WO2017141330A1 - 排気熱回収装置 - Google Patents

排気熱回収装置 Download PDF

Info

Publication number
WO2017141330A1
WO2017141330A1 PCT/JP2016/054335 JP2016054335W WO2017141330A1 WO 2017141330 A1 WO2017141330 A1 WO 2017141330A1 JP 2016054335 W JP2016054335 W JP 2016054335W WO 2017141330 A1 WO2017141330 A1 WO 2017141330A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
flow path
heat exchange
exhaust gas
heat recovery
Prior art date
Application number
PCT/JP2016/054335
Other languages
English (en)
French (fr)
Inventor
裕美 石川
直弘 竹本
Original Assignee
フタバ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フタバ産業株式会社 filed Critical フタバ産業株式会社
Priority to US15/761,364 priority Critical patent/US10697403B2/en
Priority to PCT/JP2016/054335 priority patent/WO2017141330A1/ja
Priority to CN201680055018.9A priority patent/CN108026820B/zh
Priority to DE112016006429.2T priority patent/DE112016006429T5/de
Priority to JP2017567592A priority patent/JP6483866B2/ja
Publication of WO2017141330A1 publication Critical patent/WO2017141330A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/27Layout, e.g. schematics with air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/16Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system with EGR valves located at or near the connection to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/31Air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to a technique for recovering heat from exhaust gas using a heat exchanger.
  • Patent Document 1 exhaust heat recovery is performed by adjusting the flow rate of exhaust gas flowing into a plurality of heat exchange channels in a heat exchanger by arranging members having holes of different sizes at the inlet of the heat exchanger.
  • one aspect of the present disclosure be able to optimize the amount of exhaust gas flowing into the heat exchanger cell with a simple configuration.
  • the exhaust heat recovery apparatus includes a heat exchanger, a supply flow path, and a discharge flow path.
  • the heat exchanger has a plurality of heat exchange channels configured to exchange heat between the exhaust gas and the heat exchange medium.
  • the supply flow path is configured to supply exhaust gas in a distributed manner and to distribute the distributed exhaust gas to a plurality of heat exchange flow paths.
  • the exhaust channel is configured to join and exhaust the heat exchanged exhaust gas that has passed through the plurality of heat exchange channels. Then, at least one of the supply flow path and the discharge flow path is configured to become narrower toward the downstream side in the exhaust gas flow direction.
  • the cross-sectional area of the supply flow path may be configured to become narrower toward the downstream side in the exhaust gas flow direction. According to such an exhaust heat recovery device, the amount of exhaust gas flowing into the cells of the heat exchanger can be reliably optimized with a simple configuration.
  • the flow direction of the exhaust gas in the supply flow path may be set to the same direction as the flow direction of the exhaust gas in the discharge flow path. According to such an exhaust heat recovery device, the resistance to the flow generated when the direction in which the exhaust gas flows can be reduced as much as possible.
  • a wall portion configured to face a plurality of heat exchange channels with at least one of the supply channel and the exhaust channel interposed therebetween is further provided.
  • a wall portion configured to face a plurality of heat exchange channels with at least one of the supply channel and the exhaust channel interposed therebetween is further provided.
  • the flow rate of the exhaust gas flowing through the plurality of heat exchange channels can be made more uniform by setting the curved portion according to the flow characteristics of the exhaust gas.
  • the exhaust heat recovery apparatus further includes a main flow path through which exhaust gas flows, and the supply flow path and the heat exchanger are arranged to surround the main flow path and flow through the main flow path. It may be configured such that at least part of the exhaust gas is introduced.
  • At least a part of the exhaust gas flowing through the main flow path can flow into the heat exchanger.
  • FIG. 2 is a cross-sectional view of the exhaust heat recovery device in a closed state, and is a cross-sectional view taken along the line II-II in FIG. It is sectional drawing of the heat exchanger periphery of other embodiment (the 1). It is sectional drawing of the heat exchanger periphery of other embodiment (the 2). It is sectional drawing of the heat exchanger periphery of other embodiment (the 3). It is sectional drawing of the heat exchanger periphery of other embodiment (the 4).
  • tip part 62 ... valve body, 64 ... valve seat, 66 ... valve shaft, 68 ... mesh member, 70 ... main flow path, 71 ... sub flow path, 142 ... exhaust, 144 ... heat exchange medium, 241 ... straight line part, 242 ... curved line part.
  • Outline of exhaust heat recovery system] 1 and 2 is mounted on a moving body having an internal combustion engine such as a passenger car.
  • the exhaust heat recovery apparatus 1 recovers heat from the exhaust 142 by transferring heat of the exhaust 142 such as exhaust gas from the internal combustion engine, which is a high-temperature fluid, to the heat exchange medium 144.
  • the heat exchange medium is a fluid for cooling the exhaust 142 and represents a fluid having a temperature lower than that of the exhaust 142.
  • the heat exchange medium 144 in the present embodiment may be cooling water in an internal combustion engine, an oil liquid, or a gas.
  • the exhaust heat recovery apparatus 1 of this embodiment includes an exhaust part 2, a shell member 4, a heat exchanger 30, and a valve 10.
  • the exhaust unit 2 forms a flow path that guides the exhaust 142 from the internal combustion engine to the downstream side.
  • downstream side of the main flow direction of the exhaust 142 is simply referred to as “downstream side”
  • upstream side of the exhaust 142 in the main flow direction is simply referred to as “upstream side”.
  • main flow direction of the exhaust 142 or the flow direction of the exhaust gas indicates not the microscopic flow direction of the exhaust 142 but the flow direction of the exhaust 142 as a whole.
  • the shell member 4 is a member that covers the outside of the exhaust part 2.
  • the heat exchanger 30 is disposed between the exhaust part 2 and the shell member 4, and exchanges heat between the exhaust 142 and the heat exchange medium 144.
  • the valve 10 is a valve that opens or closes the flow path of the exhaust 142, and is disposed on the downstream side of the inflow section 8 described later along the flow path of the exhaust 142 in the exhaust section 2.
  • valve 10 When the valve 10 is opened, most of the exhaust 142 flows downstream of the valve 10 through the main flow path 70 without passing through the heat exchanger 30. When the valve 10 is closed, most of the exhaust 142 flows downstream of the valve 10 through the sub-flow path 71 passing through the heat exchanger 30. That is, the valve 10 switches the flow path of the exhaust 142 according to opening and closing.
  • the valve 10 is opened and closed by the pressure of the exhaust 142 and an actuator such as a known motor or thermoactuator.
  • the main flow path 70 represents a flow path of the exhaust 142 configured mainly by the exhaust pipes 12 and 14, the holding member 24 (particularly, a straight portion 24 ⁇ / b> A described later) and the valve seat support member 56.
