WO2017135162A1 - 水処理装置、水処理装置の運転方法及び水処理方法 - Google Patents

水処理装置、水処理装置の運転方法及び水処理方法 Download PDF

Info

Publication number
WO2017135162A1
WO2017135162A1 PCT/JP2017/002905 JP2017002905W WO2017135162A1 WO 2017135162 A1 WO2017135162 A1 WO 2017135162A1 JP 2017002905 W JP2017002905 W JP 2017002905W WO 2017135162 A1 WO2017135162 A1 WO 2017135162A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
foam
solid
separation device
treated
Prior art date
Application number
PCT/JP2017/002905
Other languages
English (en)
French (fr)
Inventor
島村 和彰
益啓 林
良介 秦
Original Assignee
水ing株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水ing株式会社 filed Critical 水ing株式会社
Priority to JP2017565520A priority Critical patent/JP6613323B2/ja
Publication of WO2017135162A1 publication Critical patent/WO2017135162A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment apparatus that removes turbidity and organic matter in water to be treated.
  • Water treatment applied especially to desalination of seawater and brackish water, reuse and treatment of oil-containing wastewater such as associated water, purification of lake water containing oils and algae that are easily separated by bubbles and foam, reuse of factory wastewater, etc.
  • It is an apparatus, Comprising: It is related with the water treatment apparatus which removes turbidity and organic substance from to-be-processed water, its operating method, and a water treatment method.
  • the RO membrane is equipped with a solid-liquid separation device such as a sand filtration device, an agglomerated sand filtration device, a pressurized flotation device, a microfiltration membrane (MF membrane), or a ultrafiltration membrane (UF membrane) in front of the RO. Pretreatment is performed to remove substances that lower the pH.
  • the RO membrane is washed with an acid cleaner such as citric acid or an alkali cleaner such as sodium hydroxide to restore the processing performance. It is difficult to make it. Further, since the apparatus cannot be operated during the cleaning of the RO membrane, the apparatus operating time is shortened, the amount of fresh water is reduced, and the membrane deteriorates due to contact with cleaning chemicals.
  • a combination of an agglomerated sand filtration device and a UF membrane or a combination of a pressurized flotation device and a UF membrane may be used, but the solid-liquid separation device has two stages. The decline in the water recovery rate cannot be eliminated, and also leads to an increase in construction costs.
  • the desired performance may be caused by a decrease in the processing performance of the sand filtration device, the coagulated sand filtration device, or the pressure levitation device, or clogging of the MF membrane or UF membrane. In many cases, the amount of water treatment cannot be obtained.
  • Patent Document 1 As a method for removing TEP from seawater, a method is proposed in which magnetic particles are added to seawater, the magnetic particles are attached to TEP, and TEP attached to the magnetic particles by magnetic separation is removed from seawater (Patent Document 1). .
  • the method disclosed in Patent Document 1 requires addition of magnetic particles and magnetic separation equipment, and requires maintenance of not only the membrane separation apparatus but also the magnetic separation equipment, resulting in an increase in cost.
  • Patent Document 2 A method has been proposed in which a polytetrafluoroethylene membrane having a pore diameter of 1 ⁇ m or more is used as a pretreatment filtration device, and raw water is passed at a predetermined flux (Patent Document 2).
  • Patent Document 2 the method disclosed in Patent Document 2 requires the use of a specific membrane and control of the flux, and cleaning and removal of TEP trapped on the surface of the pretreatment membrane.
  • Patent Document 3 As a pretreatment, a method is proposed in which an alkaline solution of a special novolac-type phenolic resin is added as a flocculant to the membrane feed water supplied to the reverse osmosis membrane device and agglomerated and removed (Patent Document 3).
  • Patent Document 3 it is necessary to use a special flocculant, and there is a problem that the generated sludge must be disposed of.
  • the permeation of the reverse osmosis membrane device It has been disclosed that water can be stably formed over a long period of time by selectively and efficiently removing a surfactant that causes a decrease in flow rate in the previous stage of RO membrane treatment (Patent Document). 4).
  • the bubble column alone does not provide sufficient RO supply water quality, and a membrane filtration device may be installed at the subsequent stage of the bubble column, and in this case, the water recovery rate is reduced.
  • the present applicant generates a bubble in seawater taken, collects the TEP-containing bubbles formed by adsorbing the TEP component in the bubbles, collects them on the surface of the water, and removes them as a TEP-containing foam.
  • a reverse osmosis membrane treatment device for desalinating seawater from which TEP components have been removed, and a MF membrane, UF The seawater desalination apparatus provided with the filtration apparatus formed by filling at least 1 sort (s) selected from a film
  • Patent Document 5 there is a description that the TEP component is removed by the foam separation device, but there is no description for algae, oil, red tide, and the like, and the washing water discharged from the above-described filtration device is pre-staged. There is no description of processing with a foam separation apparatus.
  • the pretreated treated water SDI Silt Density Index: suspended in the water supplied to the membrane module
  • the index for quantifying suspended substances: silt concentration index (ASTM D 4189-95)) was reduced to 5 or less, preferably 4 or less, but it was not possible to avoid a decrease in processing performance of the reverse osmosis membrane. .
  • JP 2010-58080 A Japanese Patent No. 5019276 International Publication 2013/099857 JP 2005-230775 A International Publication WO2014 / 181583
  • An object of the present invention is to provide a water treatment apparatus and a water treatment method capable of improving the water recovery rate while reducing capital investment and / or operation and maintenance costs.
  • an object of the present invention is to provide a water treatment apparatus and a water treatment method that can reduce the amount of concentrated water discharged from the entire system.
  • the present inventors found that transparent and highly adhesive jelly-like organic substances, TEP, humic substances and other soluble organic substances attached to the RO membrane that cannot be measured by SDI evaluation of treated water obtained by conventional pretreatment. Ascertaining that the processing performance of the RO membrane has been lowered, the present invention has been completed.
  • the present invention provides a water treatment apparatus and a water treatment method for removing these soluble organic substances.
  • Embodiments of the present invention are as follows.
  • a solid-liquid separation device that removes at least turbid components and organic matter of water to be treated;
  • a foam separator for concentrating and separating at least sticky turbid components and organic substances contained in the washing waste water from the solid-liquid separator;
  • a washing drainage water pipe for introducing the washing wastewater from the solid-liquid separation device into the foam separation device;
  • a water treatment apparatus comprising: [2] a solid-liquid separator that removes at least turbid components and organic matter of the water to be treated;
  • a foam separator for concentrating and separating at least sticky turbid components and organic substances contained in the washing waste water from the solid-liquid separator;
  • a washing drainage water pipe for introducing the washing wastewater from the solid-liquid separation device into the foam separation device;
  • a separated water feed pipe for reintroducing the separated water which is the treated washing waste water from the foam separation device into the solid-liquid separation device;
  • a water treatment apparatus comprising: [3] The solid-liquid separation device is at
  • the foam separation device includes a reaction tower for mixing the water to be treated and bubbles, a pipe for introducing the water to be treated into the reaction tower, a means for introducing bubbles into the reaction tower, and an overflow from the reaction tower.
  • the reactor is equipped with overflowing water discharging means for discharging flowing water, and the reaction tower has a concentrating part for densifying and concentrating the foam containing turbid components and organic matter and / or the foam in a predetermined area on the water surface.
  • the water treatment apparatus according to any one of [1] to [3], which includes a foam collection unit to collect and a foam removal unit.
  • a method for operating a water treatment apparatus including a solid-liquid separation apparatus and a foam separation apparatus for removing at least turbid components and organic matter of water to be treated, At the time of backwashing of the solid-liquid separation device, the cleaning wastewater discharged from the solid-liquid separation device is introduced into the foam separation device, and at least the sticky turbid components and organic substances contained in the washing wastewater by the foam separation device.
  • a method for operating a water treatment apparatus wherein concentrated water obtained by concentrating and separating water is discharged as a small amount of overflow water.
  • a method for operating a water treatment device including a solid-liquid separation device and a foam separation device for removing at least turbid components and organic matter of water to be treated, At the time of backwashing of the solid-liquid separation device, the cleaning wastewater discharged from the solid-liquid separation device is introduced into the foam separation device, and at least the sticky turbid components and organic substances contained in the washing wastewater by the foam separation device The concentrated water separated and concentrated is discharged as a small amount of overflow water, A method for operating a water treatment apparatus, characterized in that separated water, which is treated washing wastewater from the foam separation apparatus, is reintroduced into the solid-liquid separation apparatus.
  • a solid-liquid separator, a foam separator, a reverse osmosis membrane device A permeated water feed pipe for sending the permeated water from the solid-liquid separator to the foam separator, a separated water feed pipe for feeding the separated water from the foam separator to the reverse osmosis membrane device, And a desalting treatment with the reverse osmosis membrane device after treating the permeated water from the solid-liquid separation device with the foam separation device.
  • the solid-liquid separation device is selected from a sand filtration device, a biofilm filtration device, a membrane filtration device, a membrane bioreactor, and any combination thereof.
  • the solid-liquid separator includes at least a membrane bioreactor, The water treatment apparatus according to [1] or [2], comprising a foam-containing concentrated water feed pipe that returns foam-containing concentrated water from the foam separation device to the membrane bioreactor. [4] The water treatment apparatus according to any one of [1] to [3], further comprising a concentrated water supply pipe that returns the concentrated water from the reverse osmosis membrane to the foam separator.
  • a solid-liquid separation step for obtaining permeated water by solid-liquid separation of the water to be treated for obtaining permeated water by solid-liquid separation of the water to be treated;
  • a water treatment method comprising: [6] The water treatment method according to [5], wherein the SDI of the permeated water is 5 or less.
  • a residence time of the permeated water in the foam separation step is 0.5 to 10 minutes.
  • the washing waste water from the solid-liquid separator is concentrated and separated by the foam separator, and the separated water is again introduced into the solid-liquid separator, thereby increasing the water recovery rate and concentrating from the entire system. Water discharge can be reduced.
  • the permeated water in which the SDI from the solid-liquid separator is reduced is processed by the foam separator, and the separated water is introduced into the reverse osmosis membrane device, thereby reducing the performance of the reverse osmosis membrane device.
  • the water recovery rate is increased, and air only needs to be introduced into the foam separation device, so that the amount of concentrated water discharged from the entire system can be reduced.
  • the concentrated water from the foam separation device is returned to the solid-liquid separation device, and the permeated water from the solid-liquid separation device is again introduced into the foam separation device, so that the concentrated water from the entire system can be obtained. Emissions can be reduced.
  • the foam separation device used in the present invention has an extremely short residence time of 1/10 as compared with a pressurized flotation device which is a similar technique, and can extremely downsize the device. Further, by combining with a solid-liquid separation device, it is possible to cope with load fluctuations more efficiently than with a solid-liquid separation device alone. Furthermore, it is possible to greatly reduce the capital investment and / or operation and maintenance costs and the installation area, compared to installing two stages of solid-liquid separators.
  • the water treatment device of the present invention is a solid-liquid separation device that obtains permeated water by removing at least turbid components and organic substances from the water to be treated, and concentrates and separates at least sticky turbid components and soluble organic substances from the water to be treated.
  • a separated water feed pipe for supplying the separated water from the foam separating device to the solid-liquid separating device, and at the time of backwashing, the solid-liquid A washing drainage water supply pipe for supplying the washing wastewater from the separation device to the foam separation device, and discharging the concentrated water from the foam separation device as a small amount of overflow water, or (2) the solid-liquid separation device
  • the permeated water water supply pipe that supplies the permeated water from the foam separation apparatus to the foam separation apparatus, and the concentrated water supply pipe that returns the concentrated water from the foam separation apparatus to the solid-liquid separation apparatus.
  • the water treatment apparatus of the present invention can be applied to pretreatment for reverse osmosis membrane treatment.
  • the water treatment device of the present invention preferably further comprises a reverse osmosis membrane device to which (1) permeated water from the solid-liquid separator or (2) separated water from the foam separator is supplied.
  • the separated water from the foam separator is solid-liquid separated with a solid-liquid separator
  • a normal operation in which the permeated water from the solid-liquid separation device is desalted in the reverse osmosis membrane device, and a backwash operation in which the solid-liquid separation device is backwashed and the washing wastewater is introduced into the foam separation device and concentrated and separated.
  • the separation water from the washing waste water in the foam separation device is again introduced into the solid-liquid separation device as the water to be treated for solid-liquid separation, and the permeated water from the solid-liquid separation device is desalted with a reverse osmosis membrane. Good.
  • the water to be treated is solid-liquid separated by a solid-liquid separator, and then the permeated water from the solid-liquid separator is concentrated and separated by a foam separator. Then, the concentrated water from the foam separation device is returned to the solid-liquid separation device, and the normal operation in which the separation water from the foam separation device is desalted by the reverse osmosis membrane device, and the reverse washing to backwash the solid-liquid separation device. Switch between washing operation.
  • Solid-liquid separator As solid-liquid separation devices, sand filtration devices, agglomerated sand filtration devices, microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), biofilm filtration devices, membrane bioreactors (MBR), etc.
  • the solid-liquid separation apparatus used can be used suitably.
  • Sand filter is filled with filter media.
  • porous materials such as sand, anthracite, glass, garnet, activated carbon, and fiber member can be used without limitation.
  • membrane materials for microfiltration membranes or ultrafiltration membranes polyethylene (PE), polypropylene (PP), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyethersulfone (PES), polysulfone (PS), acetic acid
  • PE polyethylene
  • PP polypropylene
  • PVDF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PES polyethersulfone
  • PS polysulfone
  • acetic acid examples thereof include organic materials such as cellulose (CA), and inorganic materials such as ceramic and metal. It is preferable that it is excellent in chemical resistance, and PVDF is suitable.
  • the pore diameter of the membrane is preferably 0.001 ⁇ m to 1 ⁇ m.
  • a hollow fiber, a tubular, a flat membrane, or the like can be adopted, but a pressure type cylindrical module made of a hollow fiber membrane is preferable.
  • Biofilm filtration device is a filtration device formed by breeding organisms on a filter medium to form a biofilm on the surface of the filter medium.
  • a filter medium a filter medium used in a normal biofilm filtration apparatus for water treatment can be used without limitation, and porous materials such as sand, anthracite, glass, garnet, activated carbon, and fiber members can be used.
  • Living organisms inhabit the surface of the filter medium, and attach or biologically remove organic substances derived from the water to be treated.
  • the membrane bioreactor is a device for separating treated water and activated sludge by installing a separation membrane such as a hollow fiber or flat membrane-shaped microfiltration membrane or ultrafiltration membrane in an activated sludge treatment tank.
  • a separation membrane such as a hollow fiber or flat membrane-shaped microfiltration membrane or ultrafiltration membrane.
  • the foam separation process is different from the conventionally used pressure flotation separation.
  • Pressurized flotation separation adds flocculant, pressurizes in a state where air and water coexist, supersaturates and dissolves air in water, and then returns to atmospheric pressure to convert supersaturated dissolved air into a large number of fine bubbles. It is a method of collecting and removing suspended solids that appear and trapped floating substances in the fine bubbles and floating on the water surface.
  • Fine bubbles usually referred to as microbubbles having a bubble diameter of 30 ⁇ m to 50 ⁇ m, are adhered around the flocs of the suspended substance.
  • the rising speed of the fine bubbles is slow, the liquid residence time is 20 minutes or more, the bubbles may break during the rising, and the insoluble suspended matter may settle.
  • the foam separation treatment is performed for 0.5 to 10 minutes, preferably about 2 minutes, as a foam in which dissolved organic matter, fine turbid components, etc. are adsorbed on the surface of fine bubbles having a bubble diameter of 50 ⁇ m to 2 mm.
  • the liquid is raised to the liquid level within a short period of time, and organic substances adsorbed from the foam and fine turbid components are separated from the liquid as foam.
  • the ratio of gas to liquid introduced in the foam separation process (gas-liquid ratio) is preferably 0.1 to 2. If the gas / liquid ratio is less than 0.1, the removal performance is poor, and even if the gas / liquid ratio exceeds 2, the treatment performance is not improved and the gas supply amount becomes excessive.
  • the processing capacity in the foam separator can be controlled by adjusting the amount of air introduced. That is, when the water quality is poor, the gas-liquid ratio can be increased, and when the water quality is good, the gas-liquid ratio can be decreased and economical operation can be performed.
  • the foam separation apparatus comprises a reaction tower that mixes water to be treated containing a component to be treated and bubbles, an introduction pipe for water to be treated into the reaction tower, means for introducing bubbles into the reaction tower, and overflow water from the reaction tower. Equipped with overflowing water discharge means.
  • a foam containing a turbid component and a transparent and highly sticky jelly-like organic substance, a soluble organic substance such as TEP or humic substance is densified and concentrated, and the foam is placed on the water surface.
  • a concentration removal unit is provided for collecting the bubbles in the predetermined area and removing the foam.
  • a concentration unit for densifying and concentrating the foam in the upper part of the reaction tower a foam collection unit for collecting the foam in a predetermined region on the water surface, and a foam removal unit are separately provided. May be provided. Further, a spray nozzle for defoaming may be provided in the concentration removal unit, the concentration unit, the foam collection unit, or the foam removal unit installed in the upper part of the reaction tower.
  • the introduction of bubbles in the foam separator may be performed by dropping the water to be treated into the reaction tower or by causing the water to be treated to collide with a collision member provided inside the reaction tower.
  • the air diffuser, the aeration device, the agitating aerator, the ejector, or the microbubble generator may be used.
  • an aeration device, an aeration device, an agitating aerator, an ejector, and an ultrafine bubble generator are arranged at the bottom of the reaction tower to generate convection in the reaction tower, thereby collecting the foam in a predetermined area. You can also.
  • the bubble diameter is preferably 10 ⁇ m or more and 2 mm or less.
  • the bubble rising speed is slow, so the volume of the reaction tower becomes large, and when the bubble diameter exceeds 2 mm, the specific surface area becomes small and it is difficult to ensure a sufficient bubble surface area. Become.
  • the water to be treated and bubbles are brought into contact with each other, and turbid components contained in the water to be treated and transparent and highly sticky jelly-like organic substances, soluble organic substances such as TEP and humic substances are attached to the bubbles. .
  • soluble organic substances such as TEP and humic substances
  • OH ⁇ , Cl ⁇ , and COO ⁇ are concentrated and negatively charged, and turbid components derived from the water to be treated, organic matter and oil are electrically neutralized or repelled, or ions It is easy to be adsorbed on the bubble surface by exchange.
  • Foam with adsorbed turbid components and organic matter (especially transparent and highly sticky jelly-like organic matter and TEP components and humic substances such as humic substances) in the bubbles has a large rising speed due to the large bubble diameter. Surfaces in the water in a short time.
  • the concentration removal portion of the reaction tower has a shape having a cross-sectional area that decreases upward from the bottom of the reaction tower main body. Or you may provide the inclination partition which collects the foam which floated on the water surface in the predetermined area
  • the foam concentrates in a narrow region, and turbidity components, transparent and highly sticky jelly-like organic matter, soluble organic matter such as TEP and humic substances, and The contact frequency between oil and bubbles increases, and a high-density foam in which these components to be removed are concentrated.
  • the concentration / separation unit converts the turbid component derived from the water to be treated, the transparent and highly sticky jelly-like organic matter, the soluble organic matter such as TEP and humic substances, and the foam adsorbed with oil into foam and concentrated water. Separate and drain the concentrated water as overflow water.
  • the amount of overflow water is usually in the range of 0.1% to 10% with respect to the treated water. However, the smaller the overflow water amount, the higher the water recovery rate, so 0.1% or more and 5% or less. Preferably, 0.1% or more and 1% or less are more preferable.
  • a concentrated water feed pipe for returning the separated concentrated water to the solid-liquid separator may be connected to the concentrated separation unit. In this case, since the entire amount of concentrated water can be reused, the water recovery rate is further improved.
  • the reverse osmosis membrane device is a semipermeable membrane capable of obtaining a very high desalination rate, and includes a reverse osmosis membrane composed of a cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer, or the like.
  • SDI Silicon Density Index
  • ASTM D 4189-95 reverse osmosis method
  • MF microfiltration membrane
  • the water treatment device of this embodiment is a solid-liquid separation device that obtains permeated water by removing at least turbid components and organic substances from the water to be treated, and concentrates at least sticky turbid components and soluble organic substances from the water to be treated.
  • a drainage pipe for introducing wastewater into the foam separator, wherein the concentrated water from the foam separator is discharged as a small amount of overflow water.
  • the separation water pipe also functions as a pipe for reintroducing the treated washing wastewater from the foam separation device into the solid-liquid separation device during backwashing.
  • the arrangement of the solid-liquid separation device and the foam separation device is such that the washing wastewater from the solid-liquid separation device is introduced into the foam separation device at the time of backwashing, and the treated washing wastewater from the foam separation device is discharged out of the device.
  • Any arrangement that can be reintroduced into the liquid separator is acceptable, and the flow direction of the water to be treated during normal operation is not limited.
