of efficient cured product production. It is at least mass%, more preferably at least 60 mass%, still more preferably 65 to 95 mass%.
  • the composition for optical three-dimensional modeling can be prepared according to a conventional method.
  • the optical three-dimensional molding composition is stirred uniformly with components (A) to (G) and, if necessary, other cationically polymerizable compounds, other radically polymerizable compounds, and / or other components.
  • the mixture is filtered, the mixture is filtered to remove foreign matters mixed in the raw materials and foreign matters mixed in the manufacturing process, and the mixture is degassed.
  • the blending amount of each component is set so that the final concentration in the optical three-dimensional modeling composition is within the above-described range.
  • components such as component (C), component (E) and component (F) are solid at room temperature, it is preferable to use those previously dissolved or dispersed in a solvent.
  • Stirring is preferably performed at a temperature of 20 to 40 ° C. for 1 to 2 hours.
  • the temperature is lower than 20 ° C.
  • the polymerizable compound may thicken and the stirring efficiency may be deteriorated.
  • the temperature is higher than 40 ° C.
  • the viscosity is decreased and the stirring efficiency is improved, but the quality of the photoinitiator or the polymerizable compound is deteriorated. Because there is.
  • the composition for optical three-dimensional modeling prepared in this way is liquid at normal temperature (25 ° C.).
  • the viscosity of the optical three-dimensional modeling composition is preferably about 200 to 1500 mPa ⁇ s at room temperature from the viewpoint of optical modeling.
  • the hardened layers formed by the optical three-dimensional modeling composition according to the present invention adhere to each other with excellent adhesion. Therefore, when the optical three-dimensional composition according to the present invention is cured using an optical modeling apparatus, the cured layer is not likely to be warped and caught by an ultraviolet laser operating machine or the like, and a three-dimensional model is manufactured smoothly. can do. Furthermore, the composition for optical three-dimensional modeling enables the production of a three-dimensional modeled object with small warpage deformation and high dimensional accuracy. In addition to high dimensional accuracy, the three-dimensional structure formed by curing the optical three-dimensional composition has excellent mechanical properties such as tensile strength, elongation, bending strength, and bending elastic modulus. ing.
  • composition for optical three-dimensional modeling according to the present invention can be suitably used for optical three-dimensional modeling, and can be applied to a wide range of fields.
  • applications include, but are not limited to, precision parts, electrical / electronic parts, building structures, automotive parts, molds, mother molds, casts such as casts, mouthpieces for fixing teeth, dentistry Medical plastic moldings, medical plastic instruments, automobile parts and the like can be mentioned.
  • specific examples of other applications include photocurable ink, photocurable paint, photocurable adhesive, sealant, photocurable encapsulant, composite agent, photocurable ink jet, and photocurable microcapsule.
  • Photosensitive printing plates, photoresist inks, printing proofing agents, hologram materials, artificial nails (gel nails), materials for producing resin accessories, and the like For example, for artificial nails (gel nails), a photo-curing resin has been conventionally used, and in order to remove the cured resin film from the nails, a processing chemical such as a release agent or a solvent (acetone) is used. It is necessary to swell or dissolve the resin film and remove it. According to the composition of the present invention, the resin film can be physically peeled off from the nail without using the above-described treatment chemical.
  • the manufacture of a three-dimensional object from the optical three-dimensional object composition according to the present invention can be performed using a conventional optical three-dimensional object forming method and an optical object forming apparatus.
  • the method for manufacturing a three-dimensional structure is, for example, (a) the above-mentioned optical three-dimensional structure composition based on contour data created by slicing shape data input by three-dimensional CAD into thin layers of thin layers.
  • a step of selectively irradiating the surface of the object with active energy rays to form a cured layer (b) a step of further supplying a composition for optical three-dimensional modeling on the cured layer, (c) a step (a), Similarly, by including a step of performing a laminating operation for selectively irradiating active energy rays to newly form a cured layer continuous with the above-described cured layer, and (d) a step of repeatedly performing this laminating operation, It is possible to provide a three-dimensional model to be made.
  • the thickness of the single layer or the laminated cured layer can be, for example, 20 to 200 ⁇ m. As the thickness of the hardened layer is reduced, the modeling accuracy can be increased. However, since the time and cost required for production increase, the thickness can be appropriately adjusted in consideration of these balances.
  • the optical modeling apparatus used for manufacturing the three-dimensional model from the optical three-dimensional model composition is not particularly limited.
  • ATOMm-4000 manufactured by Seamet
  • Digital WaX registered trademark
  • 020X manufactured by Sea Force
  • ACCULAS registered trademark
  • BA-85S manufactured by Deemec
  • the active energy rays applied to the optical three-dimensional modeling composition are, for example, ultraviolet rays, visible rays, radiation, X-rays, electron beams, etc., preferably ultraviolet rays or visible rays.
  • the wavelength of ultraviolet light or visible light is preferably 300 to 500 nm.
  • Examples of the ultraviolet or visible light source include, but are not limited to, a semiconductor-excited solid laser, a carbon arc lamp, a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a white LED. In particular, it is preferable to use a laser from the viewpoint of modeling accuracy and curability.
  • the three-dimensional object according to the present invention is a three-dimensional object including a cured product of the above-described optical three-dimensional object composition, and preferably, a cured layer formed by curing the optical three-dimensional object composition is laminated.
  • This is a three-dimensional model.
  • the three-dimensional model is manufactured by, for example, the above-described method for manufacturing a three-dimensional model.
  • the three-dimensional modeled object according to the present invention since the cured layers are in close contact with each other, warping deformation of the modeled object is small in the manufacturing process, and the dimensional accuracy is improved. Furthermore, the three-dimensional structure is excellent in mechanical properties such as heat resistance, tensile strength, elongation, bending strength, and bending elastic modulus.
  • compositions for optical three-dimensional modeling of Examples 1 to 8 and Reference Examples 1 to 14 were prepared by the following procedure. According to the composition shown in Table 1 and Table 2, all the components were charged into a stirring vessel and stirred at a temperature of 20 to 40 ° C. for 2 hours to obtain a liquid composition. This liquid composition is filtered through a 10 micron filter bag (PO-10-PO3A-503, manufactured by Xinxiang D. King industry) to remove foreign substances, left to stand overnight, and then deaerated to obtain a transparent liquid composition. Obtained.
  • a 10 micron filter bag PO-10-PO3A-503, manufactured by Xinxiang D. King industry
  • Epicron N-730A novolak type epoxy resin (epoxy equivalent 175 g / equivalent) (manufactured by DIC), NC-3100: an epoxy resin of the formula (I) of component (A) (epoxy equivalent 245 to 270 g / equivalent) (manufactured by Nippon Kayaku Co., Ltd.)
  • EPPN-502H epoxy resin of the formula (II) of component (A) (epoxy equivalent 158 to 178 g / equivalent) (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
  • Denacol EX-612 sorbitol polyglycidyl ether (epoxy equivalent 166 g / equivalent) (manufactured by Nagase Chemtech Co., Ltd.) ⁇ Guatemala
  • the acid value of the styrene-containing copolymer resin of component (D) is according to JIS K0070 (chemical acid acid number test method), and the weight average molecular weight is based on polystyrene-permitted gel permeation chromatography (GPC).
  • Evaluation Sample 1 In order to evaluate the curing time of the composition for optical three-dimensional modeling, the following samples were produced.
  • the composition for optical three-dimensional modeling of Example 1 was poured into a hand-made polyethylene rectangular shape (width: about 10 mm ⁇ length: 100 mm, depth: 5 mm) to form a 1 mm liquid film, and a 3 kW high-pressure mercury lamp (wavelength: 365 nm, distance) 1 m), irradiation was performed for 5 seconds, 10 seconds, 15 seconds, 20 seconds, 25 seconds, and 30 seconds, respectively, and evaluation samples were obtained. Evaluation samples were similarly obtained for the compositions for optical three-dimensional modeling of Examples 2 to 8 and Reference Examples 1 to 14.
  • evaluation methods 1) Evaluation of curing time of composition for optical three-dimensional modeling Using evaluation sample 1, the surface state was observed from a sample having a short irradiation time, and the irradiation time of the sample having no surface tack was defined as the curing time.
  • the evaluation sample 1 was placed in an oven, treated at 35 ° C. for 30 minutes, cooled to room temperature (25 ° C.), and then a polyester film was pressed against the surface by hand. If the polyester film was not easily peeled off, it was judged that there was tack, and if it was peeled off, it was judged that there was no tack.