  • the sub flow channel 71 mainly represents a flow channel configured in a cylindrical shape by being surrounded by the outer shell member 20, the lid member 22, and the holding member 24.
  • the sub flow channel 71 is a flow channel branched from the main flow channel 70, and is formed around the main flow channel 70.
  • the sub flow channel 71 is formed so as to surround the main flow channel 70.
  • “Enclose” includes covering at least a portion. That is, the sub flow channel 71 does not need to be disposed over the entire circumference of the main flow channel 70, and may be disposed so as to cover at least a part of the main flow channel 70.
  • the exhaust heat recovery device 1 has a coaxial structure.
  • the coaxial structure indicates a configuration in which the central axis of the main flow path 70 coincides with the central axis of a member formed in an annular shape around the main flow path 70 such as the sub flow path 71 and the heat exchanger 30.
  • the exhaust unit 2 includes an exhaust pipe 12.
  • the exhaust pipe 12 is formed in a cylindrical shape having both ends opened.
  • the exhaust pipe 12 is connected to an exhaust pipe, an exhaust manifold, or the like into which the exhaust 142 from the internal combustion engine flows.
  • the shell member 4 includes an exhaust pipe 14, an outer shell member 20, a lid member 22, and a holding member 24.
  • the exhaust pipe 14 is formed in a cylindrical shape having both ends opened.
  • the outer shell member 20 is formed in a cylindrical shape having both ends opened, and at least a part thereof is formed in a cylindrical shape having an inner diameter larger than the diameter of the exhaust pipe 12.
  • the downstream end of the outer shell member 20 is connected to the upstream end 16 of the exhaust pipe 14.
  • the lid member 22 closes the opening between the downstream side of the exhaust pipe 12 and the upstream side of the outer shell member 20.
  • the lid member 22 is integrally formed by continuously connecting an outer portion 22A, an intermediate portion 22B, and an inner portion 22C.
  • the outer portion 22 ⁇ / b> A is a portion having an annular surface orthogonal to the flow direction of the exhaust 142, and the outer peripheral portion is joined to the outer shell member 20.
  • the inner portion 22 ⁇ / b> C is a portion that is located upstream of the outer portion 22 ⁇ / b> A and has a ring-shaped surface orthogonal to the flow direction of the exhaust 142, and the inner peripheral portion is joined to the exhaust pipe 12.
  • the intermediate portion 22A has a curved surface along the flow direction of the exhaust 142 and is configured in a cylindrical shape.
  • the intermediate part 22A has an upstream side connected to the inner part 22C and a downstream side connected to the outer part 22A.
  • the holding member 24 holds the heat exchanger 30 disposed in the heat exchange chamber 28.
  • the outer shell member 20, the lid member 22, and the holding member 24 form a heat exchange chamber 28 that is an annular space surrounded by them. Further, an annular gap is formed between the downstream end of the exhaust pipe 12 and the upstream end of the holding member 24, and this gap constitutes the inflow portion 8.
  • the inflow part 8 is a part into which the exhaust 142 flows from the exhaust part 2 to the heat exchanger 30 as shown in FIG.
  • the heat exchanger 30 disposed in the heat exchange chamber 28 includes, for example, a plurality of heat exchange cells 34 as shown in FIG.
  • Each of the plurality of heat exchange cells 34 has a liquid channel through which the heat exchange medium 144 flows, and includes a plurality of heat exchange channels 32 around the plurality of heat exchange cells 34.
  • heat exchange is performed between the exhaust 142 flowing through the heat exchange channel 32 and the heat exchange medium 144 flowing through the heat exchange cell 34 at the contact portion between the heat exchange channel 32 and the heat exchange cell 34. Done.
  • the heat exchange chamber 28 includes a supply channel 38 and a discharge channel 40.
  • the supply flow path 38 is formed as an annular space surrounded by the holding member 24 and the heat exchanger 30, and is a flow path for supplying the circulating exhaust 142 while being divided into a plurality of heat exchange flow paths 32. .
  • the holding member 24 includes a side surface portion 240 and a straight portion 24A.
  • the side surface portion 240 is a portion that is located on the side surface of the heat exchanger 30 and has an annular surface that is orthogonal to the flow direction of the exhaust gas 142.
  • a gap serving as a flow path for the exhaust 142 is formed between the outer peripheral portion of the side surface portion 240 and the outer shell member 20.
  • the straight part 24A is continuously connected to the inner peripheral side of the side part 240, and is configured in a cylindrical shape.
  • the straight portion 24 ⁇ / b> A is a wall portion facing the plurality of heat exchange channels 32 across the supply channel 38, and functions as a partition that separates the main channel 70 and the subchannel 71.
  • the straight portion 24A is configured to extend linearly in a cross section obtained by cutting the exhaust heat recovery device 1 in a virtual plane including the supply flow path 38 and the plurality of heat exchange flow paths 32 as shown in FIG. 2, for example. .
  • the upstream end portion of the linear portion 24 ⁇ / b> A is located upstream of the outer portion 22 ⁇ / b> A of the lid member 22.
  • the course of the exhaust 142 flowing from the inflow portion 8 to the heat exchange chamber 28 is defined by the inner portion 22C and the intermediate portion 22B.
  • the flow direction of the exhaust 142 becomes substantially parallel to the straight portion 24A until reaching the branching portion of the supply flow path 38 with the plurality of heat exchange flow paths 32.
  • the straight portion 24A is linear in the cross-sectional view, the straight portion 24A itself is a cylindrical shape, and thus is actually a curved surface.
  • the supply flow path 38 is set such that the cross-sectional area of the flow path becomes smaller toward the downstream side in the flow direction of the exhaust gas 142. In other words, the flow path becomes narrower as the distance from the inflow portion 8 increases.
  • the cross-sectional area of a flow path shows the area of a flow path when the flow path is cut in a plane orthogonal to the flow direction in the flow path.
  • the pressure around the side surface portion 240 increases when the side surface portion 240 is reached. Then, the pressure distribution is such that the pressure is relatively low on the upstream side of the supply flow path 38 and relatively high on the downstream side.
  • the cross-sectional area of the supply flow path 38 is evenly set at any position in the flow direction of the exhaust 142, the pressure distribution of the supply flow path 38 of the plurality of heat exchange flow paths 32 is set. There is a tendency that a larger amount of exhaust gas 142 flows in the downstream side.
  • the cross-sectional area of the flow path is set smaller toward the downstream side in the flow direction of the exhaust gas 142 as in the present embodiment, the exhaust gas is exhausted toward the downstream side by a smaller cross-sectional area. Since the ventilation resistance of 142 is increased, it is possible to promote the diversion of the exhaust 142 to the plurality of heat exchange channels 32 on the upstream side. Therefore, the flow of the exhaust 142 flowing into the plurality of heat exchange channels 32 that is divided downstream of the supply channel 38 is suppressed, and the flow rate of the exhaust 142 flowing through the plurality of heat exchange channels 32 is made to be uniform. be able to.