  • the arrangement may be such that the solid-liquid separation device is provided upstream and the foam separation device is provided downstream, or the foam separation device is provided upstream and the solid-liquid separation device is provided downstream.
  • the water treatment apparatus of the present invention can be applied to pretreatment for reverse osmosis membrane treatment.
  • the permeated water from the solid-liquid separation device can be disposed for subsequent water treatment such as a reverse osmosis membrane.
  • a reverse osmosis membrane (RO) device is provided on the downstream side of the solid-liquid separator, sticky turbid components, soluble organic matter and oil are removed from the water to be treated by the foam separator, and then the solid-liquid After the turbid components, organic matter, oil, etc. are sufficiently removed from the water to be treated by the separation device, the water to be treated flows into the reverse osmosis membrane device, thus preventing the reverse osmosis membrane device from being clogged and improving the water recovery rate. Not only the improvement, but also the time for stopping the water treatment device for backwashing is shortened, and the desalting effect is improved.
  • the permeated water from the solid-liquid separator is foamed if the permeated water contains an adhesive turbid component or soluble organic substance. It can be set as the arrangement
  • positioning used for subsequent water treatments such as a reverse osmosis membrane, after processing with a separator.
  • the permeated water may contain sticky turbid components and soluble organic substances that cannot be evaluated by SDI. Since these adhesive turbid components and soluble organic substances block the reverse osmosis membrane, it is preferable to treat with a foam separation device before introducing the permeated water into the reverse osmosis membrane.
  • a water treatment device in which a solid-liquid separation device is arranged downstream of the foam separation device
  • water to be treated containing turbid components, organic substances, oil, etc. is firstly foam-separated by the foam separation device.
  • the separated water after the foam separation treatment is introduced into a solid-liquid separation device to perform solid-liquid separation.
  • the foam separation device concentrates by adsorbing turbid components, organic substances, oil, and the like to the foam, it has a higher concentration ratio than other concentration devices.
  • turbid components, organic matter, oil, and the like that could not be removed by the foam separator are precisely filtered.
  • the permeated water from the solid-liquid separation device is further processed by a device provided at a later stage such as a reverse osmosis membrane device.
  • a water treatment device in which a solid-liquid separation device is arranged upstream of the foam separation device, during normal operation, water to be treated containing turbid components, organic substances, oil, etc. is solid-liquid separated by the solid-liquid separation device. Then, the permeated water is further processed by a device provided at a subsequent stage such as a reverse osmosis membrane device.
  • the permeated water that has been subjected to solid-liquid separation contains soluble organic substances derived from the water to be treated. For example, some organic substances containing hydrophobic groups, organic substances containing hydrophobic groups and hydrophilic groups, organic substances containing hydrophilic groups, and glycoproteins cannot be removed by solid-liquid separation. In the water treatment method of the present invention, these dissolved organic substances can be separated and removed by foam separation treatment without flocking by adding a flocculant.
  • Examples of water to be treated in the water treatment apparatus and method of the present invention include brackish water and seawater, oil-containing wastewater such as associated water, lake water containing algae, and factory wastewater.
  • Seawater or brackish water is not only salt water but also contains a lot of turbidity and soluble organic matter depending on the water intake area.
  • most of the salt water is permeated and discharged, but turbid components and some soluble organic substances accumulate in the filter medium, the filtration membrane surface and the filtration membrane module.
  • Turbid components organic substances (especially transparent and highly sticky jelly-like organic substances, soluble organic substances such as TEP components and humic substances) and oils (hereinafter referred to as “humid substances”) contained in the water to be treated and accumulated in filter media and filtration membranes.
  • the component to be treated is also included in the washing waste water during backwashing.
  • wash water is introduced from the permeate outlet side of the solid-liquid separator, and the wash water is circulated in the direction opposite to that during normal operation, and all or part of the wash wastewater is separated from the foam separator. It is introduced to the side and the washing waste water is circulated in the direction opposite to that during normal operation.
  • the washing waste water from the solid-liquid separation device contains residual substances peeled off from the filter medium or filtration membrane of the solid-liquid separation device. These residual substances are substances derived from turbid components, organic substances, oils and the like having adhesiveness in the water to be treated, and similarly having adhesiveness.
  • the washing wastewater introduced into the foam separator is adsorbed on the bubble surface supplied from the bottom of the reaction tower in the same manner as in the normal operation to form a large foam, and quickly rises to the surface of the water. It concentrates in a concentration part, a foam collection part, or a foam removal part, and is isolate
  • the permeated water after returning to the solid-liquid separation device and solid-liquid separation again is used as the latter stage. It can also use for the desalination process by a reverse osmosis membrane apparatus.
  • washing wastewater containing turbid components, organic matter, oil, etc. removed from the solid-liquid separation device is generated, but conventionally it was discharged out of the device as washing wastewater as it is.
  • the entire amount or part of the washing waste water from the solid-liquid separation device is introduced into the foam separation device and processed, and the turbid components, organic substances, oil, etc. contained in the washing waste water are removed as foam.
  • the treated water is re-introduced into the solid-liquid separator and separated into solid and liquid, it is returned to the original route for water treatment such as desalination by reverse osmosis membrane and reused, so that the amount of water discarded as washing wastewater can be reduced.
  • the water recovery rate can be remarkably improved.
  • the water to be treated is treated with a foam separator, and then the separated water from the foam separator is solid-liquid separated with a solid-liquid separator.
  • Normal operation in which the permeated water from the solid-liquid separation device is desalted by the reverse osmosis membrane device, or the water to be treated is solid-liquid separated by the solid-liquid separation device, and then the permeated water from the solid-liquid separation device is foamed.
  • the switching to the backwash operation may be performed when the rising speed of the inflow pressure of the water to be treated into the solid-liquid separator is measured, and may be switched when a predetermined value is exceeded, or may be switched when a predetermined time elapses.
  • the foam separation treatment is performed under conditions suitable for the properties of the water to be treated. Can do.
  • a flocculant may be added to the foam separator, and the amount of flocculant added to the foam separator is changed according to the rising speed of the inflow pressure of the water to be treated into the solid-liquid separator,
  • the foam separation treatment can be performed under conditions suitable for the properties of the water to be treated.
  • the solid-liquid separation device is a filtration device filled with filter media
  • switching to backwash operation based on fluctuations in the inflow pressure of treated water or separation water will exceed the threshold value by detecting the increase / decrease rate of water head pressure. Can be done.
  • the solid-liquid separation device is a membrane filtration device that uses a filtration membrane
  • switching to backwashing operation based on fluctuations in the inflow pressure of treated water or separation water is the difference in pressure between the inlet side pressure and the outlet side pressure of the filtration membrane (membrane Or the pressure on the inlet side (when the pressure on the outlet side is zero) and the threshold value is exceeded.
  • the set transmembrane pressure difference is 0 kPa to 100 kPa, preferably 0 kPa to 60 kPa, particularly preferably 0 kPa to 45 kPa.
  • a set pressure that sufficiently subtracts the increase in resistance due to the component and simply reduces the pressure to the resistance of only the membrane filtration resistance and the piping resistance is preferable.
  • the set transmembrane pressure difference is preferably 25 to 28 kPa.
  • the backwashing can be performed by using a method of forcibly backwashing for a predetermined time in addition to a method of backwashing with transmembrane pressure. Even when the quality of treated water or separated water is very clean and there is almost no change in the transmembrane pressure difference over time, organic substances etc. accumulate partially and become consolidated until the pressure fluctuation of the entire filtration membrane does not occur. Therefore, performing regular backwashing is effective in achieving long-term operation of the filtration membrane.
  • Backwashing is performed by passing wash water from the permeate side to the supply side of the filtration membrane to peel off turbid components and some soluble organic substances accumulated on the membrane surface. At this time, a more effective cleaning effect can be obtained by scrubbing air into the module. Although scrubbing is effective when carried out alone, it may be used in combination with backwashing. The scrubbing time can be any time, but is generally about 10 seconds to 5 minutes. Further, a chlorine-based oxidizing agent such as sodium hypochlorite is usually added to the cleaning liquid for cleaning the filtration membrane surface and filtration membrane module in which turbid components and soluble organic substances contained in the water to be treated are accumulated. The amount of the chlorinated oxidant added is usually in the range of 1 mg / L to 100 mg / L, although it depends on the quality of seawater and brackish water.
  • FIG. 1 shows, as an example, one aspect of a water treatment apparatus in which a sand filtration apparatus 10 as a solid-liquid separation apparatus is disposed downstream of a foam separation apparatus 20.
  • the normal operation for supplying the separated water of the foam separator 20 to the upper part of the sand filter 10 and solid-liquid separation, and the washing waste water of the sand filter 10 are supplied to the foam separator 20.
  • the backwash operation for concentration and separation can be switched.
  • water to be treated containing turbid components, organic matter, oil, and the like is supplied to the foam separation device 20 for foam separation, and then the separated water after the foam separation treatment is passed through the separated water feed pipe 26 to the sand filtration device. 10 and solid-liquid separation.
  • the sand filtration device 10 precisely filters turbid components, organic matter, oil, and the like that could not be removed by the foam separation device 20.
  • the former foam separation apparatus 20 can roughly remove turbid components derived from the water to be treated, transparent and highly sticky jelly-like organic substances, TEP, humic and other soluble organic substances, and oil. Since the pollution load applied to the sand filtration device 10 is reduced, the frequency of cleaning the sand filtration device 10 can be reduced.
  • the foam separation apparatus 20 includes a water supply pipe 21 to be treated for introducing the water to be treated, an air introduction pipe 22 for introducing air for generating bubbles, and a reaction tower 23 for bringing the water to be treated into contact with the bubbles.
  • a concentration removal unit or concentration unit, foam collection unit and foam removal unit, hereinafter collectively referred to as “concentration removal unit”) 24 for concentrating and removing the foam, and concentrated water containing the foam
  • a concentrated water feed pipe 25 for discharging and a separated water feed pipe 26 for discharging separated water are included.
  • the separated water feed pipe 26 is connected to the sand filtration device 10 provided downstream.
  • Sand filter 10 is filled with filter medium 16.
  • the separated water from the foam separating apparatus 20 supplied via the separated water feed pipe 26 is solid-liquid separated.
  • the sand filter 10 includes an air introduction pipe 12 for supplying air to the filter medium 16, a permeate water feed pipe 13 for discharging permeate, a wash water feed pipe 14 for feeding wash water during back washing, and back washing.
  • a cleaning drainage water pipe 15 for discharging the cleaning drainage and a pressure gauge (water head pressure measuring device) 17 are connected.
  • the sand filtration device is equipped with a pressure gauge (hydraulic pressure measuring device) 17, which measures the hydraulic head pressure that rises due to accumulation of turbidity components and the like in the gaps in the filter medium 16 as the filtration proceeds.
  • the filter medium is washed when the target or predetermined head pressure is reached.
  • the washing frequency can be any number of times depending on the water quality, but is preferably about 0.1 times / day or more and 5 times / day or less.
  • washing water is introduced into the sand filtering device 10 from the washing water feed pipe 14, and the filtering medium 16 is washed by passing the washing water in the opposite direction to that during normal operation, and is accumulated in the gaps of the filtering medium.
  • Remove turbid components The whole or a part of the washed waste water containing the separated turbid components and the like is introduced into the reaction tower 23 of the foam separator 20 through the washed waste water pipe 15.
  • the washing wastewater contains more turbid components than normal treated water, the washing wastewater is temporarily stored before being introduced into the foam separation device 20 and is stored in the foam separation device 20 at a low flow rate. It is preferable to introduce.
  • the washing wastewater introduced into the foam separation device 20 comes into contact with bubbles supplied from the bottom of the reaction tower 23. Turbidity components and the like in the washing wastewater are adsorbed on the bubble surface and quickly rise as a large foam.
  • the foam that has reached the water surface of the reaction tower 23 is concentrated in the concentration removing unit 24 and separated into concentrated water containing foam containing an adhesive substance and separated water.
  • the concentrated water is discharged out of the reaction tower 23 as overflow water.
  • the separated water after the foam separation process is reintroduced into the sand filtration device 10 via the separated water feed pipe 26 and subjected to solid-liquid separation. Alternatively, the separated water may be used as washing water for the sand filtration device 10.
  • the processing capacity of the foam separation device 20 can be controlled by adjusting the amount of air to be introduced.
  • the rate of increase of the water head pressure in the sand filtration device 10 varies depending on the water quality, but is about 1 kPa / day or more and 50 kPa / day or less, and when the water quality is good (that is, the amount of flocculant added is small), preferably 10 kPa / day or less, preferably When it is 5 kPa / day or less and the water quality is poor (that is, the amount of the flocculant added is large), it is often 20 kPa / day or more.
  • the gas-liquid ratio of the foam separator is preferably about 0.1 to 2, and more preferably about 0.4.
  • the gas-liquid ratio is set to 0.4, and when the rate of increase of the hydraulic head pressure is 5 kPa / day or less, It is preferable to set the liquid ratio to 0.2 and to set the gas-liquid ratio to 1 when the rate of increase of the hydraulic head pressure is 20 kPa / day or more.
  • a flocculant adding means and a control unit may be provided in the water supply pipe 21 to be treated to the foam separation device 20, and the amount of the flocculant added is controlled according to the fluctuation of the water head pressure.
  • the rate of addition of the flocculant (ferric chloride) to the foam separator when the rate of increase in the water head pressure of the agglomerated sand filter is 5 kPa / day to 20 kPa / day Is set to 5 mg-FeCl 3 / l, the rate of increase of the hydraulic head pressure is 5 kPa / day or less, the rate of addition is set to 0 mg-FeCl 3 / L, and the rate of increase of the hydraulic head pressure is 20 kPa / day or more Is preferably set at 10 mg-FeCl 3 / L.
  • a means for adding a flocculant may be provided in the separated water feed pipe 26.
  • turbid components, organic matter, oil, etc. contained in the separated water of the solid-liquid separator are reduced as compared to the water to be treated, so that not only can the amount of flocculant be added, but also sludge derived from the flocculant. The amount generated can be reduced.
  • FIG. 2 shows an aspect in which the membrane filtration device 110 is used as a solid-liquid separation device, although the configuration is the same as that in FIG.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the normal operation for supplying the separated water from the foam separation apparatus 20 to the lower part of the membrane filtration apparatus 110 and performing solid-liquid separation, and the washing waste water from the membrane filtration apparatus 110 are used as the foam separation apparatus 20. This is performed by switching to the backwashing operation in which the product is supplied to the water and concentrated and separated.
  • the membrane filtration device 110 has a filtration membrane 116.
  • the separated water from the foam separating apparatus 20 supplied via the separated water feed pipe 26 is solid-liquid separated.
  • the membrane filtration device 110 includes an air introduction pipe 112 that supplies air to the filtration membrane 116, a permeate water feed pipe 113 that discharges permeate, a wash water feed pipe 114 that feeds wash water during backwashing, a backwash A cleaning drainage water supply pipe 115 for discharging the cleaning drainage is sometimes connected.
  • a pressure gauge 117 that measures the pressure at the filtration membrane inlet side and the pressure at the outlet side of the filtration membrane of the membrane filtration device 110 and detects the transmembrane pressure difference, which is the difference between the two, and foam based on the detected transmembrane pressure difference
  • a control unit 60 that controls the amount of air supplied to the separation device 20 is provided.
  • the control unit 60 may be configured to automatically control the air supply amount, such as an automatic on-off valve, or to display an instruction for adjusting the air supply amount to an operator.
  • the processing capacity of the foam separation device 20 can be controlled by adjusting the amount of air introduced.
  • the increasing speed of the transmembrane pressure difference of the membrane filtration device 110 is usually about 0.1 kPa / hr to 40 kPa / hr, and is generally about 2 kPa / hr.
  • the gas-liquid ratio of the foam separator is preferably about 0.1 to 2, and more preferably about 0.4. In the present invention, for example, when the rate of increase in transmembrane pressure is 0.5 kPa / hr or more and 5 kPa / hr or less, the gas-liquid ratio is set to 0.4, and the rate of increase in transmembrane pressure is 0.5 kPa.
  • the gas / liquid ratio it is preferable to set the gas / liquid ratio to 0.2 when it is less than / hr, and to set the gas / liquid ratio to 1 when the rate of increase in the transmembrane pressure difference exceeds 5 kPa / hr.
  • the gas-liquid ratio is increased, and the foam separation device 20 is controlled to remove at least sticky turbid components and soluble organic substances.
  • the increasing speed of the transmembrane pressure difference in the membrane filtration device 110 can be maintained at about 2 kPa / hr or less.
  • the rate of increase in the transmembrane pressure difference is low, so there is no need to increase the gas-liquid ratio.
  • the set transmembrane pressure difference is 0 kPa or more and 100 kPa or less, preferably 0 kPa or more and 60 kPa or less, and particularly preferably 0 kPa or more and 45 kPa or less.
  • a set pressure that subtracts an increase in resistance due to a soil component and reduces to an initial pressure that is a pressure due to resistance of only membrane filtration resistance and pipe resistance by one backwashing is preferable.
  • the initial pressure is 20 kPa and a cleaning effect of 8 kPa is obtained by one backwash
  • the set inter-membrane differential pressure for backwashing is preferably 25 kPa or more and 28 kPa or less.
  • washing water is introduced into the membrane filtration device 110 from the washing water feed pipe 114, and the washing water is passed in the opposite direction to that during normal operation to remove turbid components and the like deposited on the filtration membrane 116.
  • the whole or a part of the washed waste water including the separated turbid components and the like is introduced into the reaction tower 23 of the foam separation device 20 through the washed waste water supply pipe 115.
  • the washing wastewater introduced into the foam separation device 20 comes into contact with bubbles supplied from the bottom of the reaction tower 23. Turbidity components and the like in the washing wastewater are adsorbed on the bubble surface and rapidly rise as a large foam.
  • the foam that has reached the water surface of the reaction tower 23 is concentrated in the concentration removing unit 24 and separated into concentrated water containing foam containing an adhesive substance and separated water.
  • the concentrated water is discharged out of the reaction tower 23 as overflow water.
  • the separated water after the foam separation treatment is again introduced into the membrane filtration device 110 via the separated water feed pipe 26 and subjected to solid-liquid separation. Alternatively, the separated water may be used as washing water for the membrane filtration device 110.
  • a chlorine-based oxidant such as sodium hypochlorite can be added.
  • FIG. 3 shows a mode in which a pressure gauge 117 and a control unit 60 for measuring the inlet side pressure of the membrane filtration device are provided, and the amount of the flocculant supplied to the water to be treated before being introduced into the reaction tower 23 of the foam separation device 20 is controlled. Show.
  • the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the control unit 60 replaces the air supply amount to the foam separation device 20 in FIG. 2 or, in addition to the control of the air supply amount, the flocculant into the water to be treated before being introduced into the foam separation device 20. Control the amount added.
  • the increase rate of the transmembrane pressure difference of the membrane filtration device 110 is 0.5 kPa / hr or more and 5 kPa / hr or less.
  • flocculants to foam separation device in the addition ratio of (ferric chloride) is set to 5mg-FeCl 3 / L, 0mg -FeCl the addition rate when the inlet side pressure is less than 0.5 kPa / hr 3 /
  • the addition rate is preferably set to 10 mg-FeCl 3 / L.
  • FIG. 4 shows, as an example, one aspect of a water treatment apparatus in which a sand filtration apparatus 10 as a solid-liquid separation apparatus is disposed upstream of the foam separation apparatus 20.
  • the same components as those of the water treatment apparatus shown in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 4 shows, as an example, one aspect of a water treatment apparatus in which a sand filtration apparatus 10 as a solid-liquid separation apparatus is disposed upstream of the foam separation apparatus 20.
  • the same components as those of the water treatment apparatus shown in FIGS. 1 to 3 are de
  • the treated water introduced through the treated water introduction pipe 11 is passed through the filter medium 16 for solid-liquid separation, and the resulting permeated water is subjected to subsequent water treatment via the permeated water feed pipe 13. It is sent to a device (for example, reverse osmosis membrane device 30).
  • a device for example, reverse osmosis membrane device 30.
  • the foam separation device 20 is bypassed during normal operation and used only during backwashing. Washing wastewater is introduced into the foam separation device 20 via the washing drainage water supply pipe 15 of the sand filtration device 10.
  • the foam separation device 20 includes a concentrated water feed pipe 25 that discharges concentrated water containing foam and a separated water feed pipe 26 that discharges the separated water.
  • the separated water feed pipe 26 is connected to the treated water introduction pipe 11 to the sand filtration apparatus 10 provided upstream, and the separated water can be circulated through the sand filtration apparatus 10.
  • FIG. 5 shows, as an example, one aspect of a water treatment apparatus in which a membrane filtration apparatus 110 as a solid-liquid separation apparatus is disposed upstream of the foam separation apparatus 20.
  • the same components as those of the water treatment apparatus shown in FIGS. 1 to 4 are denoted by the same reference numerals, and description thereof is omitted.
  • Supplying, separating and concentrating, and switching back washing operation which supplies the separation water from the foam separation apparatus 20 to the membrane filtration apparatus 110 are performed.
  • the membrane filtration device 110 includes a treated water introduction pipe 111 for introducing treated water, an air introduction pipe 112 for introducing air, a permeated water feed pipe 113 for discharging treated permeated water, and a washing water feed for introducing washing water. It includes a water pipe 114, a cleaning drainage water supply pipe 115 that discharges cleaning wastewater, and a filtration membrane 116.
