WO2017133513A1 - 一种脱硫废水软化处理装置及方法 - Google Patents

一种脱硫废水软化处理装置及方法 Download PDF

Info

Publication number
WO2017133513A1
WO2017133513A1 PCT/CN2017/072023 CN2017072023W WO2017133513A1 WO 2017133513 A1 WO2017133513 A1 WO 2017133513A1 CN 2017072023 W CN2017072023 W CN 2017072023W WO 2017133513 A1 WO2017133513 A1 WO 2017133513A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
softening
wastewater
reaction tank
desulfurization wastewater
Prior art date
Application number
PCT/CN2017/072023
Other languages
English (en)
French (fr)
Inventor
刘海洋
夏怀祥
江澄宇
李叶红
Original Assignee
大唐环境产业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐环境产业集团股份有限公司 filed Critical 大唐环境产业集团股份有限公司
Publication of WO2017133513A1 publication Critical patent/WO2017133513A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/007Modular design

Definitions

  • the invention relates to the technical field of environmental protection, and in particular relates to a desulfurization wastewater softening treatment device and method.
  • Coal-fired power generation plays an important role in China's energy supply.
  • most power plants in China have adopted limestone-gypsum wet desulfurization technology to remove sulfur dioxide from flue gas.
  • the use of the aforementioned desulfurization technology will generate a large amount of desulfurization wastewater.
  • the wet desulfurization wastewater of coal-fired power plants is complex in composition, containing high concentrations of suspended solids, supersaturated sulfites, chloride ions, sulfates and various heavy metals.
  • the desulfurization wastewater is mainly treated by chemical precipitation method. Some indicators are difficult to reach the standard. Even after reaching the standard treatment, the salinity of the effluent is still as high as 2% to 4%, which is difficult to reuse, and the surface water and soil ecology will be broken after the efflux. , causing secondary pollution. Therefore, the development of cost-effective zero-emission treatment technologies and equipment for desulfurization wastewater has important economic, social and environmental benefits.
  • the common technical route is softening treatment + concentration + evaporation crystallization.
  • the lime-soda ash method is generally used to soften the treated wastewater, that is, by adding calcium hydroxide and sodium carbonate to the wastewater, calcium and magnesium ions in the wastewater are separately precipitated to form calcium carbonate and magnesium hydroxide, thereby realizing waste water. Softening treatment.
  • an object of the present invention is to provide a desulfurization wastewater softening treatment apparatus and method. It can effectively reduce the softening treatment cost, and at the same time achieve heavy metal discharge.
  • a desulfurization wastewater softening treatment device comprising:
  • a precipitation reaction tank provided with a seed seeding device
  • a primary sedimentation tank connected to the precipitation reaction tank, a first sludge discharge pipe is arranged at the bottom; the first sludge drainage pipeline is connected to the precipitation reaction tank through a return pipeline;
  • a calcium removal sedimentation tank group in communication with the primary settling tank.
  • the calcium removal sedimentation tank group includes a first-stage softening pool, a flocculation reaction tank and a second sedimentation tank which are sequentially connected;
  • the secondary softening tank is provided with a first dosing pipeline;
  • the flocculation reaction tank A second dosing line is provided;
  • the second settling tank is in communication with a water outlet pipe;
  • the bottom of the secondary softening pool is connected to a bottom of the second settling tank and a second sludge discharging pipe.
  • the precipitation reaction tank, the secondary softening tank and the flocculation reaction tank are all provided with a liquid mixing device.
  • the liquid mixing device is a stirring device or an aeration device.
  • the bottoms of the precipitation reaction tank, the primary sedimentation tank, the secondary softening pool and the secondary sedimentation tank are all bucket-shaped, and the bucket-shaped tip communicates with the first sludge discharge pipe or the second drainage mud pipeline.
  • the desulfurization wastewater softening treatment method based on the above device comprises the following steps:
  • Step one the desulfurization wastewater enters the precipitation reaction tank, and the calcium sulfate seed crystal is added to the precipitation reaction tank to control the mass concentration of the seed crystal to be 1% to 15%, the reaction time is controlled to be 10 to 60 minutes, and the concentration of calcium sulfate in the wastewater is reduced, thereby obtaining Low concentration desulfurization wastewater;