  • the discharge flow path 40 is formed as a space surrounded by the outer shell member 20 and the heat exchanger 30, and the heat exchanged exhaust gas 142 that has passed through the plurality of heat exchange flow paths 32 is joined and discharged. It is a flow path.
  • the cross-sectional area of the discharge flow path 40 is set to be equal at any position in the flow direction of the exhaust gas 142.
  • the flow direction of the exhaust 142 is set to the same direction. That is, in FIG. 2, the right direction in the drawing is set as the flow direction of the exhaust 142 in the supply flow path 38 and the discharge flow path 40, and this direction matches the flow direction of the exhaust 142 in the main flow path 70.
  • the heat exchange medium 144 flows into the heat exchanger 30 from the inflow pipe 44 that penetrates the lid member 22, and after the heat exchange is performed inside the heat exchanger 30, the outflow pipe 46 that penetrates the lid member 22. It flows out to the outside of the heat exchanger 30 via.
  • the inflow pipe 44 and the outflow pipe 46 are not limited to the lid member 22 and may be configured to penetrate the outer shell member 20.
  • the valve 10 has at least a valve seat support member 56, a valve body 62, a valve seat 64, and a valve shaft 66.
  • the valve seat support member 56 is connected to the holding member 24 on the downstream side and includes a valve seat 64 on the upstream side.
  • the valve body 62 is a disk-shaped member having a diameter larger than the diameters of the valve seat support member 56 and the exhaust pipe 12.
  • the valve shaft 66 is a shaft connected to the valve body 62 and is a shaft that drives the valve body 62.
  • the valve seat 64 is a member that closes the valve seat support member 56 by contacting the valve body 62.
  • the valve seat 64 in the present embodiment is a tip portion 58 of the valve seat support member 56.
  • a mesh member 68 formed in a mesh shape is attached to the inner peripheral surface of the valve seat 64.
  • the exhaust heat recovery apparatus 1 includes a heat exchanger 30, a supply flow path 38, and a discharge flow path 40.
  • the heat exchanger 30 includes a plurality of heat exchange channels 32 configured to perform heat exchange between the exhaust 142 and the heat exchange medium.
  • the supply flow path 38 is configured so that the exhaust 142 circulates and supplies the distributed exhaust 142 to the plurality of heat exchange flow paths 32 while being divided.
  • the discharge flow path 40 is configured to join and discharge the heat exchanged exhaust gas 142 that has passed through the plurality of heat exchange flow paths 32. Then, at least one of the supply flow path 38 and the discharge flow path 40 is configured to narrow toward the downstream side in the flow direction of the exhaust gas 142.
  • the cross-sectional area of the flow path is set smaller toward the downstream side in the flow direction of the exhaust 142 for at least one of the supply flow path 38 and the discharge flow path 40.
  • the flow rate difference of the exhaust 142 flowing through the plurality of heat exchange flow paths 32 can be reduced. Therefore, the amount of the exhaust 142 flowing into the cell of the heat exchanger 30 can be optimized with a simple configuration.
  • the cross-sectional area of the supply flow path 38 is set smaller toward the downstream side in the flow direction of the exhaust 142. According to such an exhaust heat recovery apparatus 1, the amount of the exhaust 142 flowing into the cell of the heat exchanger 30 can be reliably optimized with a simple configuration.
  • At least one of the supply flow path 38 and the discharge flow path 40 includes a wall portion facing the plurality of heat exchange flow paths 32, and the wall portion
  • the cross section includes a straight portion 24A configured to extend linearly when the wall portion is cut along a virtual plane including at least one flow path and the plurality of heat exchange flow paths 32. Note that “extended” means “provided extended”.
  • the exhaust heat recovery apparatus 1 further includes a main flow path 70 through which the exhaust 142 flows, and the supply flow path 38 and the heat exchanger 30 are arranged so as to surround the main flow path 70. At least a part of the exhaust 142 flowing through the passage 70 is introduced.
  • the cross-sectional area of the discharge flow path 40 is set to be equal at any position in the flow direction of the exhaust 142. Not limited. For example, as shown in FIG. 3, the cross-sectional area of the discharge flow path 40 may be set smaller toward the downstream side in the flow direction of the exhaust 142.
  • the outer shell member 20 shown in FIG. 2 may be configured such that the gap with the heat exchanger 30 becomes narrower toward the downstream side of the exhaust 142.
  • a straight portion 20 ⁇ / b> A that is a wall portion facing the plurality of heat exchange channels 32 across the discharge channel 40 is provided.
  • the cross section of the straight portion 20A is configured to be linear when the wall portion is cut along a virtual plane including at least one flow path and the plurality of heat exchange flow paths 32. Even in this case, the ventilation resistance of the exhaust 142 is increased by the amount that the flow path becomes narrower toward the downstream side of the discharge flow path 40, and therefore, the flow of the exhaust 142 to the plurality of heat exchange flow paths 32 on the upstream side. Can be promoted.
  • the flow of the exhaust 142 flowing into the plurality of heat exchange channels 32 is suppressed, and the flow rate of the exhaust 142 flowing through the plurality of heat exchange channels 32 is made uniform. You can get closer.
  • the cross-sectional area of the supply flow path 38 may be set evenly at any position in the flow direction of the exhaust 142.
  • the holding member 24 constituting the supply flow path 38 in the above embodiment is straight when the exhaust heat recovery device 1 is cut in a virtual plane including the supply flow path 38 and the plurality of heat exchange flow paths 32.
  • the straight portion 24 ⁇ / b> A configured as described above may be provided.
  • the straight portion 24 ⁇ / b> B may be provided with a curved portion 24 ⁇ / b> B configured so as to extend in a curved shape. Good.
  • the flow rate of the exhaust 142 flowing through the plurality of heat exchange channels 32 can be made more uniform.
  • Such a curved portion 24B may set the degree of curvature such as the curvature of the curved portion 24B according to an exponential function as shown in FIG. Further, as shown in FIG. 5, the holding member 24 may set the degree of bending of the curved portion 24C according to a logarithmic function.
  • the holding member 24 may include a combination of a linear portion 241 similar to the linear portion 24A described above and a curved portion 242 similar to the curved portions 24B and 24C described above. Even in this case, the same effect as the above (1a) can be obtained.
  • the present disclosure can be realized in various forms such as a system including the exhaust heat recovery apparatus 1 as a constituent element and an exhaust heat recovery method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本開示の一側面の排気熱回収装置は、熱交換器と、供給流路と、排出流路とを備える。熱交換器は、排気ガスと熱交換媒体との間の熱交換を行うように構成された複数の熱交換流路を有する。供給流路は、排気ガスが流通し、流通する排気ガスを複数の熱交換流路へ分流させつつ供給するように構成される。排出流路は、複数の熱交換流路を通過した熱交換済みの排気ガスを合流させて排出するように構成される。供給流路および排出流路のうちの少なくとも一方の流路は、排気ガスの流れ方向の下流側に向かうに従って狭くなるように構成される。