  • an inlet-side pressure gauge provided in the treated water transmission pipe 111
  • an outlet-side pressure gauge provided in the permeate water-feeding pipe 113
  • an inlet-side pressure gauge may be used.
  • the treated water introduced through the treated water introduction pipe 111 is passed through the filtration membrane 116 for solid-liquid separation, and the resulting permeated water is passed through the permeated water feed pipe 113 to the downstream water. It is sent to a processing device (for example, reverse osmosis membrane device 30).
  • a processing device for example, reverse osmosis membrane device 30.
  • the foam separation device 20 is bypassed during normal operation and used only during backwashing.
  • the water treatment device of the present embodiment includes a solid-liquid separation device, a foam separation device, a reverse osmosis membrane device, a permeated water feed pipe for feeding permeate from the solid-liquid separation device to the foam separation device, and the A separated water feed pipe for feeding separated water from the foam separator to the reverse osmosis membrane device.
  • the water to be treated is sent to the solid-liquid separation device, the permeated water from the solid-liquid separation device is treated with the foam separation device, and then desalted with the reverse osmosis membrane device.
  • the water treatment device shown in FIG. 6 has a permeate water supply pipe 21 that introduces permeate from the sand filtration device 10 into the foam separation device 20 and a separation that supplies the separation water from the foam separation device 20 to the reverse osmosis membrane device 30.
  • a water supply pipe 26 The same components as those of the water treatment apparatus shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof is omitted.
  • the sand filtration device 10 is provided with a pressure gauge 17 for measuring the water head pressure.
  • a pressure gauge 17 for measuring the water head pressure.
  • the filter medium is washed when the predetermined head pressure is reached.
  • the washing frequency can be any number of times depending on the water quality, but is preferably about 0.1 times / day or more and 5 times / day or less.
  • the processing capacity of the foam separation device 20 can be controlled by adjusting the amount of air introduced.
  • the rate of increase of the water head pressure in the sand filter 10 varies depending on the water quality, but is usually 1 kPa / day or more and 50 kPa / day or less, and is about 10 kPa / day or preferably 5 kPa / day or less when the water quality is good.
  • the amount of air is increased by adjusting the amount of air in the foam separator 20. It is preferable to do this.
  • a bypass line (not shown) sends a part of the permeated water from the sand filter 10 directly to the reverse osmosis membrane device 30 by bypassing the foam separator 20. May be included.
  • the water treatment device of this embodiment is a solid-liquid separation device that obtains permeated water by removing at least turbid components and organic substances from the water to be treated, and concentrates at least sticky turbid components and soluble organic substances from the water to be treated.
  • the water treatment device of the present embodiment preferably further includes a reverse osmosis membrane device to which the separated water from the foam separation device is supplied.
  • the water to be treated is solid-liquid separated by a solid-liquid separator, and then the permeated water from the solid-liquid separator is concentrated and separated by a foam separator. Then, the concentrated water from the foam separation device is returned to the solid-liquid separation device, and the normal operation in which the separation water from the foam separation device is desalted by the reverse osmosis membrane device, and the reverse washing to backwash the solid-liquid separation device. Switch between washing operation.
  • permeate obtained by solid-liquid separation is subjected to foam separation treatment to turbid components, transparent and highly sticky jelly-like organic substances, soluble organic substances such as TEP, humic substances, and oils. Is separated and removed, and then desalted by reverse osmosis membrane treatment.
  • the permeated water that has been subjected to solid-liquid separation contains soluble organic substances derived from the water to be treated (raw water). For example, some organic substances containing hydrophobic groups, organic substances containing hydrophobic groups and hydrophilic groups, organic substances containing hydrophilic groups, and glycoproteins cannot be removed by solid-liquid separation.
  • these dissolved organic substances are separated and removed by foam separation treatment without flocking by adding a flocculant.
  • the foam separation treatment is performed for 0.5 to 10 minutes, preferably about 2 minutes, as a foam in which dissolved organic matter, fine turbid components, etc. are adsorbed on the surface of fine bubbles having a bubble diameter of 50 ⁇ m to 2 mm.
  • the liquid is raised to the liquid level within a short period of time, and organic substances adsorbed from the foam and fine turbid components are separated from the liquid as foam.
  • the ratio of gas to liquid introduced in the foam separation process is preferably 0.1 to 2. If the gas / liquid ratio is less than 0.1, the removal performance is poor, and even if the gas / liquid ratio exceeds 2, the treatment performance is not improved and the gas supply amount becomes excessive.
  • the processing capacity of the foam separation device can be controlled by adjusting the amount of air introduced. That is, when the water quality is poor, the gas-liquid ratio can be increased, and when the water quality is good, the gas-liquid ratio can be decreased and economical operation can be performed.
  • the transmembrane pressure difference (from the pressure on the membrane inlet side to the pressure on the membrane permeate (outlet side) is changed according to the quality of the water to be treated supplied to the membrane treatment device.
  • the increase rate of the transmembrane pressure difference is usually about 0.1 kPa / hr or more and 40 kPa / hr or less, and generally about 2 kPa / hr.
  • the gas-liquid ratio of the foam separator is preferably about 0.1 to 2, and more preferably about 0.4.
  • the increase rate of the transmembrane pressure difference is fast and the organic matter leaking to the permeate increases not a little, so in this embodiment, for example, the increase rate of the transmembrane pressure difference is 0.
  • the gas-liquid ratio is set to 0.4 when the pressure is 5 kPa / hr or more and 5 kPa / hr or less, and the gas-liquid ratio is set to 0.2 when the increase rate of the transmembrane pressure difference is less than 0.5 kPa / hr.
  • the gas-liquid ratio is preferably set to 1.
  • the water treatment device shown in FIG. 7 is a permeated water pipe 21 that introduces permeate from the sand filter 10 into the foam separator 20, and concentrated water that returns the concentrated water from the foam separator 20 to the sand filter 10.
  • the water supply pipe 25 and the separated water water supply pipe 26 that supplies the separation water from the foam separation apparatus 20 to a subsequent processing apparatus, for example, the reverse osmosis membrane apparatus 30 (FIG. 8).
  • the same components as those of the water treatment apparatus shown in FIGS. 1 to 6 are denoted by the same reference numerals, and description thereof is omitted.
  • the sand filtration device 10 is provided with a pressure gauge 17 for measuring the water head pressure.
  • a pressure gauge 17 for measuring the water head pressure.
  • the filter medium is washed when the predetermined head pressure is reached.
  • the washing frequency can be any number of times depending on the water quality, but is preferably about 0.1 times / day or more and 5 times / day or less.
  • the processing capacity of the foam separation device 20 can be controlled by adjusting the amount of air introduced.
  • the rate of increase of the water head pressure in the sand filter 10 varies depending on the water quality, but is usually 1 kPa / day or more and 50 kPa / day or less, and is about 10 kPa / day or preferably 5 kPa / day or less when the water quality is good.
  • the amount of air is increased by adjusting the amount of air in the foam separator 20. It is preferable to do this.
  • a bypass line (not shown) sends a part of the permeated water from the sand filter 10 directly to the reverse osmosis membrane device 30 by bypassing the foam separator 20. May be included.
  • a biological membrane filtration device 40 includes a biological membrane filtration device 40, a sand filtration device 10, a foam separation device 20, and a reverse osmosis membrane device 30.
  • the biofilm filtration device 40 includes a biofilm filter 46, a treated water feed pipe 41 and a treated water pump (not shown) for feeding treated water to the filtration device, and a permeated water feed pipe for discharging permeated water. 43, an air introduction pipe 42 for introducing air, a washing water feeding pipe 44 for introducing washing water, and a washing water feeding pipe 45 for discharging washing water are connected.
  • dissolved oxygen (DO) is contained like the case where treated water is seawater, it is not necessary to supply air.
  • DO dissolved oxygen
  • the activity of organisms attached to the filter medium may be reduced or the organism may be killed. Therefore, air is supplied to the biofilm filter medium 46 through the air introduction pipe 42. To do.
  • the water to be treated contains an oxidizing agent
  • the activity of the organism may be reduced or the organism may be killed by the oxidizing agent, and thus neutralized with a reducing agent or the like.
  • Permeated water from the biofilm filtration device 40 is introduced as treated water for the sand filtration device 10.
  • the permeated water from the sand filtration device 10 is introduced into the foam separation device 20.
  • the foam separation device 20 is a concentrated water feed pipe 25 that returns concentrated water containing bubbles formed by adsorbing turbid components, organic substances, oil, and the like to bubbles, and the separated water that discharges the separated water.
  • a water pipe 26 is included.
  • the separated water separated from the foam in the foam separation device 20 is introduced into the reverse osmosis membrane device (RO) 30 and desalted.
  • RO reverse osmosis membrane device
  • a bypass line (not shown) may be included that transmits permeate from the sand filtration device 10 directly to the reverse osmosis membrane device 30 by bypassing the foam separation device 20.
  • the water treatment device shown in FIG. 9 includes a membrane filtration device 110, a foam separation device 20, and a reverse osmosis membrane device 30.
  • the permeated water from the membrane filtration device 110 is introduced into the foam separation device 20.
  • the foam separation device 20 is a concentrated water feed pipe 25 that returns concentrated water containing a foam formed by adsorbing turbid components, organic substances, oil, and the like to bubbles, and a separated water feed that discharges the separated water.
  • a water pipe 26 is included.
  • the separated water separated from the foam in the foam separation device 20 is introduced into the reverse osmosis membrane device (RO) 30 and desalted.
  • RO reverse osmosis membrane device
  • a bypass line (not shown) for sending permeate from the membrane filtration device 110 directly to the reverse osmosis membrane device 30 by bypassing the foam separation device 20 may be included.
  • MLR membrane bioreactor
  • the water treatment device shown in FIG. 10 includes an MBR 50, a foam separation device 20, and a reverse osmosis membrane device 30.
  • the MBR 50 is an apparatus for separating treated water and activated sludge by installing a separation membrane 56 such as a hollow fiber or flat membrane-shaped microfiltration membrane or ultrafiltration membrane in an activated sludge treatment tank.
  • the MBR 50 includes a treated water introduction pipe 51 that introduces treated water, an air introduction pipe 52 that introduces air, a permeated water feed pipe 53 that sends permeate to the foam separation device 20, and surplus that discharges excess sludge.
  • a sludge feeding pipe 58 is connected.
  • the air from the air introduction pipe 52 is introduced from the bottom of the apparatus and strongly aerated, so that the permeated water is slightly generated by a pump or the like while generating air bubbles and the accompanying upward flow. Aspirate at a time.
  • the organic matter in the water to be treated is treated with activated sludge, it is decomposed into carbon dioxide and water and the sludge grows. From the sludge, sticky ex vivo polymer substances are discharged, and the sludge is flocked.
  • the permeated water from the MBR 50 is introduced into the foam separation device 20 via the permeated water feed pipe 53.
  • the foam separator 20 includes a concentrated water feed pipe 25 that returns concentrated water containing foams formed by adsorbing turbid components, organic substances, oil, and the like to the bubbles, and an separated water feed pipe 26 that discharges the separated water. Including.
  • the separated water separated from the foam in the foam separation device 20 is introduced into the reverse osmosis membrane device (RO) 30 and desalted.
  • RO reverse osmosis membrane device
  • Concentrated water (including organic matter) from the foam separator 20 is returned to the MBR 50 via the concentrated water feed pipe 25.
  • the organic matter contained in the concentrated water is returned to the MBR 50 via the concentrated water feed pipe 25.
  • a bypass line (not shown) that sends permeate from the MBR 50 directly to the reverse osmosis membrane device 30 by bypassing the foam separation device 20 may be included.
  • SDI SDI was measured using an SDI (FI) automatic measuring instrument.
  • TEP concentration This is indicated mainly by the concentration of mucopolysaccharide stained with Alcian Blue staining solution.
  • the sample was suction-filtered with polycarbonate paper at 20 kPa, the filter paper (containing the substance remaining on the filter paper) was immersed in an 80% sulfuric acid solution, and the absorbance of the eluted substance was measured.
  • Permeability reduction rate The following calculation formula was used.
  • the water permeability coefficient is a value obtained by dividing the flux (m / s) of the reverse osmosis membrane by the effective pressure (the value obtained by subtracting the osmotic pressure (kPa) from the operating pressure (kPa)).
  • Example 1 The apparatus configuration shown in FIG. 1 is included, and the water to be treated is supplied to the foam separator 20 and concentrated and separated, and the separated water from the foam separator 20 is solid-liquid separated by the agglomerated sand filter 10 and then reverse osmosis membrane. Backwashing was performed in a seawater desalination apparatus that was desalted by the apparatus.
  • the gas-liquid ratio of the foam separation device 20 was set to 0.4, and the residence time of the water to be treated was set to 2 minutes.
  • Backwashing was performed when the water head pressure of the agglomerated sand filtration device 10 reached 10 kPa.
  • the washing waste water from the agglomerated sand filtration device 10 is introduced into the foam separation device 20 via the washing waste water pipe 15 and concentrated and separated, and then the separated water (treated washing waste water) from the foam separation device 20 is agglomerated sand filtration device.
  • the resulting permeated water was introduced into the reverse osmosis membrane device via the permeated water pipe 13.
  • Concentrated water containing a foam formed by adsorbing turbid components and organic substances to the bubbles from the foam separation device 20 was discharged out of the device via the concentrated water feed pipe 25.
  • the ratio of the waste water discharged from the foam separator 20 and the agglomerated sand filter 10 was 1% with respect to the amount of water to be treated, and the water recovery rate was 99%.
  • the water recovery rate was calculated by (the amount of water to be treated ⁇ the amount of waste water to be treated) / the amount of water to be treated ⁇ 100. The same applies to the following examples and comparative examples.
  • the water to be treated is treated by the foam separation apparatus 20 and then introduced into the agglomerated sand filtration apparatus 10 for solid-liquid separation.
  • the obtained permeated water passes through the permeated water feed pipe 13. Then, it was introduced into a reverse osmosis membrane device and desalted.
  • the washing wastewater obtained from the agglomerated sand filtration apparatus 10 was discharged out of the apparatus through the washing drainage water supply pipe 15 without being treated.
  • the water recovery rate was 94%.
  • Example 2 In the seawater desalination apparatus that includes the apparatus configuration shown in FIG. 2 and that separates the separated water from the foam separation apparatus 20 with the UF membrane filtration apparatus 110 and then desalinates with the reverse osmosis membrane apparatus 30, backwashing is performed. Carried out.
  • the gas-liquid ratio of the foam separation device 20 was set to 0.4, and the residence time of the water to be treated was set to 2 minutes.
  • Backwashing was performed when the inlet side pressure of the UF membrane filtration device 110 reached 30 kPa, and was added so that the sodium hypochlorite concentration in the wash water was 20 mg / L.
  • the washing waste water from the UF membrane filtration device 110 was introduced into the foam separation device 20 and concentrated and separated.
  • the separated water from the foam separation device 20 was reintroduced into the UF membrane filtration device 110 via the separated water feed pipe 26.
  • the permeated water from the UF membrane filtration device 110 was introduced into the reverse osmosis membrane device 30 via the permeated water feed pipe 113 and subjected to desalting treatment.
  • the water recovery rate in the foam separation device 20 and the UF membrane filtration device 110 was 98.5%.
  • the performance degradation (corrected flux) of the reverse osmosis membrane device was 5% over 6 months.
  • Example 3 In the apparatus configuration shown in FIG. 2, water treatment for treating the accompanying water was performed. The processing conditions were the same as in Example 2. The water recovery rate in the foam separation device 20 and the UF membrane filtration device 110 was 98%.
  • Example 2 in the device configuration using a pressure levitation device instead of the foam separation device, after treating the water to be treated in the pressure levitation device, it is introduced into the UF membrane filtration device 110 and subjected to solid-liquid separation, The obtained permeated water was introduced into the reverse osmosis membrane device 30 through the permeated water supply pipe 113 and desalted.
  • the gas-liquid ratio of the pressure levitation device was 0.2, and the residence time was 20 minutes.
  • the water recovery rate of the pressure levitation device was 90%.
  • the performance degradation of the reverse osmosis membrane device 30 was 5% in about 6 months.
  • Example 2 Compared with Example 2, the performance degradation of the reverse osmosis membrane device is equivalent, but the retention time of the liquid to be treated in the pressurized flotation device is as long as 20 minutes, so the performance degradation of the reverse osmosis membrane device per processing unit amount Is calculated as 10 times that of the second embodiment.
  • Example 4 Backwashing was carried out in a seawater desalination apparatus including the apparatus configuration shown in FIG. 4 and desalting the permeated water from the agglomerated sand filtration apparatus 10 with the reverse osmosis membrane apparatus 30.
  • the backwash frequency was set to 2 times / day, the gas-liquid ratio of the foam separator 20 was set to 0.4, and the residence time of the washing wastewater was 2 minutes.
  • the washing waste water from the agglomerated sand filter 10 is supplied to the foam separator 20 and concentrated and separated, and the separated water from the foam separator 20 is reintroduced into the agglomerated sand filter 10 via the separated water feed pipe 26 and solidified.
  • the liquid was separated.
  • the permeated water from the agglomerated sand filtration device 10 was introduced into the reverse osmosis membrane device 30 via the permeated water feed pipe 13 and desalted.
  • Concentrated water containing a foam formed by adsorbing turbid components and organic substances to bubbles concentrated and separated by the foam separation device 20 was discharged out of the device via the concentrated water feed pipe 25.
  • the ratio of the waste water discharged from the foam separator 20 and the agglomerated sand filter 10 was 1% with respect to the amount of water to be treated, and the water recovery rate was 99%.
  • Example 5 In the seawater desalination apparatus including the apparatus configuration shown in FIG. 5 and desalting the treated water from the UF membrane filtration apparatus 110 with the reverse osmosis membrane apparatus 30, backwashing was performed.
  • the gas-liquid ratio of the foam separator 20 was set to 0.4, and the residence time of the water to be treated was 2 minutes.
  • Backwashing was performed when the inlet side pressure of the UF membrane filtration device 110 was 30 kPa, and was added so that the sodium hypochlorite concentration in the wash water was 20 mg / L.
  • the washing waste water from the UF membrane filtration device 110 was introduced into the foam separation device 20 and concentrated and separated, and the separated water was reintroduced into the UF membrane filtration device 110 via the separated water feed pipe 26.
  • the permeated water from the UF membrane filtration device 110 was introduced into the reverse osmosis membrane device 30 via the permeated water feed pipe 113 and subjected to desalting treatment.
  • the water recovery rate in the UF membrane filtration device 110 and the foam separation device 20 was 98.5% with respect to the amount of water to be treated. Residual chlorine in the separation water from the foam separation device 20 did not decrease and was reintroduced into the UF membrane filtration device 110 while remaining in the separation water, so the transmembrane pressure increase rate was maintained at a low value of 1.0 kPa / hr. did it.
  • the object to be treated in the conventional water treatment method in which the washing wastewater is discharged out of the apparatus as it is, the object to be treated Although 6% to 12% of the amount of water is discharged as cleaning wastewater, according to the water treatment apparatus and method of the present invention, the amount of discharged water can be significantly reduced to 1% to 2% of the amount of treated water. Recognize.
  • Example 6 In the apparatus shown in FIG. 6, the permeated water from the sand filtration apparatus 10 is supplied to the foam separation apparatus 20, and the separated water that has been concentrated and separated by the foam separation apparatus 20 to remove soluble organic substances and the like is removed by the reverse osmosis membrane apparatus 30. Desalted.
  • the backwash frequency of the sand filter 10 was set to 2 times / day, the gas-liquid ratio of the foam separator 20 was set to 0.4, and the residence time of the water to be treated was 2 minutes.
  • the SDI of permeated water from the sand filter 10 was 4, and the TEP concentration was 200 ⁇ g / L.
  • the TEP concentration of the separated water after the permeated water was concentrated and separated by the foam separator 20 was 80 ⁇ g / L.
  • the water permeability reduction rate of the reverse osmosis membrane was about 10%.
  • the amount of the concentrated water discharged out of the system from the foam separator 20 is reduced by providing the concentrated water feed pipe 25 that returns the concentrated water from the foam separator 20 to the sand filter 10. It was reduced to 1/3.
  • to-be-processed water is supplied to the biofilm filtration apparatus 40, the permeated water from the biofilm filtration apparatus 40 is supplied to the sand filtration apparatus 10, and the permeated water from the sand filtration apparatus 10 is used as a foam separation apparatus. 20, the separation water from the foam separation device 20 was supplied to the reverse osmosis membrane device 30 and desalted.
  • the cleaning frequency of the biofilm filtration device 40 and the sand filtration device 10 was 2 times / day, the gas-liquid ratio of the foam separation device 20 was set to 0.4, and the residence time of the treated water was 2 minutes.
  • the SDI of permeated water from the sand filtration device 10 was 4, and the TEP concentration was 150 ⁇ g / L.
  • the TEP concentration of the separated water after being treated with the foam separation device 20 was 70 ⁇ g / L.
  • Example 8 In the apparatus shown in FIG. 9, the water to be treated is supplied to the UF membrane filtration device 110, the permeated water from the UF membrane filtration device 110 is supplied to the foam separation device 20, and soluble organic substances from the foam separation device 20 are removed.
  • the separated water was desalted by the reverse osmosis membrane device 30.
  • the gas-liquid ratio of the foam separation device 20 was set to 0.4, and the residence time of the water to be treated was set to 2 minutes.
  • the SDI of the permeated water from the UF membrane filtration device 110 was 2, and the TEP concentration was 80 ⁇ g / L.
  • the TEP concentration of the separation water from the foam separation device 20 was 60 ⁇ g / L.
  • Example 9 In the apparatus shown in FIG. 10, water to be treated is supplied to the MBR 50, permeated water from the MBR 50 is supplied to the foam separation apparatus 20, and the separated water from which the soluble organic substances and the like from the foam separation apparatus 20 are removed is reverse osmosis membrane apparatus 30 for desalting.
  • the gas-liquid ratio of the foam separation device 20 was set to 0.4, and the residence time of the water to be treated was set to 2 minutes.
  • the SDI of MBR permeated water was 4, and the TEP concentration was 300 ⁇ g / L.
  • the TEP concentration of the separation water from the foam separation device 20 was 100 ⁇ g / L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)

