WO2017138302A1 - 分級機、粉砕分級装置及び微粉炭焚きボイラ - Google Patents

分級機、粉砕分級装置及び微粉炭焚きボイラ Download PDF

Info

Publication number
WO2017138302A1
WO2017138302A1 PCT/JP2017/001220 JP2017001220W WO2017138302A1 WO 2017138302 A1 WO2017138302 A1 WO 2017138302A1 JP 2017001220 W JP2017001220 W JP 2017001220W WO 2017138302 A1 WO2017138302 A1 WO 2017138302A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
rotating portion
annular rotating
classifier
outer diameter
Prior art date
Application number
PCT/JP2017/001220
Other languages
English (en)
French (fr)
Inventor
淳 鹿島
松本 慎治
恒輔 北風
泰仁 大西
浩明 金本
洋輔 大西
祐樹 近藤
豊 竹野
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201780010126.9A priority Critical patent/CN108602094A/zh
Priority to KR1020187022596A priority patent/KR20180100637A/ko
Publication of WO2017138302A1 publication Critical patent/WO2017138302A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/1003Processes to make pulverulent fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/20Feeding/conveying devices
    • F23K2203/201Feeding/conveying devices using pneumatic means

Definitions

  • the present disclosure relates to a classifier, a pulverizing and classifying device, and a pulverized coal-fired boiler.
  • classifiers that use a centrifugal force generated by rotation of a rotating body to classify particles having different particle sizes.
  • Patent Document 1 discloses a rotary classifier having a plurality of rotary fins around a rotation axis.
  • a swirl is given to the air flow which accompanies particles from the outer peripheral side of the classifier by the rotation of the rotary fins.
  • the particles entrained in the air flow are subjected to radially outward centrifugal force due to the centrifugal field formed by the rotating fins.
  • the coarse particles having a relatively large particle size have a larger centrifugal force than the drag force due to the velocity component of the air flow moving inward in the radial direction, and the outer side of the rotary fin is flung away.
  • fine particles having a relatively small particle size have a greater resistance directed radially inward from the air flow than centrifugal force and pass through the rotating fins.
  • the coarse particles contained in the air flow are flung off to the outside of the rotary fin, and the fine particles are carried by the air flow by passing the fine particles on the inner circumferential side of the rotary fin. The particles are to be classified.
  • the inflow velocity of gas flowing into a rotating body (rotating portion) such as a rotating fin has a distribution in the rotation axis direction
  • Classification accuracy may be affected by the velocity distribution.
  • the kinetic energy of the particles is larger at the position where the inflow velocity of the air flow is higher than at the position where the inflow velocity of the air flow is lower. For this reason, at such a position, the coarse particles to be separated from the air flow are likely to pass through the rotary fin together with the fine particles without being thrown out of the rotary fin by centrifugal force.
  • Patent Document 1 does not specifically describe a measure for obtaining good classification accuracy according to the distribution of the inflow velocity of the gas in the rotation axis direction.
  • At least one embodiment of the present invention aims to provide a classifier capable of obtaining good classification accuracy.
  • a classifier configured to take in an air flow from below to an outer peripheral region of the internal space;
  • An annular rotating portion rotatably provided in the inner space of the classifier housing on the inner peripheral side of the outer peripheral region, and configured to classify particles associated with the air flow from the outer peripheral region; Equipped with The annular rotating portion has a plurality of rotating fins arranged with a gap around the rotation axis of the annular rotating portion, The outer shape of the annular rotary portion formed by the plurality of rotary fins has a maximum outer diameter portion between the upper end and the lower end of the annular rotary portion.
  • the air flow taken in from below in the outer peripheral region of the internal space of the classifier housing changes the flow direction in the radial direction and flows from the outer peripheral side of the annular rotating portion into the annular rotating portion.
  • the inflow velocity of the airflow which flows in into an annular rotation part is not constant normally in the rotation axis direction, but distribution which an inflow velocity becomes the maximum in the axial direction position between the upper end and lower end of an annular rotation part Have.
  • the maximum outer diameter portion is provided between the upper end and the lower end of the annular rotary portion where the inflow velocity of the airflow increases, the axial position relatively increases in the inflow velocity of the airflow. A large centrifugal force can be obtained.
  • the classification accuracy of the classifier can be improved by separating the coarse particles which are going to flow into the annular rotating portion at a relatively high speed by a relatively large centrifugal force.
  • the outer diameter D1 at the lower end, the outer diameter D3 at the upper end, and the outer diameter D2 at the maximum outer diameter portion satisfy D2 / D1D1.05, and D2 Since the relationship of /D3 ⁇ 1.05 is satisfied, moderately large centrifugal force can be applied to the coarse particles at a position where the inflow velocity between the upper end and the lower end of the annular rotating portion is increased. For this reason, coarse particles can be effectively separated from the air flow containing fine particles at the inlet of the annular rotating portion.
  • Each of the rotary fins is slanted with respect to the vertical direction so that the upper end of the rotary fin is positioned downstream with respect to the rotation direction of the annular rotary portion compared to the lower end of the rotary fin;
  • An angle ⁇ 3 formed by the rotary fin with respect to the vertical direction is 0 ° ⁇ 3 ⁇ 30 °.
  • the angle hereinafter also referred to as “twist angle”
  • ⁇ 3 formed by the rotary fins with respect to the vertical direction is larger than 0 °, the air flow carrying particles rotates from the radially outer side.
  • the coarse particles that collide with the rotating fins tend to fall downward. For this reason, it is possible to more effectively separate the coarse particles accompanying the air flow.
  • the twist angle ⁇ 3 is smaller than 30 °, the centrifugal force applied to the coarse particles is not excessively reduced by the rotation of the rotary fin, so the coarse particles accompanying the air flow can be separated more effectively.
  • the classification accuracy of the classifier can be improved.
  • the classifier in the configuration of any of the above (1) to (5), is The inner space of the classifier housing further includes an annular deflection ring provided on the inner peripheral side of the outer peripheral region and on the outer peripheral side of the annular rotating portion, The deflection ring is located above the largest outer diameter portion.
  • the deflection ring since the deflection ring is provided on the inner peripheral side of the outer peripheral region and the outer peripheral side of the annular rotating portion, the air flow toward the annular rotating portion is deflected downward and flows into the annular rotating portion It is possible to reduce the bias of the air flow to the upper part of the annular rotating portion.
  • the deflection ring As a result, it is possible to suppress deviation of the classification load on the upper part of the annular rotation part in the annular rotation part, and to make the classification load in the entire annular rotation part close to uniform. Also, due to the installation of the deflection ring, the position at which the inflow velocity of the air flow peaks is lower than the lower end of the deflection ring. Therefore, by providing the deflection ring above the maximum outer diameter portion as in the configuration of (6) above, it is possible to bring the position at which the inflow velocity of the air flow peaks closer to the maximum outer diameter portion. It is possible to more effectively separate the coarse particles which are going to flow into the annular rotating portion at a high speed, and to improve the classification accuracy of the classifier.
  • the outer diameter D2 of the annular rotating portion and the outer diameter D4 of the deflection ring at the maximum outer diameter portion satisfy the relational expression of 1.02 ⁇ D4 / D2 ⁇ 1.2. According to the configuration of the above (7), since the outer diameter D2 of the annular rotating portion and the outer diameter D4 of the deflection ring at the maximum outer diameter portion satisfy 1.02 ⁇ D4 / D2, the distance between the deflection ring and the rotation fin is Not too small.
  • the structure of said (7) Since it is suppressed, it is possible to suppress an increase in the solid-gas ratio. Thereby, the fall of the classification performance by the increase in solid-gas ratio can be suppressed. Therefore, according to the structure of said (7), the coarse particle which is going to flow in into an annular rotation part can be isolate
  • the ring In the inner space of the classifier housing, the ring is provided on the inner peripheral side of the outer peripheral region and on the outer peripheral side of the annular rotating portion, and has a fixed fin for rectifying the air flow taken into the outer peripheral region. It further comprises a fixing part.
  • the air flow taken into the outer peripheral region is rectified by the fixed fins, and therefore can more easily flow into the annular rotation portion than in the case where the fixed fins are not used.
  • the particles accompanied by the air flow easily flow into the annular rotating portion, so that the recovery rate of the classified fine particles can be improved.
  • the fixing fin is disposed along the circumferential direction of the annular fixing portion so as to be inclined downward as approaching the inner peripheral side of the annular fixing portion.
  • the bias of the inflow velocity of the air flow at the inlet of the annular rotating portion is further alleviated by the stationary fins disposed so as to incline downward as approaching the inner peripheral side of the annular stationary portion . Therefore, the coarse particles accompanied by the air flow can be more effectively separated in the annular rotation portion, whereby the classification accuracy of the classifier can be improved.
  • a pulverizing and classifying apparatus is A crusher including a crusher roller for crushing the raw material, and a crusher housing containing at least the crusher roller, And a classifier according to any one of the above (1) to (9) for classifying particles generated by pulverization of the raw material in the pulverizer.
  • the classifier takes out the fine particles in the particles to the inner peripheral side of the annular rotating portion by the annular rotating portion, and causes the coarse particles in the particles to fall downward on the outer peripheral side of the annular rotating portion.
  • Configured and The crusher includes a hopper located below the annular rotating portion and returning the coarse particles falling downward from the annular rotating portion to the crushing roller.
  • the outer diameter D2 of the annular rotating portion and the maximum outer diameter D6 of the hopper at the maximum outer diameter portion satisfy the relational expression of 0.7 ⁇ D2 / D6 ⁇ 0.9.
  • the outer diameter D2 of the annular rotating portion at the maximum outer diameter portion and the maximum outer diameter D6 of the hopper satisfy 0.7 ⁇ D2 / D6, so the inflow velocity of the air flow accompanied by particles is relatively A relatively large centrifugal force can be obtained at the largest outside diameter of the large annular rotation. For this reason, it is possible to more effectively separate the coarse particles accompanied by the air flow in the annular rotating portion. Also, since D2 and D6 satisfy D2 / D6 ⁇ 0.9, the coarse particles repelled by the rotating fins fall downward from the annular rotating portion and are received by the hopper located below the annular rotating portion.
  • the crusher crushes coal as the raw material
  • the classifier is configured to take out the pulverized coal as the fine particles to the outside. According to the structure of said (11), the pulverized coal in which mixing of the coarse particle was suppressed can be obtained by the crushing classification apparatus by which classification accuracy was improved.
  • a pulverized coal burning boiler according to at least one embodiment of the present invention, The pulverizing and classifying device according to (11) above, And a furnace for burning the pulverized coal obtained by the pulverizing and classifying device.
  • a classifier that provides good classification accuracy.
  • FIG. 2 is a cross-sectional view of the grinding and classification device shown in FIG. 1 taken along the line II-II. It is a schematic diagram of the crushing classification apparatus which concerns on one Embodiment.
  • FIG. 4 is an enlarged schematic view of the grinding and classification device shown in FIG. 3; It is a figure showing composition of a rotation fin concerning one embodiment. It is a figure showing composition of a rotation fin concerning one embodiment. It is a figure showing composition of a rotation fin concerning one embodiment. It is a figure showing composition of a rotation fin concerning one embodiment. It is a figure showing composition of a rotation fin concerning one embodiment. It is a figure showing composition of a rotation fin concerning one embodiment.
  • FIG. 1 is a schematic configuration view of a grinding and classification device according to an embodiment
  • FIG. 2 is a cross-sectional view of the grinding and classification device shown in FIG.
  • a pulverizing and classifying apparatus 1 includes a pulverizer 10 for pulverizing a raw material, and a classifier for classifying particles obtained by pulverizing the raw material by the pulverizer 10. And 20.
  • the crushing classification apparatus 1 shown in FIG. 1 is a vertical crushing classification apparatus by which the classifier 20 is arrange
  • the crusher 10 and the classifier 20 include the crusher housing 11 and the classifier housing 21 respectively, and the upper end of the crusher housing 11 and the lower end of the classifier housing 21 are integrally connected by being connected. Make up one.
  • the grinding and classification device 1 has a supply pipe 50 for supplying a raw material, and a discharge pipe 52 for discharging the ground and classified particles to the outside.
  • the supply pipe 50 is provided in the upper part of the pulverizing and classifying device 1, and is configured such that the raw material supplied from the upper side of the pulverizing and classifying device 1 falls into the inside of the pulverizer 10.
  • the discharge pipe 52 is provided in the upper portion of the crushing and classification device 1 so as to be in communication with a part of the classification machine 20 so that particles crushed and classified by the crushing machine 10 and the classification machine 20 can be discharged to the outside. It has become.
  • the grinder 10 includes a grinding table 12 and a grinding roller 14 for grinding a raw material, and the grinding table 12 and the grinding roller 14 are accommodated in a grinder housing 11.
  • the pulverizer 10 is configured to pulverize the raw material by the biting of the pulverizing table 12 and the pulverizing roller 14.
  • the classifier 20 includes an annular rotation unit 24 for classifying particles.
  • the annular rotation portion 24 is rotatably provided around the rotation axis O along the vertical direction on the inner peripheral side of the outer peripheral region R1 in the internal space of the classifier housing 21.
  • the annular rotation portion 24 has a plurality of rotation fins 25 arranged with a gap G around the rotation axis O.