Description

排気熱回収装置
 本開示は、熱交換器を用いて排気ガスから熱を回収する技術に関する。
 下記特許文献1には、熱交換器の入口において異なる大きさの孔を有する部材を配置することによって熱交換器内の複数の熱交換流路に流入する排気ガスの流量を調整する排気熱回収装置が開示されている。
特開2015-021432号公報
 しかしながら、上記の排気熱回収装置では、複数の熱交換流路の手前に排気ガスの流量を調整するための新たな部材を配置するので、構成が煩雑となりコストアップになるという問題があった。
 本開示の一側面は、簡素な構成で熱交換器のセルに流入する排気ガスの量を最適化できることが望ましい。
 本開示の一側面の排気熱回収装置は、熱交換器と、供給流路と、排出流路とを備える。熱交換器は、排気ガスと熱交換媒体との間の熱交換を行うように構成された複数の熱交換流路を有する。供給流路は、排気ガスが流通し、流通する排気ガスを複数の熱交換流路へ分流させつつ供給するように構成される。
 排出流路は、複数の熱交換流路を通過した熱交換済みの排気ガスを合流させて排出するように構成される。そして、供給流路および排出流路のうちの少なくとも一方の流路は、排気ガスの流れ方向の下流側に向かうに従って狭くなるように構成される。
 このような排気熱回収装置によれば、供給流路および排出流路の少なくとも一方について、排気ガスの流れ方向の下流側に向かうに従って流路の断面積が小さく設定されるので、例えば流路の断面積を均等に設定する場合と比較して、複数の熱交換流路を流れる排気ガスの流量差を小さくすることができる。よって、熱交換器のセルに流入する排気ガスの量を簡素な構成で最適化することができる。
 また、本開示の一側面の排気熱回収装置において供給流路の断面積は、排気ガスの流れ方向の下流側に向かうに従って狭くなるように構成されてもよい。
 このような排気熱回収装置によれば、熱交換器のセルに流入する排気ガスの量を簡素な構成で確実に最適化することができる。
 また、本開示の一側面の排気熱回収装置において供給流路における排気ガスの流れ方向は、排出流路における排気ガスの流れ方向と同じ方向に設定されてもよい。
 このような排気熱回収装置によれば、排気ガスが流れる方向を転換する際に生じる流れに対する抵抗を極力小さくすることができる。
 また、本開示の一側面の排気熱回収装置において、供給流路および排出流路のうちの少なくとも一方の流路を挟んで、複数の熱交換流路に向かい合うように構成された壁部をさらに備え、少なくとも一方の流路および複数の熱交換流路が含まれる仮想平面で該壁部を切断した際の該壁部の断面は、直線状に延設して構成された直線部、を備えてもよい。
 このような排気熱回収装置によれば、直線部における設計や加工を容易にすることができる。
 また、本開示の一側面の排気熱回収装置において、供給流路および排出流路のうちの少なくとも一方の流路を挟んで、複数の熱交換流路に向かい合うように構成された壁部をさらに備え、少なくとも一方の流路および複数の熱交換流路が含まれる仮想平面で該壁部を切断した際の該壁部の断面は、曲線状に延設して構成された曲線部、を備えてもよい。
 このような排気熱回収装置によれば、曲線部を排気ガスの流動特性に応じて設定することによって、複数の熱交換流路を流れる排気ガスの流量をより均一に近づけることができる。
 また、本開示の一側面の排気熱回収装置において、排気ガスが流通する主流路、をさらに備え、供給流路および熱交換器は、主流路の周囲を取り囲んで配置され、主流路を流通する排気ガスの少なくとも一部が導入されるように構成されてもよい。
 このような排気熱回収装置によれば、主流路を流れる排気ガスの少なくとも一部が熱交換器に流れる構造とすることができる。
実施形態における排気熱回収装置の外観を示す斜視図である。 閉弁した状態での排気熱回収装置の断面図であり、図1におけるII―II断面図である。 その他の実施形態(その1)の熱交換器周辺の断面図である。 その他の実施形態(その2)の熱交換器周辺の断面図である。 その他の実施形態(その3)の熱交換器周辺の断面図である。 その他の実施形態(その4)の熱交換器周辺の断面図である。
 1…排気熱回収装置、2…排気部、4…シェル部材、8…流入部、10…バルブ、12…排気管、14…排気管、16…上流端、20…外殻部材、20A,24A…直線部、22…蓋部材、24…保持部材、24B,24C…曲線部、28…熱交換室、30…熱交換器、32…熱交換流路、34…熱交換セル、38…供給流路、40…排出流路、44…流入管、46…流出管、56…弁座支持部材、58…先端部位、62…弁体、64…弁座、66…弁軸、68…メッシュ部材、70…主流路、71…副流路、142…排気、144…熱交換媒体、241…直線部、242…曲線部。
 以下、本開示の例示的な実施形態について図面を参照しながら説明する。
 [1-1.排気熱回収装置の概要]
 図1および図2に示す排気熱回収装置1は、例えば乗用車等の内燃機関を有する移動体に搭載される。この排気熱回収装置1は、高温流体である内燃機関からの排気ガス等の排気142が有する熱を熱交換媒体144に伝達させることにより、排気142から熱を回収する。なお、熱交換媒体とは、排気142を冷却させるための流体であり、排気142よりも低温の流体を表す。本実施形態における熱交換媒体144は、内燃機関における冷却水であってもよいし、油液であってもよいし、或いはガスであってもよい。
 本実施形態の排気熱回収装置1は、排気部2と、シェル部材4と、熱交換器30と、バルブ10とを備える。
 排気部2は、内燃機関からの排気142を下流側へと導く流路を形成する。なお、以下の説明では、排気142の主たる流れ方向の下流側を単に「下流側」と表記し、排気142の主たる流れ方向の上流側を単に「上流側」と表記する。また、排気142の主たる流れ方向、或いは排気ガスの流れ方向とは、排気142の微視的な流れの方向ではなく、排気142の全体としての流れの方向を示す。
 シェル部材4は、排気部2の外側を覆う部材である。熱交換器30は、排気部2とシェル部材4との間に配置され、排気142と熱交換媒体144との間で熱交換する。バルブ10は、排気142の流路を開放または閉塞する弁であり、排気部2における排気142の流路に沿って後述する流入部8よりも下流側に配置されている。
 バルブ10が開放されると、排気142の大部分は熱交換器30を経由することなく主流路70を通りバルブ10の下流に流れる。バルブ10が閉塞されると、排気142の大部分は熱交換器30を経由する副流路71を通りバルブ10の下流に流れる。つまり、バルブ10は開閉に応じて排気142の流路を切り替える。