  • evaluation sample 2 Observation of layer (side surface) of optical three-dimensional modeled object Using evaluation sample 2, the layer (side surface) of the flat plate was measured with a JSM-5600 scanning electron microscope (acceleration voltage 7 kv, magnification 200 times) manufactured by JEOL. .
  • the criteria for evaluation are when the gap between the layers is clearly visible (“F"), when the gap between the layers is small (“B”), when there is no gap between the layers and the stripe is visible (“A”), The one that seemed to be integrated so that the layer could not be confirmed was designated as “AA”.
  • Table 3 shows the results of the above evaluations 1) to 5).
  • molding of an Example is a 10 second curing time, is highly sensitive, and has a quick curing rate. This indicates that the curing density is high.
  • the three-dimensional structure obtained by laminating the cured layer of the optical three-dimensional structure composition of the example had a bending strength of 80 MPa or more and a bending elastic modulus of 2240 MPa or more, and was excellent in mechanical properties. Further, in Reference Examples 11 to 14, even when the styrene copolymer resin was added to the composition containing only the radical polymerizable component, the bending strength and the bending elastic modulus were improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

より短い時間で光硬化する、光硬化後の機械的特性に優れた光学的立体造形用組成物を提供する。具体的には、(A)ノボラック型エポキシ樹脂、及び/又は、所定の構造を有するエポキシ樹脂であるカチオン重合性エポキシ樹脂と、(B)上記成分(A)以外の、グリシジルエーテル構造を有するカチオン重合性化合物と、(C)メタクリル基及び/又はアクリル基を有するラジカル重合性化合物と、(D)スチレンと所定の無水マレイン酸との共重合体樹脂、及び/又は、スチレンとメタクリル酸又はアクリル酸との共重合樹脂である、スチレン含有共重合樹脂と、(E)スルホニウム化合物又はビス(アルキルフェニル)ヨードニウム化合物であるカチオン重合開始剤と、(F)ラジカル重合開始剤と、(G)増感剤とを含む、光学的立体造形用組成物を提供する。

Description

光学的立体造形用組成物
 本発明は、光学的立体造形用組成物に関する。
 近年、3次元CADデータに基づいて、光硬化性樹脂を紫外線レーザーの走査により硬化させて形成した硬化層を積層することによって、立体造形物を作製する光学的立体造形技術が着目されている。光学的立体造形技術(以下、「光学的立体造形」を「光造形」とも称する。)によれば、金型や鋳型を用意せずに、簡便に素早く試作品を作製することができるため、製品開発の設計から生産までに要する時間とコストを削減することができる。光造形技術は、3次元CADが急速に普及したことに伴い、自動車部品や、電気機器、医療機器など、多岐にわたる産業分野で採用されてきた。
 光学的立体造形技術の適用分野の拡大により、光硬化性樹脂に要求される性能も高まっている。特に、硬化速度が速く、硬化時の寸法安定性や寸法精度に優れ、曲げなどの外部応力が加えられても破損しにくい、靱性や耐久性などの機械特性及び耐熱性に優れた立体造形物を形成できる光硬化性樹脂が求められている。
 また、立体造形技術の進展に伴い、例えばエンジン部分に用いられる立体造形物等の、より高い耐熱性を必要とする用途へ適用できる光硬化性樹脂が求められており、例えば、特定のカチオン重合性有機物質や、オキセタニル基を2個有する特定の化合物を配合した組成物が提案されている(特許文献1、特許文献2、特許文献3)。
特開平11-228804号公報 特開2008-260812号公報 特開2013-023574号公報
 ここで、一般に、立体造形物の製造においては、光造形用組成物に紫外線レーザーを走査して形成した厚さ約20~100ミクロン程度の薄い硬化膜層を何層も重ねて立体造形物を製造する。このとき、薄い硬化膜層同士が相互に密着しないと立体造形物の強度に影響する場合がある。さらに、従来の光造形用組成物は、製造途中で立体造形物が反って紫外線レーザー走査機械に引っかかる場合があるという問題があった。
 また、立体造形物の耐熱性を向上させるために、組成物を光照射によって硬化させた後にさらに、例えば60~250℃で加熱させることが一般的に行われている(特許文献1)。しかしながら、このように加熱処理を行うと、工程が増えるため作業効率が悪くなるおそれがあった。
 光造形で製造された商用造形物は、複雑な形状を有している場合が多く、力を加えたり、曲げたりする用途に適応しなければならない。本発明の目的は、より短い時間で光造形(光硬化)が完了し、熱処理作業(60℃以上の加熱)を行うことなく、光造形後の機械的特性(曲げ強度及び曲げ弾性率)に優れた光学的立体造形用組成物を提供する。
 すなわち、本発明は、一態様によれば、
 (A)ノボラック型エポキシ樹脂、及び/又は、以下の式(I)
Figure JPOXMLDOC01-appb-C000003
(式中、mは1以上の整数を表す。)
又は以下の式(II)
Figure JPOXMLDOC01-appb-C000004
(式中、nは1以上の整数を表す。)
の構造を有するエポキシ樹脂であるカチオン重合性エポキシ樹脂と、
 (B)上記成分(A)以外の、グリシジルエーテル構造を有するカチオン重合性化合物と、
 (C)メタクリル基及び/又はアクリル基を有するラジカル重合性化合物と、
 (D)スチレンと無水マレイン酸との共重合体樹脂であり、前記無水マレイン酸の繰り返し単位をエステルと酸に開環してハーフエステル化した共重合樹脂、及び/又は、スチレンとメタクリル酸又はアクリル酸との共重合樹脂である、スチレン含有共重合樹脂と、
 (E)スルホニウム化合物又はビス(アルキルフェニル)ヨードニウム化合物であるカチオン重合開始剤と、
 (F)ラジカル重合開始剤と、
 (G)増感剤と
を含む、光学的立体造形用組成物であって、
前記成分(A)のカチオン重合性エポキシ樹脂を5~50質量%、
前記成分(B)のカチオン重合性化合物を5~70質量%、
前記成分(C)のラジカル重合性化合物を5~50質量%、
前記成分(D)のスチレン含有共重合樹脂を1~30質量%、
前記成分(E)のカチオン重合開始剤を0.1~20質量%、
前記成分(F)のラジカル重合開始剤を0.1~20質量%、及び、
前記成分(G)の増感剤を0.05~5.0質量%含有する、光学的立体造形用組成物を提供することができる。
 本発明によれば、立体造形物を製造する際の光硬化時間を短縮することができ、また、立体造形物の製造過程において硬化膜層が相互に密着し、造形物の反り変形が小さく、かつ優れた機械的特性を兼ね備えた立体造形物を製造することが可能となる。
 以下、本発明を実施するための形態を詳細に説明するが、本発明の範囲は、この形態に限定されるものではない。
 光学的立体造形用組成物は、成分(A)~(G)を少なくとも含有し、必要に応じてその他の成分をさらに含有する。
 成分(A)は、ノボラック型エポキシ樹脂、及び/又は、以下の式(I)
Figure JPOXMLDOC01-appb-C000005
(式中、mは1以上の整数を表す。)
又は以下の式(II)
Figure JPOXMLDOC01-appb-C000006
(式中、nは1以上の整数を表す。)
の構造を有するエポキシ樹脂であるカチオン重合性エポキシ樹脂である。