  • the classifier 20 further includes an annular fixing portion 26 provided on the outer peripheral side of the annular rotating portion 24 in the internal space of the classifier housing 21.
  • the annular fixing portion 26 has a plurality of fixing fins 27 arranged along the circumferential direction, and is configured to rectify the air flow flowing in from the outer peripheral side.
  • FIG.1 and FIG.2 shows the direction of the flow of the particle
  • the raw material (object to be crushed) supplied from the supply pipe 50 falls on the rotating crushing table 12 and then moves to the outer peripheral side on the crushing table 12 by the centrifugal force accompanying the rotation of the crushing table 12. It is crushed by biting with the grinding roller 14.
  • the grinding table 12 is rotated at a predetermined speed by a motor (not shown).
  • the grinding roller 14 is pressed against the grinding table 12 by the pressure device 15.
  • the particles obtained by crushing the raw material are entrained by the air flow blown out from the gas outlet 16 provided around the crushing table 12, and the outer peripheral side region in the inside of the crushing and classification device 1 Are transported upward to the side of the classifier 20 (arrows a and b in FIG. 1).
  • the particle with a large particle size drops out of the flow of airflow by the influence of gravity (arrow c of FIG. 1), falls downward, returns to the grinding table 12, and is ground again (primary classification).
  • the particles transported to the air flow and reaching the outer peripheral region R1 in the internal space of the classifier 20 are classified in the classifier 20 into fine particles (product particles) of a predetermined particle size or less and coarse particles of a predetermined particle size or more (secondary Classification). That is, when the air flow accompanied by particles reaches the outer peripheral region R1, the flow direction changes inward in the radial direction and flows into the space between the plurality of fixing fins 27 of the annular fixing portion 26 (arrows in FIGS. 1 and 2) d). The air flow passes through the fixed fins 27 and is rectified, and then reaches the outer peripheral side of the annular rotation portion 24 rotating at a predetermined speed around the central axis O. Then, the particles accompanied by the air flow are separated into coarse particles having a relatively large particle size and fine particles having a relatively small particle size by centrifugal force generated by the rotation of the annular rotating portion 24.
  • the annular fixing portion 26 is an optional component in the classifier 20, and in some embodiments, the classifier 20 may not have the annular fixing portion 26.
  • the particles transported to the air flow from below and reaching the outer peripheral region R1 reach the outer peripheral side of the annular rotating portion 24 without being rectified by the fixed fins, and the centrifugal force generated by the rotation of the annular rotating portion 24 Classified according to
  • the coarse particles having a particle size larger than the theoretical classification diameter have a larger centrifugal force than the drag force caused by the velocity component of the air flow, and are splashed to the outside of the rotary fin 25.
  • fine particles having a particle diameter smaller than the theoretical classification diameter receive larger resistance from the air flow than the centrifugal force, so they are entrained by the air flow and pass between the rotating fins 25. In this way, the particles transported by the air flow are classified into coarse particles and fine particles.
  • coarse particles having a relatively large particle diameter are repelled to the outer peripheral side of the rotary fin 25 and then dropped downward (arrow e in FIG. 1 and FIG. 2) and crushed It returns to the table 12 and is crushed again.
  • the coarse particles ejected to the outside of the rotating fin 25 are returned to the lower crushing table 12 by the hopper 18 provided below the annular rotating portion 24. You may be guided.
  • fine particles having a relatively small particle diameter are entrained by the air flow and pass between the rotating fins 25 (arrow f in FIG. 1 and FIG. 2). Taken out on the inner side of the The fine particles may be discharged together with the air flow from the discharge pipe 52 communicating with the inner peripheral side of the annular rotating portion 24 and taken out as product fine particles.
  • FIG. 3 is a figure which shows typically the crushing classification apparatus 1 which concerns on one Embodiment.
  • FIG. 4 is an enlarged view of the main part of the grinding and classification device 1 shown in FIG.
  • fixed part 26 is abbreviate
  • the annular rotation portion 24 of the classifier 20 has a plurality of rotation fins 25 arranged with a gap G around the rotation axis O (see FIG. 2).
  • the outer shape of the annular rotation portion 24 formed by the plurality of rotation fins 25 has the largest outer diameter portion 32 between the upper end 33 and the lower end 31 of the annular rotation portion 24. . That is, the outer diameter D1 of the annular rotating portion 24 at the lower end 31, the outer diameter D3 of the annular rotating portion 24 at the upper end 33, and the outer diameter D2 of the annular rotating portion 24 at the maximum outer diameter portion 32 satisfy D1 ⁇ D2 and D3 ⁇ It satisfies the relational expression of D2.
  • the outer shape of the annular rotation portion 24 is formed by the outer shape of a rotating body formed by rotating the plurality of rotation fins 25 around the rotation axis O.
  • a relatively large centrifugal force can be obtained by appropriately selecting the shape and arrangement of the plurality of rotary fins 25 and configuring the annular rotary portion 24 having the largest outer diameter portion 32. Therefore, it is not necessary to increase the rotational speed of the annular rotating portion 24 in order to obtain a relatively large centrifugal force. Therefore, according to the above-described classifier 20, the classification accuracy of the classifier 20 can be improved while suppressing the increase in the operating cost.
  • the outer diameter D1 of the annular rotation portion 24 at the lower end 31, the outer diameter D3 of the annular rotation portion 24 at the upper end 33, and the outer diameter D2 of the annular rotation portion 24 at the maximum outer diameter portion 32 are D2
  • the relational expressions of /D1 ⁇ 1.05 and D2 / D3 ⁇ 1.05 are satisfied.
  • an appropriately large centrifugal force can be applied to the coarse particles at an axial position where the inflow velocity between the upper end 33 and the lower end 31 of the annular rotating portion 24 is increased. For this reason, coarse particles can be effectively separated from the air flow containing fine particles at the inlet of the annular rotation portion 24.
  • inclination angles ⁇ 2 and ⁇ 2 ′ (see FIG. 4) which are angles satisfy the relational expressions of 60 ° ⁇ ⁇ 2 ⁇ 75 ° and 60 ° ⁇ ⁇ 2 ′ ⁇ 75 °.
  • an appropriately large centrifugal force can be applied to the coarse particles at an axial position where the inflow velocity between the upper end 33 and the lower end 31 of the annular rotating portion 24 is increased. For this reason, coarse particles can be effectively separated from the air flow containing fine particles at the inlet of the annular rotation portion 24.
  • the outer diameter D1 at the lower end 31 and the outer diameter D3 at the upper end 33 are made equal, so that the same turning force can be obtained at the upper end and the lower end of the annular rotating portion 24. .
  • FIGS. 5A to 5D are diagrams showing the configuration of the rotary fin 25 according to one embodiment.
  • the outer diameter of the annular rotating portion 24 is maximized between the upper end 33 and the lower end 31 in the classifier 20 by using, for example, the rotating fins 25 having the shape shown in any of FIGS. 5A to 5D. It has an outer diameter portion 32.
  • the rotating fins 25 are respectively disposed below and above in the axial direction of the annular rotating portion 24 and at the lower end 31 and the upper end 33 of the annular rotating portion 24 respectively. It has corresponding lower end 25a and upper end 25b.
  • the rotary fin 25 also has a protrusion 23 positioned at an axial position corresponding to the largest outer diameter portion 32 of the annular rotating portion 24 in the axial direction of the annular rotating portion 24.
  • each rotation fin 25 is arrange
  • the rotary fin 25 has an outer circumferential side 25c of the axially extending contour portion of the annular rotation portion 24 that forms the outer shape of the annular rotation portion 24. It may be constituted by a straight line. In some embodiments, as shown in FIGS. 5C and 5D, the rotation fin 25 has an outer circumferential side 25c of the axially extending contour portion of the annular rotation portion 24 that forms the outer shape of the annular rotation portion 24. It may be configured by an arc-shaped curve.
  • the width W1 at the lower end 25a, the width W3 at the upper end 25b, and the width W2 at the protrusion 23 are equal to one another.
  • the rotation fins 25 may have the same width in the axial direction of the annular rotation portion 24 from the lower end 25a to the upper end 25b.
  • the width W1 at the lower end 25a and the width W3 at the upper end 25b are equal, and the width W2 at the protrusion 23 is larger than W1 or W3.
  • the rotating fins 25 may have different widths W1 at the lower end 25a and widths W3 at the upper end 25b.
  • FIG. 6 is a view schematically showing a part of a cross section orthogonal to the rotation axis O of the annular rotating portion 24.
  • an angular range centered on the rotation axis O occupied by each rotation fin 25 is ⁇ (see FIG. 6);
  • the particles entrained in the air flow flowing radially inward toward the annular rotating portion 24 are classified by the centrifugal force generated by the rotation of the annular rotating portion 24 including the rotating fins 25 as described above, but separately from this , And classification by collision of particles with the rotating fins 25.
  • the overlapping degree of the rotating fins 25 is too small, particles entrained in the air flow hardly collide with the rotating fins 25, and not only fine particles but also coarse particles are between the rotating fins 25 and the rotating fins 25. It becomes easy to pass the clearance G to the inner peripheral side.
  • the overlapping degree ⁇ / ( ⁇ + ⁇ ) of the rotary fins 25 may be constant from the upper end 33 to the lower end 31 of the annular rotating portion 24 in the axial direction, or may be varied in the axial direction.
  • the width of the rotation fin 25 is constant in the axial direction (for example, in the case of the rotation fin 25 shown in FIG. 5A or 5C)
  • the overlapping degree ⁇ / ( ⁇ + ⁇ ) decreases at an axial position where the outer shape is relatively large.
  • the rotation fin 25 for example, the rotation fin 25 shown in FIG. 5B or FIG.
  • the overlapping degree ⁇ / ( ⁇ + ⁇ ) can be made constant from the upper end 33 to the lower end 31 of the annular rotating portion 24 in the axial direction.
  • the shape of the rotary fin 25 can be determined so that the desired degree of overlap ⁇ / ( ⁇ + ⁇ ) can be obtained at each axial position.
  • ⁇ 1 indicates the attachment angle of the rotation fin 25 in the annular rotation portion 24.
  • the attachment angle ⁇ 1 is, as shown in FIG. 6, in a plane orthogonal to the rotation axis O, a straight line L4 passing through the outer peripheral end of the rotation fin 25 and the rotation axis O and a straight line in the width direction of the rotation fin 25. Is the angle between them.
  • FIG. 7 is a view showing the configuration of the rotation fin 25 in the annular rotation portion 24 according to one embodiment.
  • FIG. 7 representatively shows one of the plurality of rotation fins 25 that constitute the annular rotation portion 24.
  • the outer shape 22 of the annular rotation portion 24 is formed by a plurality of rotation fins 25.
  • each rotary fin 25 is vertically oriented such that the upper end 25b of the rotary fin 25 is positioned downstream relative to the rotational direction of the annular rotary portion 24 relative to the lower end 25a of the rotary fin 25. It is inclined against.
  • the twisting angle ⁇ 3 which is an angle formed by the rotary fins 25 with respect to the vertical direction is 0 ° ⁇ 3 ⁇ 30 °.
  • the torsion angles are represented by ⁇ 3 and ⁇ 3 ′.
  • the twisting angle ⁇ 3 is an angle between the straight line Lv in the vertical direction and the straight line L3 in the extending direction of the lower end 25a of the rotary fin 25.
  • the twisting angle ⁇ 3 ′ is an angle between the straight line Lv ′ in the vertical direction and the straight line L3 ′ in the extending direction of the upper end 25 b of the rotary fin 25.
  • the twist angles ⁇ 3 and ⁇ 3 ′ which are the angles that the rotary fins 25 make with the vertical direction, are either 0 ° ⁇ 3 ⁇ 30 ° or 0 ° ⁇ 3 ′ ⁇ 30 °. Meet.
  • the rotation direction of the annular rotation part 24 shown in FIG. 7 is a clockwise direction when the annular rotation part 24 is planarly viewed.
  • the particles entrained in the air flow flowing radially inward toward the annular rotation portion 24 are also classified by the collision of the particles with the rotary fins 25.
  • the upper end 25b of the rotary fin 25 is inclined with respect to the vertical direction so as to be positioned downstream with respect to the rotational direction of the annular rotating portion 24 compared to the lower end 25a (that is, the twist angle ⁇ 3 is 0 °
  • the twist angle ⁇ 3 is 0 °
  • the classifier 20 may be provided with a deflection ring 29 for deflecting the air flow from the outer peripheral region R1 toward the annular rotating portion 24, as shown in FIG.
  • the deflection ring 29 is an annular member, and in the internal space of the classifier housing 21, on the inner peripheral side of the outer peripheral region R1 and on the outer peripheral side of the annular rotating portion 24, it is higher than the maximum outer diameter portion 32 of the annular rotating portion 24. It is provided to be located at The deflection ring 29 surrounds the upper portion of the annular rotation portion 24, and the lower end 29 ⁇ / b> A of the deflection ring 29 is located above the largest outer diameter portion 32 of the annular rotation portion 24. Further, at least a part of the region above the maximum outer diameter portion 32 of the annular rotation portion 24 is covered by the deflection ring 29.
  • deflection ring 29 may be fixed to classifier housing 21.
  • the air flow toward the annular rotation portion 24 can be deflected downward, and the deviation of the air flow flowing into the annular rotation portion 24 to the upper portion of the annular rotation portion 24 can be reduced.
  • the position at which the inflow velocity of the air flow peaks is lower than the lower end of the deflection ring 29.
  • the deflection ring 29 above the maximum outer diameter portion 32, the position at which the inflow velocity of the air flow peaks can be brought closer to the maximum outer diameter portion 32, and a relatively large velocity is obtained.
  • the coarse particles which are going to flow into the annular rotating portion 24 can be separated more effectively.
  • the outer diameter D2 of the annular rotating portion 24 and the outer diameter D4 (see FIG. 3) of the deflection ring 29 at the maximum outer diameter portion 32 have a relationship of 1.02 ⁇ D4 / D2 ⁇ 1.2. Meet.
  • the distance between the deflection ring 29 and the rotary fin 25 is not too small. Therefore, the air flow taken into the classifier housing 21 from below is annularly rotated not only below the deflection ring 29 after passing through the deflection ring 29, but also at the same height position (axial position) as the deflection ring 29. It is easy to flow into the part 24. Therefore, the unevenness of the inflow of the air flow to the rotary fins 25 in the vertical direction (axial direction) is alleviated, and the local increase in the inflow speed is suppressed, so that coarse particles are less likely to pass through the rotary fins 25 .