 なお、バルブ10は、排気142の圧力、周知のモータやサーモアクチュエータ等のアクチュエータによって開閉される。また、主流路70とは、主に排気管12,14、保持部材24(特に後述する直線部24A)および弁座支持部材56によって筒状に構成される排気142の流路を表す。
 また、副流路71とは、主に、外殻部材20、蓋部材22、保持部材24とにより囲まれることで筒状に構成される流路を表す。副流路71は、主流路70から分岐した流路であり、主流路70の周囲に形成され、本実施形態では特に、主流路70を取り囲んで形成される。
 なお、「取り囲んで」とは、少なくとも一部を覆う旨を含む。つまり、副流路71は、主流路70の全周に渡って配置されている必要はなく、主流路70の少なくとも一部を覆って配置されていればよい。
 言い換えれば、排気熱回収装置1は、同軸構造とされている。同軸構造とは、主流路70における中心軸と、副流路71や熱交換器30等、主流路70の周囲において環状に形成された部材の中心軸とが一致する構成を示す。
 [1-2.排気熱回収装置の構造]
 排気部2は、図2に示すように、排気管12を備えている。排気管12は、両端が開口した円筒状に形成されている。排気管12は、内燃機関からの排気142が流入するエキゾーストパイプやエキゾーストマニホールドなどに接続されている。
 シェル部材4は、排気管14と、外殻部材20と、蓋部材22と、保持部材24とを備える。排気管14は、両端が開口した円筒状に形成されている。
 外殻部材20は、両端が開口した筒状に形成され、少なくとも一部が排気管12の直径よりも大きな内径の円筒状に形成されている。外殻部材20の下流側の端部は、排気管14の上流端16に接続される。
 蓋部材22は、排気管12における下流側と外殻部材20の上流側との間の開口を閉塞する。蓋部材22は、外側部22Aと、中間部22Bと、内側部22Cとが連続的に接続されて一体に構成されている。
 外側部22Aは、排気142の流れ方向に直交する環状に構成された面を有する部位であり、外周部分が外殻部材20と接合される。内側部22Cは、外側部22Aよりも上流側に位置し、排気142の流れ方向に直交する環状に構成された面を有する部位であり、内周部分が排気管12と接合される。
 中間部22Aは、排気142の流れ方向に沿った曲面を有し、円筒状に構成される。中間部22Aは、上流側が内側部22Cに接続され、下流側が外側部22Aに接続される。保持部材24は、熱交換室28に配置された熱交換器30を保持する。
 そして、外殻部材20と蓋部材22と保持部材24とにより、これらに囲まれた環状の空間である熱交換室28が形成される。また、排気管12における下流側の端部と保持部材24における上流側の端部との間には、環状の隙間が形成されており、この隙間が流入部8を構成する。流入部8は、図2に示すように、排気部2から熱交換器30へと排気142が流入する部位である。
 熱交換室28に配置される熱交換器30は、例えば、図2に示すように、複数の熱交換セル34を備える。複数の熱交換セル34は、それぞれ内部に熱交換媒体144が流通する液体流路を有し、複数の熱交換セル34の周囲には複数の熱交換流路32を備える。熱交換器30においては、熱交換流路32と熱交換セル34との接触部位において、熱交換流路32を流れる排気142と熱交換セル34を流れる熱交換媒体144との間で熱交換が行われる。
 ところで、熱交換室28においては、供給流路38と、排出流路40とを備える。供給流路38は、保持部材24と熱交換器30とにより囲まれた環状の空間として形成され、流通する排気142を複数の熱交換流路32へ分流させつつ供給するための流路である。
 保持部材24は、側面部240と直線部24Aとを備える。側面部240は、熱交換器30の側面に位置し、排気142の流れ方向に直交する環状に構成された面を有する部位である。側面部240の外周部分と外殻部材20との間には、排気142の流路となる隙間が形成される。
 直線部24Aは、側面部240の内周側と連続的に接続され、筒状に構成される。直線部24Aは、供給流路38を挟んで複数の熱交換流路32に向かい合う壁部であり、主流路70と副流路71とを隔てる隔壁として機能する。直線部24Aは、例えば図2に示すような、供給流路38および複数の熱交換流路32が含まれる仮想平面で排気熱回収装置1を切断した断面において、直線状に延びるよう構成される。
 なお、直線部24Aにおける上流側の端部は、蓋部材22における外側部22Aよりも上流側に位置する。このような保持部材24および蓋部材22の構成によって、流入部8から熱交換室28側へ流入する排気142は、内側部22Cおよび中間部22Bにて進路が規定される。この結果、排気142の流れ方向は、供給流路38における複数の熱交換流路32との分流部分に到達するまでに、直線部24Aに対して概ね平行になる。
 なお、直線部24Aは断面図においては直線状となるが、直線部24A自体は筒状であるため実際には曲面となる。
 また、供給流路38は、排気142の流れ方向の下流側に向かうに従って流路の断面積が小さく設定される。つまり、流入部8から離れるに従って流路が狭くなる先細り形状とされる。なお、流路の断面積とは、流路における流れ方向に直交する平面において流路を切断したときの流路の面積を示す。
 ここで、連続的に排気142が供給される状況において側面部240に到達すると側面部240の周辺の圧力が高くなる。すると、供給流路38の上流側では相対的に圧力が低く下流側では相対的に圧力が高いという圧力分布となる。排気142の流れ方向の何れの位置においても供給流路38の断面積が均等に設定されている場合には、上記の圧力分布により、複数の熱交換流路32のうちの供給流路38の下流側で分流するものほど多くの排気142が流れる傾向がある。
 しかし、本実施形態のように、供給流路38を排気142の流れ方向の下流側に向かうに従って流路の断面積が小さく設定されると、断面積が小さくなる分だけ下流側に向かって排気142の通気抵抗が増加されるため、上流側において複数の熱交換流路32への排気142の分流を促進させることができる。よって、複数の熱交換流路32のうちの供給流路38の下流側で分流するものへの排気142の流入を抑制し、複数の熱交換流路32に流れる排気142の流量を均一に近づけることができる。
 また、排出流路40は、外殻部材20と熱交換器30とにより囲まれた空間として形成され、複数の熱交換流路32を通過した熱交換済みの排気142を合流させて排出するための流路である。本実施形態においては、排気142の流れ方向の何れの位置においても排出流路40の断面積が均等になるよう設定される。なお、供給流路38および排出流路40においては、排気142の流れ方向が同じ方向に設定される。すなわち、図2においては紙面右方向が供給流路38および排出流路40における排気142の流れ方向に設定され、この方向は主流路70における排気142の流れ方向と一致する。