Abstract

被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置10、被処理水から少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置20、逆洗時に固液分離装置10からの洗浄排水を泡沫分離装置に供給する洗浄排水送水管15を具備する水処理装置。

Description

水処理装置、水処理装置の運転方法及び水処理方法
 本発明は、被処理水中の濁質や有機物を除去する水処理装置に関する。特に、海水や汽水の淡水化、随伴水などの含油排水の再利用及び処理、気泡や泡沫によって分離しやすい油や藻類を含む湖沼水の浄化、工場排水の再利用などに適用される水処理装置であって、被処理水から濁質や有機物を除去する水処理装置及びその運転方法並びに水処理方法に関する。
 例えば逆浸透膜(RO膜)を用いた海水淡水化方法において、RO膜に海水由来の濁度成分や有機物、藻類、油などが付着すると、RO膜の水の透過性能が低下するため、造水量が低下し、エネルギーコストが増大する。そのため、ROの前段に、砂ろ過装置、凝集砂ろ過装置、加圧浮上装置、精密ろ過膜(MF膜)や限界ろ過膜(UF膜)などの固液分離装置を設けて、RO膜の性能を低下させる物質を除去する前処理を行っている。しかしながら、海水に含まれる透明で粘着性の高いゼリー状の有機物など(Transparent Exopolymer Particles(TEP):生体外分泌高分子粒子)は、前記固液分離装置をすり抜けてRO膜に到達してしまうため、RO膜の性能低下や、前処理に用いるMF膜やUF膜などの性能低下の原因ともなっていた。例えば、下水処理や各種産業排水処理において、MBR(Membrane Bio Reactor:膜分離活性汚泥法メンブレンバイオリアクター)の透過水をRO膜で脱塩する場合においても、被処理水中に溶存している有機物がMBR膜を透過してRO膜に到達するため、RO膜のファウリングを起こし、エネルギーコストが増大し、造水量が低下する。例えばポリアミド系のRO膜の場合は、クエン酸などの酸洗浄剤や、水酸化ナトリウムなどのアルカリ洗浄剤を用いてRO膜を洗浄し、処理性能を回復させる操作を行うが、初期性能まで回復させることは困難である。また、RO膜の洗浄中は装置を稼働できないため、装置稼働時間が短縮され、造水量が低下し、また洗浄用の薬品との接触により膜が劣化する。TEPや溶解性有機物を除去するために、凝集砂ろ過装置とUF膜との組み合わせや、加圧浮上装置とUF膜との組み合わせなどを用いることがあるが、固液分離装置が2段となり、水回収率の低下は解消できず、また、建設コストの増加にもつながる。
 また、被処理水の水質が悪化すると、砂ろ過や膜ろ過などの逆洗が頻繁になる。通常、逆洗水には、当該水処理装置により得られる処理水を用いるため、頻繁な逆洗は、水回収率の低下の原因となる。
 また、随伴水やその他の油を含む排水を処理する場合も同様に、砂ろ過装置、凝集砂ろ過装置、加圧浮上装置の処理性能の低下や、MF膜やUF膜の目詰まりによって所望の水処理量が得られない場合も多い。
 海水からTEPを除去する方法として、海水に磁性粒子を添加し、TEPに磁性粒子を付着させ、磁気分離によって磁性粒子に付着したTEPを海水から除去する方法が提案されている(特許文献1)。しかし、特許文献1に開示されている方法では、磁性粒子の添加と磁気分離設備が必要であり、膜分離装置のみならず磁気分離設備のメンテナンスが必要となり、コストが増大する。
 前処理用の濾過装置に、孔径1μm以上のポリテトラフルオロエチレン膜を用い、所定流束で原水を通過させる方法が提案されている(特許文献2)。しかし、特許文献2に開示されている方法では、特定の膜の使用及び流束の制御、並びに前処理膜表面に捕捉されたTEPの洗浄除去が必要となる。
 前処理として、逆浸透膜装置に供給する膜供給水に、特殊なノボラック型フェノール系樹脂のアルカリ溶液を凝集剤として添加し、凝集させて除去する方法が提案されている(特許文献3)。しかし、特許文献3に開示されている方法では、特殊な凝集剤を使用することが必要で、生成する汚泥を処分しなければならないという問題がある。
 また、直径50μm以下の気泡により被処理水を吸着処理する気泡塔と、該気泡塔からの吸着処理水を逆浸透膜処理する逆浸透膜装置とを備えた装置として、逆浸透膜装置の透過流速を低下させる要因となる界面活性剤をRO膜処理の前段で選択的かつ効率的に除去することで、長期に渡って安定的に造水可能となったことが開示されている(特許文献4)。しかしながら、気泡塔のみでは十分はRO供給水質にならず、気泡塔の後段に膜ろ過装置を設置する場合もあり、この場合水回収率の低下となっていた。
 本出願人は、取水した海水中に気泡を発生させ、当該気泡にTEP成分が吸着してなるTEP含有気泡を水面に集めてTEP含有泡沫として除去する泡沫除去部を具備するTEP成分除去槽と、TEP成分が除去された海水を脱塩処理して淡水化する逆浸透膜処理装置と、を具備することを特徴とする海水淡水化装置、及び、泡沫除去装置の後段に、MF膜、UF膜、砂、アンスラサイト、ガラス、ガーネット、活性炭、繊維部材から選択される少なくとも1種をろ材として充填してなるろ過装置を備えた海水淡水化装置を提案している(特許文献5)。特許文献5には、泡沫分離装置でTEP成分を除去することの記載はあるが、藻類や油、赤潮などを対象とした記載はなく、また、前述のろ過装置から排出される洗浄水を前段の泡沫分離装置で処理することの記載はない。
 1段の前処理装置ではRO膜装置のファウリングを抑制できない場合には、加圧浮上装置を用いて浮上しやすい物質を除去し、ろ過装置を用いて沈降しやすい物質を除去している。このため、CAPEX(Capital Expenditure、設備投資)、OPEX(Operating Expense、運用維持費)が増加し、水回収率も低下する。また、RO膜装置に導入する被処理液の前処理として加圧浮上装置とろ過装置との組合せを用いる場合には、前処理の処理水SDI(Silt Density Index:膜モジュールへの供給水中の懸濁物質を定量化する指標:シルト濃度指数)(ASTM D 4189-95))を5以下、好ましくは4以下まで低下させていたが、逆浸透膜の処理性能の低下を避けることはできなかった。
 2種類の固液分離装置を用いる場合には、原水の負荷変動に対応することができるものの、水質が良好な季節においては処理性能が過大となり、OPEX(Operating Expense、運用維持費)が増加する。そのため、CAPEX,OPEXを低減しつつ、水回収率を向上させた水処理装置が要望されていた。
特開2010-58080号公報 特許第5019276号公報 国際公開2013/099857号公報 特開2005-230775号公報 国際公開WO2014/181583号公報
 本発明の目的は、設備投資及び/又は運用維持費を低減しつつ、水回収率を向上させることができる水処理装置及び水処理方法を提供することにある。
 また、本発明の目的は、系全体からの濃縮水排出量を削減することができる水処理装置及び水処理方法を提供することにある。
 本発明者らは、従来の前処理により得られる処理水のSDIによる評価では測定できない透明で粘着性の高いゼリー状の有機物、TEP、フミン質などの溶解性の有機物がRO膜に付着してRO膜の処理性能を低下させていることを突き止め、本発明を完成するに至った。本発明は、これら溶解性の有機物を除去する水処理装置及び水処理方法を提供する。
 本発明の実施態様は以下のとおりである。
[1]被処理水の少なくとも濁質成分及び有機物を除去する固液分離装置と、
当該固液分離装置からの洗浄排水中に含まれる少なくとも粘着性の濁質成分及び有機物を濃縮分離する泡沫分離装置と、
当該固液分離装置からの洗浄排水を当該泡沫分離装置に導入する洗浄排水送水管と、
を具備することを特徴とする、水処理装置。
[2]被処理水の少なくとも濁質成分及び有機物を除去する固液分離装置と、
当該固液分離装置からの洗浄排水中に含まれる少なくとも粘着性の濁質成分及び有機物を濃縮分離する泡沫分離装置と、
当該固液分離装置からの洗浄排水を当該泡沫分離装置に導入する洗浄排水送水管と、
当該泡沫分離装置からの処理済み洗浄排水である分離水を当該固液分離装置に再導入する分離水送水管と、
を具備することを特徴とする、水処理装置。
[3]前記固液分離装置は、砂ろ過装置、凝集砂ろ過装置、精密ろ過膜(MF膜)モジュール、及び限界ろ過膜(UF膜)モジュールから選択される1種以上である、[1]又は[2]に記載の水処理装置。
[4]前記泡沫分離装置は、被処理水と気泡とを混合する反応塔、当該反応塔への被処理水の導入管、当該反応塔への気泡の導入手段、及び当該反応塔からの越流水を排出する越流水排出手段を具備し、当該反応塔は、濁質成分及び有機物を含有する泡状体を高密度化して濃縮する濃縮部及び/又は泡状体を水面上の所定領域に集める泡状体収集部、及び泡状体除去部を有する、[1]乃至[3]のいずれかに記載の水処理装置。
[5]被処理水の少なくとも濁質成分及び有機物を除去する固液分離装置及び泡沫分離装置を含む水処理装置の運転方法であって、
当該固液分離装置の逆洗時に、当該固液分離装置から排出される洗浄排水を当該泡沫分離装置に導入し、当該泡沫分離装置で洗浄排水中に含まれる少なくとも粘着性の濁質成分及び有機物を濃縮分離した濃縮水を少量の越流水として排出することを特徴とする、水処理装置の運転方法。
[6]被処理水の少なくとも濁質成分及び有機物を除去する固液分離装置及び泡沫分離装置を含む水処理装置の運転方法であって、
当該固液分離装置の逆洗時に、当該固液分離装置から排出される洗浄排水を当該泡沫分離装置に導入し、当該泡沫分離装置で洗浄排水中に含まれる少なくとも粘着性の濁質成分及び有機物を濃縮分離した濃縮水を少量の越流水として排出し、
当該泡沫分離装置からの処理済み洗浄排水である分離水を当該固液分離装置に再導入することを特徴とする、水処理装置の運転方法。
[1]固液分離装置と、泡沫分離装置と、逆浸透膜装置と、
 当該固液分離装置からの透過水を当該泡沫分離装置に送液する透過水送水管と
 当該泡沫分離装置からの分離水を当該逆浸透膜装置に送液する分離水送水管と、
を具備し、当該固液分離装置からの透過水を当該泡沫分離装置にて処理した後に当該逆浸透膜装置にて脱塩処理する水処理装置。
[2]前記固液分離装置は、砂ろ過装置、生物膜ろ過装置、膜ろ過装置、メンブレンバイオリアクター及びこれらの任意の組合せから選択される、[1]に記載の水処理装置。
[3]前記固液分離装置は、少なくともメンブレンバイオリアクターを含み、
 前記泡沫分離装置からの泡沫含有濃縮水を前記メンブレンバイオリアクターに返送する泡沫含有濃縮水送水管を具備する、[1]又は[2]に記載の水処理装置。
[4]前記逆浸透膜からの濃縮水を前記泡沫分離装置に返送する濃縮水送水管を具備する、[1]~[3]のいずれか1に記載の水処理装置。
[5]被処理水を固液分離して透過水を得る固液分離工程と、
 当該透過水を泡沫分離して分離水を得る泡沫分離工程と、
 当該分離水を逆浸透膜により脱塩する脱塩工程と、
を具備する水処理方法。
[6]前記透過水のSDIは5以下である、[5]に記載の水処理方法。
[7]前記泡沫分離工程における透過水の滞留時間は0.5分乃至10分である、[4]又は[5]に記載の水処理方法。
 本発明によれば、固液分離装置からの洗浄排水を泡沫分離装置で濃縮分離し、その分離水を再度固液分離装置に導入することで、水回収率が増加し、系全体からの濃縮水排出量を削減することができる。
 また、本発明によれば、固液分離装置からのSDIが低下した透過水を泡沫分離装置で処理し、その分離水を逆浸透膜装置に導入することで、逆浸透膜装置の性能低下を抑制すると共に水回収率が増加し、また、泡沫分離装置には空気を導入するだけでよいから、系全体からの濃縮水排出量を削減することができる。
 さらに、本発明によれば、泡沫分離装置からの濃縮水を固液分離装置に返送し、固液分離装置からの透過水を再度、泡沫分離装置に導入することで、系全体からの濃縮水排出量を削減することができる。
 本発明で用いる泡沫分離装置は、類似した技術である加圧浮上装置に比べ、原水の滞留時間が1/10と極めて短く、装置を極めて小型化することができる。また、固液分離装置と組み合わせることで、固液分離装置単独の場合よりも負荷変動に効率的に対応できる。さらに、固液分離装置を2段設置するよりも、設備投資及び/又は運用維持費並びに設置面積を大きく削減することができる。
泡沫分離装置の下流に固液分離装置(砂ろ過装置)を配置した本発明の水処理装置の一実施態様を示す概略説明図である。 泡沫分離装置の下流に固液分離装置(膜ろ過装置)を配置し、膜ろ過装置への流入圧力を計測して、逆洗運転への切り換え及び泡沫分離装置への気体導入量を制御する本発明の水処理装置の一実施態様を示す概略説明図である。 膜ろ過装置への流入圧力を計測して、逆洗運転への切り換え及び泡沫分離装置への凝集剤添加量を制御する本発明の水処理装置の一実施態様を示す概略説明図である。 固液分離装置(砂ろ過装置)の下流に泡沫分離装置を具備する本発明の水処理装置の一実施態様を示す概略説明図である。 固液分離装置(膜ろ過装置)の下流に泡沫分離装置を具備する本発明の水処理装置の一実施態様を示す概略説明図である。 固液分離装置(砂ろ過装置)と泡沫分離装置と逆浸透膜装置を具備する本発明の水処理装置の一実施態様を示す概略説明図である。 固液分離装置(砂ろ過装置)と泡沫分離装置と濃縮水送水管を具備する本発明の水処理装置の一実施態様を示す概略説明図である。 固液分離装置(生物膜ろ過装置と砂ろ過装置)と泡沫分離装置と逆浸透膜装置を具備する本発明の水処理装置の一実施態様を示す概略説明図である。 固液分離装置(膜ろ過装置)と泡沫分離装置と逆浸透膜装置を具備する本発明の水処理装置の一実施態様を示す概略説明図である。 固液分離装置(メンブレンバイオリアクター)と泡沫分離装置と逆浸透膜装置を具備する本発明の水処理装置の一実施態様を示す概略説明図である。
実施形態
 本発明の水処理装置は、被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置と、被処理水から少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置と、を含み、(1)前記泡沫分離装置からの分離水を前記固液分離装置に供給する分離水送水管と、逆洗時に、前記固液分離装置からの洗浄排水を前記泡沫分離装置に供給する洗浄排水送水管と、を含み、前記泡沫分離装置からの濃縮水を少量の越流水として排出する構成、若しくは(2)前記固液分離装置からの透過水を前記泡沫分離装置に供給する透過水送水管と、前記泡沫分離装置からの濃縮水を前記固液分離装置に返送する濃縮水送水管と、を含む構成を有する。
 本発明の水処理装置は、逆浸透膜処理の前処理に適用することができる。本発明の水処理装置は、(1)前記固液分離装置からの透過水、又は(2)前記泡沫分離装置からの分離水、が供給される逆浸透膜装置をさらに具備することが好ましい。
 本発明の水処理方法は、例えば、海水淡水化処理の場合、被処理水を泡沫分離装置にて処理した後、泡沫分離装置からの分離水を固液分離装置にて固液分離して、固液分離装置からの透過水を逆浸透膜装置にて脱塩処理する通常運転と、固液分離装置を逆洗して、洗浄排水を泡沫分離装置に導入して濃縮分離する逆洗運転と、を切り換えて実施する。泡沫分離装置における洗浄排水からの分離水を被処理水として再び固液分離装置に導入して固液分離して、固液分離装置からの透過水を逆浸透膜にて脱塩処理してもよい。
 また本発明の水処理方法は、例えば、海水淡水化処理の場合、被処理水を固液分離装置にて固液分離した後、固液分離装置からの透過水を泡沫分離装置にて濃縮分離して、泡沫分離装置からの濃縮水を固液分離装置に返送し、泡沫分離装置からの分離水を逆浸透膜装置にて脱塩処理する通常運転と、固液分離装置を逆洗する逆洗運転と、を切り換えて実施する。
 [固液分離装置]
 固液分離装置としては、砂ろ過装置、凝集砂ろ過装置、精密ろ過膜(MF膜)や限界ろ過膜(UF膜)、生物膜ろ過装置、メンブレンバイオリアクター(MBR)など、水処理分野において通常用いられる固液分離装置を好適に用いることができる。
 砂ろ過装置には、ろ材が充填されている。ろ材としては、砂、アンスラサイト、ガラス、ガーネット、活性炭、繊維部材などの多孔性物質などを制限なく用いることができる。
 精密ろ過膜あるいは限外ろ過膜の膜素材としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、ポリエーテルスルホン(PES)、ポリスルホン(PS)、酢酸セルロース(CA)などの有機性素材、セラミック、金属などの無機素材を挙げることができる。耐薬品性に優れていることが好ましく、PVDFが好適である。膜の孔径は、0.001μm~1μmが好適である。ろ過膜の形態としては、中空糸、チューブラ、平膜などを採用することができるが、中空糸膜からなる加圧型円筒形のモジュールが好適である。
 生物膜ろ過装置は、ろ材に生物を繁殖させてろ材表面に生物膜を形成してなるろ過装置である。ろ材としては通常の水処理用の生物膜ろ過装置に用いられるろ材を制限なく使用することができ、砂、アンスラサイト、ガラス、ガーネット、活性炭、繊維部材などの多孔性物質などを用いることができる。生物は、前記ろ材表面に生息し、被処理水由来の有機物を付着或いは、生物学的に除去する。
 メンブレンバイオリアクター(MBR)は、活性汚泥処理槽に、中空糸あるいは平膜形状の精密ろ過膜や限外ろ過膜などの分離膜を設置し、処理水と活性汚泥とを分離する装置である。被処理水中の有機物が活性汚泥処理されることで、炭酸ガスと水に分解されると共に汚泥が増殖する。汚泥からは粘着性の生体外高分子物質などが排出され、汚泥がフロック化する。
 [泡沫分離装置]