  • the classifier 20 shown in FIG. 1 includes the annular fixing portion 26 having the plurality of fixing fins 27.
  • the annular fixing portion 26 is provided on the inner peripheral side of the outer peripheral region R ⁇ b> 1 and the outer peripheral side of the annular rotating portion 24 in the internal space of the classifier housing 21.
  • the plurality of fixed fins 27 are configured to rectify the air flow taken into the outer peripheral region R1 from below.
  • the annular rotating portion 24 is more appropriate than the case where the fixing fins 27 are not used. It becomes easy to flow. As a result, the particles accompanied by the air flow easily flow into the annular rotating portion 24, so that the recovery rate of the classified fine particles can be improved.
  • the plurality of fixing fins 27 are circumferentially directed to the annular fixing portion 26 so as to incline downward toward the inner peripheral side of the annular fixing portion 26. It may be arranged along. In the embodiment shown in FIG. 1 and FIG. 2, the plurality of fixing fins 27 are supported by the support members 28 at both end portions in the circumferential direction. Further, as shown in FIG. 1, the fixed fins 27 arranged along the circumferential direction may be louver type fins arranged in plural in the axial direction.
  • the bias of the inflow velocity of the air flow at the inlet of the annular rotating portion 24 is further alleviated by the stationary fins 27 disposed so as to incline downward as approaching the inner peripheral side of the annular stationary portion 26. Therefore, the coarse particles accompanying the air flow in the annular rotation portion 24 can be separated more effectively.
  • the pulverizer 10 includes a hopper 18 disposed below the annular rotating portion 24 for returning coarse particles falling downward from the annular rotating portion 24 to the pulverizing roller 14.
  • the hopper 18 has a conical slope which decreases in diameter as it approaches downward, so that particles falling from the top smoothly return to the grinding roller 14 by the slope.
  • the outer diameter D2 of the annular rotating portion 24 at the maximum outer diameter portion 32 and the maximum outer diameter D6 (see FIG. 3) of the hopper 18 have a relationship of 0.7 ⁇ D2 / D6 ⁇ 0.9. Meet.
  • 0.7 ⁇ D 2 / D 6 relatively large centrifugal force can be obtained at the maximum outer diameter portion 32 of the annular rotating portion 24 where the inflow velocity of the air flow accompanied by particles is relatively large. For this reason, the coarse particles accompanied by the air flow in the annular rotation portion 24 can be separated more effectively.
  • the grinding and classification device 1 may be a grinding and classification device for grinding and classifying coal as a raw material.
  • the crusher 10 is configured to crush coal as a raw material
  • the classifier 20 classifies particles obtained by crushing the coal by the crusher 10, and the pulverized coal as fine particles is externally extracted. It is configured to be taken out. Since the pulverizing and classifying device 1 described above has a good classification accuracy, the pulverizing and classifying device 1 can obtain pulverized coal in which mixing of coarse particles is suppressed.
  • FIG. 8 is a schematic configuration view of a pulverized coal burning boiler according to an embodiment.
  • a pulverized coal burning boiler 100 according to at least one embodiment of the present invention includes the above-described pulverizing and classification device 1 and a furnace 62 for burning pulverized coal obtained by the pulverizing and classification device 1; Equipped with While the air from the blower 53 is fed to the crushing and classification device 1, coal as a raw material is supplied from the coal bunker 60 and the coal feeder 61.
  • the combustion air A fed into the blower 53 is branched into air A1 and air A2.
  • the air A1 is conveyed to the crushing and classification device 1 by the blower 54.
  • a portion of the air A1 is heated by the preheater 58 and conveyed to the pulverizing and classifying apparatus 1 as warm air.
  • the warm classification air heated by the preheater 58 and the cold air directly conveyed from the blower 54 without passing through the preheater 58 are mixed and adjusted so that the mixed air has an appropriate temperature, and then the pulverizing and classification device It may be supplied to 1.
  • the air A1 thus supplied to the crushing and classification device 1 is blown out from the gas outlet 16 (see FIG. 1) inside the crushing and classification device 1.
  • Coal as a raw material is fed into a coal bunker 65, and is then fed to the pulverizing and classifying device 1 via the feed pipe 50 (see FIG. 1) in a fixed amount by the coal feeder 61.
  • Pulverized coal which is pulverized and produced by the pulverizing and classifying apparatus 1 while being dried by the air flow of the air A1 from the gas outlet 16 is transported by the air A1 from the discharge pipe 52 (see FIG. 1) and It is sent to a furnace (boiler main body) 62 through a pulverized coal burner, and is ignited and burned by the burner.
  • the air A2 is heated by the preheater 56 and the preheater 58, is sent to the furnace 62 through the window box 63, and is pulverized coal in the furnace 62. Served for combustion.
  • the exhaust gas generated by the combustion of the pulverized coal in the furnace 62 is sent to the denitration device 66 after the dust is removed by the dust collector 64, and the nitrogen oxides (NOx) contained in the exhaust gas are reduced. Then, the exhaust gas passes through the preheater 58, is sucked by the blower 68, sulfur content is removed by the desulfurization device 70, and is discharged from the chimney 72 to the atmosphere.
  • NOx nitrogen oxides
  • Test Example 1 operation is performed at a predetermined air flow rate and a predetermined solid-gas ratio using the pulverizing and classifying apparatus 1 provided with the classifiers of Examples 1 to 3 and Comparative Example 1 having the characteristics shown in Table 1 respectively.
  • a predetermined amount of raw material was crushed and classified while changing the rotation speed of the annular rotation portion 24.
  • an outlet fineness ratio (% by weight), an outlet coarse particle The remaining rate (% by weight) and the fine particle circulating rate (% by weight) were calculated.
  • FIG. 9 is a view showing the shape of the conventional rotary fin used in Comparative Example 1.
  • the width W1 of the lower end 125a and the width W3 of the upper end 125b are the same.
  • the outer shape of the annular rotation portion 24 has a cylindrical shape.
  • the inclination angle ⁇ 2 of the rotary fin, the twist angle ⁇ 3, the overlap degree ⁇ / ( ⁇ + ⁇ ), and the mounting angle ⁇ 1 are as shown in Table 1.
  • a rotary fin having a shape shown in FIG. 5A is used for the annular rotation portion, and the outer shape of the annular rotation portion 24 is the upper end 33 and the lower end 31 of the annular rotation portion 24. Between which the largest outer diameter portion 32 is provided.
  • a rectangular rotary fin as shown in FIG. 9 is used for the annular rotating portion, and the outer diameter of the annular rotating portion is constant in the axial direction. That is, in the classifier of Comparative Example 1, the outer diameter of the annular rotating portion does not have the largest outer diameter portion whose outer diameter is larger than the upper end and the lower end between the upper end and the lower end of the annular rotating portion. Further, the classifiers of Examples 1 to 3 and Comparative Example 1 used in Test Example 1 do not have an annular fixing portion including fixing fins.
  • the outlet fine powder ratio is the weight ratio of particles (fine particles having a particle diameter of 75 ⁇ m or less) among particles collected at the outlet (discharge pipe 52) of the pulverizing and classifying device 1 (outlet 200) Mesh pass rate).
  • the outlet coarse particle residual ratio is the weight ratio of particles (not passed through) remaining on the 100 mesh sieve (coarse particles having a particle diameter of 150 ⁇ or more) among the particles collected at the outlet of the pulverizing and classifying device 1 (Outlet 100 mesh remaining rate).
  • the fine particle circulation rate is an amount of 200 mesh pass (amount of fine particles having a particle diameter of 75 ⁇ m or less) generated by grinding the raw material, without being taken out as a product from the inner peripheral side of the annular rotary portion
  • the ratio of the amount of fine particles dropped back to the grinding table from the outer peripheral side of 24 and returned (recirculated) is represented by weight%. That is, the weight of the particles collected at the outlet of the pulverizing and classifying apparatus 1 is Mf, its 200 mesh pass rate (ie, the above-mentioned outlet fine powder rate) is x, and the weight of particles recycled to the pulverizing table is Mc, its 200 mesh pass If the rate is y, the particulate circulation rate C 200 #P is expressed by the following equation.
  • FIG. 10 is a graph in which the outlet fine powder rate described above is taken on the horizontal axis, and the outlet coarse particle residual rate is taken on the vertical axis.
  • FIG. 11 is a graph in which the outlet fine powder rate is taken on the horizontal axis, and the fine particle circulation rate is taken on the vertical axis.
  • the outlet coarse particle residual ratio is low. From this, when the maximum outer diameter portion 32 is provided between the upper end 33 and the lower end 31 of the annular rotating portion 24, the ratio of coarse particles in the product fine particles taken out at the outlet of the pulverizing and classifying device is small. Product particles can be obtained.
  • the classifier of Examples 1 to 3 has an outlet coarse particle residual ratio smaller by about 50% or more than that of the classifier of Comparative Example 1 in the vicinity of 80% of the outlet powder ratio. And product particles of good quality are obtained.
  • Example 1 in which the twist angle ⁇ 3 of the rotary fin 25 is relatively large and the overlapping degree ⁇ / ( ⁇ + ⁇ ) are compared when the outlet fineness rate is in the range of about 65 to 95%.
  • Example 2 which is extremely large, the fine particle circulation rate tends to be smaller than Comparative Example 1.
  • the particulate circulation rate is significantly smaller than that of the classifier of Comparative Example 1. Therefore, when the twist angle ⁇ 3 or the overlapping degree ⁇ / ( ⁇ + ⁇ ) is a proper size, the circulation rate of the fine particles can be lowered, thereby reducing the power required to obtain a predetermined amount of product fine particles. It can be seen that the classification efficiency can be improved.
  • Test Example 2 In Test Example 2, the following tests were conducted using the classifiers of Examples 4 and 5 and Comparative Example 1 having the characteristics shown in Table 2, respectively.
  • Examples 4 and 5 are examples of the present invention.
  • “A” indicates that the rotary fin having the shape shown in FIG. 5A is used
  • “B” indicates that the rotary fin having the shape shown in FIG. Indicates that.
  • the inclination angle ⁇ 2 of the rotary fin, the twist angle ⁇ 3, the overlap degree ⁇ / ( ⁇ + ⁇ ), and the mounting angle ⁇ 1 are as shown in Table 2.
  • rotary fins having the shape shown in FIG.
  • the outer shape of the rotating portion 24 has a maximum outer diameter portion 32 between the upper end 33 and the lower end 31 of the annular rotating portion 24.
  • the classifier used in the fourth and fifth embodiments is provided with an annular fixing portion 26 including a plurality of fixing fins 27.
  • the fixing fins 27 are louver type fins arranged in plural in the axial direction.
  • the classifier of Comparative Example 1 is the same classifier as the classifier of Comparative Example 1 used in Test Example 1.
  • the classifier of Comparative Example 1 does not have the annular fixing portion including the fixing fin.
  • a predetermined amount of raw material is pulverized and classified while changing the number of rotations of the annular rotating portion 24 using the pulverizing and classifying device 1 provided with the classifier 20 of each example or comparative example, as in the test example 1
  • FIG. 12 is a graph in which the outlet fine particle rate is taken on the horizontal axis, and the outlet coarse particle residual rate is taken on the vertical axis.
  • FIG. 13 is a graph in which the outlet fine powder rate is taken on the horizontal axis, and the fine particle circulation rate is taken on the vertical axis.
  • both the outlet coarse particle residual rate and the particle circulating rate are compared It is lower than the classifier of Example 1.
  • FIG. 10 with FIG. 12 and FIG. 11 with FIG. 13 in the classifiers of Examples 4 and 5, the outlet coarse particle residual ratio is equal to or higher than the classifiers of Examples 1 to 3. And the particle circulation rate is reduced.
  • the classifiers of Examples 4 and 5 having the annular fixing portion provided with the rotating fins the ratio of coarse particles in the product fine particles taken out at the outlet of the pulverizing classification device is further reduced, and the quality is more It can be said that good product particles can be obtained. Further, according to the classifier of Examples 4 and 5, the circulation rate of the fine particles can be further reduced, and hence the power required to obtain a predetermined amount of product fine particles can be further reduced, and the classification efficiency Can be improved.
  • Comparative Example 1 is obtained for the outlet coarse particle residual rate (see FIG. 12) and the fine particle circulation rate (see FIG. 13) with respect to the same outlet fine powder rate. Good results were obtained compared to. Therefore, it was confirmed that the classifiers of Examples 4 and 5 have better classification accuracy than the classifier of Comparative Example 1.
  • FIG. 14 is a graph of the differential pressure of the coal bed in the embodiment, and the differential pressure of the coal bed when the pulverizing and classifying apparatus 1 using the classifier of the embodiment 6 of the embodiment of the present invention and the comparative example 1 is operated under the same conditions. Is a graph of the measurement results of In the graph of FIG. 14, the horizontal axis represents the outlet fineness rate, and the vertical axis represents the coal bed differential pressure (mill differential pressure).
  • the classifier of Comparative Example 1 is the same classifier as the classifier of Comparative Example 1 described above. In addition, the classifier of Comparative Example 1 does not have the annular fixing portion including the fixing fin.
  • the pressure difference of coal bed in Example 6 is smaller in the range where the outlet fine powder rate is 80% or more.
  • the pressure loss in the classifier is small. This is considered to be because, since the classifier of Example 6 has the same structure as that of Examples 4 and 5, when the classifier of Example 6 is used, the fine particle circulation rate can be reduced.
  • the pressure loss in the pulverizer can be reduced, and hence the power required to obtain a predetermined amount of product particles can be reduced, and the classification efficiency Can be improved.
  • a representation representing a relative or absolute arrangement such as “in a direction”, “along a direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”
  • a representation representing a relative or absolute arrangement such as “in a direction”, “along a direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as a square shape and a cylindrical shape not only indicate shapes such as a square shape and a cylindrical shape in a geometrically strict sense, but also within the range where the same effect can be obtained. Also, the shape including the uneven portion, the chamfered portion, and the like shall be indicated. Moreover, in the present specification, the expressions “comprising”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.