 熱交換媒体144は、蓋部材22を貫通する流入管44から熱交換器30の内部に流入し、熱交換器30の内部において熱交換が行われた後に、蓋部材22を貫通する流出管46を介して熱交換器30の外部へと流出する。なお、流入管44や流出管46は、蓋部材22に限らず外殻部材20を貫通するように構成されていてもよい。
 バルブ10は、弁座支持部材56と、弁体62と、弁座64と、弁軸66とを少なくとも有する。弁座支持部材56は、下流側が保持部材24に接続され、上流側に弁座64を備える。
 弁体62は、弁座支持部材56や排気管12の直径よりも大きな直径を有した円板状の部材である。弁軸66は、弁体62に接続された軸であり、弁体62を駆動する軸である。
 弁座64は、弁体62と接触することで、弁座支持部材56を閉塞する部材である。本実施形態における弁座64は、弁座支持部材56の先端部位58である。弁座64の内周面には、メッシュ状に形成されたメッシュ部材68が取り付けられている。
 [1-3.効果]
 以上、図1、図2のように詳述した第1実施形態によれば、以下の効果が得られる。
 (1a)上記の排気熱回収装置1は、熱交換器30と、供給流路38と、排出流路40とを備える。熱交換器30は、排気142と熱交換媒体との間の熱交換を行うように構成された複数の熱交換流路32を有する。供給流路38は、排気142が流通し、流通する排気142を複数の熱交換流路32へ分流させつつ供給するように構成される。
 排出流路40は、複数の熱交換流路32を通過した熱交換済みの排気142を合流させて排出するように構成される。そして、供給流路38および排出流路40のうちの少なくとも一方の流路は、排気142の流れ方向の下流側に向かうに従って狭く構成される。
 このような排気熱回収装置1によれば、供給流路38および排出流路40の少なくとも一方について、排気142の流れ方向の下流側に向かうに従って流路の断面積が小さく設定されるので、例えば流路の断面積を均等に設定する場合と比較して、複数の熱交換流路32を流れる排気142の流量差を小さくすることができる。よって、熱交換器30のセルに流入する排気142の量を簡素な構成で最適化することができる。
 (1b)また、上記の排気熱回収装置1において供給流路38の断面積は、排気142の流れ方向の下流側に向かうに従って小さく設定されている。
 このような排気熱回収装置1によれば、熱交換器30のセルに流入する排気142の量を簡素な構成で確実に最適化することができる。
 (1c)また、上記の排気熱回収装置1において供給流路38における排気142の流れ方向および排出流路40における排気142の流れ方向は、同じ方向に設定されている。
 このような排気熱回収装置1によれば、排気142が流れる方向を転換する際に生じる流れに対する抵抗を極力小さくすることができる。
 (1d)また、上記の排気熱回収装置1において、供給流路38および排出流路40のうちの少なくとも一方の流路は、複数の熱交換流路32に向かい合う壁部を備え、該壁部の断面は、少なくとも一方の流路および複数の熱交換流路32が含まれる仮想平面で該壁部を切断した際に、直線状に延設して構成された直線部24Aを備える。なお、「延設」とは、「延びて設けられる」ことを示す。
 このような排気熱回収装置1によれば、複雑な曲面を有する構成と比較して、直線部24Aにおける設計や加工を容易にすることができる。
 (1e)また、上記の排気熱回収装置1において、排気142が流通する主流路70、をさらに備え、供給流路38および熱交換器30は、主流路70の周囲を取り囲んで配置され、主流路70を流通する排気142の少なくとも一部が導入されるように構成される。
 このような排気熱回収装置1によれば、主流路70を流れる排気142の少なくとも一部が熱交換器30に流れる構造とすることができる。
 [2.他の実施形態]
 以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 (2a)上記実施形態では、排出流路40の断面積が排気142の流れ方向の何れの位置においても均等になるように設定したが、排出流路40の断面積が均等になる構成には限られない。例えば、図3に示すように、排出流路40の断面積は、排気142の流れ方向の下流側に向かうに従って小さく設定されてもよい。
 すなわち、図2に示す外殻部材20においては、排気142の下流側に向かうに従って熱交換器30との隙間が狭くなるよう構成されてもよい。詳細には、排出流路40を挟んで複数の熱交換流路32に向かい合う壁部である直線部20Aを備える。直線部20Aの断面は、少なくとも一方の流路および複数の熱交換流路32が含まれる仮想平面で該壁部を切断した際に、直線状になるよう構成される。このようにしても、排出流路40の下流側に向かうに従って流路が狭くなる分だけ排気142の通気抵抗が増加されるため、上流側において複数の熱交換流路32への排気142の分流を促進させることができる。
 よって、複数の熱交換流路32のうちの供給流路38の下流側で分流する流路への排気142の流入を抑制し、複数の熱交換流路32に流れる排気142の流量を均一に近づけることができる。また、このように構成されている場合には、供給流路38の断面積を排気142の流れ方向の何れの位置においても均等に設定してもよい。
 (2b)上記実施形態において供給流路38を構成する保持部材24は、供給流路38および複数の熱交換流路32が含まれる仮想平面で排気熱回収装置1を切断した際に、直線となるように構成された直線部24Aを備えたが、図4に示すように、複数の熱交換流路32に向かい合う壁部が曲線状に延設して構成された曲線部24Bを備えてもよい。
 このような排気熱回収装置によれば、曲線部24Bを排気142の流動特性に応じて設定することによって、複数の熱交換流路32を流れる排気142の流量をより均一に近づけることができる。
 このような曲線部24Bは、図4に示すように、指数関数に従って該曲線部24Bの曲率等の曲りの程度を設定してもよい。また、保持部材24は、図5に示すように、対数関数に従って曲線部24Cの曲りの程度を設定してもよい。
 また、保持部材24は、図6に示すように、前述の直線部24Aと同様の直線部241と、前述の曲線部24B,24Cと同様の曲線部242との組み合わせを備えてもよい。
 これらのようにしても、上記(1a)と同様の効果を得ることができる。
 (2c)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
 (2d)上述した排気熱回収装置1の他、当該排気熱回収装置1を構成要素とするシステム、排気熱回収方法など、種々の形態で本開示を実現することもできる。