 泡沫分離処理は、従来用いられている加圧浮上分離とは異なる。加圧浮上分離は、凝集剤を添加し、空気と水を共存させた状態で加圧して水中に空気を過飽和溶解させ、その後大気圧に戻すことにより、過飽和溶解した空気を大量の微細気泡として出現させ、微細気泡に浮遊物質を捕捉させて水面に浮上させ、水面にて微細気泡が消失して残る浮遊物質を集めて除去する方法であり、凝集剤を添加して形成した非溶解性の懸濁物質のフロックの周囲に、通常、泡径30μm~50μmのマイクロバブルといわれる微細な気泡を付着させる。微細気泡の浮上速度は遅く、液の滞留時間が20分以上となり、浮上の途中に気泡が破泡して、非溶解性の懸濁物質が沈降することもある。
 泡沫分離処理は、溶存している有機物や微細な濁質成分等を泡径50μm乃至2mmの微細な気泡表面に吸着させた泡状体として、0.5分乃至10分、好ましくは2分程度の短時間のうちに液面まで上昇させ、泡状体から吸着している有機物や微細な濁質成分等を泡沫として液体から分離する。泡沫分離処理において導入する気体の液体に対する比率(気液比)は0.1乃至2が好ましい。気液比0.1未満では除去性能が悪く、気液比2を越えても処理性能は向上せずに気体の供給量が過剰となる。泡沫分離装置における処理能力は、導入する空気量を調節することによって制御することができる。すなわち、水質が悪い場合は気液比を多くし、水質が良好な場合は気液比を少なくして、経済的な運転を行うことができる。
 泡沫分離装置は、処理対象成分を含む被処理水と気泡とを混合する反応塔、反応塔への被処理水の導入管、反応塔への気泡の導入手段、及び反応塔からの越流水を排出する越流水排出手段を具備する。反応塔には、濁質成分及び透明で粘着性の高いゼリー状の有機物、TEP、フミン質などの溶解性有機物を含有する泡状体を高密度化して濃縮し、前記泡状体を水面上の所定領域に集めて泡状体を除去する濃縮除去部が設けられている。あるいは、反応塔の上部に、前記泡状体を高密度化して濃縮する濃縮部と、前記泡状体を水面上の所定領域に集める泡状体収集部と、泡状体除去部とが別個に設けられていてもよい。また、反応塔上部に設置された濃縮除去部、若しくは濃縮部、泡状体収集部或いは泡状体除去部には、消泡のためのスプレーノズルが設けられていてもよい。
 泡沫分離装置における気泡の導入は、被処理水を反応塔に落下させること、又は被処理水を反応塔内部に設けられた衝突部材に衝突させることによりなされてもよく、反応塔内部に設けられた散気装置、曝気装置、撹拌式エアレータ、エジェクタ、極微細気泡発生装置を用いてなされてもよい。また、散気装置、曝気装置、撹拌式エアレータ、エジェクタ、極微細気泡発生装置を反応塔の底部に配置して、反応塔内に対流を発生させることによって、泡状体を所定領域に集めることもできる。
 泡沫分離装置に導入する気泡のサイズは任意のサイズをとることができるが、気泡径10μm以上2mm以下が好ましい。気泡径が10μm未満であると、気泡の上昇速度が遅いために、反応塔の容積が大きくなり、気泡径が2mmを越えると比表面積が小さくなり、十分な気泡表面積を確保することが困難となる。
 反応塔において、被処理水と気泡とを接触させて、被処理水に含まれる濁質成分や透明で粘着性の高いゼリー状の有機物、TEP、フミン質などの溶解性有機物を気泡に付着させる。気泡の表面にはOH、Cl、COOが濃縮して負電荷に帯電しており、被処理水由来の濁質成分、有機物及び油などが電気的に中和あるいは反発し、若しくはイオン交換により気泡表面に吸着されやくなっている。濁質成分や有機物(特に透明で粘着性が高いゼリー状の有機物やTEP成分やフミン質などの溶解性有機物)が気泡に吸着された泡状体は、泡径が大きいために上昇速度が大きく、短時間のうちに水面に浮上する。
 反応塔の濃縮除去部は、反応塔本体の底部から上方に向かって縮減する断面積を有する形状を有する。あるいは、水面に浮上した泡状体を所定領域に集める傾斜仕切を設けてもよいし、逆円錐形にして泡状体を分離濃縮してもよい。被処理水中に導入された気泡が、被処理水由来の濁質成分や、透明で粘着性の高いゼリー状の有機物、TEP、フミン質などの溶解性有機物、油などを吸着して泡状体として上昇する経路が上方に向かって縮減しているため、泡状体が狭い領域に集中し、濁度成分、透明で粘着性の高いゼリー状の有機物、TEP、フミン質などの溶解性有機物及び油と気泡との接触頻度が高まり、これら除去対象成分が濃縮された高密度の泡状体となる。
 濃縮分離部は、被処理水由来の濁質成分、透明で粘着性の高いゼリー状の有機物、TEP、フミン質などの溶解性有機物及び油などを吸着した泡状体を泡沫と濃縮水とに分離して、濃縮水を越流水として流出させる。越流水量は、通常、被処理水に対して0.1%以上10%以下の範囲であるが、越流水量が少ないほど水回収率が高くなるため、0.1%以上5%以下が好ましく、0.1%以上1%以下がより好ましい。
 あるいは、分離された濃縮水を固液分離装置に返送するための濃縮水送水管が濃縮分離部に接続されていてもよい。この場合には、濃縮水全量を再利用できるため、水回収率がさらに向上する。
 [逆浸透膜装置]
 逆浸透膜装置は、きわめて高い脱塩率が得られる半透性の膜であって、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどから構成される逆浸透膜を含む。
 SDI(Slit Density Index)とは、逆浸透法において、膜モジュールへの供給水中の懸濁物質を定量化する指標であり(ASTM D 4189-95)、新しい0.45μmの精密ろ過膜(MF)を用いて試料水を206kPaの加圧下でろ過し、初めの500mlをろ過するのに要する時間(T1)を測定し、続けて15分間ろ過した後、さらに500mlをろ過するのに要する時間(T2)を測定し、
Figure JPOXMLDOC01-appb-M000001
により算出する値である。MF膜が閉塞して15分後に500mlのろ過水が得られないときにはT2は無限大となり、SDIは約6.66が最大値となる。
 以下、添付図面を参照しながら本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 [実施形態1]
 本実施形態の水処理装置は、被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置と、被処理水から少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置と、前記泡沫分離装置からの分離水を前記固液分離装置に供給する分離水配管と、逆洗時に前記固液分離装置から排出される洗浄排水を前記泡沫分離装置に導入する洗浄排水配管と、を具備し、前記泡沫分離装置からの濃縮水を少量の越流水として排出することを特徴とする。
 前記分離水配管は、逆洗時に、前記泡沫分離装置からの処理済み洗浄排水を前記固液分離装置に再導入する配管としても機能する。
 固液分離装置と泡沫分離装置との配置は、逆洗時に固液分離装置からの洗浄排水を泡沫分離装置に導入し、泡沫分離装置からの処理済み洗浄排水を装置外に排出するか若しくは固液分離装置に再導入できる配置であればよく、通常運転時の被処理水の流通方向は制限されない。例えば、固液分離装置が上流で泡沫分離装置が下流に設けられている配置でもよいし、泡沫分離装置が上流で固液分離装置が下流に設けられている配置であってもよい。
 本発明の水処理装置は、逆浸透膜処理の前処理に適用することができる。たとえば、固液分離装置からの透過水を逆浸透膜などの後段の水処理に供する配置とすることができる。固液分離装置の下流側に逆浸透膜(RO)装置が設けられている場合に、泡沫分離装置により被処理水から粘着性の濁質成分、溶解性有機物及び油が除去され、次いで固液分離装置により被処理水から濁質成分、有機物及び油などが十分に除去された後に、被処理水が逆浸透膜装置に流入するため、逆浸透膜装置の閉塞を防止し、水回収率の向上ばかりでなく、逆洗のために水処理装置を停止させる時間も短くなり、脱塩効果が向上するなど、特に高い効果を発揮する。
 あるいは、たとえば固液分離装置からの透過水のSDIが5以下であっても、透過水が粘着性の濁質成分や溶解性有機物を含む場合には、固液分離装置からの透過水を泡沫分離装置で処理した後に、逆浸透膜などの後段の水処理に供する配置とすることができる。
通常はSDIが5以下の透過水であれば、逆浸透膜の閉塞を生じさせる可能性は低いが、SDIでは評価できない粘着性の濁質成分や溶解性有機物を透過水が含むことがある。これらの粘着性の濁質成分や溶解性有機物は逆浸透膜を閉塞させるため、透過水を逆浸透膜に導入する前に、泡沫分離装置により処理することが好ましい。
 泡沫分離装置の下流に固液分離装置が配置されている態様の水処理装置の場合、通常運転時には、濁質成分、有機物及び油などを含む被処理水を、まず泡沫分離装置にて泡沫分離し、次いで泡沫分離処理後の分離水を固液分離装置に導入して固液分離する。泡沫分離装置は、泡沫に濁質成分、有機物及び油などを吸着させて濃縮するため、他の濃縮装置に比べて濃縮倍率が高い。固液分離装置では、泡沫分離装置で除去しきれなかった濁質成分、有機物及び油などを精密にろ過する。固液分離装置からの透過水は、たとえば逆浸透膜装置など後段に設けられている装置にてさらに処理される。
 泡沫分離装置の上流に固液分離装置が配置されている態様の水処理装置の場合、通常運転時には、濁質成分、有機物及び油などを含む被処理水を固液分離装置にて固液分離し、透過水は、たとえば逆浸透膜装置など後段に設けられている装置にてさらに処理される。固液分離した透過水には、被処理水由来の溶解性有機物などが含まれている。例えば疎水基を含む有機物、疎水基と親水基を含む有機物、親水基を含む有機物、糖タンパク質など溶存している有機物の一部は固液分離によっては除去できない。本発明の水処理方法においては、これらの溶存している有機物を凝集剤添加によりフロック化することなく、泡沫分離処理により分離除去することができる。
 本発明の水処理装置及び方法において処理される被処理水としては、汽水や海水のほか、随伴水などの含油排水、藻類を含む湖沼水、工場排水などが挙げられる。海水又は汽水には、塩水であるだけでなく、取水地域によっては濁質や溶解性有機物を多く含むこともある。固液分離装置において、ほとんどの塩水は透過して排出されるが、濁質成分や一部の溶解性有機物は、ろ材、ろ過膜表面やろ過膜モジュール内に蓄積する。これら被処理水中に含まれ、ろ材やろ過膜に蓄積される濁質成分、有機物(特に透明で粘着性が高いゼリー状の有機物やTEP成分やフミン質などの溶解性有機物)及び油(以下「処理対象成分」ともいう。)などは、逆洗時には洗浄排水中に含まれ得る。
 逆洗時には、固液分離装置の透過水出口側から洗浄水を導入して、通常運転時とは逆方向に洗浄水を流通させ、洗浄排水の全量又は一部を泡沫分離装置の分離水出口側に導入し、通常運転時とは逆方向に洗浄排水を流通させる。固液分離装置からの洗浄排水には、固液分離装置のろ材又はろ過膜から剥離された残留物質が含まれている。これらの残留物質は、被処理水中の粘着性を有する濁質成分、有機物及び油などに由来する物質であり、同様に粘着性を有する。泡沫分離装置に導入された洗浄排水は、通常運転と同様に反応塔底部から供給される気泡表面に吸着して大きな泡状体を形成し、水面に速やかに上昇して、濃縮除去部、若しくは濃縮部、泡状体収集部或いは泡状体除去部にて濃縮され、粘着性物質を含む泡沫を含む濃縮水と、分離水と、に分離される。濃縮水は越流水として泡沫分離装置の外に排出され、逆洗時に泡沫分離装置にて分離された分離水は、固液分離装置への洗浄水として循環利用してもよく、この場合には洗浄水量を著しく削減することができる。
 また、固液分離装置の洗浄排水を泡沫分離装置に導入して濁質成分、有機物及び油などを分離除去した後、再び固液分離装置に戻して固液分離した後の透過水を後段の逆浸透膜装置による脱塩処理に供することもできる。
 逆洗時には、固液分離装置から除去された濁質成分、有機物及び油などを含む洗浄排水が発生するが、従来はそのまま洗浄排水として装置外に排出していた。本実施形態では、固液分離装置からの洗浄排水の全量又は一部を泡沫分離装置に導入して処理し、洗浄排水中に含まれる濁質成分、有機物及び油などを泡沫として除去した後の処理水を固液分離装置に再び導入して固液分離した後、逆浸透膜による脱塩処理などの水処理本来の経路に戻して再利用することにより、洗浄排水として廃棄されていた水量を有効利用することで水回収率を著しく向上させることができる。
 本実施形態の水処理方法は、例えば、海水淡水化処理の場合、被処理水を泡沫分離装置にて処理した後、泡沫分離装置からの分離水を固液分離装置にて固液分離して、固液分離装置からの透過水を逆浸透膜装置にて脱塩処理する通常運転、若しくは被処理水を固液分離装置にて固液分離した後、固液分離装置からの透過水を泡沫分離装置にて濃縮分離して、泡沫分離装置からの分離水を逆浸透膜装置にて脱塩処理する通常運転と、固液分離装置を逆洗して、洗浄排水を泡沫分離装置に導入して濃縮分離する逆洗運転と、を切り換えて実施する。泡沫分離装置における洗浄排水からの分離水を被処理水として再び固液分離装置に導入して固液分離して、固液分離装置からの透過水を逆浸透膜にて脱塩処理してもよい。
 逆洗運転への切り替えは、固液分離装置への被処理水の流入圧力の上昇速度を測定し、所定値を越えた場合に切り換えてもよく、あるいは所定時間経過によって切り換えてもよい。また、固液分離装置への被処理水の流入圧力の上昇速度に応じて、泡沫分離装置への空気供給量を変化させて、被処理水の性状に適切な条件で泡沫分離処理を行うことができる。あるいは、泡沫分離装置には凝集剤を添加してもよく、固液分離装置への被処理水の流入圧力の上昇速度に応じて、泡沫分離装置への凝集剤の添加量を変化させて、被処理水の性状に適切な条件で泡沫分離処理を行うことができる。
 固液分離装置がろ材を充填してなるろ過装置である場合、被処理水又は分離水の流入圧力の変動に基づく逆洗運転への切り換えは、水頭圧の増減速度を検出して閾値を超えた場合に行うことができる。
 固液分離装置がろ過膜を用いる膜ろ過装置である場合、被処理水又は分離水の流入圧力の変動に基づく逆洗運転への切り換えは、ろ過膜の入口側圧と出口側圧の差圧(膜間差圧)又は入口側圧(出口側圧がゼロの場合)を検出して閾値を超えた場合に行うことができる。たとえば、ろ過膜として限外ろ過膜を使用する場合の設定膜間差圧は0kPa~100kPa、好ましくは0kPa~60kPa、特に好ましくは0kPa~45kPaであり、一回の逆洗で、初期圧(汚れ成分による抵抗増加を差し引き、単純に膜ろ過抵抗、配管抵抗のみの抵抗による圧力をいう)まで十分に低下する設定圧が好ましい。たとえば、初期圧が20kPa、一回の逆洗で8kPaの洗浄効果があるとすれば、設定膜間差圧は25~28kPaが好ましい。膜間差圧に応じて逆洗を実施することにより、ろ過膜に流入する被処理水又は分離水の水質変動が起こった場合においても、その変動に応じて逆洗間隔も変動するので、効果的に逆洗を実施できる。すなわち、被処理水又は分離水の水質が悪化した場合は、ろ過膜の閉塞の進行が早まるため、所定の膜間差圧に達する時間が短くなり、短時間で逆洗が実施される。逆に、被処理水又は分離水の水質が良好であれば、ろ過膜の閉塞の進行が緩やかになり、所定の膜間差圧に達する時間が長くなるため、逆洗回数が減る。このように膜の閉塞速度に応じて逆洗を実施することで、一般的に添加される次亜塩素酸ナトリウム等の酸化剤の添加量を最適化して、運転維持費を低減することが可能となる。
 本実施形態において、逆洗の実施は、膜間差圧で逆洗する方法に加えて、所定時間で強制的に逆洗する方法も併用できる。被処理水又は分離水の水質が極めて清浄で、ほとんど膜間差圧の時間変化がない場合においても、ろ過膜全体の圧力変動には至らないまでも部分的に有機物などが蓄積して圧密化することもあるため、定期的な逆洗を実施することは、ろ過膜の長期運転を達成する上で効果的である。
 逆洗は、ろ過膜の透過水側から供給側へ洗浄水を通水することで、ろ過膜表面に蓄積した濁質成分や一部の溶解性有機物を剥離させることで行う。なお、このとき、モジュール内に空気を吹き込みスクラビングすることでより効果的な洗浄効果を得ることができる。スクラビングは単独で実施しても効果があるが、逆洗と併用してもよい。スクラビングの時間は任意の時間を取ることが出来るが、概ね10秒から5分程度で実施する。また、被処理水に含まれる濁質成分や溶解性有機物が蓄積したろ過膜表面やろ過膜モジュールを洗浄する洗浄液には、通常、次亜塩素酸ナトリウムなどの塩素系酸化剤を添加する。塩素系酸化剤の添加量は、海水や汽水の水質にもよるが、通常は1mg/L~100mg/Lの範囲が好ましい。
 図1に、泡沫分離装置20の下流に固液分離装置としての砂ろ過装置10が配置されている態様の水処理装置の一態様を例として示す。図1に示す水処理装置においては、泡沫分離装置20の分離水を砂ろ過装置10の上部に供給して固液分離する通常運転と、砂ろ過装置10の洗浄排水を泡沫分離装置20に供給して濃縮分離する逆洗運転と、を切り換えて行うことができる。
 通常運転時には、濁質成分、有機物及び油などを含む被処理水を泡沫分離装置20に供給して泡沫分離し、次いで泡沫分離処理後の分離水を分離水送水管26を介して砂ろ過装置10に導入して固液分離する。砂ろ過装置10は、泡沫分離装置20で除去しきれなかった濁質成分、有機物及び油などを精密にろ過する。前段の泡沫分離装置20で、被処理水由来の濁質成分、透明で粘着性の高いゼリー状の有機物、TEP、フミン質などの溶解性の有機物及び油が粗除去することができ、後段の砂ろ過装置10にかかる汚濁負荷が低減されているので、砂ろ過装置10の洗浄頻度を低減することができる。
 泡沫分離装置20は、被処理水を導入するための被処理水送水管21、気泡を発生させるための空気を導入するための空気導入管22、被処理水と気泡とを接触させる反応塔23、泡状体を濃縮して除去する濃縮除去部(又は濃縮部、泡状体収集部及び泡状体除去部、以下まとめて「濃縮除去部」という)24、泡状体を含む濃縮水を排出する濃縮水送水管25、分離水を排出する分離水送水管26を含む。分離水送水管26は、下流に設けられている砂ろ過装置10に接続されている。