  • Step 2 the low-concentration desulfurization wastewater enters the primary sedimentation tank through pipeline or overflow, and is subjected to sedimentation separation to obtain precipitated sludge and primary clarified wastewater, and at least part of the precipitated sludge is refluxed to the precipitation reaction tank as a supplementary seed crystal;
  • Step 3 Initially clarify the wastewater into the secondary softening pool through pipeline or overflow, add a combined agent A to the secondary softening tank, control the pH value between 9 and 12, and remove calcium, magnesium and heavy metals from the initially clarified wastewater. Contaminants, obtaining secondary softened wastewater;
  • Step 4 the secondary softened wastewater enters the flocculation reaction tank through a pipeline or an overflow method, and a combined chemical agent B is added into the flocculation reaction tank to improve the sedimentation performance of the suspended solid in the secondary softened wastewater, and the settling wastewater is obtained;
  • step 5 the settling wastewater enters the secondary settling tank through the pipeline or overflow, and the precipitated sludge and the effluent are obtained after the sedimentation.
  • the calcium sulfate seed crystal is calcium sulfate dihydrate.
  • the concentration of calcium sulfate in the desulfurization wastewater is lowered to a near saturated state.
  • the remaining precipitated sludge that has not returned to the precipitation reaction tank is discharged into a gypsum dewatering machine through the sludge pipe, and is used as a by-product of gypsum by-product.
  • the combined agent A includes a basic substance, a carbonate, and an organic sulfur; and the combined agent B includes a flocculating agent and a coagulant.
  • the seed crystal method is introduced in the softening treatment process of the desulfurization wastewater, and the heavy metal in the wastewater can be discharged at the same time, and the concentration of calcium sulfate in the wastewater can be effectively reduced, thereby reducing the cost of the softening treatment agent and reducing the cost of the softening treatment.
  • Zero discharge treatment cost of desulfurization wastewater is introduced in the softening treatment process of the desulfurization wastewater, and the heavy metal in the wastewater can be discharged at the same time, and the concentration of calcium sulfate in the wastewater can be effectively reduced, thereby reducing the cost of the softening treatment agent and reducing the cost of the softening treatment.
  • FIG. 1 is a schematic view showing the arrangement of a desulfurization wastewater softening treatment device according to an embodiment of the present invention.
  • a desulfurization wastewater softening treatment device including:
  • the precipitation reaction tank 1 is provided with a seed seeding device; the primary sedimentation tank 3 communicating with the precipitation reaction tank 1 is provided with a first sludge discharge pipe 5 at the bottom thereof; and the first sludge discharge pipe 5 is connected to the precipitation reaction tank through the return pipe 4 1; a calcium removal sedimentation tank group connected to the primary sedimentation tank 3.
  • the calcium removal sedimentation group includes a secondary softening tank 6, a flocculation reaction tank 8 and a secondary sedimentation tank 10 which are sequentially connected; the secondary softening tank 6 is provided with a first dosing pipeline; and the flocculation reaction tank 8 is provided with a second dosing pipe
  • the second settling tank 10 is connected to a water outlet pipe; the bottom of the secondary softening tank 6 and the bottom of the secondary settling tank 10 are in communication with the second sludge draining pipe 11.
  • the precipitation reaction tank 1, the secondary softening tank 6, and the flocculation reaction tank 8 are each provided with a liquid mixing device. As shown in FIG. 1, the first stirring device 2, the second stirring device 7, and the third stirring device 9.
  • the agitation device is only one implementation form of the liquid mixing device. In other embodiments, the aeration device can also be used as the liquid mixing device.
  • the bottoms of the precipitation reaction tank 1, the primary sedimentation tank 3, the secondary softening tank 6, and the secondary sedimentation tank 10 are all bucket-shaped, and the bucket-shaped tip communicates with the first sludge discharge pipe 5 or the second sludge discharge pipe 11.