Abstract

分級機は、内部空間のうち外周側領域に下方から気流を取り込むように構成された分級機ハウジングと、前記外周側領域の内周側において前記分級機ハウジングの前記内部空間に回転可能に設けられ、前記外周側領域からの前記気流に随伴される粒子を分級するように構成された環状回転部と、を備え、前記環状回転部は、該環状回転部の回転軸周りに隙間を空けて配列された複数の回転フィンを有し、前記複数の回転フィンによって形成される前記環状回転部の外形は、前記環状回転部の上端と下端との間に最大外径部を有する。

Description

分級機、粉砕分級装置及び微粉炭焚きボイラ
 本開示は分級機、粉砕分級装置及び微粉炭焚きボイラに関する。
 回転体の回転により生じる遠心力を利用して、異なる粒径を有する粒子を分級する分級機が知られている。
 例えば、特許文献1には、回転軸周りに複数の回転フィンを有する回転式分級機が開示されている。この分級機では、該分級機の外周側から粒子を随伴して流れてくる気流に対して、回転フィンの回転によって旋回が付与される。その結果、気流に随伴される粒子には、回転フィンによって形成される遠心場に起因した半径方向外側に向かう遠心力が作用する。このため、粒径が比較的大きい粗粒子は、半径方向内側に向かう気流の速度成分に起因した抗力よりも遠心力が大きくなり、回転フィンの外側にはじき飛ばされる。一方、粒径が比較的小さい微粒子は、遠心力よりも気流から受ける半径方向内側に向かう抗力が大きくなり、回転フィンを通過する。このように、特許文献1に記載の分級機では、気流に含まれる粗粒子を回転フィンの外側にはじき飛ばすとともに、微粒子を回転フィンの内周側に通過させることによって、気流によって運ばれてきた粒子が分級されるようになっている。
国際公開第2009/041628号
 ところで、回転体の回転により生じる遠心力を利用して粒子を分級する分級機では、回転フィンなどの回転体(回転部)に流入する気体の流入速度が回転軸方向に関して分布を有するため、かかる速度分布の影響を分級精度が受けてしまう場合がある。
 例えば、上述の分級機において、気流の流入速度が大きい位置では、気流の流入速度が小さい位置に比べて粒子の運動エネルギーが大きい。このため、このような位置では、気流から分離されるべき粗粒子が遠心力により回転フィンの外方にはじき出されずに、微粒子とともに回転フィンを通過しやすくなる。この場合、回転フィンによる適切な分級ができず、分級機の分級精度が良好とならない場合がある。
 この点、特許文献1には、回転軸方向における気体の流入速度の分布に応じて良好な分級精度を得るための方策について、具体的な記載はない。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、良好な分級精度が得られる分級機を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る分級機は、
 内部空間のうち外周側領域に下方から気流を取り込むように構成された分級機ハウジングと、
 前記外周側領域の内周側において前記分級機ハウジングの前記内部空間に回転可能に設けられ、前記外周側領域からの前記気流に随伴される粒子を分級するように構成された環状回転部と、を備え、
 前記環状回転部は、該環状回転部の回転軸の周りに隙間を空けて配列された複数の回転フィンを有し、
 前記複数の回転フィンによって形成される前記環状回転部の外形は、前記環状回転部の上端と下端との間に最大外径部を有する。
 分級機ハウジングの内部空間のうち外周側領域に下方から取り込まれた気流は、径方向に流れの方向を変えて環状回転部の外周側から環状回転部に流入する。この際、環状回転部に流入する気流の流入速度は、通常、回転軸方向において一定ではなく、環状回転部の上端と下端との間の軸方向位置において流入速度が最大となるような分布を有する。
 この点、上記(1)の構成では、気流の流入速度が大きくなる環状回転部の上端と下端との間に最大外径部を有するので、気流の流入速度が大きくなる軸方向位置において比較的大きな遠心力を得ることができる。このため、質量が比較的大きな粗粒子が、環状回転部の上端と下端との間の軸方向位置において気流とともに比較的大きな速度で環状回転部に流入しようとしても、粗粒子に大きな遠心力が加わるので、該粗粒子を回転フィンの外周側にはじき飛ばして微粒子を含む気流から分離することができる。よって、上記(1)の構成によれば、比較的大きな速度で環状回転部に流入しようとする粗粒子を比較的大きな遠心力により分離することにより、分級機の分級精度を向上させることができる。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記下端における前記環状回転部の外径D1、前記上端における前記環状回転部の外径D3、及び、前記最大外径部における前記環状回転部の外径D2は、D2/D1≧1.05、かつ、D2/D3≧1.05の関係式を満たす。
 上記(2)の構成によれば、環状回転部において、下端における外径D1、上端における外径D3、及び、最大外径部における外径D2は、D2/D1≧1.05、かつ、D2/D3≧1.05の関係式を満たすので、環状回転部の上端と下端との間の流入速度が大きくなる位置において適度に大きな遠心力を粗粒子に加えることができる。このため、環状回転部の入口にて微粒子を含む気流から粗粒子を効果的に分離することができる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記下端における前記環状回転部の外径D1、および、前記上端における前記環状回転部の外径D3は、D1=D3の関係式を満たす。
 上記(3)の構成によれば、環状回転部において、下端における外径D1と、上端における外径D3とを等しくしたので、環状回転部の上端部と下端部において同程度の旋回力を得ることができる。
(4)幾つかの実施形態では、上記(1)~(3)の何れかの構成において、
 前記回転軸に直交する平面内において、各々の前記回転フィンが占める前記回転軸を中心とした角度範囲をαと、前記回転フィン間の前記隙間が占める前記回転軸を中心とした角度範囲をβとの比である重なり度α/(α+β)は、0.6≦α/(α+β)≦1.0の関係式を満たす。
 上記(4)の構成では、重なり度α/(α+β)を上記数値範囲内とすることで、回転フィン間に適度な間隙を確保することができる。これにより、気流に同伴する粗粒子が前記間隙を通過しにくくなり、気流に同伴する微粒子が前記間隙を通過しやすくなる。よって、上記(4)の構成によれば、より効果的に分級機の分級精度を向上させることができる。
(5)幾つかの実施形態では、上記(1)~(4)の何れかの構成において、
 各々の前記回転フィンは、該回転フィンの上端が該回転フィンの下端に比べて、前記環状回転部の回転方向に関して下流側に位置するように鉛直方向に対して斜めになっており、
 前記回転フィンが前記鉛直方向に対してなす角度θ3は、0°<θ3≦30°である。
 上記(5)の構成では、回転フィンが鉛直方向に対してなす角度(以降において「捻り角」とも称する)θ3を0°よりも大きくしたので、粒子を同伴する気流が径方向外方から回転フィンに向かって流入しようとする際に、回転フィンに衝突した粗粒子を下方へ落下させやすい。このため、気流に随伴される粗粒子をより効果的に分離することができる。また、捻り角θ3を30°よりも小さくしたので、回転フィンの回転により粗粒子に与える遠心力を過度に低下させることがないため、気流に随伴される粗粒子をより効果的に分離することができ、これにより分級機の分級精度を向上させることができる。
(6)幾つかの実施形態では、上記(1)~(5)の何れかの構成において、前記分級機は、
 前記分級機ハウジングの前記内部空間において、前記外周側領域の内周側かつ前記環状回転部の外周側に設けられた環状の偏向リングをさらに備え、
 前記偏向リングは、前記最大外径部よりも上方に位置する。
 上記(6)の構成によれば、外周側領域の内周側かつ環状回転部の外周側に偏向リングを設けたので、環状回転部に向かう気流を下方に偏向して、環状回転部に流入する気流の環状回転部の上部への偏りを低減できる。これにより、環状回転部における分級負荷の環状回転部の上部への偏りを抑制し、環状回転部全体における分級負荷を均一に近づけることができる。
 また、偏向リングの設置により、気流の流入速度がピークとなる位置は偏向リングの下端よりも低い位置となる。そこで、上記(6)の構成のように、最大外径部よりも上方に偏向リングを設置することで、気流の流入速度がピークとなる位置を最大外径部に近づけることができ、比較的大きな速度で環状回転部に流入しようとする粗粒子をより効果的に分離して、分級機の分級精度を向上させることができる。
(7)幾つかの実施形態では、上記(6)の構成において、
 前記最大外径部における前記環状回転部の外径D2及び前記偏向リングの外径D4は、1.02≦D4/D2≦1.2の関係式を満たす。
 上記(7)の構成によれば、最大外径部における環状回転部の外径D2及び偏向リングの外径D4は1.02≦D4/D2を満たすので、偏向リングと回転フィンとの距離が小さすぎない。このため、下方から分級機ハウジングに取り込まれた気流は、偏向リングを通過後、偏向リングよりも下方のみならず、偏向リングと同じ高さ位置においても環状回転部に流入しやすい。よって、上下方向における回転フィンへ気流の流入量の偏りが緩和されて、流入速度が局所的に大きくなることが抑制されるため、粗粒子が回転フィンを通過しにくくなる。また、D2及びD4はD4/D2≦1.2を満たすので、外周側領域から環状回転部に流入しようとする気流に随伴される粒子と、偏向リングに衝突して跳ね返った粒子との干渉が抑制されるため、固気比の増大を抑制することができる。これにより、固気比の増大による分級性能の低下を抑制することができる。
 よって、上記(7)の構成によれば、環状回転部に流入しようとする粗粒子をより効果的に分離して、分級機の分級精度を向上させることができる。
(8)幾つかの実施形態では、上記(1)~(7)の何れかの構成において、
 前記分級機ハウジングの前記内部空間において、前記外周側領域の内周側かつ前記環状回転部の外周側に設けられ、前記外周側領域に取り込まれた前記気流を整流するための固定フィンを有する環状固定部をさらに備える。
 上記(8)の構成によれば、外周側領域に取り込まれた気流は、固定フィンにより整流されるため、固定フィンを用いない場合よりも環状回転部に適切に流入しやすくなる。よって、気流に随伴される粒子が環状回転部に流入しやすくなるため、分級される微粒子の回収率を向上させることができる。
(9)幾つかの実施形態では、上記(8)の構成において、
 前記固定フィンは、前記環状固定部の内周側に近づくにつれて下方に傾斜するように、前記環状固定部の周方向に沿って配置されている。
 上記(9)の構成によれば、環状固定部の内周側に近づくにつれて下方に傾斜するように配置された固定フィンによって、環状回転部の入口における気流の流入速度の偏りはより緩和される。よって、環状回転部において気流に随伴される粗粒子をより効果的に分離することができ、これにより分級機の分級精度を向上させることができる。
(10)本発明の少なくとも一実施形態に係る粉砕分級装置は、
 原料を粉砕するための粉砕ローラと、少なくとも前記粉砕ローラを収容する粉砕機ハウジングとを含む粉砕機と、
 前記粉砕機における前記原料の粉砕により生成された粒子を分級するための上記(1)~(9)の何れかに記載の分級機と、を備え、
 前記分級機は、前記環状回転部によって前記粒子中の微粒子を前記環状回転部の内周側に取り出すとともに、前記粒子中の粗粒子を前記環状回転部の外周側にて下方に落下させるように構成され、
 前記粉砕機は、前記環状回転部の下方に位置し、前記環状回転部から下方に落下する前記粗粒子を前記粉砕ローラに戻すためのホッパを含み、
 前記最大外径部における前記環状回転部の外径D2及び前記ホッパの最大外径D6は、0.7≦D2/D6≦0.9の関係式を満たす。
 上記(10)の構成では、最大外径部における環状回転部の外径D2及びホッパの最大外径D6は、0.7≦D2/D6を満たすので、粒子を伴う気流の流入速度が比較的大きい環状回転部の最大外径部において、比較的大きな遠心力を得ることができる。このため、環状回転部において気流に随伴される粗粒子をより効果的に分離することができる。また、D2及びD6は、D2/D6≦0.9を満たすので、回転フィンではじかれた粗粒子は、環状回転部から下方に落下して、環状回転部の下方に位置するホッパにより受け取られやすいため、外周側領域において下方から取り込まれた気流に随伴される粒子との干渉を起しにくい。このため、環状回転部に流入しようとする気流における固気比が増加しにくく、これにより、粗粒子が回転フィンを通過することを抑制することができる。よって、上記(10)の構成によれば、粉砕分級装置の分級精度を向上させることができる。