 ノボラック型エポキシ樹脂は、例えばノボラックの水酸基をエポキシ化して得られる多官能エポキシ樹脂であり、一般的に耐熱性に優れている。ノボラック型エポキシ樹脂は、一般的に油溶性であり、常温において液状であることが好ましい。ノボラック型エポキシ樹脂は、例えば、液状のフェノールノボラック型エポキシ樹脂であってもよい。ノボラック型エポキシ樹脂のエポキシ当量は、好ましくは170~190g/当量である。ノボラック型エポキシ樹脂は、市販のものを用いてもよい。ノボラック型エポキシ樹脂の具体例としては、DICコーポレーション株式会社製のエピクロンN-730A(エポキシ当量172~179g/当量)、エピクロンN-770(エポキシ当量183~187g/当量)、三菱化学株式会社製のJER152(エポキシ当量176~178g/当量)、JER154(エポキシ当量176~180g/当量)、新日鉄住金化学株式会社製のYDPN-638(エポキシ当量175~176g/当量)、YDCN-700-3(エポキシ当量195~205g/当量)、YDCN-700-5(エポキシ当量196~206g/当量)、日本化薬株式会社製のEOCN-1025(エポキシ当量205~217g/当量)等が挙げられる。ここで、エポキシ当量は、JIS K7236に準拠した方法により測定した1グラム当量のエポキシ基を含む樹脂のグラム数である。
 成分(A)のカチオン重合性エポキシ樹脂は、以下の式(I)
Figure JPOXMLDOC01-appb-C000007
 (式中、mは1以上の整数を表し、好ましくは1~3である。)の構造を有するエポキシ樹脂であってもよい。具体例としては、日本化薬株式会社製のNC-3000(エポキシ当量265~285g/当量)、NC-3000-L(エポキシ当量261~282g/当量)、NC-3000-H(エポキシ当量280~300g/当量)、NC-3100(エポキシ当量245~270g/当量)等が挙げられる。
 成分(A)のカチオン重合性エポキシ樹脂は、また、以下の式(II)
Figure JPOXMLDOC01-appb-C000008
(式中、nは1以上の整数を表し、好ましくは1~2である。)の構造を有するエポキシ樹脂であるカチオン重合性エポキシ樹脂であってもよい。具体例としては、日本化薬株式会社製のEPPN-501H(エポキシ当量162~172g/当量)、EPPN-501HY(エポキシ当量163~175g/当量)、EPPN-502H(エポキシ当量158~178g/当量)等が挙げられる。
 成分(A)のカチオン重合性エポキシ樹脂の含有量は、光学的立体造形用組成物の総量中に5~50質量%であり、好ましくは10~40質量%である。成分(A)のカチオン重合性エポキシ樹脂の含有量が5質量%未満だと、立体造形とした際に機械的特性や耐熱性が不十分となる。50質量%を超えると、立体造形とした際に靱性が不十分となる。成分(A)のカチオン重合性エポキシ樹脂は、エポキシ当量を100~300g/当量とすることが好ましく、150~300g/当量とすることがより好ましい。成分(A)のエポキシ当量を好ましい範囲とすることにより、組成物の架橋密度が高まり、組成物中により三次元構造を形成しやすくなり、立体造形とした際に機械的特性が向上し得る。成分(A)を含むことにより、得られた立体造形物の引張り強度、伸度、曲げ強度、及び曲げ弾性率等の機械的特性をより向上させることができ、さらに耐熱性をも向上させることができる。
 成分(B)は、上記成分(A)以外の、グリシジルエーテル構造を有するカチオン重合性化合物である。成分(B)を含有させることにより、立体造形とした際に柔軟性を向上し得る。成分(B)は、例えば、常温(25℃)での水への溶解度が好ましくは5g/100ml、より好ましくは40g/100ml以上、さらに好ましくは50g/100ml以上である。成分(B)のグリシジルエーテル構造を有するカチオン重合性化合物は、ソルビトールのエーテル誘導体であってもよい。この場合、ソルビトールはD体及びL体のいずれであってもよく、ソルビトールがD体のものとL体のものとが混在していてもよい。
 成分(B)の、グリシジルエーテル構造を有するソルビトールのエーテル誘導体は、例えば、下記式(I):
Figure JPOXMLDOC01-appb-C000009
で表されるソルビトールの6個の水酸基の水素の少なくとも1個が、下記のグリシジル基:
Figure JPOXMLDOC01-appb-C000010
で置換されたものであってもよい。
 または、成分(B)のグリシジルエーテル構造を有するソルビトールのエーテル誘導体は、例えば、ソルビトールの6個の水酸基の水素の少なくとも1個が、下記のグリシジルポリオキシエチレン基:
Figure JPOXMLDOC01-appb-C000011
(式中、nは独立して1~50の整数を表す。)
で置換されていてもよい。もしくは、成分(B)のグリシジルエーテル構造を有するソルビトールのエーテル誘導体は、ソルビトールの6個の水酸基の水素の少なくとも1個がグリシジル基で置換され、ソルビトールの残りの水酸基の水素の少なくとも1個がグリシジルポリオキシエチレン基でさらに置換されていてもよい。グリシジルポリオキシエチレン基でさらに置換された成分(B)のグリシジルエーテル構造を有するソルビトールのエーテル誘導体は、「ソルビトールのポリオキシエチレンエーテルのグリシジルエーテル」とも称する。
 成分(B)のグリシジルエーテル構造を有するカチオン重合性化合物の具体例としては、ポリグリセリンポリグリシジルエーテル、グリセリンポリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコール#200ジグリシジルエーテル及びポリエチレングリコール#400ジグリシジルエーテル等のポリエチレングリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコール#400ジグリシジルエーテル等のポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジル、1,6-ヘキサンジオールジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ジグリセリンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ビスフェノールA PO2mol付加物ジグリシジルエーテル等のビスフェノールAジグリシジルエーテル、ビスフェノールA型エポキシ樹脂(液状型)、ビスフェノールAビス(トリエチレングリコールグリシジルエーテル)エーテル、ビスフェノールF型エポキシ樹脂(液状型)、4-(2,3-エポキシプロパン-1-イルオキシ)-N,N-ビス(2,3-エポキシプロパン-1-イル)-2-メチルアニリン、グリシジルメタクリレート、アルキルフェノールモノグリシジルエーテル、柔軟強靭性液状エポキシ樹脂EXA-4850-150(DIC社製)、並びに、リカレジンBEO-60E(新日本理化社製)等が挙げられる。
 成分(B)のグリシジルエーテル構造を有する、上記成分(A)以外のカチオン重合性化合物のエポキシ当量は、好ましくは100~300g/当量、より好ましくは120~300g/当量である。成分(B)のカチオン重合性化合物は、常温において液状であることが好ましい。
 成分(B)のカチオン重合性化合物は、公知の方法(例えば、特開2001-39960号公報、実験化学講座第4版28巻P428)を参考にすることで合成できるほか、市販のものを用いることもできる。例えば、市販製品の具体例として、例えばソルビトールポリグリシジルエーテル製品では、ナガセケミテック社製のデナコールEX-611(エポキシ当量167g/当量)、デナコールEX-612(エポキシ当量166g/当量)、デナコールEX-614(エポキシ当量167g/当量)、及びデナコールEX-614B(エポキシ当量173g/当量)、並びに、エメラルド社製のERISYS GE-60(エポキシ当量160~195g/当量)が挙げられる。
 成分(B)のカチオン重合性化合物の含有量は、光学的立体造形用組成物の総量中に5~70質量%であり、好ましくは20~60質量%であり、より好ましくは30~50質量%である。成分(B)のカチオン重合性化合物の含有量が5質量%未満である場合、立体造形とした際に柔軟性が不十分となり、70質量%を超えると、硬化薄膜層同士の密着性が弱くなる。硬化薄膜層同士の密着が良いと、立体造形物の作製の際の反り変形が改善され、得られた立体造形物の引張り強度、伸度、曲げ強度、及び曲げ弾性率等の機械的特性を向上させることができる。
 光学的立体造形用組成物は、成分(A)のカチオン重合性エポキシ樹脂、及び、成分(A)以外の成分(B)のグリシジルエーテル構造を有するカチオン重合性化合物に加え、他のカチオン重合性化合物をさらに含有していてもよい。他のカチオン重合性化合物は、好ましくは、1分子中に2個以上のカチオン重合性結合を有する多官能モノマーである。他のカチオン重合性化合物は、例えば、エポキシ基、ビニルエーテル基、又はオキセタン基を有するカチオン重合性化合物である。このエポキシ基を有するカチオン重合性化合物は、上記成分(A)のカチオン重合性エポキシ樹脂ではない。
 エポキシ基を有するカチオン重合性化合物の具体例としては、ヘキサヒドロフタル酸ジグリシジルエステル(エポキシ当量155g/当量、SR-HHPA、阪本薬品工業会社製)、3,4-エポキシシクロヘキシルメチルメタアクリレート(エポキシ当量195~215g/当量、サイクロマーM100、ダイセル社製)2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(エポキシ当量170~190g/当量、EHPE3150、ダイセル社製)、エポキシ化ポリブタジエン(エポキシ当量152~178g/当量、エポリードPB4700、ダイセル社製)、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(エポキシ当量200~400g/当量、エポリードGT401、ダイセル社製)等が挙げられる。