  • Step one the desulfurization wastewater enters the precipitation reaction tank, and the calcium sulfate seed crystal is added to the precipitation reaction tank to control the mass concentration of the seed crystal to be 1% to 15%, the reaction time is controlled to be 10 to 60 minutes, and the concentration of calcium sulfate in the wastewater is reduced, thereby obtaining Low concentration desulfurization wastewater;
  • Step 2 the low-concentration desulfurization wastewater enters the primary sedimentation tank through pipeline or overflow, and is subjected to sedimentation separation to obtain precipitated sludge and primary clarified wastewater, and at least part of the precipitated sludge is refluxed to the precipitation reaction tank as a supplementary seed crystal;
  • Step 3 Initially clarify the wastewater into the secondary softening pool through pipeline or overflow, add a combined agent A to the secondary softening tank, control the pH value between 9 and 12, and remove calcium, magnesium and heavy metals from the initially clarified wastewater.
  • the contaminant provides secondary softening wastewater;
  • the combined agent A comprises a basic substance, a carbonate and an organic sulfur, and the basic substance, the carbonate is preferably calcium hydroxide and sodium carbonate.
  • the specific ratio of the medicament is determined according to the quality of the wastewater.
  • the pH of the wastewater is controlled to 9 to 12, and the precipitation characteristics of calcium carbonate and magnesium hydroxide are decomposed, and the pH is preferably in the range of 10 to 11.
  • the concentration of calcium and magnesium ions in the wastewater is reduced to less than 10 mg/L; at the same time, part of the COD is removed to achieve the discharge of heavy metals such as chromium, cadmium and mercury;
  • Step 4 The secondary softened wastewater enters the flocculation reaction tank through a pipeline or overflow method, and a combined agent B, including a flocculating agent and a coagulant, is added to improve the sedimentation performance of the suspended solids in the secondary softened wastewater, and the settling wastewater is obtained;
  • a combined agent B including a flocculating agent and a coagulant
  • step 5 the settling wastewater enters the secondary settling tank through the pipeline or overflow, and the precipitated sludge and the effluent are obtained after the sedimentation.
  • the initial calcium and magnesium concentrations in the wastewater are 3400mg/L and 2500mg/L respectively.
  • the desulfurization wastewater enters the primary sedimentation tank through pipeline or overflow, and the muddy water is separated in the primary sedimentation tank, and part of the precipitated sludge is returned to the precipitation reaction tank through the sludge pipeline to replenish the lost seed crystal, and the remaining residual sediment sludge passes through the sludge.
  • the pipe is discharged into the gypsum dewatering machine and used as a by-product of gypsum by-product.
  • the supernatant liquid After sedimentation in the primary sedimentation tank, the supernatant liquid enters the secondary softening tank through the pipeline or overflow method, adding calcium hydroxide, sodium carbonate and organic sulfur to the secondary softening tank, and simultaneously opening the stirring device to further remove calcium from the wastewater. , magnesium and heavy metal contaminants. At this time, the pH of the wastewater is controlled at 9-12. Finally, the concentration of calcium and magnesium ions in the wastewater is reduced to less than 10 mg/L.
  • the wastewater After the secondary softening treatment, the wastewater enters the flocculation reaction tank through pipeline or overflow, and simultaneously opens the stirring device in the flocculation tank, adds flocculant and coagulant, and then enters the secondary settling tank through pipeline or overflow, and passes through the sedimentation. The supernatant is discharged or further processed, and the sludge from the secondary and secondary softening tanks is discharged through the sludge discharge pipe for concentration and dehydration treatment.
  • the softening cost per ton of water is about 10 yuan; due to the addition of seed crystals, the sludge treatment amount is reduced while reducing the dosage of the sludge, and the sludge treatment cost can be softened compared with the conventional desulfurization wastewater treatment process. Reduce by 40%.