(11)幾つかの実施形態では、上記(10)の構成において、
 前記粉砕機は、前記原料としての石炭を粉砕し、
 前記分級機は、前記微粒子としての微粉炭を外部に取り出すように構成される。
 上記(11)の構成によれば、分級精度が向上された粉砕分級装置により、粗粒子の混入が抑制された微粉炭を得ることができる。
(12)本発明の少なくとも一実施形態に係る微粉炭焚きボイラは、
 上記(11)に記載の粉砕分級装置と、
 前記粉砕分級装置によって得られた前記微粉炭を燃焼させるための火炉と、を備える。
 上記(12)の構成によれば、粗粒子の混入が抑制された微粉炭を燃焼させるので、燃焼ガスにおけるNOxなどの大気汚染物質を低減することができるとともに、灰中未燃分を低減することができ、これによりボイラ効率を向上させることができる。
 本発明の少なくとも一実施形態によれば、良好な分級精度が得られる分級機が提供される。
一実施形態に係る粉砕分級装置の概略構成図である。 図1に示す粉砕分級装置のII-II断面図である。 一実施形態に係る粉砕分級装置の模式図である。 図3に示す粉砕分級装置の拡大模式図である。 一実施形態に係る回転フィンの構成を示す図である。 一実施形態に係る回転フィンの構成を示す図である。 一実施形態に係る回転フィンの構成を示す図である。 一実施形態に係る回転フィンの構成を示す図である。 環状回転部の回転軸に直交する断面の一部を模式的に示した図である。 一実施形態に係る環状回転部における回転フィンの構成を示す図である。 一実施形態に係る微粉炭焚きボイラの概略構成図である。 従来の回転フィンの形状を示す図である。 実施例における出口微粉率と出口粗粒子残率のグラフである。 実施例における出口微粉率と微粒子循環率のグラフである。 実施例における出口微粉率と出口粗粒子残率のグラフである。 実施例における出口微粉率と微粒子循環率のグラフである。 実施例における出口微粉率と炭層差圧のグラフである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 まず、図1及び図2を用いて、一実施形態に係る粉砕分級装置の構成について説明する。図1は、一実施形態に係る粉砕分級装置の概略構成図であり、図2は、図1に示す粉砕分級装置のII-II断面図である。
 図1に示すように、一実施形態に係る粉砕分級装置1は、原料を粉砕するための粉砕機10と、該原料を粉砕機10により粉砕して得られた粒子を分級するための分級機20とを備える。なお、図1に示す粉砕分級装置1は、粉砕機10の上方に分級機20が配置された竪型粉砕分級装置である。
 粉砕機10及び分級機20は、粉砕機ハウジング11及び分級機ハウジング21をそれぞれ含み、粉砕機ハウジング11の上端部と分級機ハウジング21の下端部とが接続されることにより一体的に粉砕分級装置1を構成している。
 粉砕分級装置1は、原料を供給するための供給管50と、粉砕及び分級された粒子を外部に排出するための排出管52と、を有している。供給管50は、粉砕分級装置1の上部に設けられており、粉砕分級装置1の上方から供給される原料が粉砕機10の内部に落下するように構成されている。また、排出管52は、粉砕分級装置1の上部において分級機20の一部と連通するように設けられており、粉砕機10及び分級機20で粉砕及び分級された粒子を外部に排出できるようになっている。
 粉砕機10は、原料を粉砕するための粉砕テーブル12及び粉砕ローラ14を含み、これら粉砕テーブル12及び粉砕ローラ14は、粉砕機ハウジング11に収容されている。粉砕機10は、粉砕テーブル12と粉砕ローラ14との噛み込みにより原料を粉砕するように構成される。
 分級機20は、粒子を分級するための環状回転部24を含む。環状回転部24は、分級機ハウジング21の内部空間における外周側領域R1よりも内周側において、上下方向に沿った回転軸Oの周りを回転可能に設けられている。環状回転部24は、図2に示すように、回転軸O回りに隙間Gを空けて配列された複数の回転フィン25を有する。
 また、図1に示す実施形態では、分級機20は、分級機ハウジング21の内部空間において、環状回転部24の外周側に設けられた環状固定部26をさらに備える。環状固定部26は、周方向に沿って配列される複数の固定フィン27を有し、外周側から流れ込む気流を整流するように構成されている。
 ここで、上述の構成を有する粉砕分級装置1の動作について説明する。なお、図1及び図2の中の矢印は、原料又は原料を粉砕して得られる粒子の流れの方向を示す。
 供給管50より供給された原料(被粉砕物)は、回転する粉砕テーブル12に落下した後、粉砕テーブル12の回転に伴う遠心力により粉砕テーブル12上を外周側へ移動し、粉砕テーブル12と粉砕ローラ14との噛み込みにより粉砕される。なお、粉砕テーブル12は、モータ(不図示)により所定速度で回転するようになっている。また、粉砕ローラ14は、加圧装置15により粉砕テーブル12に押し付けられるようになっている。
 原料を粉砕して得られた粒子は、粉砕テーブル12の周囲に設けられた気体吹出し口16から吹き出される気流に同伴されて、粉砕分級装置1の内部における外周側領域を、粉砕機10側から分級機20側へと、上方へ搬送される(図1の矢印a,b)。この際、粒度の大きい粒子は、重力の影響により気流の流れから脱落し(図1の矢印c)、下方へ落下して粉砕テーブル12に戻り、再び粉砕される(一次分級)。
 気流に搬送されて分級機20の内部空間における外周側領域R1に到達した粒子は、分級機20において所定粒度以下の微粒子(製品粒子)と所定粒度以上の粗粒子とに分級される(二次分級)。
 すなわち、粒子を随伴する気流は、外周側領域R1に到達すると、流れの向きが半径方向内側向きに変わり、環状固定部26の複数の固定フィン27の間に流れ込む(図1及び図2の矢印d)。該気流は、固定フィン27を通過して整流された後、中心軸O周りを所定速度で回転する環状回転部24の外周側に到達する。そして、気流に随伴される粒子は、環状回転部24の回転により生じる遠心力により、比較的粒径の大きい粗粒子と、比較的粒径の小さい微粒子とに分離される。
 なお、分級機20において環状固定部26は任意の構成要素であり、幾つかの実施形態では、分級機20は環状固定部26を有していなくてもよい。この場合、下方からの気流に搬送されて外周側領域R1に到達した粒子は、固定フィンによって整流されることなく環状回転部24の外周側に到達し、環状回転部24の回転により生じる遠心力により分級される。
 ここで、回転フィン25の回転による粒子の分級の原理について説明する。
 外周側領域R1から粒子を随伴して流れてくる気流には、環状回転部24の回転フィン25の回転によって旋回が付与される。その結果、気流に随伴される粒子には、回転フィン25によって形成される遠心場に起因した半径方向外側に向かう遠心力と、半径方向内側に向かう気流の速度成分に起因した抗力とが作用する。これら遠心力と抗力とが釣り合う粒径が理論分級径である。この理論分級径よりも粒径が大きい粗粒子は、該気流の速度成分に起因した抗力よりも遠心力が大きくなり、回転フィン25の外側にはじき飛ばされる。一方、理論分級径よりも粒径が小さい微粒子は、遠心力よりも気流から受ける抗力が大きくなるため、気流に同伴されて回転フィン25間を通過する。このようにして、気流によって搬送されてきた粒子が粗粒子と微粒子とに分級されるようになっている。
 上述のようにして分離された粒子のうち、比較的粒径の大きい粗粒子は、回転フィン25の外周側にはじき出された後、下方に落下して(図1及び図2の矢印e)粉砕テーブル12に戻り、再び粉砕される。なお、幾つかの実施形態では、図1に示すように、回転フィン25の外側にはじき出された粗粒子は、環状回転部24の下方に設けられたホッパ18によって、下方の粉砕テーブル12に戻るように案内されてもよい。
 一方、上述のようにして分離された粒子のうち、比較的粒径の小さい微粒子は、気流に同伴されて回転フィン25間を通過し(図1及び図2の矢印f)、環状回転部24の内周側に取り出される。該微粒子は、環状回転部24の内周側と連通する排出管52から気流とともに排出されて、製品微粒子として取り出されてもよい。
 以下、一実施形態に係る分級機20及び粉砕分級装置1についてより詳細に説明する。
 図3は、一実施形態に係る粉砕分級装置1を模式的に示す図である。図4は、図3に示す粉砕分級装置1の要部の拡大図である。なお、図3及び図4では、環状固定部26の図示を省略している。
 分級機20の環状回転部24は、上述したように、回転軸O回りに隙間Gを空けて配列された複数の回転フィン25を有する(図2参照)。
 一実施形態では、図3に示すように、複数の回転フィン25によって形成される環状回転部24の外形は、環状回転部24の上端33と下端31との間に最大外径部32を有する。すなわち、下端31における環状回転部24の外径D1、上端33における環状回転部24の外径D3、及び、最大外径部32における環状回転部24の外径D2は、D1<D2かつD3<D2の関係式を満たす。
 ここで、環状回転部24の外形は、複数の回転フィン25が回転軸O周りを回転して形成される回転体の外形によって形成される。
 この場合、外周側領域R1から流入する気流の流入速度が大きくなる軸方向位置において比較的大きな遠心力を得ることができる。このため、質量が比較的大きな粗粒子が、環状回転部24の上端33と下端31との間の軸方向位置において気流とともに比較的大きな速度で環状回転部24に流入しようとしても、粗粒子に大きな遠心力が加わるので、該粗粒子を回転フィン25の外周側にはじき飛ばして微粒子を含む気流から分離することができる。よって、比較的大きな速度で環状回転部24に流入しようとする粗粒子を比較的大きな遠心力により分離することにより、分級機20の分級精度を向上させることができる。
 また、上述の分級機20では、複数の回転フィン25の形状や配列を適切に選択して最大外径部32を有する環状回転部24を構成することで比較的大きな遠心力を得ることができるため、比較的大きな遠心力を得るために、環状回転部24の回転数を増加させる必要がない。よって、上述の分級機20によれば、運転コストの増大を抑制しながら、分級機20の分級精度を向上させることができる。
 幾つかの実施形態において、下端31における環状回転部24の外径D1、上端33における環状回転部24の外径D3、及び、最大外径部32における環状回転部24の外径D2は、D2/D1≧1.05、かつ、D2/D3≧1.05の関係式を満たす。
 この場合、環状回転部24の上端33と下端31との間の流入速度が大きくなる軸方向位置において適度に大きな遠心力を粗粒子に加えることができる。このため、環状回転部24の入口にて微粒子を含む気流から粗粒子を効果的に分離することができる。
 幾つかの実施形態では、回転軸Oを含む平面内において、回転軸Oに直交する直線L1,L1’と、複数の回転フィン25の各々の延在方向の直線L2,L2’との間の角度である傾斜角θ2,θ2’(図4参照)は、60°≦θ2≦75°及び60°≦θ2’≦75°の関係式を満たす。
 この場合、環状回転部24の上端33と下端31との間の流入速度が大きくなる軸方向位置において適度に大きな遠心力を粗粒子に加えることができる。このため、環状回転部24の入口にて微粒子を含む気流から粗粒子を効果的に分離することができる。
 幾つかの実施形態では、下端31における環状回転部24の外径D1、および、上端33における環状回転部24の外径D3は、D1=D3の関係式を満たす。
 この場合、環状回転部24において、下端31における外径D1と、上端33における外径D3とを等しくしたので、環状回転部24の上端部と下端部において同程度の旋回力を得ることができる。
 図5A~図5Dは、それぞれ、一実施形態に係る回転フィン25の構成を示す図である。一実施形態では、分級機20において、例えば図5A~図5Dの何れかに示される形状を有する回転フィン25を用いることにより、環状回転部24の外形が上端33と下端31との間に最大外径部32を有する。
 図5A~図5Dに示すように、幾つかの実施形態において、回転フィン25は、環状回転部24の軸方向において下方及び上方にそれぞれ配置され、環状回転部24の下端31及び上端33にそれぞれ対応する下端25a及び上端25bを有する。また、回転フィン25は、環状回転部24の軸方向において環状回転部24の最大外径部32に対応する軸方向位置に位置する突出部23を有する。環状回転部24において、各回転フィン25は、突出部23が外周側を向くように配置される。
 幾つかの実施形態では、図5A及び図5Bに示すように、回転フィン25は、環状回転部24の軸方向に延びる輪郭部分のうち、環状回転部24の外形を形成する外周側部25cが直線により構成されていてもよい。