Claims (6)

  1.  排気ガスと熱交換媒体との間の熱交換を行うように構成された複数の熱交換流路を有する熱交換器と、
     排気ガスが流通し、流通する排気ガスを前記複数の熱交換流路へ分流させつつ供給するように構成された供給流路と、
     前記複数の熱交換流路を通過した熱交換済みの排気ガスを合流させて排出するように構成された排出流路と、
     を備え、
     前記供給流路および前記排出流路のうちの少なくとも一方の流路は、排気ガスの流れ方向の下流側に向かうに従って狭くなるように構成された
     排気熱回収装置。
  2.  請求項1に記載の排気熱回収装置において、
     前記供給流路は、排気ガスの流れ方向の下流側に向かうに従って狭くなるように構成された
     排気熱回収装置。
  3.  請求項1または請求項2に記載の排気熱回収装置において、
     前記供給流路における排気ガスの流れ方向は、前記排出流路における排気ガスの流れ方向と同じ方向に設定される
     排気熱回収装置。
  4.  請求項1~請求項3の何れか1項に記載の排気熱回収装置において、
     前記供給流路および前記排出流路のうちの少なくとも一方の流路を挟んで、前記複数の熱交換流路に向かい合うように構成された壁部をさらに備え、
     前記少なくとも一方の流路および前記複数の熱交換流路が含まれる仮想平面で該壁部を切断した際の該壁部の断面は、直線状に延設して構成された直線部、
     を備えた排気熱回収装置。
  5.  請求項1~請求項3の何れか1項に記載の排気熱回収装置において、
     前記供給流路および前記排出流路のうちの少なくとも一方の流路を挟んで、前記複数の熱交換流路に向かい合うように構成された壁部をさらに備え、
     前記少なくとも一方の流路および前記複数の熱交換流路が含まれる仮想平面で該壁部を切断した際の該壁部の断面は、曲線状に延設して構成された曲線部、
     を備えた排気熱回収装置。
  6.  請求項1~請求項5の何れか1項に記載の排気熱回収装置において、
     排気ガスが流通するように構成された主流路、をさらに備え、
     前記供給流路および前記熱交換器は、前記主流路の周囲を取り囲んで配置され、前記主流路を流通する排気ガスの少なくとも一部が導入されるように構成された
     排気熱回収装置。
PCT/JP2016/054335 2016-02-15 2016-02-15 排気熱回収装置 WO2017141330A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/761,364 US10697403B2 (en) 2016-02-15 2016-02-15 Exhaust heat recovery device
PCT/JP2016/054335 WO2017141330A1 (ja) 2016-02-15 2016-02-15 排気熱回収装置
CN201680055018.9A CN108026820B (zh) 2016-02-15 2016-02-15 排气热回收装置
DE112016006429.2T DE112016006429T5 (de) 2016-02-15 2016-02-15 Abgaswärmerückgewinnungsvorrichtung
JP2017567592A JP6483866B2 (ja) 2016-02-15 2016-02-15 排気熱回収装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054335 WO2017141330A1 (ja) 2016-02-15 2016-02-15 排気熱回収装置