 ビニルエーテル基を有するカチオン重合性化合物の具体例としては、シクロペンタジエンビニルエーテル、トリシクロデカンビニルエーテル、ベンジルビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、オキセタンジビニルエーテル、4-シクロヘキサンジビニルエーテル、及びオキサノルボナンジビニルエーテル等を挙げることができる。
 オキセタン基を有するカチオン重合性化合物の具体例としては、(3-エチル-オキセタン-3-イル)-メタノール、3-(3-エチル-オキセタン-3-イルメトキシ)-プロパン-1-オール、4-(3-エチル-オキセタン-3-イルメトキシ)-ブタン-1-オール、3-(3-エチル-オキセタン-3-イルメトキシ)-プロパン-1,2-ジオール、1-(3-エチル-オキセタン-3-イルメトキシ)-プロパン-2-オール、1-[2-(3-エチル-オキセタン-3-イルメトキシ)-1-メチル-エトキシ-エタノール、2-[2-(3-エチル-オキセタン-3-イルメトキシ)-エトキシ]-エタノールキシリレンビスオキセタン、3-エチル-3[([3-エチルオキセタン-3-イル]メトキシ]メチル]オキセタン、2-エチルヘキシルオキセタン、1,4-ベンゼンジカルボン酸ビス[(3-エチル-3-オキセタニル)メチル]エステル、(3-エチル-3-オキセタニル)メトキシメチルメタクリレート、4,4-ビス(3-エチル-3-オキセタニル)メトキシメチル)ビフェニル、3-エチル-3-(ビニルオキシメチル)オキセタン、及び、3,4-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、ε-カプロラクトン変性3,4-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキシルサンカルボキシレート等が挙げられる。
 上記エポキシ基、ビニルエーテル基又はオキセタン基を有するカチオン重合性化合物は、1種単独で、又は2種以上を組み合わせて用いることができる。
 上記エポキシ基、ビニルエーテル基又はオキセタン基を有するカチオン重合性化合物は、市販のものを用いることができる。例えば、日本カーバイド工業株式会社製クロスマー、株式会社ダイセル製セロキサイド、エポリード、丸善石油化学株式会社製ビニルエーテル、住友化学株式会社製スミエポキシ等を挙げることができる。
 成分(A)及び成分(B)以外のカチオン重合性化合物の含有量は、成分(A)及び成分(B)のカチオン重合性化合物の合計含有量よりも少ないことが好ましく、光学的立体造形用組成物の総量中に、好ましくは1~30質量%、より好ましくは1~20質量%である。上記のエポキシ基、ビニルエーテル基又はオキセタン基を有するカチオン重合性化合物を上記範囲で含有させることにより、引張強度、反り変形、曲げ強度等の硬化物性を調整することができる。また、オキセタン基を有するカチオン重合性化合物には、カチオン重合性化合物の硬化速度を高める効果がある。よって、光学的立体造形用組成物を用いた立体造形物の製造を迅速化し、高い造形速度で生産性良く製造することを可能とする。
 成分(C)は、メタクリル基及び/又はアクリル基を有するラジカル重合性化合物である。成分(C)は、未硬化の状態で、例えば、常温(25℃)での水への溶解度が、好ましくは5g/100ml以上、より好ましくは40g/100ml以上、さらにより好ましくは50g/100ml以上である。成分(C)のラジカル重合性化合物は、好ましくは常温で液体である。以下において、メタクリル基又はアクリル基を「(メタ)アクリロイル基」、メタクリレート又はアクリレートを「(メタ)アクリレート」とも称する。
 成分(C)のメタクリル基及び/又はアクリル基を有するラジカル重合性化合物は、単官能、2官能、及び3官能以上のいずれであってもよく、成分(B)のカチオン重合性化合物と溶け合うものがよく、各々の具体例としては、以下の化合物が挙げられる。
 単官能基の化合物としては、(メタ)アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)クリレート、ポリエチレングリコールモノ(メタ)アクリレート、グリセリン(メタ)アクリレート、ノニルフェノールEO変性(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートと無水リン酸の反応生成物、2-ヒドロキシエチル(メタ)アクリレートのヘキサリド付加重合物と無水リン酸の反応生成物等が挙げられる。
 2官能の化合物としては、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(400)ジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレート、ポリプロピレングリコール(400)ジ(メタ)アクリレート、エトキシ化(4)ビスフェノールAジ(メタ)アクリレート、エトキシ化(10)ビスフェノールAジ(メタ)アクリレート、エトキシ化(30)ビスフェノールAジ(メタ)アクリレート、エトキシ化(4)水添ビスフェノールAジ(メタ)アクリレート、エトキシ化(30)水添ビスフェノールAジ(メタ)アクリレート、EO変性(10)水添ビスフェノールAジ(メタ)アクリレート等が挙げられる。
 3官能以上の化合物としては、エトキシ化(9)グリセリントリ(メタ)アクリレート、エトキシ化(20)グリセリントリ(メタ)アクリレート、ポリエーテル系ウレタン3官能(メタ)アクリレート等が挙げられる。
 成分(C)のメタクリル基及び/又はアクリル基を有するラジカル重合性化合物は、公知の方法で合成できるほか、市販のものを用いることができる。例えば、東亜合成株式会社製アロニックスシリーズ、日油株式会社製ブレンマーシリーズ、共栄社化学株式会社製ライトエステルシリーズ、ライトアクリレートシリーズ、エポキシエステルシリーズ、ウレタンアクリレートシリーズ、新中村化学株式会社製NKエステルシリーズ、NKオリゴシリーズ、日本化薬株式会社製KAYARADシリーズ、大阪有機化学株式会社製ビスコートシリーズ等がある。
 成分(C)のラジカル重合性化合物の含有量は、光学的立体造形用組成物の総量中に5~50質量%であり、好ましくは10~40質量%である。成分(C)のラジカル重合性化合物を含有させることにより、該成分(C)を含まない組成物で形成するよりもより速く形作ることができる。また、成分(C)のラジカル重合性化合物の含有量が5質量%未満であると、感度が不十分である。50質量%を超える場合には、硬化物が強靭性でなくなる。
 成分(C)のラジカル重合性化合物の含有量は、成分(B)のカチオン重合性化合物の含有量よりも好ましくは少ない。成分(C)のラジカル重合性化合物の含有量が成分(B)のカチオン重合性化合物の含有量よりも少ないことにより、硬化物の硬度を高めることができる。
 また、光学的立体造形用組成物は、成分(C)のラジカル重合性化合物に加え、発明の趣旨を逸脱しない程度に、他のラジカル重合性化合物をさらに含有することができる。他のラジカル重合性化合物の含有量は、例えば、光学的立体造形用組成物の総量中に5~30質量%とすることが好ましい。
 他のラジカル重合性化合物の単官能モノマーの具体例としては、例えばアクリルアミド、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、イソブトキシメチル(メタ)アクリルアミド、イソボルニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジアセトン(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、N,N-ジメチル(メタ)アクリルアミド、テトラヒドロフルフリル(メタ)アクリレート、ビニルカプロラクタム、N-ビニルピロリドン、フェノキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、イソボルニル(メタ)アクリレート等を挙げることができる。
 他のラジカル重合性化合物の2官能モノマーの具体例としては、例えばエチレングリコールジ(メタ)アクリレート、トリシクロデカンジイルジメチレンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの両末端(メタ)アクリル酸付加物、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ポリエステル系ウレタン2官能(メタ)アクリレート等を挙げることができる。
 他のラジカル重合性化合物の3官能以上の多官能モノマーの具体例としては、例えば、トリス(アクリロイルオキシエチル)イソシアヌレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、ポリエーテル系ウレタン3官能(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート等を挙げることができる。
 成分(D)は、スチレンと無水マレイン酸の共重合体樹脂であって、繰り返し単位であるスチレンユニットと無水マレイン酸ユニットのうち、無水マレイン酸ユニットを例えばアルコール等によって、エステルとカルボン酸とに開環してハーフエステル化した共重合樹脂及び/又は、スチレンとメタクリル酸又はアクリル酸との共重合樹脂である、スチレン含有共重合樹脂である。ここで、「スチレンと無水マレイン酸の共重合体樹脂」は、スチレンユニットと無水マレイン酸ユニットのモル比が好ましくは1:1~8:1の樹脂であり、この無水マレイン酸ユニットの一部または全部(例えば80~100mol%)が開裂してハーフエステル化、つまり、エステルとカルボン酸となっており、このエステルのアルコール由来の部分は、好ましくはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2-エチルへキシル等の炭素鎖が1~18個のアルキル基である。また、「スチレンとメタクリル酸又はアクリル酸との共重合樹脂」は、スチレンとメタクリル酸又はアクリル酸を共重合させた樹脂である。これらのスチレン含有共重合樹脂の酸価は、120~250mgKOH/gの範囲内にあることが好ましい。また、スチレン含有共重合樹脂の分子量が、7,000~30,000の範囲内にあることが好ましい。スチレン含有共重合樹脂の酸価は、例えば、JIS K0070(化学製品の酸価試験方法)に基づき測定することができる。スチレン含有共重合樹脂の分子量は、例えば、ポリスチレン換算のゲルパーミエーションクロマトグラフィー(GPC)を用いて重量平均分子量として測定することができる。