 幾つかの実施形態では、図5C及び図5Dに示すように、回転フィン25は、環状回転部24の軸方向に延びる輪郭部分のうち、環状回転部24の外形を形成する外周側部25cが円弧状の曲線により構成されていてもよい。
 図5A及び図5Cに示す回転フィン25は、下端25aにおける幅W1、上端25bにおける幅W3、及び、突出部23における幅W2がそれぞれ等しい。幾つかの実施形態では、回転フィン25は、環状回転部24の軸方向において下端25aから上端25bまでの全域にわたって、同一の幅を有していてもよい。
 図5B及び図5Dに示す回転フィン25は、下端25aにおける幅W1と上端25bにおける幅W3とが等しく、突出部23における幅W2は、W1又はW3よりも大きい。
 幾つかの実施形態では、回転フィン25は、下端25aにおける幅W1と上端25bにおける幅W3とが異なっていてもよい。
 図6は、環状回転部24の回転軸Oに直交する断面の一部を模式的に示した図である。
 幾つかの実施形態では、環状回転部24の回転軸Oに直交する平面内において、各々の回転フィン25が占める回転軸Oを中心とした角度範囲をα(図6参照)と、回転フィン25間の隙間Gが占めるO回転軸を中心とした角度範囲をβ(図6参照)との比である重なり度α/(α+β)は、0.6≦α/(α+β)≦1.0の関係式を満たす。
 環状回転部24に向かって径方向内側向きに流れる気流に同伴する粒子は、上述したように、回転フィン25を含む環状回転部24の回転により生じる遠心力により分級されるが、これとは別に、粒子と回転フィン25との衝突によっても分級される。
 この際、回転フィン25の重なり度が小さすぎると、気流に同伴する粒子が回転フィン25に衝突しにくくなり、微粒子のみならず、粗粒子までもが回転フィン25と回転フィン25との間の隙間Gを内周側へ通過しやすくなる。一方、回転フィン25の重なり度が大きすぎると、気流に同伴する粒子が回転フィン25との衝突により回転フィン25の外周側にはじき出されやすくなり、粗粒子のみならず、微粒子までもが隙間Gを通過しにくくなる。このように、回転フィン25の重なり度が適切な範囲内でないと、粒子と回転フィン25との衝突に基づく分級が適切に行われない場合がある。
 この点、上述のように重なり度α/(α+β)が、0.6≦α/(α+β)≦1.0を満たす場合、回転フィン25間に適度な隙間Gを確保することができる。これにより、気流に同伴する粗粒子が隙間Gを通過しにくくなり、気流に同伴する微粒子が隙間Gを通過しやすくなる。これにより、より効果的に分級機20の分級精度を向上させることができる。
 回転フィン25の重なり度α/(α+β)は、軸方向において環状回転部24の上端33から下端31まで一定であってもよく、あるいは、軸方向において変化するようになっていてもよい。
 回転フィン25の幅が軸方向において一定である場合(例えば、図5A又は図5Cに示す回転フィン25の場合)、外形が比較的大きな軸方向位置では、重なり度α/(α+β)が小さくなる。
 一方、軸方向位置において環状回転部24の外径が大きい位置において大きな幅を有する回転フィン25(例えば、図5B又は図5Dに示す回転フィン25)を用いることで、重なり度α/(α+β)を、軸方向において環状回転部24の上端33から下端31まで一定に近づけることができる。
 このように、各軸方向位置において所望の重なり度α/(α+β)が得られるように、回転フィン25の形状を決定することができる。
 なお、図6において、θ1は、環状回転部24における回転フィン25の取付け角を示す。取付け角θ1は、図6に示すように、回転軸Oに直交する平面において、回転フィン25の外周側端と、回転軸Oとを通る直線L4と、回転フィン25の幅方向の直線との間の角度である。
 図7は、一実施形態に係る環状回転部24における回転フィン25の構成を示す図である。なお、図7では、環状回転部24を構成する複数の回転フィン25のうち1枚を代表的に示している。また、環状回転部24の外形22は、複数の回転フィン25により形成される。
 幾つかの実施形態では、各々の回転フィン25は、該回転フィン25の上端25bが該回転フィン25の下端25aに比べて、環状回転部24の回転方向に関して下流側に位置するように鉛直方向に対して傾斜している。そして、回転フィン25が鉛直方向に対してなす角度である捻り角θ3は、0°<θ3≦30°である。
 図7において、捻り角はθ3及びθ3’で表される。捻り角θ3は、鉛直方向の直線Lvと、回転フィン25の下端25aにおける延在方向の直線L3との間の角度である。また、捻り角θ3’は、鉛直方向の直線Lv’と、回転フィン25の上端25bにおける延在方向の直線L3’との間の角度である。
 幾つかの実施形態では、回転フィン25が鉛直方向に対してなす角度である捻り角θ3及びθ3’は、0°<θ3≦30°又は0°<θ3’≦30°の何れかの関係式を満たす。
 なお、図7に示す環状回転部24の回転方向は、環状回転部24を平面視したときの時計回りの方向である。
 上述したように、環状回転部24に向かって径方向内側向きに流れる気流に同伴する粒子は、粒子と回転フィン25との衝突によっても分級される。この際、回転フィン25の上端25bが、下端25aに比べて、環状回転部24の回転方向に関して下流側に位置するように鉛直方向に対して傾斜していると(即ち捻り角θ3が0°よりも大きい場合)、気流に同伴する粒子が回転フィン25に衝突した際に下方へ落下させやすくなる。一方、回転フィン25の鉛直方向に対する上述の傾斜が過大であると、回転フィン25の回転により生じる遠心力が十分でなくなり、遠心力に基づく分級が適切に行われなくなる場合がある。
 この点、上述のように、捻り角θ3が0°よりも大きいと、粒子を同伴する気流が径方向外方から回転フィン25に向かって流入しようとする際に、回転フィン25に衝突した粗粒子を下方へ落下させやすい。このため、気流に随伴される粗粒子をより効果的に分離することができる。また、捻り角θ3が30°よりも小さいと、回転フィン25の回転により粗粒子に与える遠心力を過度に低下させることがないため、気流に随伴される粗粒子をより効果的に分離することができる。
 幾つかの実施形態では、分級機20は、図1に示すように、外周側領域R1から環状回転部24に向かう気流を偏向するための偏向リング29を備えていてもよい。
 偏向リング29は環状の部材であり、分級機ハウジング21の内部空間において、外周側領域R1の内周側かつ環状回転部24の外周側において、環状回転部24の最大外径部32よりも上方に位置するように設けられる。
 偏向リング29は、環状回転部24のうち上部を取り囲んでおり、偏向リング29の下端29Aは、環状回転部24の最大外径部32よりも上方に位置する。また、環状回転部24は、最大外径部32よりも上方の領域のうち少なくとも一部が偏向リング29によって覆われている。幾つかの実施形態では、偏向リング29は分級機ハウジング21に固定されていてもよい。
 上述の偏向リング29を設けることで、環状回転部24に向かう気流を下方に偏向して、環状回転部24に流入する気流の環状回転部24の上部への偏りを低減できる。これにより、環状回転部24における分級負荷の環状回転部24の上部への偏りを抑制し、環状回転部24全体における分級負荷を均一に近づけることができる。
 また、偏向リング29の設置により、気流の流入速度がピークとなる位置は偏向リング29の下端よりも低い位置となる。よって、上述のように、最大外径部32よりも上方に偏向リング29を設置することで、気流の流入速度がピークとなる位置を最大外径部32に近づけることができ、比較的大きな速度で環状回転部24に流入しようとする粗粒子をより効果的に分離することができる。
 幾つかの実施形態では、最大外径部32における環状回転部24の外径D2及び偏向リング29の外径D4(図3参照)は、1.02≦D4/D2≦1.2の関係式を満たす。
 1.02≦D4/D2である場合、偏向リング29と回転フィン25との距離が小さすぎない。このため、下方から分級機ハウジング21に取り込まれた気流は、偏向リング29を通過後、偏向リング29よりも下方のみならず、偏向リング29と同じ高さ位置(軸方向位置)においても環状回転部24に流入しやすい。よって、上下方向(軸方向)における回転フィン25へ気流の流入量の偏りが緩和されて、流入速度が局所的に大きくなることが抑制されるため、粗粒子が回転フィン25を通過しにくくなる。また、D2及びD4はD4/D2≦1.2である場合、外周側領域R1から環状回転部24に流入しようとする気流に随伴される粒子と、偏向リング29に衝突して跳ね返った粒子との干渉が抑制されるため、固気比の増大を抑制することができる。これにより、固気比の増大による分級性能の低下を抑制することができる。
 図1に示す分級機20は、上述したように、複数の固定フィン27を有する環状固定部26を備えている。環状固定部26は、分級機ハウジング21の内部空間において、外周側領域R1の内周側かつ環状回転部24の外周側に設けられている。そして、複数の固定フィン27は、下方から外周側領域R1に取り込まれた気流を整流するように構成される。
 分級機20が上述の環状固定部26を有する場合、外周側領域R1に取り込まれた気流は、固定フィン27により整流されるため、固定フィン27を用いない場合よりも環状回転部24に適切に流入しやすくなる。よって、気流に随伴される粒子が環状回転部24に流入しやすくなるため、分級される微粒子の回収率を向上させることができる。
 幾つかの実施形態では、図1及び図2に示すように、複数の固定フィン27は、環状固定部26の内周側に近づくにつれて下方に傾斜するように、環状固定部26の周方向に沿って配置されていてもよい。なお、図1及び図2に示す実施形態において、複数の固定フィン27は、周方向における両端部において支持部材28によって支持されている。また、図1に示すように、周方向に沿って配置される固定フィン27は、軸方向において複数配列されたルーバ型のフィンであってもよい。
 この場合、環状固定部26の内周側に近づくにつれて下方に傾斜するように配置された固定フィン27によって、環状回転部24の入口における気流の流入速度の偏りはより緩和される。よって、環状回転部24において気流に随伴される粗粒子をより効果的に分離することができる。
 図1に示す粉砕分級装置1において、粉砕機10は、環状回転部24の下方に配置され、環状回転部24から下方に落下する粗粒子を粉砕ローラ14に戻すためのホッパ18を含む。ホッパ18は、下方に近づくにしたがって直径が小さくなる円錐形状の斜面を有しており、上方から落下してきた粒子が該斜面によって円滑に粉砕ローラ14へ戻るようになっている。
 幾つかの実施形態では、最大外径部32における環状回転部24の外径D2及びホッパ18の最大外径D6(図3参照)は、0.7≦D2/D6≦0.9の関係式を満たす。
 0.7≦D2/D6である場合、粒子を伴う気流の流入速度が比較的大きい環状回転部24の最大外径部32において、比較的大きな遠心力を得ることができる。このため、環状回転部24において気流に随伴される粗粒子をより効果的に分離することができる。また、D2/D6≦0.9である場合、回転フィン25ではじかれた粗粒子は、環状回転部24から下方に落下して、環状回転部24の下方に位置するホッパ18により受け取られやすいため、外周側領域R1において下方から取り込まれた気流に随伴される粒子との干渉を起しにくい。このため、環状回転部24に流入しようとする気流における固気比が増加しにくく、これにより、粗粒子が回転フィン25を通過することを抑制することができる。
 幾つかの実施形態では、粉砕分級装置1は、原料としての石炭を粉砕及び分級するための粉砕分級装置であってもよい。この場合、粉砕機10は、原料としての石炭を粉砕するように構成され、分級機20は、粉砕機10により石炭を粉砕して得られた粒子を分級して、微粒子としての微粉炭を外部に取り出すように構成される。
 上述に説明した粉砕分級装置1は分級精度が良好であるため、該粉砕分級装置1により、粗粒子の混入が抑制された微粉炭を得ることができる。
 また、上述に説明した粉砕分級装置1を用いて、微粉炭焚きボイラを構成してもよい。
 図8は、一実施形態に係る微粉炭焚きボイラの概略構成図である。図8に示すように、本発明の少なくとも一実施形態に係る微粉炭焚きボイラ100は、上述した粉砕分級装置1と、粉砕分級装置1によって得られた微粉炭を燃焼させるための火炉62と、を備える。粉砕分級装置1には、送風機53からの空気が送り込まれるとともに、石炭バンカ60及び給炭機61から原料としての石炭が供給されるようになっている。