Abstract

提供一种脱硫废水软化处理装置,包括:析出反应池(1),设有晶种投放装置;与析出反应池(1)连通的初沉池(3),其底部设有第一排泥管道(5);该第一排泥管道(5)通过回流管道(4)连通至析出反应池(1);与初沉池(3)连通的除钙沉淀池组。还提供了利用该软化处理装置对脱硫废水进行软化处理的方法,可以有效降低软化处理成本,同时可以实现重金属达标排放。

Description

一种脱硫废水软化处理装置及方法 技术领域
本发明涉及环境保护技术领域,具体涉及一种脱硫废水软化处理处理装置及方法。
背景技术
燃煤发电在我国能源供给中占有重要地位。为了保护大气环境,近年来我国大多数电厂采用了石灰石-石膏湿法脱硫技术,用以去除烟气中的二氧化硫。采用前述脱硫技术会产生大量的脱硫废水,燃煤电厂湿法脱硫废水成分复杂,含有高浓度悬浮物、过饱和的亚硫酸盐、氯离子、硫酸盐以及多种重金属。
目前脱硫废水主要采用化学沉淀法处理,部分指标达标困难,即使达标处理后,出水含盐量仍高达2%~4%,很难重复利用,而且外排后还会引起地表水和土壤生态破,引起二次污染。因此,开发经济高效的脱硫废水零排放处理技术和设备具有重要的经济、社会和环境效益。
现有脱硫废水零排放处理中,常用技术路线为软化处理+浓缩+蒸发结晶。采用该工艺时,一般采用石灰—纯碱法软化处理废水,即通过向废水中投加氢氧化钙和碳酸钠,使废水中的钙、镁离子分别生成碳酸钙和氢氧化镁沉淀,进而实现废水的软化处理。
但是由于废水中钙镁浓度过高,硫酸钙和亚硫酸钙处于过饱和状态,造成药剂消耗量极大,不仅产生大量沉淀污泥,同时药剂费用极高,吨水软化成本可达数20元以上。
为了推进脱硫废水零排放处理技术的发展和应用,避免环境污染,鉴于现存软化工艺的缺点和不足,寻找新型的经济高效的脱硫废水软化处理工艺成为脱硫废水零排放处理中急需解决的问题。
发明内容
针对上述问题,本发明的目的是提供一种脱硫废水软化处理装置及方法。可以有效降低软化处理成本,同时可以实现重金属达标排放。
为达上述目的,本发明采取的具体技术方案是:
一种脱硫废水软化处理装置,包括:
一析出反应池,设有一晶种投放装置;
与所述析出反应池连通的一初沉池,其底部设有一第一排泥管道;所述第一排泥管道通过一回流管道连通至所述析出反应池;
与所述初沉池连通的一除钙沉淀池组。
进一步地,所述除钙沉淀池组包括依次连通的一二级软化池、一絮凝反应池及一二沉池;所述二级软化池设有一第一加药管路;所述絮凝反应池设有一第二加药管路;所述二沉池与一出水管路连通;所述二级软化池的底部与二沉池的底部与一第二排泥管道连通。
进一步地,所述析出反应池、二级软化池及絮凝反应池均设有液混装置。
进一步地,所述液混装置为一搅拌装置或一曝气装置。
进一步地,所述析出反应池、初沉池、二级软化池及二沉池的底部均为斗状,所述斗状的尖端连通第一排泥管道或第二排泥管道。
基于上述装置的脱硫废水软化处理方法,包括以下步骤:
步骤一,脱硫废水进入析出反应池,向析出反应池中加入硫酸钙晶种,控制晶种质量浓度为1%~15%,反应时间控制在10~60分钟,降低废水中硫酸钙浓度,得到低浓度脱硫废水;
步骤二,低浓度脱硫废水通过管道或溢流方式进入初沉池,进行沉淀分离,得到沉淀污泥和初澄清废水,至少部分沉淀污泥回流至析出反应池,作为补充晶种;
步骤三,初澄清废水通过管道或溢流方式进入二级软化池,向二级软化池内加入一组合药剂A,控制pH值在9~12之间,去除初澄清废水中的钙、镁和重金属污染物,得到二级软化废水;
步骤四,二级软化废水通过管道或溢流方式进入絮凝反应池,向絮凝反应池内加入一组合药剂B,提高二级软化废水中悬浮物沉降性能,得到沉降废水;
步骤五,沉降废水通过管道或溢流方式进入二沉池,通过沉淀后得到沉淀污泥和出水。
进一步地,所述硫酸钙晶种为二水硫酸钙。
进一步地,步骤一中,使脱硫废水中硫酸钙浓度降低至近饱和状态。