 スチレンと無水マレイン酸の共重合体樹脂であって、繰り返し単位であるスチレンユニットと無水マレイン酸ユニットのうち、無水マレイン酸ユニットをハーフエステル化した共重合樹脂の具体例としては、川原油化株式会社製のSMA 1440(酸価165~205mgKOH/g、分子量7000)、SMA 17352(酸価255~285mgKOH/g、分子量7000)、SMA 2625(酸価200~240mgKOH/g、分子量9000)、SMA 3840(酸価95~120mgKOH/g、分子量10500)、星光PMC株式会社製のハイロスUS-1243(酸価180~200mgKOH/g、分子量5500~7600)、ハイロスX-200(酸価180~200mgKOH/g、分子量10000~14000)、ハイロスX-205(酸価240~260mgKOH/g、分子量10000~14000)、ハイロスX-220(酸価145~165mgKOH/g、分子量11000~15000)、ハイロスX-228(酸価130~150mgKOH/g、分子量14000~18000)、及び、荒川化学工業株式会社製のアラスター700(酸価175~200mgKOH/g、分子量10,000)等が挙げられる。
 スチレンとメタクリル酸又はアクリル酸との共重合樹脂の具体例としては、星光PMC株式会社製のハイロスVS-1047(酸価230~250mgKOH/g、分子量8,000~12,000)、東亜合成株式会社製のARUFON UC-3080(酸価230mgKOH/g、分子量14000)、AFURON UF-5022(酸価235mgKOH/g、分子量14000)、BASF社製のジョンクリル67(酸価213mgKOH/g、分子量12,500)、ジョンクリル678(酸価215mgKOH/g、分子量8,500)、ジョンクリル680(酸価215mgKOH/g、分子量4,900)、ジョンクリル682(酸価238mgKOH/g、分子量1,700)、及び、ジョンクリル690(酸価240mgKOH/g、分子量16,500)等が挙げられる。
 成分(D)のスチレン含有共重合樹脂の含有量は、光学的立体造形用組成物の総量中に1~30質量%であり、好ましくは3~20質量%である。1質量%未満だと、立体造形とした際に機械的強度が不十分となり、30質量%を超えると、光学的立体造形用組成物を作製する際に組成物中に分散又は溶解しにくくなる。光学的立体造形用組成物に所定量の成分(D)を加えることによって、立体造形とした際に機械的強度が向上し得る。
 成分(E)は、スルホニウム化合物又はビス(アルキルフェニル)ヨードニウム化合物であるカチオン重合開始剤である。成分(E)のカチオン重合開始剤の具体例としては、ビス[4-n-アルキル(C10~13)フェニル]ヨードニウム=ヘキサフルオロホスフェート、ビス(4-tert-ブチルフェニル)ヨードニウムビス(パーフルオロブタンスルホニル)イミド、ビス(4-tert-ブチルフェニル)ヨードニウム=ヘキサフルオロホスフェート、ビス[4-n-アルキル(c10~13)フェニル]ヨードニウム=テトラキスペンタフルオロフェニルボレート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウム=ヘキサフルオロホスフェート、及び4,4-ビス(ジフェニルスルホニル)フェニルスルフィド-bis-ヘキサフルオロホスフェート、ベンジジルメチル-P-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート等を挙げることができる。
 成分(E)のカチオン重合開始剤は、市販のものを用いることができる。例えば、三新化学工業株式製のサンエイドSIシリーズ、和光純薬工業株式会社製のWPIシリーズ、株式会社アデカ製のSPシリーズ、サンアプロ株式会社製のCPIシリーズ等を挙げることができる。
 成分(E)のカチオン重合開始剤の含有量は、光学的立体造形用組成物の総量中に、0.1~20質量%の範囲であり、好ましくは0.5~10質量%の範囲である。0.1質量%未満の場合は、カチオン重合反応速度が遅くなる。含有量が20質量%を超える場合は、光学的立体造形用組成物の硬化特性を低下させる。
 成分(F)は、ラジカル重合開始剤である。ラジカル重合開始剤は、活性エネルギー線の照射によってラジカル種を発生させ、ラジカル重合性化合物のラジカル反応を開始できる化合物であれば特に限定されない。ラジカル重合開始剤の具体例としては、2,2―ジメトキシ-1,2―ジフェニルエタン-1-オン、1-ヒドロキシーシクロヘキシル=フェニル=ケトン、2―ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2―ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシドメチルエステル、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、2-ベンジルージメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタン、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]―1―(O-アセチルオキシム)、カンファーキノン、ベンゾフェノン、2-ヒドロキシ-2-メチル-1-フェニル-1-プロパン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、エチル=4-(ジメチルアミノ)-ベンゾエート、[4-(メチルフェニルチオ)フェニル]-フェニルメタン、エチルヘキシル-4-ジメチルアミノベンゾエート、メチル=o-ベンゾイルベンゾエート、4-メチルベンゾフェノン、カンファーキノン、テトラブチルアンモニウム=ブチルトリフェニルボラート、テトラブチルアンモニウムブチルトリナフチルボレート、2-エチル-4-メチルイミダゾリウムテトラフェニルボレイト、1,5-ディアザビシクロ[4.3.0]ノンエン-5-テトラフェニルボレイト等を挙げることができる。ラジカル重合開始剤は、1種単独、又は2種以上を組み合わせて用いることができる。
 成分(F)のラジカル重合開始剤は、市販のものを用いることができる。例えば、BASF製IRGACUREシリーズ、DAROCURシリーズ、LUCIRINシリーズ、株式会社ソートのSB―PIシリーズ、株式会社ADEKA製アデカオプトマーシリーズ、昭和電工株式会社製有機ホウ素化合物シリーズ、北興化学工業株式会社製有機ホウ素化合物シリーズ等がある。
 成分(F)のラジカル重合開始剤の含有量は、光学的立体造形用組成物の総量中に、0.1~20質量%の範囲であり、好ましくは0.5~10質量%の範囲である。0.1質量%未満の場合は、光学的立体造形用組成物のラジカル重合反応速度が遅くなる。含有量が20質量%を超える場合は、光学的立体造形用組成物の硬化特性を低下させる。
 成分(G)は、増感剤である。増感剤は、光学的立体造形用組成物の光感度を増大させることができる化合物(好ましくは300~500nmの波長を吸収すると解するもの)であれば、特に限定されないが、多官能チオール化合物が好ましい。多官能チオール化合物の具体例として、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)等が挙げられる。成分(E)の増感剤の多官能チオール化合物は、市販のものを用いることができ、例えば、三菱化学株式会社製のQX40、株式会社アデカ製のアデカハードナーEH-317、SC有機化学株式会社製のPEMP、TBMPIC、TMPMP、昭和電工株式会社製のカレンズMTシリーズ等が挙げられる。
 多官能チオール化合物以外の増感剤の具体例としては、ベンゾフェノン、アクリジン系として、9-フェニルアクリジン、9-(p-メチルフェニル)アクリジン、9-(o-メチルフェニル)アクリジン、9-(o-クロロフェニル)アクリジン、9-(o-フロロフェニル)アクリジン、クマリン系として、7,7-(ジエチルアミノ)(3,3-カルボニルビスクマリン)、3-ベンゾイル-7-ジエチルアミノクマリン、7,7-ビス(メトキシ)(3,3-カルボニルビスクマリン)、アントラセン系として、9,10-ジメトキシアントラセン、9,10-エトキシアントラセン、9,10-ブトキシアントラセン等が挙げられる。
 成分(G)の増感剤の含有量は、光学的立体造形用組成物の総量中に、0.05~5.0質量%の範囲であり、好ましくは3~5質量%の範囲である。含有量が5.0質量%を超える場合は、局所的に感度が低下したり、表面の部分でしか硬化しなかったりする。光学的立体造形用組成物に成分(G)を加えることで、光硬化の反応をより促進し、組成物中の全ての重合成分を硬化(結合)させて、立体造形物とした際に十分な機械的強度及び耐熱性を得ることが可能となる。
 光学的立体造形用組成物は、その他の成分として、成分(E)及び/又は成分(F)を溶解又は分散させるための溶剤、硬化促進剤、着色剤等を、光学的立体造形用組成物の特性に悪影響を与えない範囲内において含有することができる。その他の成分の含有量は、当業者が適宜調整することができる。