 砂ろ過装置10には、ろ材16が充填されている。分離水送水管26を介して供給される泡沫分離装置20からの分離水を固液分離する。砂ろ過装置10には、ろ材16に空気を供給する空気導入管12、透過水を排出する透過水送水管13、逆洗時に洗浄水を送液するための洗浄水送水管14、逆洗時に洗浄排水を排出する洗浄排水送水管15、及び圧力計(水頭圧測定器)17が連結されている。
 砂ろ過装置には、圧力計(水頭圧測定器)17が備えられており、ろ過の進行とともに、濁質成分等がろ材16の隙間に蓄積されることにより上昇する水頭圧を測定し、定期的或いは所定の水頭圧になった段階でろ材の洗浄を実施する。洗浄頻度は、水質に応じて任意の回数をとることができるが、0.1回/日以上5回/日以下程度が好ましい。
 洗浄時には、砂ろ過装置10に洗浄水送水管14から洗浄水を導入し、通常運転時とは反対方向に洗浄水を通水してろ材16を洗浄して、ろ材の間隙に堆積している濁質成分等を剥離させる。剥離された濁質成分等を含む洗浄排水の全量又は一部は、洗浄排水送水管15を介して泡沫分離装置20の反応塔23に導入される。このとき、洗浄排水は通常の被処理水よりも濁質成分が多く含まれているので、洗浄排水を泡沫分離装置20に導入する前に一時的に貯留し、低流量で泡沫分離装置20に導入することが好ましい。泡沫分離装置20に導入された洗浄排水は、反応塔23の底部から供給される気泡と接触する。洗浄排水中の濁質成分等は、気泡表面に吸着され大きな泡状体として速やかに上昇する。反応塔23の水面に到達した泡状体は、濃縮除去部24にて濃縮され、粘着性物質を含む泡沫を含む濃縮水と、分離水とに分離される。濃縮水は越流水として反応塔23の外に排出される。泡沫分離処理後の分離水は、分離水送水管26を介して砂ろ過装置10に再び導入されて、固液分離に供される。あるいは、分離水を砂ろ過装置10の洗浄水として利用してもよい。
 図1において、泡沫分離装置20における処理能力は、導入する空気量を調節することによって制御することができる。砂ろ過装置10における水頭圧の増加速度は水質によって異なるが、1kPa/day以上50kPa/day以下程度であり、水質がよい場合(すなわち凝集剤の添加量も少ない)は10kPa/day以下、好ましくは5kPa/day以下であり、水質が悪い場合(すなわち凝集剤の添加量も多い)は20kPa/day以上となる場合が多い。一方で、泡沫分離装置の気液比は0.1以上2以下程度が好ましく、0.4程度がより好ましい。本発明では、例えば、水頭圧の増加速度が5kPa/day以上20kPa/day以下の場合には気液比を0.4と設定し、水頭圧の増加速度が5kPa/day以下の場合には気液比を0.2と設定し、水頭圧の増加速度が20kPa/day以上では気液比を1と設定することが好ましい。
 また、泡沫分離装置20への被処理水送水管21に、凝集剤の添加手段及び制御部(図示せず)を設けてもよく、水頭圧の変動に応じて凝集剤の添加量を制御することもできる。例えば海水淡水化処理で砂ろ過を用いる場合、凝集砂ろ過装置の水頭圧の増加速度が5kPa/day以上20kPa/day以下の場合には泡沫分離装置への凝集剤(塩化第二鉄)添加率を5mg-FeCl/lと設定し、水頭圧の増加速度が5kPa/day以下の場合には添加率を0mg-FeCl/Lと設定し、水頭圧の増加速度が20kPa/day以上の場合には添加率を10mg-FeCl/Lと設定することが好ましい。更に、凝集剤の添加手段を分離水送水管26に設けてもよい。この場合、固液分離装置の分離水中にふくまれる濁質成分、有機物、油などは、被処理水よりも低減されているので、凝集剤の添加量を少なくできるばかりか、凝集剤由来の汚泥発生量を削減することができる。
 図2に、図1と同様の構成であるが、固液分離装置として膜ろ過装置110を用いる態様を示す。図1と同じ構成部材には同じ符号を付して、説明は省略する。図2に示す水処理装置においては、泡沫分離装置20からの分離水を膜ろ過装置110の下部に供給して固液分離する通常運転と、膜ろ過装置110からの洗浄排水を泡沫分離装置20に供給して濃縮分離する逆洗運転とを切り換えて行う。
 膜ろ過装置110は、ろ過膜116を有する。分離水送水管26を介して供給される泡沫分離装置20からの分離水を固液分離する。膜ろ過装置110には、ろ過膜116に空気を供給する空気導入管112、透過水を排出する透過水送水管113、逆洗時に洗浄水を送液するための洗浄水送水管114、逆洗時に洗浄排水を排出する洗浄排水送水管115が連結されている。膜ろ過装置110のろ過膜入口側圧力とろ過膜の出口側圧力とを測定し、両者の差である膜間差圧を検出する圧力計117、及び検出された膜間差圧に基づいて泡沫分離装置20へ供給する空気量を制御する制御部60が設けられている。制御部60は、例えば自動開閉弁などの空気供給量を自動的に制御する構成、又は作業員に対して空気供給量の調節の指示を表示する構成であってもよい。
 泡沫分離装置20における処理能力は、導入する空気量を調節することによって制御することができる。膜ろ過装置110の膜間差圧の増加速度は、通常0.1kPa/hr乃至40kPa/hr程度であり、2kPa/hr程度が一般的である。一方で、泡沫分離装置の気液比は0.1以上2以下程度が好ましく、0.4程度がより好ましい。本発明では、例えば、膜間差圧の増加速度が0.5kPa/hr以上5kPa/hr以下の場合には気液比を0.4と設定し、膜間差圧の増加速度が0.5kPa/hr未満の場合には気液比を0.2と設定し、膜間差圧の増加速度が5kPa/hrを越える場合には気液比を1と設定することが好ましい。このように設定することで、水質が悪い場合は気液比を大きくして泡沫分離装置20で少なくとも粘着性の濁質成分や溶解性有機物を多く除去するように制御し、膜間差圧の上昇速度が低くなるように操作することにより、膜ろ過装置110における膜間差圧上昇速度を2kPa/hr以下程度に維持することができる。また水質が良い場合は、膜間差圧の上昇速度が低いので、気液比を大きくする必要はない。
 また、圧力計117により検出されるろ過膜の入口側圧と出口側圧の差圧(膜間差圧)又は入口側圧(出口側圧がゼロの場合)が予め定めた閾値を超えた場合、分離水の流入圧力の変動に基づく逆洗運転への切換えを行うことができる。例えば、ろ過膜116として限外ろ過膜を使用する場合の設定膜間差圧は0kPa以上100kPa以下、好ましくは0kPa以上60kPa以下、特に、好ましくは0kPa以上45kPa以下である。一回の逆洗で、汚れ成分による抵抗増加を差し引き、膜ろ過抵抗、配管抵抗のみの抵抗による圧力である初期圧まで低下する設定圧が好ましい。例えば、初期圧が20kPa、一回の逆洗で8kPaの洗浄効果があるとすれば、逆洗実施の設定膜間差圧は25kPa以上28kPa以下が好ましい。膜間差圧に応じて逆洗を実施することにより、ろ過膜116に流入する分離水の水質変動が起こった場合においても、その変動に応じて逆洗間隔も変動するので、効果的に逆洗を実施できる。即ち、分離水の水質が悪化した場合は、ろ過膜116の閉塞の進行が早まるため、設定膜間差圧に達する時間が短くなり、逆洗間隔が狭まる。逆に、分離水の水質が良好であれば、ろ過膜116の閉塞の進行が緩やかになり、設定膜間差圧に達する時間が長くなるため、逆洗回数を減らすことができる。このように膜の閉塞速度に応じて逆洗を実施することで、洗浄剤の添加量を最適化して、運転維持費を低減することが可能となる。
 洗浄時には、膜ろ過装置110に洗浄水送水管114から洗浄水を導入し、通常運転時とは反対方向に洗浄水を通水して、ろ過膜116に堆積している濁質成分等を剥離させる。剥離された濁質成分等を含む洗浄排水の全量又は一部は、洗浄排水送水管115を介して泡沫分離装置20の反応塔23に導入される。泡沫分離装置20に導入された洗浄排水は、反応塔23の底部から供給される気泡と接触する。洗浄排水中の濁質成分等は、気泡表面に吸着されて大きな泡状体として速やかに上昇する。反応塔23の水面に到達した泡状体は、濃縮除去部24にて濃縮され、粘着性物質を含む泡沫を含む濃縮水と、分離水と、に分離される。濃縮水は越流水として反応塔23の外に排出される。泡沫分離処理後の分離水は、分離水送水管26を介して膜ろ過装置110に再び導入されて、固液分離に供される。あるいは、分離水を膜ろ過装置110の洗浄水として利用してもよい。
 洗浄水として、塩素系酸化剤、例えば次亜塩素酸ナトリウムを添加することもできる。この場合には、泡沫分離装置20における洗浄排水の滞留時間を10分以内として、分離水を再度膜ろ過装置110に導入することが好ましい。洗浄排水中の塩素が分離水に残留したまま、再度膜ろ過装置110に導入されるので、ろ過膜のファウリングを抑制することができる。
 図3に、膜ろ過装置の入口側圧を計測する圧力計117及び制御部60を設け、泡沫分離装置20の反応塔23に導入する前の被処理水に供給する凝集剤量を制御する態様を示す。図1及び2と同じ構成部材には同じ符号を付して、説明は省略する。
 制御部60は、図2における泡沫分離装置20への空気供給量の制御の代わりに、又は空気供給量の制御に加えて、泡沫分離装置20に導入する前の被処理水への凝集剤の添加量を制御する。
 例えば膜ろ過装置110からの透過水を後段の海水淡水化処理(逆浸透膜)に供する場合、膜ろ過装置110の膜間差圧の増加速度が0.5kPa/hr以上5kPa/hr以下の場合には泡沫分離装置への凝集剤(塩化第二鉄)の添加率を5mg-FeCl/Lと設定し、入口側圧が0.5kPa/hr未満の場合には添加率を0mg-FeCl/Lと設定し、入口側圧が5kPa/hrを越える場合には添加率を10mg-FeCl/Lと設定することが好ましい。
 図4に、泡沫分離装置20の上流に固液分離装置としての砂ろ過装置10が配置されている態様の水処理装置の一態様を例として示す。図1~3に示す水処理装置の構成部材と同じ構成部材には同じ符号を付し、説明は省略する。図4に示す水処理装置においては、砂ろ過装置10からの透過水を逆浸透膜装置30に供給して脱塩処理する通常運転と、砂ろ過装置10からの洗浄排水を泡沫分離装置20に供給して濃縮分離し、泡沫分離装置20からの分離水を砂ろ過装置10に供給する逆洗運転とを切り換えて行う。
 通常運転時には、被処理水導入管11を介して導入された被処理水をろ材16に通水して固液分離し、得られる透過水は、透過水送水管13を介して後段の水処理装置(例えば逆浸透膜装置30)に送られる。
 本態様において泡沫分離装置20は、通常運転時にはバイパスされ、逆洗時にのみ用いられる。泡沫分離装置20には、砂ろ過装置10の洗浄排水送水管15を介して洗浄排水が導入される。泡沫分離装置20は、泡状体を含む濃縮水を排出する濃縮水送水管25、分離水を排出する分離水送水管26を含む。分離水送水管26は、上流に設けられている砂ろ過装置10への被処理水導入管11に連結されており、分離水を砂ろ過装置10に循環させることができる。
 図5に、泡沫分離装置20の上流に固液分離装置としての膜ろ過装置110が配置されている態様の水処理装置の一態様を例として示す。図1~4に示す水処理装置の構成部材と同じ構成部材には同じ符号を付し、説明は省略する。図5に示す水処理装置においては、膜ろ過装置110からの透過水を逆浸透膜装置30に供給して脱塩処理する通常運転と、膜ろ過装置110からの洗浄排水を泡沫分離装置20に供給して濃縮分離し、泡沫分離装置20からの分離水を膜ろ過装置110に供給する逆洗運転とを切り換えて行う。
 膜ろ過装置110は、被処理水を導入する被処理水導入管111、空気を導入する空気導入管112、処理後の透過水を排出する透過水送水管113、洗浄水を導入する洗浄水送水管114、洗浄排液を排出する洗浄排水送水管115、ろ過膜116を含む。図5には示していないが、被処理水送水管111に設けられている入口側圧力計、透過水送水管113に設けられている出口側圧力計、入口側圧力計と出口側圧力計の差圧を計算する差圧測定装置を含む態様でもよい。
 通常運転時には、被処理水導入管111を介して導入された被処理水をろ過膜116に通水して固液分離し、得られる透過水は、透過水送水管113を介して後段の水処理装置(例えば逆浸透膜装置30)に送られる。
 本態様において泡沫分離装置20は、通常運転時にはバイパスされ、逆洗時にのみ用いられる。
 図1~5に示す態様において、砂ろ過装置10又は膜ろ過装置110の逆洗排水を一時的に貯留した後に、所望の流量で泡沫分離装置20に導入してもよい。
 [実施形態2]
 本実施形態の水処理装置は、固液分離装置と、泡沫分離装置と、逆浸透膜装置と、当該固液分離装置からの透過水を当該泡沫分離装置に送液する透過水送水管と当該泡沫分離装置からの分離水を当該逆浸透膜装置に送液する分離水送水管と、を具備する。本実施形態の水処理装置においては、被処理水を固液分離装置に送り、固液分離装置からの透過水を泡沫分離装置にて処理した後に逆浸透膜装置にて脱塩処理する。
 図6に示す水処理装置は、砂ろ過装置10からの透過水を泡沫分離装置20に導入する透過水送水管21と、泡沫分離装置20からの分離水を逆浸透膜装置30に供給する分離水送水管26と、を含む。図1~5に示す水処理装置の構成部材と同じ構成部材には同じ符号を付し、説明は省略する。
 砂ろ過装置10には、水頭圧を測定する圧力計17が備えられており、ろ過の進行とともに、濁質成分等がろ材の隙間に蓄積されることにより上昇する水頭圧を測定し、定期的或いは所定の水頭圧になった段階でろ材の洗浄を実施する。洗浄時には、透過水を、ろ過時とは反対にろ材の底部より上向流で通水して、ろ材の間隙に堆積している濁質成分等を上方に押し出し、洗浄排水として排出する。洗浄頻度は、水質に応じて任意の回数をとることができるが、0.1回/日以上5回/日以下程度が好ましい。
 泡沫分離装置20における処理能力は、導入する空気量を調節することによって制御することができる。砂ろ過装置10における水頭圧の増加速度は水質によって異なるが、通常1kPa/day以上50kPa/day以下であり、水質が良好な場合は10kPa/day程度、好ましくは5kPa/day以下となる。砂ろ過に供給される水質が悪い場合は、水頭圧の増加速度が速く、また処理水質も悪化する場合があり、この場合は、泡沫分離装置20の空気量を調整して、空気量を多くするのが好ましい。
 砂ろ過装置10の透過水に残留する有機物が少ない場合は、砂ろ過装置10からの透過水の一部を、泡沫分離装置20をバイパスして直接逆浸透膜装置30に送るバイパスライン(図示せず)を含んでいてもよい。
 [実施形態3]
 本実施形態の水処理装置は、被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置と、被処理水から少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置と、を含み、前記固液分離装置からの透過水を前記泡沫分離装置に供給する透過水送水管と、前記泡沫分離装置からの濃縮水を前記固液分離装置に返送する濃縮水送水管と、を具備する。
 本実施形態の水処理装置は、前記泡沫分離装置からの分離水が供給される逆浸透膜装置をさらに具備することが好ましい。
 本実施形態の水処理方法は、例えば、海水淡水化処理の場合、被処理水を固液分離装置にて固液分離した後、固液分離装置からの透過水を泡沫分離装置にて濃縮分離して、泡沫分離装置からの濃縮水を固液分離装置に返送し、泡沫分離装置からの分離水を逆浸透膜装置にて脱塩処理する通常運転と、固液分離装置を逆洗する逆洗運転と、を切り換えて実施する。
 本実施形態の水処理方法は、固液分離して得られる透過水を泡沫分離処理により濁質成分、透明で粘着性の高いゼリー状の有機物、TEP、フミン質などの溶解性の有機物及び油などを分離除去した後、逆浸透膜処理して脱塩処理する。固液分離した透過水には、被処理水(原水)由来の溶解性有機物などが含まれている。例えば疎水基を含む有機物、疎水基と親水基を含む有機物、親水基を含む有機物、糖タンパク質など溶存している有機物の一部は固液分離によっては除去できない。本実施形態の水処理方法においては、これらの溶存している有機物を凝集剤添加によりフロック化することなく、泡沫分離処理により分離除去する。泡沫分離処理は、溶存している有機物や微細な濁質成分等を泡径50μm乃至2mmの微細な気泡表面に吸着させた泡状体として、0.5分乃至10分、好ましくは2分程度の短時間のうちに液面まで上昇させ、泡状体から吸着している有機物や微細な濁質成分等を泡沫として液体から分離する。泡沫分離処理において導入する気体の液体に対する比率(気液比)は0.1乃至2が好ましい。気液比0.1未満では除去性能が悪く、気液比2を越えても処理性能は向上せずに気体の供給量が過剰となる。
 泡沫分離装置における処理能力は、導入する空気量を調節することによって制御することができる。すなわち、水質が悪い場合は気液比を多くし、水質が良好な場合は気液比を少なくして、経済的な運転を行うことができる。
 固液分離装置として膜処理を行う場合は、膜処理装置に供給する被処理水の水質に応じて、膜間差圧(膜の入口側の圧力から膜の透過水(出口側)の圧力を引いた値)の増加速度が異なり、膜間差圧の増加速度は、通常0.1kPa/hr以上40kPa/hr以下程度であり、2kPa/hr程度が一般的である。一方で、泡沫分離装置の気液比は0.1以上2以下程度が好ましく、0.4程度がより好ましい。膜処理の供給水質が悪い場合は膜間差圧の増加速度が速い上、透過水にリークする有機物も少なからず増加するので、本実施形態では、例えば、膜間差圧の増加速度が0.5kPa/hr以上5kPa/hr以下の場合には気液比を0.4と設定し、膜間差圧の増加速度が0.5kPa/hr未満の場合には気液比を0.2と設定し、膜間差圧の増加速度が5kPa/hrを越える場合には気液比を1と設定することが好ましい。このように設定することで、膜ろ過装置における膜間差圧上昇速度を0.1kPa/hr以上2kPa/hr以下程度に維持することができる。
 図7に示す水処理装置は、砂ろ過装置10からの透過水を泡沫分離装置20に導入する透過水送水管21と、泡沫分離装置20からの濃縮水を砂ろ過装置10に返送する濃縮水送水管25と、泡沫分離装置20からの分離水を後段の処理装置、たとえば逆浸透膜装置30(図8)に供給する分離水送水管26と、を含む。図1~6に示す水処理装置の構成部材と同じ構成部材には同じ符号を付し、説明は省略する。