 送風機53に送り込まれた燃焼用空気Aは空気A1と空気A2に分岐される。このうち、空気A1は、送風機54によって粉砕分級装置1に搬送される。空気A1の一部は、予熱器58によって加熱されて温空気として粉砕分級装置1に搬送される。ここで、予熱器58によって加熱された温空気と、送風機54から予熱器58を経由せずに直接搬送される冷空気とは、混合空気が適温となるように混合調整されてから粉砕分級装置1に供給されるようになっていてもよい。このようにして粉砕分級装置1に供給された空気A1は、粉砕分級装置1の内部において気体吹出し口16(図1参照)から吹き出されるようになっている。
 原料としての石炭は、石炭バンカ65に投入された後、給炭機61により定量ずつ、供給管50(図1参照)を介して粉砕分級装置1に供給される。気体吹出し口16からの空気A1の気流により乾燥されながら粉砕分級装置1にて粉砕されて生成した微粉炭は、排出管52(図1参照)から空気A1により搬送されて、ウィンドボックス63内の微粉炭バーナを介して火炉(ボイラ本体)62に送られて、バーナにより着火されて燃焼する。
 なお、送風機53に送り込まれた燃焼用空気Aのうち空気A2は、予熱器56及び予熱器58により加熱されて、ウィンドボックス63を介して火炉62に送られて、火炉62内で微粉炭の燃焼に供される。
 火炉62において微粉炭の燃焼で生成した排ガスは、集塵機64で塵埃が除去された後、脱硝装置66に送られて、排ガス中に含まれる窒素酸化物(NOx)が還元される。そして、該排ガスは、予熱器58を経て送風機68で吸引され、脱硫装置70で硫黄分が除去されて、煙突72から大気中に放出されるようになっている。
 上述した微粉炭焚きボイラ100では、粗粒子の混入が抑制された微粉炭を燃焼させるので、燃焼ガスにおけるNOxなどの大気汚染物質を低減することができるとともに、灰中未燃分を低減することができ、これによりボイラ効率を向上させることができる。
 以下、本発明の実施形態に係る分級機により良好な分級性能が得られることについて、実施例及び比較例により説明する。
(試験例1)
 試験例1では、表1に示す特徴をそれぞれ有する実施例1~3及び比較例1の分級機を備えた粉砕分級装置1を用いて、所定の空気流量及び所定の固気比において運転を行い、環状回転部24の回転数を変化させながら、所定量の原料を粉砕及び分級した。粉砕分級装置1の出口(排出管52)で取り出された粒子、又は、粉砕機10に戻った(循環した)粒子の粒径及び重量に基づいて、出口微粉率(重量%)、出口粗粒子残率(重量%)、及び、微粒子循環率(重量%)を算出した。
 なお、下記表1及の「回転フィン形状」の行において、“A”は図5Aに示す形状の回転フィン25を用いたことを示し、“B”は、図9に示す従来型の長方形状の回転フィン125を用いたことを示す。ここで、図9は、比較例1で用いた従来型の回転フィンの形状を示す図である。図9に示す長方形状の回転フィン125において、下端125aの幅W1と上端125bの幅W3とは同じである。この長方形状の回転フィン125を用いて環状回転部24を構成した場合、環状回転部24の外形は円筒形状となる。
 各実施例及び比較例において、回転フィンの傾斜角θ2、捻り角θ3、重なり度α/(α+β)及び、取付け角θ1は、表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3で用いた分級機において、環状回転部には図5Aに示す形状の回転フィンが用いられており、環状回転部24の外形は、環状回転部24の上端33と下端31との間に最大外径部32を有する。
 一方、比較例1で用いた分級機において、環状回転部には図9に示すような長方形の回転フィンが用いられており、環状回転部の外径は軸方向において一定である。即ち、比較例1の分級機において、環状回転部の外径は、環状回転部の上端と下端との間に、該上端と該下端よりも外径が大きい最大外径部を有しない。
 また、本試験例1で用いた実施例1~3及び比較例1の分級機は、固定フィン含む環状固定部を有していない。
 ここで、出口微粉率は、粉砕分級装置1の出口(排出管52)で回収された粒子のうち、200メッシュの篩を通過した粒子(粒径が75μm以下の微粒子)の重量割合(出口200メッシュパス率)である。
 また、出口粗粒子残率は、粉砕分級装置1の出口で回収された粒子のうち、100メッシュの篩に残留した(通過しなかった)粒子(粒径が150μ以上の粗粒子)の重量割合(出口100メッシュ残率)である。
 また、微粒子循環率は、原料を粉砕して生成された200メッシュパス量(粒径が75μm以下の微粒子の量)のうち、環状回転部の内周側から製品として取り出されずに、環状回転部24の外周側から粉砕テーブルへ落下して戻った(循環した)微粒子の量の割合を重量%で表したものである。すなわち、粉砕分級装置1の出口で回収された粒子の重量をMf、その200メッシュパス率(すなわち、上述の出口微粉率)をx、粉砕テーブルへ循環した粒子の重量をMc、その200メッシュパス率をyとすれば、微粒子循環率C200#Pは、下記式で表される。
Figure JPOXMLDOC01-appb-M000002
 なお、分級機20の環状回転部24の回転数を変化させることにより、製品微粉率を変化させて上述の各種データを計測及び算出した。
 図10は、上述において説明した出口微粉率を横軸にとり、出口粗粒子残率を縦軸にとったグラフである。また、図11は、出口微粉率を横軸にとり、微粒子循環率を縦軸にとったグラフである。
 図10のグラフに示すように、出口微粉率が約65~95%の範囲において、環状回転部の外径が最大外径部を有しない比較例1の分級機に比べて、環状回転部24の外径が環状回転部24の上端33と下端31との間に最大外径部32を有する実施例1~3の分級機では、出口粗粒子残率が低くなっている。
 このことから、環状回転部24の上端33と下端31との間に最大外径部32を有する場合、粉砕分級装置の出口で取り出される製品微粒子中の粗粒子の割合が少ないため、品質が良好な製品微粒子が得られる、ということができる。
 なお、粉砕分級装置は、通常、出口微粉率が80%以上となるような運転条件で運転されることが想定される。この点、図10のグラフによれば、出口微粉率が80%の付近において、実施例1~3の分級機では、比較例1の分級機よりも出口粗粒子残率が50%程度以上小さく、品質が良好な製品微粒子が得られる。
 また、図11のグラフに示すように、出口微粉率が約65~95%の範囲において、回転フィン25の捻り角θ3が比較的大きい実施例1、及び、重なり度α/(α+β)が比較的大きい実施例2では、微粒子循環率が比較例1より小さい傾向にある。特に、実施例2の分級機において、比較例1の分級機に比べて微粒子循環率が顕著に小さくなっている。
 よって、捻り角θ3又は重なり度α/(α+β)が適度な大きさである場合に、微粒子の循環率を低くすることができ、このため、製品微粒子を所定量得るために必要な動力を低減することができ、分級効率を向上させることができることがわかる。
 このように、実施例1~3の各分級機によれば、同一の出口微粉率に対して、出口粗粒子残率(図10参照)又は微粒子循環率(図11参照)の少なくとも一方について、比較例1に比べて良好な結果が得られた。よって、実施例1~3の各分級機は、比較例1の分級機に比べて分級精度が良好であることが確認された。
(試験例2)
 試験例2では、表2に示す特徴をそれぞれ有する実施例4,5及び比較例1の分級機を用いて、以下の試験を行った。なお、実施例4,5はそれぞれ本発明の実施例である。
 なお、下記表2の「回転フィン形状」の行において、“A”は図5Aに示す形状の回転フィンを用いたことを示し、“B”は、図9に示す形状の回転フィンを用いたことを示す。各実施例及び比較例において、回転フィンの傾斜角θ2、捻り角θ3、重なり度α/(α+β)及び、取付け角θ1は、表2に示すとおりである。
Figure JPOXMLDOC01-appb-T000003
 実施例4,5で用いた分級機では、試験例1で用いた実施例1~3の分級機と同様に、環状回転部には図5Aに示す形状の回転フィンが用いられており、環状回転部24の外形は、環状回転部24の上端33と下端31との間に最大外径部32を有する。また、実施例4,5で用いた分級機は、複数の固定フィン27を含む環状固定部26を備えており、該固定フィン27は、軸方向において複数配列されたルーバ型のフィンである。
 一方、比較例1の分級機は、試験例1で用いた比較例1の分級機と同一の分級機である。なお、比較例1の分級機は、固定フィン含む環状固定部を有さない。
 各実施例又は比較例の分級機20を備えた粉砕分級装置1を用いて、環状回転部24の回転数を変化させながら、所定量の原料を粉砕及び分級し、試験例1と同様に、粉砕分級装置1の出口(排出管52)で取り出された粒子、又は、粉砕機10に戻った(循環した)粒子の粒径及び重量に基づいて、出口微粉率(重量%)、出口粗粒子残率(重量%)、及び、微粒子循環率(重量%)を算出した。
 図12は、出口微粉率を横軸にとり、出口粗粒子残率を縦軸にとったグラフである。また、図13は、出口微粉率を横軸にとり、微粒子循環率を縦軸にとったグラフである。
 図12及び図13のグラフに示すように、出口微粉率が約65~95%の範囲において、実施例4,5の分級機では、出口粗粒子残率及び微粒子循環率のいずれもが、比較例1の分級機に比べて低くなっている。
 また、図10と図12、及び、図11と図13をそれぞれ比較すると、実施例4,5の分級機では、実施例1~3の分級機と同等又はそれ以上に、出口粗粒子残率及び微粒子循環率が小さくなっている。
 このことから、回転フィンを備える環状固定部を有する実施例4,5の分級機によれば、粉砕分級装置の出口で取り出される製品微粒子中の粗粒子の割合がより低減されて、品質がより良好な製品微粒子が得られる、ということができる。また、実施例4,5の分級機によれば、微粒子の循環率をより低減することができ、このため、製品微粒子を所定量得るために必要な動力をより低減することができ、分級効率をより向上させることができることがわかる。
 このように、実施例4,5の各分級機によれば、同一の出口微粉率に対して、出口粗粒子残率(図12参照)及び微粒子循環率(図13参照)について、比較例1に比べて良好な結果が得られた。よって、実施例4,5の各分級機は、比較例1の分級機に比べて分級精度が良好であることが確認された。
 図14は、実施例における炭層差圧のグラフであり、本発明の実施例である実施例6と比較例1の分級機を用いた粉砕分級装置1を同一条件で運転したときの炭層差圧の計測結果をグラフ化したものである。図14のグラフにおいて、横軸は出口微粉率を、縦軸は炭層差圧(ミル差圧)を示す。
 実施例6の分級機は、実施例4,5の分級機と同様に、環状回転部には図5Aに示す形状の回転フィンが用いられており、環状回転部24の外形は、環状回転部24の上端33と下端31との間に最大外径部32を有するとともに、複数の固定フィン27を含む環状固定部26を備えており、該固定フィン27は、軸方向において複数配列されたルーバ型のフィンである。
 一方、比較例1の分級機は、上述の比較例1の分級機と同一の分級機である。なお、比較例1の分級機は、固定フィン含む環状固定部を有さない。
 図14のグラフに示すように、実施例6の場合と比較例1の場合とで比較すると、出口微粉率が80%以上の範囲において、実施例6のほうが炭層差圧が小さく、すなわち、粉砕分級機における圧力損失が小さい。これは、実施例6の分級機は実施例4,5と同様の構造を有するため、実施例6の分級機を用いた場合、微粒子循環率を低減させることができるからであると考えられる。
 このように、実施例6の分級機によれば、粉砕分級機における圧力損失を低減することができ、このため、製品微粒子を所定量得るために必要な動力を低減することができ、分級効率を向上させることができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1    粉砕分級装置
10   粉砕機
11   粉砕機ハウジング
12   粉砕テーブル
14   粉砕ローラ
15   加圧装置
16   気体吹出し口
18   ホッパ
20   分級機
21   分級機ハウジング
23   突出部
24   環状回転部
25   回転フィン
25a  下端
25b  上端
25c  外周側部
26   環状固定部
27   固定フィン
28   支持部材
29   偏向リング
31   下端
32   最大外径部
33   上端
50   供給管
52   排出管
53,54  送風機
56,58  予熱器
60   石炭バンカ
61   給炭機
62   火炉
63   ウィンドボックス
64   集塵機
65   石炭バンカ
66   脱硝装置
68   送風機
70   脱硫装置
100  微粉炭焚きボイラ
G    隙間
O    回転軸
R1   外周側領域