 光学的立体造形用組成物は、成分(A)のカチオン重合性エポキシ樹脂を5~50質量%、成分(B)の、成分(A)以外のカチオン重合性化合物を5~70質量%、成分(C)のラジカル重合性化合物を5~50質量%、成分(D)のスチレン含有共重合樹脂を1~30質量%、成分(E)のカチオン重合開始剤を0.1~20質量%、成分(F)のラジカル重合開始剤を0.1~20質量%、及び、成分(G)の増感剤を0.05~5.0質量%含有し、任意に他のカチオン重合性化合物、他のラジカル重合性化合物、及び/又はその他の成分をさらに含有する。成分(A)のカチオン重合性エポキシ樹脂と、成分(B)のカチオン重合性化合物と、成分(C)のラジカル重合性化合物との合計は、効率のよい硬化物製造の見地から、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65~95質量%である。
 光学的立体造形用組成物は、常法に従って調製することができる。例えば、光学的立体造形組成物は、成分(A)~(G)、及び必要に応じて他のカチオン重合性化合物、他のラジカル重合性化合物、及び/又はその他の成分を、攪拌して均一な混合物を形成する工程と、該混合物を濾過して、原料中に混入した異物や製造過程で混入した異物を取り除く工程と、該混合物を脱気する工程とにより調製することができる。各々の成分の配合量は、光学的立体造形用組成物における終濃度が、上記した範囲となるようにする。成分(C)、成分(E)及び成分(F)等の成分が常温で固体状である場合は、予め溶剤に溶解又は分散させたものを使用することが好ましい。攪拌は、20~40℃の温度で、1~2時間行うことが好ましい。20℃未満では重合性化合物が増粘して攪拌効率が悪くなる場合があり、40℃超では粘度が低下して攪拌効率が良くなるが、光開始剤や重合性化合物の品質を悪化させる場合があるためである。このように調製された光学的立体造形用組成物は、常温(25℃)において液状である。光学的立体造形用組成物の粘性は、常温において200~1500mPa・s程度であることが光造形の観点から好ましい。
 本発明に係る光学的立体造形用組成物により形成された硬化層は、優れた密着性で相互に密着する。よって、本発明に係る光学的立体造形用組成物は、光造形装置を用いて硬化させる際に、硬化層が反って紫外線レーザーの操作機械等に引っかかるおそれがなく、円滑に立体造形物を製造することができる。さらに、該光学的立体造形用組成物は、反り変形の小さい寸法精度の高い立体造形物の製造を可能とする。また、該光学的立体造形用組成物の硬化により形成される立体造形物は、高い寸法精度に加え、優れた機械的特性、例えば、引張り強度、伸度、曲げ強度、及び曲げ弾性率も兼ね備えている。
 本発明に係る光学的立体造形用組成物は、光学的立体造形に好適に使用することでき、幅広い分野に応用することができる。用途の具体例としては、特に限定されないが、精密部品、電気・電子部品、建築構造物、自動車用部品、金型、母型、ギブスなど医療用固定具、歯を固定するマウスピ-ス、歯科医療用プラスチック造形物、医療用プラスチック器具、自動車部品等を挙げることができる。また、他の用途の具体例として、光硬化性インキ、光硬化性塗料、光硬化性接着剤、シール剤、光硬化型封止剤、コンポジット剤、光硬化型インキジェット、光硬化性マイクロカプセル、感光性印刷版、フォトレジストインキ、印刷用プルーフ剤、ホログラム材料、人工爪(ジェルネイル)、レジンアクセサリーの作製のための材料等を挙げることができる。例えば、人工爪(ジェルネイル)は、従来、光硬化性樹脂が用いられており、爪から硬化した樹脂皮膜を剥がすためには、剥離剤又は溶剤(アセトン)等の処理薬品を使用して、樹脂皮膜を膨潤又は溶解させて除去することが必要である。本発明の組成物によれば、上記した処理薬品を使用しないで、爪から樹脂皮膜を物理的に剥がし取ることを可能にする。
 本発明に係る光学的立体造形用組成物からの立体造形物の製造は、従来の光学的立体造形方法及び光造形装置を使用して行うことができる。立体造形物を製造する方法は、例えば、(a)3次元CADで入力された形状データを幾層もの薄い断面体にスライスして作成された等高線データに基づき、上述の光学的立体造形用組成物の表面に活性エネルギー線を選択的に照射して硬化層を形成する工程、(b)該硬化層上に光学的立体造形用組成物をさらに供給する工程、(c)工程(a)と同様に活性エネルギー線を選択的に照射して前述の硬化層と連続した硬化層を新たに形成する積層操作を行う工程、及び(d)この積層操作を繰り返し行う工程を含むことにより、目的とする立体造形物を提供することができる。単層または積層された硬化層の厚さは、例えば20~200μmとすることができる。硬化層の厚さは、小さくするほど造形精度を高められるが、製造に必要な時間及びコストは増えるため、これらのバランスを考慮して適宜調整することができる。
 光学的立体造形用組成物からの立体造形物の製造に使用する光造形装置としては、特に限定されないが、例えば、ATOMm-4000(シーメット社製)、DigitalWaX(登録商標)020X(シーフォース社製)及びACCULAS(登録商標)BA-85S(ディーメック社製)等の三次元積層造形装置を挙げることができる。
 光学的立体造形用組成物に照射する活性エネルギー線は、例えば紫外線、可視光線、放射線、X線、又は電子線等であり、好ましくは紫外線又は可視光線である。紫外線又は可視光線の波長は、好ましくは300~500nmである。紫外線又は可視光線の光源としては、半導体励起固体レーザー、カーボンアーク灯、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、白色LED等が挙げられるが、これらに限定されない。特に、造形精度及び硬化性等の観点からレーザーを使用することが好ましい。
 本発明に係る立体造形物は、上述の光学的立体造形用組成物の硬化物を含む立体造形物であり、好ましくは、光学的立体造形用組成物を硬化して形成される硬化層を積層してなる立体造形物である。立体造形物は、例えば、上述の立体造形物の製造方法により製造される。本発明に係る立体造形物は、硬化層が相互に密着しているため、製造の過程において造形物の反り変形が小さく、寸法精度が向上している。さらに、立体造形物は、耐熱性、引張り強度、伸度、曲げ強度、曲げ弾性率等の機械的特性に優れている。
[光学的立体造形用組成物の調製]
 実施例1~8及び参考例1~14の光学的立体造形用組成物を、以下の手順で調製した。
 表1及び表2に示す組成に従って全ての成分を、攪拌容器内に仕込み、20~40℃の温度で2時間攪拌して液体組成物を得た。この液体組成物を、10ミクロンフィルターバッグ(PO-10-PO3A-503、Xinxiang D.King industry社製)でろ過して異物を除去し、一晩放置後に脱気して透明な液体組成物を得た。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
・エピクロンN-730A:ノボラック型エポキシ樹脂(エポキシ当量175g/当量)(DIC社製)、
・NC-3100:成分(A)の式(I)のエポキシ樹脂(エポキシ当量245~270g/当量)(日本化薬社製)、
・EPPN-502H:成分(A)の式(II)のエポキシ樹脂(エポキシ当量158~178g/当量)(新日鉄住金化学社製)、
・デナコールEX-612:ソルビトールポリグリシジルエーテル(エポキシ当量166g/当量)(ナガセケムテック株製)、
・リカレジンBEO-60E:ビスフェノールAビス(トリエチレングリコールグリシジルエーテル)エーテル(n+m=6)(新日本理化社製)、
・NKオリゴUA-7100:ウレタンアクリレート(新中村化学工業社製)、
・アロニックスM-306:ペンタエリスリトールトリアクリレート65-70%とペンタエリスリトールテトラアクリレート30-35%の混合物(東亜合成社製)、
・SMA2625:スチレン・無水マレイン酸ハーフエステル共重合樹脂(酸価200~240mgKOH/g、分子量9000)(川原油化社製)、
・ARUFON UC-3080:スチレン・(メタ)アクリル酸共重合樹脂(酸価230mgKOH/g、分子量14000)(東亜合成社製)、
・サンエイドSI-180L: PF・系スルホニウム塩(三新化学工業社製)、
・WPI-124:ビス[4-(アルキルC10~C13)フェニル]ヨードニウムテトラキスペンタフルオロフェニルボレート(和光純薬工業社製)、
・イルガキュアー907: 2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-オン(BASF社製)、
・アデカハードナーEH-317:ポリメルカプタン系硬化剤(アデカ社製)、
・カレンズMTNR1: 1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(昭和電工株製)、
・3-ベンゾイル-7-ジエチルアミノクマリン:(日興ケムテック社製)。
 成分(D)のスチレン含有共重合樹脂の酸価は、JIS K0070(化学製品の酸価試験方法)により、重量平均分子量は、ポリスチレン換算のゲルパーミエーションクロマトグラフィー(GPC)による。
[評価サンプル1の作製]
 光学的立体造形用組成物の硬化時間を評価するために、以下のサンプルを作製した。
 実施例1の光学的立体造形用組成物を手製のポリエチレン製長方形型(幅約10mm×長さ100mm、深さ5mm)に1mmの液膜になるように流し込み、3kw高圧水銀灯(波長365nm、距離1m)で、5秒間、10秒間、15秒間、20秒間、25秒間、30秒間各々照射し、評価サンプルを得た。実施例2~8及び参考例1~14の光学的立体造形用組成物についても、同様にして評価サンプルを得た。