 砂ろ過装置10には、水頭圧を測定する圧力計17が備えられており、ろ過の進行とともに、濁質成分等がろ材の隙間に蓄積されることにより上昇する水頭圧を測定し、定期的或いは所定の水頭圧になった段階でろ材の洗浄を実施する。洗浄時には、透過水を、ろ過時とは反対にろ材の底部より上向流で通水して、ろ材の間隙に堆積している濁質成分等を上方に押し出し、洗浄排水として排出する。洗浄頻度は、水質に応じて任意の回数をとることができるが、0.1回/日以上5回/日以下程度が好ましい。
 泡沫分離装置20における処理能力は、導入する空気量を調節することによって制御することができる。砂ろ過装置10における水頭圧の増加速度は水質によって異なるが、通常1kPa/day以上50kPa/day以下であり、水質が良好な場合は10kPa/day程度、好ましくは5kPa/day以下となる。砂ろ過に供給される水質が悪い場合は、水頭圧の増加速度が速く、また処理水質も悪化する場合があり、この場合は、泡沫分離装置20の空気量を調整して、空気量を多くするのが好ましい。
 砂ろ過装置10の透過水に残留する有機物が少ない場合は、砂ろ過装置10からの透過水の一部を、泡沫分離装置20をバイパスして直接逆浸透膜装置30に送るバイパスライン(図示せず)を含んでいてもよい。
 次に、固液分離装置として生物膜ろ過装置及び砂ろ過装置を用いる態様を例にして図8を参照しながら説明する。図1~7に示す水処理装置の構成部材と同じ構成部材には同じ符号を付し、説明は省略する。
 図8に示す水処理装置は、生物膜ろ過装置40と、砂ろ過装置10と、泡沫分離装置20と、逆浸透膜装置30とを含む。
 生物膜ろ過装置40は、生物膜ろ材46と、被処理水をろ過装置に送水するための被処理水送水管41及び被処理水ポンプ(図示せず)、透過水を排出させる透過水送水管43、空気を導入する空気導入管42、洗浄水を導入する洗浄水送水管44、洗浄水を排出する洗浄水送水管45が連結されている。被処理水が海水である場合のように、溶存酸素(DO)が含まれている場合は、空気の供給をしなくてもよい。溶存酸素(DO)が不足する場合には、ろ材に付着している生物の活性が低下するか若しくは生物が死滅するおそれがあるため、生物膜ろ材46に空気導入管42を介して空気を供給する。また、被処理水に酸化剤が含まれている場合は、酸化剤により生物の活性が低下するか若しくは生物が死滅するおそれがあるため、還元剤などで中和しておく。
 生物膜ろ過装置40からの透過水を砂ろ過装置10に対する被処理水として導入する。砂ろ過装置10からの透過水は、泡沫分離装置20に導入される。泡沫分離装置20は、気泡に濁質成分、有機物及び油などを吸着させてなる泡状体を含む濃縮水を生物膜ろ過装置40に返送する濃縮水送水管25、分離水を排出する分離水送水管26を含む。泡沫分離装置20において泡状体と分離された分離水を、逆浸透膜装置(RO)30に導入して脱塩処理する。
 砂ろ過装置10からの透過水を、泡沫分離装置20をバイパスして直接逆浸透膜装置30に送るバイパスライン(図示せず)を含んでいてもよい。
 次に、固液分離装置として膜ろ過装置を用いる態様を例にして図9を参照しながら説明する。図1~8に示す水処理装置の構成部材と同じ構成部材には同じ符号を付し、説明は省略する。
 図9に示す水処理装置は、膜ろ過装置110と、泡沫分離装置20と、逆浸透膜装置30とを含む。膜ろ過装置110からの透過水は、泡沫分離装置20に導入される。泡沫分離装置20は、気泡に濁質成分、有機物及び油などを吸着させてなる泡状体を含む濃縮水を膜ろ過装置110に返送する濃縮水送水管25、分離水を排出する分離水送水管26を含む。泡沫分離装置20において泡状体と分離された分離水を、逆浸透膜装置(RO)30に導入して脱塩処理する。
 膜ろ過装置110からの透過水を、泡沫分離装置20をバイパスして直接逆浸透膜装置30に送るバイパスライン(図示せず)を含んでいてもよい。
 次に、固液分離装置としてメンブレンバイオリアクター(MBR)を用いる態様を例にして図10を参照しながら説明する。図1~9に示す水処理装置の構成部材と同じ構成部材には同じ符号を付し、説明は省略する。
 図10に示す水処理装置は、MBR50と、泡沫分離装置20と、逆浸透膜装置30とを含む。MBR50は、活性汚泥処理槽に、中空糸あるいは平膜形状の精密ろ過膜や限外ろ過膜などの分離膜56を設置し、処理水と活性汚泥とを分離する装置である。MBR50には、被処理水を導入する被処理水導入管51と、空気を導入する空気導入管52と、透過水を泡沫分離装置20に送る透過水送水管53と、余剰汚泥を排出する余剰汚泥送液管58が連結されている。分離膜56のファウリングを防ぐため、空気導入管52からの空気を装置底部から導入して強く曝気することで、空気の泡とこれに伴う上昇流を発生させながら透過水をポンプなどで少しずつ吸引する。被処理水中の有機物が活性汚泥処理されることで、炭酸ガスと水に分解されると共に汚泥が増殖する。汚泥からは粘着性の生体外高分子物質などが排出され、汚泥がフロック化する。
 MBR50からの透過水は、透過水送水管53を介して泡沫分離装置20に導入される。泡沫分離装置20は、気泡に濁質成分、有機物及び油などを吸着させてなる泡状体を含む濃縮水をMBR50に返送する濃縮水送水管25、分離水を排出する分離水送水管26を含む。泡沫分離装置20において泡状体と分離された分離水を、逆浸透膜装置(RO)30に導入して脱塩処理する。
 泡沫分離装置20からの濃縮水(有機物を含む)は、濃縮水送水管25を介してMBR50に返送される。濃縮水中に含まれる有機物を再度MBR50にて生物処理することで、泡沫分離装置20で濃縮された難分解性の有機物を分解除去することができる。
 MBR50からの透過水を、泡沫分離装置20をバイパスして直接逆浸透膜装置30に送るバイパスライン(図示せず)を含んでいてもよい。
 以下、実施例により本発明を具体的に説明する。以下の実施例及び比較例における測定項目の測定方法は以下のとおりである。
[SDI]
 SDIは、SDI(FI)自動測定器を用いて測定した。
[TEP濃度]
 アルシアンブルー染色液で染色された主にムコ多糖類の濃度で示す。サンプルをポリカーボネート紙にて20kPaで吸引ろ過し、そのろ紙(ろ紙上に残留した物質を含む状態)を80%の硫酸溶液に浸漬させ、溶出した物質の吸光度を測定することで定量した。
[透水性低下率]
 以下の計算式で算出した。水の透過係数は、逆浸透膜のフラックス(m/s)を有効圧(操作圧(kPa)から浸透圧(kPa)を引いた値)で除した値である。
Figure JPOXMLDOC01-appb-M000002
 [実施例1]
 図1に示す装置構成を含み、被処理水を泡沫分離装置20に供給して濃縮分離し、泡沫分離装置20からの分離水を凝集砂ろ過装置10にて固液分離した後、逆浸透膜装置で脱塩処理する海水淡水化装置において、逆洗を実施した。
 泡沫分離装置20の気液比は0.4、被処理水の滞留時間を2分に設定した。凝集砂ろ過装置10の水頭圧が10kPaとなった時点で逆洗を実施した。凝集砂ろ過装置10からの洗浄排水は洗浄排水送水管15を介して泡沫分離装置20に導入して濃縮分離した後、泡沫分離装置20からの分離水(処理済み洗浄排水)を凝集砂ろ過装置10に再度導入して固液分離し、得られた透過水は透過水送水管13を介して逆浸透膜装置に導入した。泡沫分離装置20からの気泡に濁質成分及び有機物等を吸着させてなる泡状体を含む濃縮水は、濃縮水送水管25を介して装置外に排出した。泡沫分離装置20と凝集砂ろ過装置10から排出される排水の割合は、被処理水量に対して1%であり、水回収率は99%であった。
 なお、水回収率は、(被処理水量-洗浄排水量)/被処理水量×100で算出した。以下の実施例及び比較例において同じである。
 [比較例1]
 図1に示す装置構成において、被処理水を泡沫分離装置20にて処理した後、凝集砂ろ過装置10に導入して固液分離して、得られた透過水は透過水送水管13を介して逆浸透膜装置に導入し、脱塩処理した。凝集砂ろ過装置10から得られる洗浄排水は未処理のまま洗浄排水送水管15を介して装置外に排出した。水回収率は94%であった。
 [実施例2]
 図2に示す装置構成を含み、泡沫分離装置20からの分離水をUF膜ろ過装置110にて固液分離した後、逆浸透膜装置30で脱塩処理する海水淡水化装置において、逆洗を実施した。
 泡沫分離装置20の気液比は0.4、被処理水の滞留時間を2分に設定した。UF膜ろ過装置110の入口側圧が30kPaとなった時点で逆洗を実施し、洗浄水中の次亜塩素酸ナトリウム濃度が20mg/Lとなるように添加した。UF膜ろ過装置110からの洗浄排水を泡沫分離装置20に導入して濃縮分離した。泡沫分離装置20からの分離水は、分離水送水管26を介してUF膜ろ過装置110に再度導入した。UF膜ろ過装置110からの透過水は、透過水送水管113を介して逆浸透膜装置30に導入して脱塩処理した。泡沫分離装置20とUF膜ろ過装置110における水回収率は98.5%であった。逆浸透膜装置の性能低下(補正したフラックス)は6ヶ月間で5%であった。
 [比較例2]
 図2に示す装置構成において、被処理水を泡沫分離装置20にて処理した後、UF膜ろ過装置110に導入して固液分離して、得られた透過水は透過水送水管113を介して逆浸透膜装置30に導入して脱塩処理した。UF膜ろ過装置110から得られる洗浄排水は未処理のまま洗浄排水送水管15を介して装置外に排出した。水回収率は92%であった。
 [実施例3]
 図2に示す装置構成において、随伴水を処理する水処理を行った。処理条件は実施例2と同様とした。泡沫分離装置20とUF膜ろ過装置110における水回収率は98%であった。
 [比較例3]
 図2に示す装置構成において、随伴水を処理する水処理を行った。処理条件は比較例2と同様とした。泡沫分離装置20とUF膜ろ過装置110における水回収率は90%であった。
 [比較例4]
 実施例2において、泡沫分離装置の代わりに加圧浮上装置を用いる装置構成において、被処理水を加圧浮上装置にて処理した後、UF膜ろ過装置110に導入して固液分離して、得られた透過水は透過水送水管113を介して逆浸透膜装置30に導入して脱塩処理した。加圧浮上装置の気液比は0.2、滞留時間は20分とした。加圧浮上装置の水回収率は90%であった。逆浸透膜装置30の性能低下は約6ヶ月で5%であった。実施例2と対比すると、逆浸透膜装置の性能低下は同等であるが、加圧浮上装置における被処理液の滞留時間が20分と長いため、処理単位量当たりの逆浸透膜装置の性能低下は実施例2の10倍と算出される。
 [実施例4]
 図4に示す装置構成を含み、凝集砂ろ過装置10からの透過水を逆浸透膜装置30で脱塩処理する海水淡水化処理装置において、逆洗を実施した。
 逆洗頻度は2回/日とし、泡沫分離装置20の気液比は0.4に設定し、洗浄排水の滞留時間を2分とした。凝集砂ろ過装置10からの洗浄排水を泡沫分離装置20に供給して濃縮分離し、泡沫分離装置20からの分離水は分離水送水管26を介して凝集砂ろ過装置10に再び導入して固液分離した。凝集砂ろ過装置10からの透過水は、透過水送水管13を介して逆浸透膜装置30に導入して脱塩した。泡沫分離装置20で濃縮分離した気泡に濁質成分及び有機物等が吸着されてなる泡状体を含む濃縮水は、濃縮水送水管25を介して装置外に排出した。泡沫分離装置20と凝集砂ろ過装置10から排出される排水の割合は、被処理水量に対して1%であり、水回収率は99%であった。
 [比較例5]
 図4に示す装置構成において、被処理水を凝集砂ろ過装置10にて固液分離した後、透過水送水管13を介して逆浸透膜装置30に導入して脱塩処理した。凝集砂ろ過装置10の洗浄排水は未処理のまま、装置外に排出した。凝集砂ろ過装置10における洗浄排水量は、被処理水量に対して10%であり、水回収率は90%であった。
 [実施例5]
 図5に示す装置構成を含み、UF膜ろ過装置110からの処理水を逆浸透膜装置30で脱塩処理する海水淡水化装置において、逆洗を実施した。
 泡沫分離装置20の気液比は0.4に設定し、被処理水の滞留時間は2分とした。逆洗は、UF膜ろ過装置110の入口側圧が30kPaとなった段階で実施し、洗浄水中の次亜塩素酸ナトリウム濃度が20mg/Lとなるように添加した。UF膜ろ過装置110からの洗浄排水を泡沫分離装置20に導入して濃縮分離し、分離水は分離水送水管26を介してUF膜ろ過装置110に再度導入した。UF膜ろ過装置110からの透過水は、透過水送水管113を介して逆浸透膜装置30に導入して脱塩処理した。UF膜ろ過装置110と泡沫分離装置20における水回収率は、被処理水量に対して98.5%であった。泡沫分離装置20からの分離水中の残留塩素は減少せず、分離水中に残留したままUF膜ろ過装置110に再導入されたため、膜間差圧上昇速度は1.0kPa/hrと低い値に維持できた。
 [比較例6]
 図5に示す装置構成において、被処理水をUF膜ろ過装置110にて固液分離した後、透過水送水管113を介して逆浸透膜装置30に導入して脱塩処理した。UF膜ろ過装置110からの洗浄排水を未処理のまま、洗浄排水送水管115を介して装置外に排出した。水回収率は88%であり、膜間差圧上昇速度は1.5kPa/hrであった。
 上記実施例及び比較例の対比により、逆浸透膜の性能低下を同程度に防止するために要する逆洗において、洗浄排水をそのまま装置外に排出していた従来の水処理方法においては、被処理水量の6%乃至12%は洗浄排水として排出することになるが、本発明の水処理装置及び方法によれば、排出される水量は被処理水量の1%乃至2%と大幅に削減できることがわかる。
 [実施例6]
 図6に示す装置において、砂ろ過装置10からの透過水を泡沫分離装置20に供給し、泡沫分離装置20にて濃縮分離して溶解性有機物等を除去した分離水を逆浸透膜装置30で脱塩処理した。
 砂ろ過装置10の逆洗頻度は2回/日とし、泡沫分離装置20の気液比は0.4に設定し、被処理水の滞留時間を2分とした。砂ろ過装置10からの透過水のSDIは4、TEP濃度は200μg/Lであった。透過水を泡沫分離装置20で濃縮分離した後の分離水のTEP濃度は80μg/Lであった。泡沫分離処理後の分離水を逆浸透膜装置30に導入して脱塩する運転を3ヶ月間続けたところ、逆浸透膜の透水性低下率は10%程度であった。また、図7に示すように、泡沫分離装置20からの濃縮水を砂ろ過装置10に返送する濃縮水送水管25を設けることにより、泡沫分離装置20から系外に排出する濃縮水の量を1/3に低減できた。
 [比較例7]
 図6に示す装置において、泡沫分離装置を設置せず、砂ろ過装置10からの透過水を直接逆浸透膜装置30に導入して脱塩処理した。逆浸透膜の透水性低下率は3ヶ月で25%程度であった。
 [実施例7]
 図8に示す装置において、被処理水を生物膜ろ過装置40に供給し、生物膜ろ過装置40からの透過水を砂ろ過装置10に供給し、砂ろ過装置10からの透過水を泡沫分離装置20に供給し、泡沫分離装置20からの分離水を逆浸透膜装置30に供給して脱塩処理した。
 生物膜ろ過装置40及び砂ろ過装置10の洗浄頻度は2回/日とした、泡沫分離装置20の気液比は0.4に設定し、被処理水の滞留時間は2分とした。砂ろ過装置10からの透過水のSDIは4、TEP濃度は150μg/Lであった。泡沫分離装置20で処理した後の分離水のTEP濃度は70μg/Lであった。泡沫分離装置20からの分離水を逆浸透膜装置30に導入して脱塩する運転を3ヶ月間続けたところ、逆浸透膜の透水性低下率は8%程度であった。
 [実施例8]
 図9に示す装置において、被処理水をUF膜ろ過装置110に供給し、UF膜ろ過装置110からの透過水を泡沫分離装置20に供給し、泡沫分離装置20からの溶解性有機物等を除去した分離水を逆浸透膜装置30で脱塩処理した。
 泡沫分離装置20の気液比は0.4、被処理水の滞留時間を2分に設定した。UF膜ろ過装置110からの透過水のSDIは2、TEP濃度は80μg/Lであった。泡沫分離装置20からの分離水のTEP濃度は60μg/Lであった。泡沫分離雄値20からの分離水を逆浸透膜装置30に導入して脱塩する運転を3ヶ月間続けたところ、逆浸透膜の透水性低下率は7%程度であった。
 [比較例8]
 図9に示す装置において、泡沫分離装置を設置せず、UF膜ろ過装置110からの透過水を直接逆浸透膜装置30に導入して脱塩処理した。逆浸透膜の透水性低下率は3ヶ月で10%程度であった。
 [実施例9]
 図10に示す装置において、被処理水をMBR50に供給し、MBR50からの透過水を泡沫分離装置20に供給し、泡沫分離装置20からの溶解性有機物等を除去した分離水を逆浸透膜装置30で脱塩処理した。
 泡沫分離装置20の気液比は0.4、被処理水の滞留時間を2分に設定した。MBR透過水のSDIは4、TEP濃度は300μg/Lであった。泡沫分離装置20からの分離水のTEP濃度は100μg/Lであった。泡沫分離装置20からの分離水を逆浸透膜装置30に導入して脱塩する運転を3ヶ月間続けたところ、逆浸透膜の透水性低下率は15%程度であった。
 [比較例9]
 図10に示す装置において、泡沫分離装置を設置せず、MBR50からの透過水を直接逆浸透膜装置30に導入して脱塩処理した。逆浸透膜の透水性低下率は3ヶ月で30%程度であった。
10:砂ろ過装置
11:被処理水導入管
12:空気導入管
13:透過水送水管
14:洗浄水送水管
15:洗浄排水送水管
16:ろ材
17:圧力計
20:泡沫分離装置
21:被処理水導入管
22:空気導入管(気泡発生手段)
23:反応塔
24:濃縮除去部
25:濃縮水送水管
26:分離水送水管
30:逆浸透膜装置
40:生物膜ろ過装置
41:被処理水導入管
42:空気導入管
44:洗浄水送水管
45:洗浄排水送水管
46:生物膜
47:透過水送水管
50:メンブランバイオリアクター
51:被処理水導入管
52:空気導入管
53:透過水送水管
56:分離膜
58:余剰汚泥送液管
60:制御部
110:膜ろ過装置
111:被処理水導入管
112:空気導入管
113:透過水送水管
114:洗浄水送水管
115:洗浄排水送水管
116:ろ過膜
117:圧力計
118:圧力計