Claims (12)

  1.  内部空間のうち外周側領域に下方から気流を取り込むように構成された分級機ハウジングと、
     前記外周側領域の内周側において前記分級機ハウジングの前記内部空間に回転可能に設けられ、前記外周側領域からの前記気流に随伴される粒子を分級するように構成された環状回転部と、を備え、
     前記環状回転部は、該環状回転部の回転軸の周りに隙間を空けて配列された複数の回転フィンを有し、
     前記複数の回転フィンによって形成される前記環状回転部の外形は、前記環状回転部の上端と下端との間に最大外径部を有することを特徴とする分級機。
  2.  前記下端における前記環状回転部の外径D1、前記上端における前記環状回転部の外径D3、及び、前記最大外径部における前記環状回転部の外径D2は、D2/D1≧1.05、かつ、D2/D3≧1.05の関係式を満たすことを特徴とする請求項1に記載の分級機。
  3.  前記下端における前記環状回転部の外径D1、および、前記上端における前記環状回転部の外径D3は、D1=D3の関係式を満たすことを特徴とする請求項1又は2に記載の分級機。
  4.  前記回転軸に直交する平面内において、各々の前記回転フィンが占める前記回転軸を中心とした角度範囲をαと、前記回転フィン間の前記隙間が占める前記回転軸を中心とした角度範囲をβとの比である重なり度α/(α+β)は、0.6≦α/(α+β)≦1.0の関係式を満たすことを特徴とする請求項1乃至3の何れか一項に記載の分級機。
  5.  各々の前記回転フィンは、該回転フィンの上端が該回転フィンの下端に比べて、前記環状回転部の回転方向に関して下流側に位置するように鉛直方向に対して斜めになっており、
     前記回転フィンが前記鉛直方向に対してなす角度θ3は、0°<θ3≦30°であることを特徴とする請求項1乃至4の何れか一項に記載の分級機。
  6.  前記分級機ハウジングの前記内部空間において、前記外周側領域の内周側かつ前記環状回転部の外周側に設けられた環状の偏向リングをさらに備え、
     前記偏向リングは、前記最大外径部よりも上方に位置することを特徴とする請求項1乃至5の何れか一項に記載の分級機。
  7.  前記最大外径部における前記環状回転部の外径D2及び前記偏向リングの外径D4は、1.02≦D4/D2≦1.2の関係式を満たすことを特徴とする請求項6に記載の分級機。
  8.  前記分級機ハウジングの前記内部空間において、前記外周側領域の内周側かつ前記環状回転部の外周側に設けられ、前記外周側領域に取り込まれた前記気流を整流するための固定フィンを有する環状固定部をさらに備えることを特徴とする請求項1乃至7の何れか一項に記載の分級機。
  9.  前記固定フィンは、前記環状固定部の内周側に近づくにつれて下方に傾斜するように、前記環状固定部の周方向に沿って配置されていることを特徴とする請求項8に記載の分級機。
  10.  原料を粉砕するための粉砕ローラと、少なくとも前記粉砕ローラを収容する粉砕機ハウジングとを含む粉砕機と、
     前記粉砕機における前記原料の粉砕により生成された粒子を分級するための請求項1乃至9の何れか一項に記載の分級機と、を備え、
     前記分級機は、前記環状回転部によって前記粒子中の微粒子を前記環状回転部の内周側に取り出すとともに、前記粒子中の粗粒子を前記環状回転部の外周側にて下方に落下させるように構成され、
     前記粉砕機は、前記環状回転部の下方に位置し、前記環状回転部から下方に落下する前記粗粒子を前記粉砕ローラに戻すためのホッパを含み、
     前記最大外径部における前記環状回転部の外径D2及び前記ホッパの最大外径D6は、0.7≦D2/D6≦0.9の関係式を満たすことを特徴とする粉砕分級装置。
  11.  前記粉砕機は、前記原料としての石炭を粉砕し、
     前記分級機は、前記微粒子としての微粉炭を外部に取り出すように構成されたことを特徴とする請求項10に記載の粉砕分級装置。
  12.  請求項11に記載の粉砕分級装置と、
     前記粉砕分級装置によって得られた前記微粉炭を燃焼させるための火炉と、を備えることを特徴とする微粉炭焚きボイラ。
PCT/JP2017/001220 2016-02-09 2017-01-16 分級機、粉砕分級装置及び微粉炭焚きボイラ WO2017138302A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780010126.9A CN108602094A (zh) 2016-02-09 2017-01-16 分级机、粉碎分级装置以及粉煤燃烧锅炉
KR1020187022596A KR20180100637A (ko) 2016-02-09 2017-01-16 분급기, 분쇄 분급 장치 및 미분탄 연소 보일러

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-023084 2016-02-09
JP2016023084A JP2017140573A (ja) 2016-02-09 2016-02-09 分級機、粉砕分級装置及び微粉炭焚きボイラ

Publications (1)

Publication Number Publication Date
WO2017138302A1 true WO2017138302A1 (ja) 2017-08-17

Family

ID=59563498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001220 WO2017138302A1 (ja) 2016-02-09 2017-01-16 分級機、粉砕分級装置及び微粉炭焚きボイラ

Country Status (4)

Country Link
JP (1) JP2017140573A (ja)
KR (1) KR20180100637A (ja)
CN (1) CN108602094A (ja)
WO (1) WO2017138302A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113426530A (zh) * 2021-07-07 2021-09-24 郑州沃特节能科技股份有限公司 一种超细复合微粉制备装置及其方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341669B2 (ja) * 2019-02-13 2023-09-11 三菱重工業株式会社 固体燃料粉砕装置及びこれを備えた発電プラント並びに固体燃料粉砕方法
JP7317631B2 (ja) * 2019-08-19 2023-07-31 三菱重工業株式会社 固体燃料粉砕装置、発電プラント、および固体燃料粉砕装置の制御方法
KR102286906B1 (ko) * 2019-11-01 2021-08-06 한국남동발전 주식회사 바이오매스 전소발전소의 보일러 연소공정을 이용한 바이오차 생산방법
KR102379235B1 (ko) * 2020-03-12 2022-03-28 주식회사 트론 석탄 미분도 자동 측정장치
CN111921611B (zh) * 2020-09-08 2021-11-16 安徽万磁电子有限公司 一种磁体加工用废料处理工艺
CN114749244B (zh) * 2022-03-25 2024-02-20 衡水恒伟化工有限公司 一种可湿性粉剂农药粉碎设备及粉碎工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192606A (ja) * 1996-01-23 1997-07-29 Ishikawajima Harima Heavy Ind Co Ltd 回転式分級機
JPH10323574A (ja) * 1997-05-27 1998-12-08 Ube Ind Ltd 竪型粉砕機
JPH1157515A (ja) * 1997-08-25 1999-03-02 Mitsubishi Heavy Ind Ltd 回転式分級機
WO2009041628A1 (ja) * 2007-09-27 2009-04-02 Babcock-Hitachi Kabushiki Kaisha 分級装置及びそれを備えた竪型粉砕装置ならびに石炭焚ボイラ装置
JP2014042900A (ja) * 2012-08-28 2014-03-13 Mitsubishi Heavy Ind Ltd 回転式分級機及び竪型ミル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812668B2 (ja) * 2010-05-14 2015-11-17 三菱日立パワーシステムズ株式会社 回転式分級機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192606A (ja) * 1996-01-23 1997-07-29 Ishikawajima Harima Heavy Ind Co Ltd 回転式分級機
JPH10323574A (ja) * 1997-05-27 1998-12-08 Ube Ind Ltd 竪型粉砕機
JPH1157515A (ja) * 1997-08-25 1999-03-02 Mitsubishi Heavy Ind Ltd 回転式分級機
WO2009041628A1 (ja) * 2007-09-27 2009-04-02 Babcock-Hitachi Kabushiki Kaisha 分級装置及びそれを備えた竪型粉砕装置ならびに石炭焚ボイラ装置
JP2014042900A (ja) * 2012-08-28 2014-03-13 Mitsubishi Heavy Ind Ltd 回転式分級機及び竪型ミル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113426530A (zh) * 2021-07-07 2021-09-24 郑州沃特节能科技股份有限公司 一种超细复合微粉制备装置及其方法

Also Published As

Publication number Publication date
KR20180100637A (ko) 2018-09-11
JP2017140573A (ja) 2017-08-17
CN108602094A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2017138302A1 (ja) 分級機、粉砕分級装置及び微粉炭焚きボイラ
KR101159152B1 (ko) 분급 장치 및 이것을 구비한 스탠드형 분쇄 장치, 및 석탄 연소 보일러 장치
KR101131539B1 (ko) 분급기, 상기 분급기를 구비한 수직형분쇄기, 및 상기수직형분쇄기를 구비한 석탄분보일러장치
CN107847984B (zh) 分级机、粉碎分级装置及粉煤焚烧炉
EP2502680A1 (en) Vertical roller mill
JP2009189909A (ja) ローラミル構造
WO2022209456A1 (ja) 分級機及び発電プラント並びに分級機の運転方法
KR102111226B1 (ko) 분쇄 장치, 분쇄 장치의 스로트 및 미분탄 연소 보일러
WO2015064185A1 (ja) 竪型ローラミル
WO2017138294A1 (ja) 粉砕装置及び微粉炭焚きボイラ
WO2015049912A1 (ja) 竪型ローラミル
JP4562871B2 (ja) 分級装置および竪型ミル
JP2742066B2 (ja) 回転分級式微粉砕機
TWI671132B (zh) 分級機、直立式粉碎機以及燃煤鍋爐
JP6165593B2 (ja) 竪型ローラミル
JP2011240233A (ja) 竪型粉砕装置ならびに石炭焚ボイラ装置
JP4272456B2 (ja) 分級機及びそれを備えた竪型粉砕機、石炭焚ボイラ装置
JP2006231112A (ja) 粉砕機
JP6045478B2 (ja) 竪型ローラミル
JPH02152582A (ja) 回転分級機を備えたミル
JPS61178044A (ja) 竪型粉砕機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187022596

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022596

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750027

Country of ref document: EP

Kind code of ref document: A1