Publications (1)

Publication Number Publication Date
WO2017141330A1 true WO2017141330A1 (ja) 2017-08-24

Family

ID=59625646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054335 WO2017141330A1 (ja) 2016-02-15 2016-02-15 排気熱回収装置

Country Status (5)

Country Link
US (1) US10697403B2 (ja)
JP (1) JP6483866B2 (ja)
CN (1) CN108026820B (ja)
DE (1) DE112016006429T5 (ja)
WO (1) WO2017141330A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057573A (ja) * 2010-09-10 2012-03-22 Futaba Industrial Co Ltd 排気熱回収装置
JP2014088789A (ja) * 2012-10-29 2014-05-15 Toyota Motor Corp 熱電発電装置
EP2910885A1 (en) * 2014-02-24 2015-08-26 Combustion & Energy Systems Ltd. Split flow condensing economizer and heat recovery method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684938B2 (en) * 1999-01-20 2004-02-03 Hino Motors, Ltd. EGR cooler
CN100458351C (zh) * 2003-10-02 2009-02-04 贝洱两合公司 用于汽车的增压空气冷却器
JP4431579B2 (ja) * 2004-09-28 2010-03-17 株式会社ティラド Egrクーラ
JP5108462B2 (ja) * 2007-11-07 2012-12-26 国立大学法人 東京大学 熱回収装置
CN201193563Y (zh) * 2008-04-30 2009-02-11 奇瑞汽车股份有限公司 均流式中冷器
US20100199955A1 (en) * 2009-02-06 2010-08-12 Paccar Inc Charge air cooler
KR101125004B1 (ko) * 2009-12-04 2012-03-27 기아자동차주식회사 냉각수 및 오일 통합 열교환형 배기열 회수장치
US9027326B2 (en) * 2011-04-13 2015-05-12 Ford Global Technologies, Llc Vehicle exhaust heat recovery system
US20130199288A1 (en) * 2012-02-02 2013-08-08 Visteon Global Technologies, Inc. Fluid flow distribution device
JP5769675B2 (ja) * 2012-08-10 2015-08-26 フタバ産業株式会社 排気熱回収装置
CN103061866A (zh) * 2012-12-20 2013-04-24 华南理工大学 一种风冷式中冷器
JP6243158B2 (ja) 2013-07-19 2017-12-06 フタバ産業株式会社 排気熱回収装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057573A (ja) * 2010-09-10 2012-03-22 Futaba Industrial Co Ltd 排気熱回収装置
JP2014088789A (ja) * 2012-10-29 2014-05-15 Toyota Motor Corp 熱電発電装置
EP2910885A1 (en) * 2014-02-24 2015-08-26 Combustion & Energy Systems Ltd. Split flow condensing economizer and heat recovery method

Also Published As

Publication number Publication date
CN108026820B (zh) 2020-11-10
JPWO2017141330A1 (ja) 2018-04-26
CN108026820A (zh) 2018-05-11
US20180266368A1 (en) 2018-09-20
US10697403B2 (en) 2020-06-30
JP6483866B2 (ja) 2019-03-13
DE112016006429T5 (de) 2018-11-08

Similar Documents

Publication Publication Date Title
EP2896802B1 (en) Exhaust heat recovery device
KR101619055B1 (ko) 배기열 회수 장치
KR20170088993A (ko) 열회수 장치 및 그 장치가 장착된 배기 라인
KR20150024403A (ko) 배기열 회수 장치
US10724416B2 (en) Exhaust heat recovery device
KR102415658B1 (ko) 전기차량의 냉각수 가열장치
JP2015220275A (ja) 熱電発電装置
US11041459B2 (en) Exhaust gas heat recovery system
JP2014097787A (ja) 熱交換器アッセンブリ、特に車両ヒータ装置用の熱交換器アッセンブリ
CN108930576B (zh) 用于机动车的排气装置以及相应的机动车
JP6483866B2 (ja) 排気熱回収装置
JP6499325B2 (ja) 排気熱回収装置
US20150330712A1 (en) Device for heat exchange
CN110080858B (zh) 排气热回收装置
WO2017126118A1 (ja) 排気熱回収装置
JP7221853B2 (ja) 排気熱回収装置
JP6243158B2 (ja) 排気熱回収装置
US11022069B2 (en) Exhaust gas heat recovery system
EP3550117A1 (en) Exhaust heat recovery structure
KR20230167848A (ko) 정수기 및 이를 포함하는 정수기 조립체
JP2016156324A (ja) 排気熱回収器
JP2016160778A (ja) 排気熱回収器
JP2017133362A (ja) 排気熱回収装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567592

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15761364

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016006429

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890473

Country of ref document: EP

Kind code of ref document: A1