[評価サンプル2の作製]
 光学的立体造形物として評価するために、以下のサンプルを作製した。
 実施例1の光学的立体造形用組成物を手製のポリエチレン製長方形型(幅約10mm×長さ100mm、深さ5mm)に1mm液膜になるように流し込み、3kw高圧水銀灯(波長365nm、距離1m)で20秒間照射し、これを合計4回繰返して厚さ約4mmの平面板(幅約10mm×長さ100mm)を作製した。さらに平面板を30分間再照射し、光学的立体造形物を得た。実施例2~8及び参考例1~14の光学的立体造形用組成物についても、同様にして各々光学的立体造形物を得た。
[評価方法]
1)光学的立体造形用組成物の硬化時間の評価
 評価サンプル1を用いて、照射時間の短いサンプルからその表面状態を観察し、表面のタックが無いサンプルの照射時間を硬化時間とした。なお、表面のタックは、評価サンプル1をオーブンに入れて35℃で30分間処理し、室温(25℃)まで冷却した後、その表面にポリエステルフィルムを手で押し当てた。ポリエステルフィルムが簡単に剥がれなければタック有り、剥がれればタック無しと、タックの有無を判断した。
2)光学的立体造形物の層(側面)観察
 評価サンプル2を用いて、平面板の層(側面)を日本電子製JSM-5600型走査電子顕微鏡(加速電圧7kv、倍率200倍)で測定した。評価の基準は、層間の隙間がはっきり見える場合は(「F」)、層間の隙間が小さい場合は(「B」)、層間の隙間が無くてスジ状が見えるものは(「A」)、層が確認できないほど一体化して見えるものは(「AA」)とした。
3)光学的立体造形物の反り変形観察
 評価サンプル2を用いて、平面板を平台に置いて、その端部が平台から浮いた距離を測定する。判定の基準は、距離2mm以上の場合は(「F」)、距離2mm以下で浮いている場合は(「B」)、距離0mmで浮いていない場合は(「A」)とした。
4)引張試験
 評価サンプル2を用いて、平面板の引張試験を、ISO527-1に準拠して、以下の測定条件で引張り強度及び伸度を測定した。伸度は、破断時の最大の伸び率として測定した。
 測定装置:インストロン社製3366型万能試験機
 引張速度(クロスヘッド速度):5mm/分
 測定環境:温度25℃、湿度45%RH
 標点間距離:80mm
5)3点曲げ試験
 評価サンプル2を用いて、平面板の3点曲げ試験を、ISO527-1に準拠して、以下の測定条件で行い、曲げ強度及び曲げ弾性率を測定した。
 測定装置:インストロン社製3366型万能試験機
 試験条件:3点曲げ試験冶具 圧子半径5mm、
      支点間距離64mm、
      負荷速度(クロスヘッド速度)2mm/分)
 測定環境:温度25℃、湿度45%RH
Figure JPOXMLDOC01-appb-T000014
 上述した1)~5)の評価の結果を表3に示す。実施例の光学的立体造形用組成物は、10秒の硬化時間であり、高感度であり硬化速度が速い。これは、硬化密度が高いことを示している。また、実施例の光学的立体造形用組成物の硬化層を積層して得た立体造形物は、曲げ強度が80MPa以上、曲げ弾性率が2240MPa以上で、機械的特性に優れていた。さらに参考例11~14において、ラジカル重合性成分のみの組成物にスチレン共重合樹脂を加えた場合でも、曲げ強度及び曲げ弾性率の改善がみられた。

Claims (5)

  1.  (A)ノボラック型エポキシ樹脂、及び/又は、以下の式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、mは1以上の整数を表す。)又は以下の式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは1以上の整数を表す。)の構造を有するエポキシ樹脂であるカチオン重合性エポキシ樹脂と、
     (B)上記成分(A)以外の、グリシジルエーテル構造を有するカチオン重合性化合物と、
     (C)メタクリル基及び/又はアクリル基を有するラジカル重合性化合物と、
     (D)スチレンと無水マレイン酸との共重合体樹脂であり、前記無水マレイン酸の繰り返し単位をエステルと酸に開環してハーフエステル化した共重合樹脂、及び/又は、スチレンとメタクリル酸又はアクリル酸との共重合樹脂である、スチレン含有共重合樹脂と、
     (E)スルホニウム化合物又はビス(アルキルフェニル)ヨードニウム化合物であるカチオン重合開始剤と、
     (F)ラジカル重合開始剤と、
     (G)増感剤と
    を含む、光学的立体造形用組成物であって、
    前記成分(A)のカチオン重合性エポキシ樹脂を5~50質量%、
    前記成分(B)のカチオン重合性化合物を5~70質量%、
    前記成分(C)のラジカル重合性化合物を5~50質量%、
    前記成分(D)のスチレン含有共重合樹脂を1~30質量%、
    前記成分(E)のカチオン重合開始剤を0.1~20質量%、
    前記成分(F)のラジカル重合開始剤を0.1~20質量%、及び、
    前記成分(G)の増感剤を0.05~5.0質量%含有する、光学的立体造形用組成物。
  2.  前記成分(B)のグリシジルエーテル構造を有するカチオン重合性化合物のエポキシ当量が、100~300g/当量の範囲内にある、請求項1記載の光学的立体造形用組成物。
  3.  前記成分(D)のスチレン含有共重合樹脂の酸価が、120~250mgKOH/gの範囲内にある、請求項1記載の光学的立体造形用組成物。
  4.  前記成分(D)のスチレン含有共重合樹脂の分子量が、7,000~30,000の範囲内にある、請求項1記載の光学的立体造形用組成物。
  5.  前記成分(A)のカチオン重合性エポキシ樹脂のエポキシ当量が、100~300g/当量の範囲である請求項1記載の光学的立体造形用組成物。
PCT/JP2017/005413 2016-02-15 2017-02-15 光学的立体造形用組成物 WO2017141935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17753191.0A EP3418313B1 (en) 2016-02-15 2017-02-15 Composition optical three-dimensional molding
JP2018500138A JPWO2017141935A1 (ja) 2016-02-15 2017-02-15 光学的立体造形用組成物
US16/077,290 US20190049841A1 (en) 2016-02-15 2017-02-15 Composition For Optical Stereolithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016026164 2016-02-15
JP2016-026164 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017141935A1 true WO2017141935A1 (ja) 2017-08-24

Family

ID=59626014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005413 WO2017141935A1 (ja) 2016-02-15 2017-02-15 光学的立体造形用組成物

Country Status (4)

Country Link
US (1) US20190049841A1 (ja)
EP (1) EP3418313B1 (ja)
JP (1) JPWO2017141935A1 (ja)
WO (1) WO2017141935A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038964A (ja) * 2017-08-28 2019-03-14 住友ベークライト株式会社 感光性樹脂組成物および電子装置
JP2019104844A (ja) * 2017-12-13 2019-06-27 キヤノン株式会社 硬化性樹脂組成物
CN110975773A (zh) * 2019-12-17 2020-04-10 肇庆市海特复合材料技术研究院 一种具备自修复功能环氧树脂微胶囊的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11958246B2 (en) * 2020-03-03 2024-04-16 Sciperio, Inc Laser oven with transparent chamber and external laser source
EP3876034A1 (en) * 2020-03-04 2021-09-08 Arkema France Curable composition comprising a photoinitiator
CN113174016B (zh) * 2021-03-01 2022-04-19 广东工业大学 一种3d打印用低粘度柔性光敏树脂及其制备方法和应用
CN113527838B (zh) * 2021-06-22 2022-12-09 东莞爱的合成材料科技有限公司 一种光敏材料组合物及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016864A (ja) * 1973-06-20 1975-02-21
JPH0411626A (ja) * 1990-04-27 1992-01-16 Takeshi Endo 樹脂組成物、ソルダーレジスト樹脂組成物及び硬化物