Claims (18)

  1. 被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置と、
    少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置と、
    逆洗時に当該固液分離装置からの洗浄排水を当該泡沫分離装置に供給する洗浄排水送水管と、を具備することを特徴とする水処理装置。
  2. 前記泡沫分離装置は、逆洗時に前記固液分離装置からの洗浄排水を濃縮分離して、少なくとも粘着性の濁質成分及び溶解性有機物が除去された分離水を前記固液分離装置に返送する分離水送水管をさらに具備することを特徴とする請求項1に記載の水処理装置。
  3. 前記泡沫分離装置は、逆洗時に前記固液分離装置からの洗浄排水を濃縮分離して、少なくとも粘着性の濁質成分及び溶解性有機物を含む濃縮水を越流水として排出することを特徴とする請求項1又は2に記載の水処理装置。
  4. 前記固液分離装置からの透過水を脱塩処理する逆浸透膜装置をさらに具備することを特徴とする請求項1~3のいずれか1に記載の水処理装置。
  5. 固液分離装置と、泡沫分離装置と、逆浸透膜装置と、
    当該固液分離装置からの透過水を当該泡沫分離装置に送液する透過水送水管と
    当該泡沫分離装置からの分離水を当該逆浸透膜装置に送液する分離水送水管と、
    を具備し、当該固液分離装置からの透過水を当該泡沫分離装置にて処理した後に当該逆浸透膜装置にて脱塩処理する水処理装置。
  6. 被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置と、
    被処理水から少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置と、
    当該泡沫分離装置からの濃縮水を当該固液分離装置に返送する濃縮水送水管と、
    を具備することを特徴とする水処理装置。
  7. 当該泡沫分離装置からの分離水を脱塩処理する逆浸透膜装置と、
    前記泡沫分離装置からの分離水を当該逆浸透膜装置に導入する分離水送水管と、
    をさらに具備することを特徴とする請求項6に記載の水処理装置。
  8. 前記固液分離装置は、砂ろ過装置、凝集砂ろ過装置、精密ろ過膜(MF膜)モジュール、限界ろ過膜(UF膜)モジュール、生物膜ろ過装置、メンブレンバイオリアクター及びこれらの任意の組合せから選択される1種以上であることを特徴とする請求項1~7のいずれか1に記載の水処理装置。
  9. 前記固液分離装置の水頭圧又は膜間差圧又は入口側圧を計測する圧力計と、
    当該圧力計により計測された水頭圧又は膜間差圧又は入口側圧に基づいて、前記泡沫分離装置に供給する空気量又は凝集剤添加量、若しくは通常運転と逆洗運転との切り替えを制御する制御部と、
    を具備することを特徴とする請求項1~8のいずれか1に記載の水処理装置。
  10. 前記泡沫分離装置は、被処理水と気泡とを混合する反応塔、当該反応塔への被処理水の導入管、当該反応塔への気泡の導入手段、及び当該反応塔からの越流水を排出する越流水排出手段を具備し、
    当該反応塔は、濁質成分及び有機物を含有する泡状体を高密度化して濃縮する濃縮部及び泡状体を水面上の所定領域に集める泡状体収集部の少なくとも一方を有することを特徴とする請求項1~9のいずれか1に記載の水処理装置。
  11. 被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置、及び被処理水から少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置を含む水処理装置の運転方法であって、
    逆洗時に、当該固液分離装置から排出される洗浄排水を当該泡沫分離装置に導入し、当該泡沫分離装置で洗浄排水中に含まれる少なくとも粘着性の濁質成分及び有機物を濃縮分離した濃縮水を少量の越流水として排出することを特徴とする、水処理装置の運転方法。
  12. 逆洗時に、前記泡沫分離装置からの分離水を前記固液分離装置に返送することを特徴とする請求項11に記載の水処理装置の運転方法。
  13. 前記固液分離装置の水頭圧又は膜間差圧を計測し、計測した圧力に基づいて、前記泡沫分離装置への空気又は凝集剤の供給量若しくは通常運転と逆洗運転との切り換えを制御することを特徴とする請求項11又は12に記載の水処理装置の運転方法。
  14. 被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置、及び被処理水から少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置を含む水処理装置において、
    当該泡沫分離装置からの濃縮水を当該固液分離装置に導入することを特徴とする水処理方法。
  15. 被処理水から少なくとも濁質成分及び有機物を除去して透過水を得る固液分離装置、及び被処理水から少なくとも粘着性の濁質成分及び溶解性有機物を濃縮分離して濃縮水及び分離水を得る泡沫分離装置と、逆浸透膜装置と、を含む水処理装置において、
    当該固液分離装置からの透過水を当該泡沫分離装置に供給し、当該泡沫分離装置にて当該透過水を濃縮分離して、分離水と濃縮水とを得て、
    当該分離水を逆浸透膜装置にて脱塩処理し、
    当該濃縮水を当該固液分離装置に返送することを特徴とする水処理方法。
  16. 被処理水を固液分離して透過水を得る固液分離工程と、
    当該透過水を泡沫分離して分離水を得る泡沫分離工程と、
    当該分離水を逆浸透膜により脱塩する脱塩工程と、
    を具備する水処理方法。
  17. 被処理水を固液分離して、SDI(シルト濃度指数)が5以下の透過水を得る固液分離工程と、
    当該透過水を0.5分乃至10分の滞留時間で泡沫分離して、少なくとも粘着性の濁質成分及び溶解性有機物を含む濃縮水と、少なくとも粘着性の濁質成分及び溶解性有機物を除去された分離水を得る泡沫分離工程と、
    当該分離水を逆浸透膜により脱塩する脱塩工程と、
    を含むことを特徴とする水処理方法。
  18. 被処理水を0.5分乃至10分の滞留時間で泡沫分離して、少なくとも粘着性の濁質成分及び溶解性有機物を含む濃縮水と、少なくとも粘着性の濁質成分及び溶解性有機物が除去された分離水を得る泡沫分離工程と、
    当該分離水を固液分離して、SDI(シルト濃度指数)が5以下の透過水を得る固液分離工程と、
    当該透過水を逆浸透膜により脱塩する脱塩工程と、
    を含むことを特徴とする水処理方法。
PCT/JP2017/002905 2016-02-05 2017-01-27 水処理装置、水処理装置の運転方法及び水処理方法 WO2017135162A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017565520A JP6613323B2 (ja) 2016-02-05 2017-01-27 水処理装置及び水処理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016020535 2016-02-05
JP2016-020535 2016-02-05
JP2016020534 2016-02-05
JP2016-020534 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135162A1 true WO2017135162A1 (ja) 2017-08-10

Family

ID=59499766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002905 WO2017135162A1 (ja) 2016-02-05 2017-01-27 水処理装置、水処理装置の運転方法及び水処理方法

Country Status (2)

Country Link
JP (1) JP6613323B2 (ja)
WO (1) WO2017135162A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021001414A (ja) * 2019-06-21 2021-01-07 栗田工業株式会社 抄紙阻害物質回収方法
CN115491225A (zh) * 2021-06-17 2022-12-20 中国石油化工股份有限公司 重质润滑油基础油滤液中脱蜡溶剂的回收方法
JP7434475B2 (ja) 2021-10-21 2024-02-20 ドゥサン エナービリティー カンパニー リミテッド 逆浸透膜海水淡水化プラントを制御するための装置およびそのための方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504820A (ja) * 1988-04-04 1991-10-24 アクア―ケム・インコーポレーテッド スパイラル状に巻かれた逆浸透膜セル
JPH10277361A (ja) * 1997-02-05 1998-10-20 Mitsubishi Heavy Ind Ltd 脱硫吸収液の処理方法及びその装置
JP2000218268A (ja) * 1999-02-02 2000-08-08 Asahi Chem Ind Co Ltd 洗濯排水の浄化再利用システム
JP2000225398A (ja) * 1999-02-02 2000-08-15 Nichiriku Co Ltd 家畜尿汚水の処理装置
JP2003024931A (ja) * 2001-07-17 2003-01-28 Kubota Corp Ss分離方法及び装置
JP2003205298A (ja) * 2002-01-15 2003-07-22 Uno Juko Kk 家畜尿汚水の処理装置
JP2003266072A (ja) * 2002-03-18 2003-09-24 Japan Organo Co Ltd 膜ろ過方法
JP2004073989A (ja) * 2002-08-15 2004-03-11 Ebara Corp 懸濁水の高速固液分離方法及び装置
CN101838059A (zh) * 2009-03-18 2010-09-22 罗莎国际有限公司 多段式分级连续微泡分离废水回收设备及其使用方法
CN104129826A (zh) * 2014-08-22 2014-11-05 北京城市排水集团有限责任公司 多因子气泡分离污水净化处理设备及污水回收方法
JP2015173995A (ja) * 2014-03-13 2015-10-05 オルガノ株式会社 水処理装置および水処理方法
JP2016150283A (ja) * 2015-02-16 2016-08-22 水ing株式会社 膜処理装置及び膜処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586422B2 (ja) * 2004-06-02 2010-11-24 旭有機材工業株式会社 有機性廃水の処理方法
JP6170552B2 (ja) * 2013-05-10 2017-08-02 水ing株式会社 海水淡水化装置及びその方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504820A (ja) * 1988-04-04 1991-10-24 アクア―ケム・インコーポレーテッド スパイラル状に巻かれた逆浸透膜セル
JPH10277361A (ja) * 1997-02-05 1998-10-20 Mitsubishi Heavy Ind Ltd 脱硫吸収液の処理方法及びその装置
JP2000218268A (ja) * 1999-02-02 2000-08-08 Asahi Chem Ind Co Ltd 洗濯排水の浄化再利用システム
JP2000225398A (ja) * 1999-02-02 2000-08-15 Nichiriku Co Ltd 家畜尿汚水の処理装置
JP2003024931A (ja) * 2001-07-17 2003-01-28 Kubota Corp Ss分離方法及び装置
JP2003205298A (ja) * 2002-01-15 2003-07-22 Uno Juko Kk 家畜尿汚水の処理装置
JP2003266072A (ja) * 2002-03-18 2003-09-24 Japan Organo Co Ltd 膜ろ過方法
JP2004073989A (ja) * 2002-08-15 2004-03-11 Ebara Corp 懸濁水の高速固液分離方法及び装置
CN101838059A (zh) * 2009-03-18 2010-09-22 罗莎国际有限公司 多段式分级连续微泡分离废水回收设备及其使用方法
JP2015173995A (ja) * 2014-03-13 2015-10-05 オルガノ株式会社 水処理装置および水処理方法
CN104129826A (zh) * 2014-08-22 2014-11-05 北京城市排水集团有限责任公司 多因子气泡分离污水净化处理设备及污水回收方法
JP2016150283A (ja) * 2015-02-16 2016-08-22 水ing株式会社 膜処理装置及び膜処理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021001414A (ja) * 2019-06-21 2021-01-07 栗田工業株式会社 抄紙阻害物質回収方法
JP7293903B2 (ja) 2019-06-21 2023-06-20 栗田工業株式会社 抄紙阻害物質回収方法
CN115491225A (zh) * 2021-06-17 2022-12-20 中国石油化工股份有限公司 重质润滑油基础油滤液中脱蜡溶剂的回收方法
CN115491225B (zh) * 2021-06-17 2024-03-26 中国石油化工股份有限公司 重质润滑油基础油滤液中脱蜡溶剂的回收方法
JP7434475B2 (ja) 2021-10-21 2024-02-20 ドゥサン エナービリティー カンパニー リミテッド 逆浸透膜海水淡水化プラントを制御するための装置およびそのための方法

Also Published As

Publication number Publication date
JP6613323B2 (ja) 2019-12-04
JPWO2017135162A1 (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
JP5844196B2 (ja) 淡水化装置及び淡水化方法
MX2015003479A (es) Procedimiento de tratamiento de agua que comprende flotacion combinada con filtracion por gravedad, y equipo correspondiente.
CN106103349A (zh) 水处理方法
JP2011088053A (ja) 淡水化処理設備及び方法
JP2015077530A (ja) 造水方法および造水装置
JPH07155758A (ja) 廃水処理装置
JP2014057931A (ja) 造水方法
JP6613323B2 (ja) 水処理装置及び水処理方法
US20220234930A1 (en) Method for Purifying Contaminated Water
US20110263009A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP2007289847A (ja) 水道原水の浄水処理方法及びその装置
JP6184541B2 (ja) 汚水処理装置及びこれを用いた汚水処理方法
JP6580338B2 (ja) 膜処理装置及び膜処理方法
WO2011136043A1 (ja) 廃水処理装置および廃水処理方法
WO2017159303A1 (ja) 高硬度排水の処理方法
JP5801249B2 (ja) 淡水化装置及び淡水化方法
JP2014000495A (ja) 汚水処理装置及びこれを用いた汚水処理方法
JP2003080246A (ja) 水処理装置および水処理方法
JP2010089079A (ja) 浸漬型膜分離装置の運転方法、および浸漬型膜分離装置
KR101521012B1 (ko) 멤브레인을 결합한 용존가압부상 수처리장치
JP2009214062A (ja) 浸漬型膜モジュールの運転方法
JP4925403B2 (ja) 排水処理装置および排水処理方法
JP6609236B2 (ja) 水処理装置及び水処理方法
JP4335193B2 (ja) 有機性廃水の処理方法及び装置
JP3697938B2 (ja) 用排水処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747319

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2017565520

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747319

Country of ref document: EP

Kind code of ref document: A1