JPH04314721A (ja) * 1991-04-12 1992-11-05 Asahi Denka Kogyo Kk エネルギー線を用いた注型成型方法
JPH07233319A (ja) * 1994-02-24 1995-09-05 Nippon Kayaku Co Ltd 樹脂組成物、レジストインキ組成物及びその硬化物
JPH10168106A (ja) * 1996-12-10 1998-06-23 Jsr Corp 光硬化性樹脂組成物
JP2004300204A (ja) * 2003-03-28 2004-10-28 Nippon Shokubai Co Ltd 硬化性樹脂組成物およびその用途
JP2009138017A (ja) * 2007-12-03 2009-06-25 Jsr Corp 光造形用光硬化性組成物、炭化造形物、及びその製造方法
JP2013023574A (ja) * 2011-07-21 2013-02-04 Jsr Corp 光学的立体造形用放射線硬化性液状樹脂組成物、及びそれを光硬化させて得られる光造形物
WO2015037574A1 (ja) * 2013-09-11 2015-03-19 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
WO2015080159A1 (ja) * 2013-11-29 2015-06-04 株式会社ダイセル 光学的立体造形用光硬化性組成物、及び立体造形物の製造方法
WO2016163283A1 (ja) * 2015-04-06 2016-10-13 岡本化学工業株式会社 光学的立体造形用組成物及びこれを用いた立体造形物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228804A (ja) * 1998-02-16 1999-08-24 Asahi Denka Kogyo Kk 光学的立体造形用樹脂組成物および光学的立体造形方法
JP5881948B2 (ja) * 2007-11-27 2016-03-09 スリーディー システムズ インコーポレーテッド 高透明性を有する三次元物品を製造するための光硬化型樹脂組成物
WO2010104603A2 (en) * 2009-03-13 2010-09-16 Dsm Ip Assets B.V Radiation curable resin composition and rapid three-dimensional imaging process using the same
KR101744038B1 (ko) * 2012-07-30 2017-06-07 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막의 제조 방법, 경화막, 유기 el 표시 장치 및 액정 표시 장치
JP6333947B2 (ja) * 2014-02-20 2018-05-30 富士フイルム株式会社 感光性樹脂組成物、硬化物及びその製造方法、樹脂パターン製造方法、硬化膜、液晶表示装置、有機el表示装置、赤外線カットフィルター、並びに、固体撮像装置
KR102258889B1 (ko) * 2014-09-29 2021-05-31 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3차원(3d) 인쇄 시스템
US9994538B2 (en) * 2015-02-02 2018-06-12 Basf Se Latent acids and their use
CN104693637B (zh) * 2015-03-04 2017-05-10 珠海天威飞马打印耗材有限公司 一种用于三维打印机的低熔点树脂材料及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016864A (ja) * 1973-06-20 1975-02-21
JPH0411626A (ja) * 1990-04-27 1992-01-16 Takeshi Endo 樹脂組成物、ソルダーレジスト樹脂組成物及び硬化物
JPH04314721A (ja) * 1991-04-12 1992-11-05 Asahi Denka Kogyo Kk エネルギー線を用いた注型成型方法
JPH07233319A (ja) * 1994-02-24 1995-09-05 Nippon Kayaku Co Ltd 樹脂組成物、レジストインキ組成物及びその硬化物
JPH10168106A (ja) * 1996-12-10 1998-06-23 Jsr Corp 光硬化性樹脂組成物
JP2004300204A (ja) * 2003-03-28 2004-10-28 Nippon Shokubai Co Ltd 硬化性樹脂組成物およびその用途
JP2009138017A (ja) * 2007-12-03 2009-06-25 Jsr Corp 光造形用光硬化性組成物、炭化造形物、及びその製造方法
JP2013023574A (ja) * 2011-07-21 2013-02-04 Jsr Corp 光学的立体造形用放射線硬化性液状樹脂組成物、及びそれを光硬化させて得られる光造形物
WO2015037574A1 (ja) * 2013-09-11 2015-03-19 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
WO2015080159A1 (ja) * 2013-11-29 2015-06-04 株式会社ダイセル 光学的立体造形用光硬化性組成物、及び立体造形物の製造方法
WO2016163283A1 (ja) * 2015-04-06 2016-10-13 岡本化学工業株式会社 光学的立体造形用組成物及びこれを用いた立体造形物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418313A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038964A (ja) * 2017-08-28 2019-03-14 住友ベークライト株式会社 感光性樹脂組成物および電子装置
JP2019104844A (ja) * 2017-12-13 2019-06-27 キヤノン株式会社 硬化性樹脂組成物
JP7098314B2 (ja) 2017-12-13 2022-07-11 キヤノン株式会社 硬化性樹脂組成物
CN110975773A (zh) * 2019-12-17 2020-04-10 肇庆市海特复合材料技术研究院 一种具备自修复功能环氧树脂微胶囊的制备方法

Also Published As

Publication number Publication date
US20190049841A1 (en) 2019-02-14
EP3418313A1 (en) 2018-12-26
JPWO2017141935A1 (ja) 2018-12-06
EP3418313B1 (en) 2020-09-02
EP3418313A4 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2017141935A1 (ja) 光学的立体造形用組成物
JP5751425B2 (ja) 含フッ素高分岐ポリマー及びそれを含む樹脂組成物
JP6033292B2 (ja) 光学的立体造形用樹脂組成物
JP5210645B2 (ja) 光学的立体造形用樹脂組成物
JP2018100340A (ja) 光学的立体造形用組成物及びこれを用いた立体造形物の製造方法
CN111205394A (zh) 光固化性材料组合物及其固化物
WO2014196571A1 (ja) 光学的立体造形用樹脂組成物
JP2001139663A (ja) 光学的造形用樹脂組成物、その製造方法及び光学的造形物
JP7279919B2 (ja) 光学的立体造形用組成物、並びに立体造形物、及びその製造方法
JP2018076455A (ja) 光学的立体造形用組成物
JP6047618B2 (ja) 光学的立体造形用組成物及びこれを用いた立体造形物の製造方法
WO2016163283A1 (ja) 光学的立体造形用組成物及びこれを用いた立体造形物の製造方法
JP6042523B1 (ja) 光学的立体造形用組成物及びこれを用いた立体造形物の製造方法
JP7279942B2 (ja) 光学的立体造形用組成物、並びに立体造形物、及びその製造方法
JP6545968B2 (ja) レジンアクセサリー用の感光性樹脂組成物及びこれを用いたレジンアクセサリー
WO2020066047A1 (ja) 光学的立体造形用組成物、並びに立体造形物、及びその製造方法
JP7199611B2 (ja) 光硬化性樹脂組成物および三次元光造形物
JP2024121490A (ja) 三次元光造形用材料及び成形体の製造方法
JP2024095609A (ja) 光硬化性樹脂組成物、立体造形物、及び立体造形物の製造方法
JP2004315617A (ja) 立体造形用組成物、及び立体造形物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018500138

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017753191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753191

Country of ref document: EP

Effective date: 20180917