进一步地,未回流至析出反应池的剩余沉淀污泥通过污泥管道排入一石膏脱水机,作为石膏副产品综合利用。
进一步地,所述组合药剂A包括碱性物质、碳酸盐和有机硫;所述组合药剂B包括絮凝剂和助凝剂。
通过采取上述技术方案,在脱硫废水软化处理过程中,引入了晶种法,在实现废水中重金属达标排放的同时,可以有效降低废水中硫酸钙浓度,从而降低软化处理的药剂成本,有利于降低脱硫废水零排放处理成本。
附图说明
图1为本发明一实施例中的脱硫废水软化处理装置的布置示意图。
具体实施方式
为使本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图作详细说明如下。
如图1所示,在一实施例中,提供一种脱硫废水软化处理装置,包括:
析出反应池1,设有一晶种投放装置;与析出反应池1连通的初沉池3,其底部设有第一排泥管道5;第一排泥管道5通过回流管道4连通至析出反应池1;与初沉池3连通的一除钙沉淀池组。
除钙沉淀池组包括依次连通的二级软化池6、絮凝反应池8及二沉池10;二级软化池6设有一第一加药管路;絮凝反应池8设有一第二加药管路;二沉池10与一出水管路连通;二级软化池6的底部与二沉池10的底部与第二排泥管道11连通。
另外,析出反应池1、二级软化池6及絮凝反应池8均设有液混装置。如图1所示,即第一搅拌装置2、第二搅拌装置7及第三搅拌装置9。搅拌装置仅是液混装置的一种实现形式,在其他实施例中,也可以采用曝气装置做为液混装置。
析出反应池1、初沉池3、二级软化池6及二沉池10的底部均为斗状,所述斗状的尖端连通第一排泥管道5或第二排泥管道11。
在对脱硫废水进行软化处理时,采取以下步骤:
步骤一,脱硫废水进入析出反应池,向析出反应池中加入硫酸钙晶种,控制晶种质量浓度为1%~15%,反应时间控制在10~60分钟,降低废水中硫酸钙浓度,得到低浓度脱硫废水;
步骤二,低浓度脱硫废水通过管道或溢流方式进入初沉池,进行沉淀分离,得到沉淀污泥和初澄清废水,至少部分沉淀污泥回流至析出反应池,作为补充晶种;
步骤三,初澄清废水通过管道或溢流方式进入二级软化池,向二级软化池内加入一组合药剂A,控制pH值在9~12之间,去除初澄清废水中的钙、镁和重金属污染物,得到二级软化废水;所述组合药剂A包括碱性物质、碳酸盐和有机硫,所述碱性物质、碳酸盐优选为氢氧化钙和碳酸钠。具体药剂比例根据废水中质确定,通过组合药剂A的投加,时废水pH控制在9~12,分解碳酸钙和氢氧化镁沉淀特性,进一步优选pH范围为10~11。最终使废水中钙、镁离子浓度降低至10mg/L以下;同时去除部分COD,实现铬、镉、汞等重金属达标排放;
步骤四,二级软化废水通过管道或溢流方式进入絮凝反应池,加入一组合药剂B,包括絮凝剂和助凝剂,提高二级软化废水中悬浮物沉降性能,得到沉降废水;
步骤五,沉降废水通过管道或溢流方式进入二沉池,通过沉淀后得到沉淀污泥和出水。
以一实际工程为例,取某电厂脱硫废水,废水中初始钙镁浓度分别为3400mg/L和2500mg/L,首先在泵的作用下进入析出反应池,开启搅拌装置,然后向反应器中加入适量的二水硫酸钙晶种,控制晶种质量浓度为1%~15%,反应(水力停留)时间控制在10~60分钟。然后脱硫废水通过管道或溢流方式进入初沉池,在初沉池内进行泥水分离,部分沉淀污泥通过污泥管道回流至析出反应池,补充损失的晶种,其他剩余沉淀污泥通过污泥管道排入石膏脱水机,作为石膏副产品综合利用。
经过初沉池沉淀后,上清液通过管道或溢流方式进入二级软化池,向二级软化池内加入药剂氢氧化钙、碳酸钠和有机硫,同时开启搅拌装置,进一步去除废水中的钙、镁和重金属污染物。此时废水pH控制在9~12。最终使废水中钙、镁离子浓度降低至10mg/L以下。废水经过二级软化处理后,通过管道或溢流方式进入絮凝反应池,同时开启絮凝池内搅拌装置,加入絮凝剂和助凝剂,然后通过管道或溢流方式进入二沉池,通过沉淀后上清液达标排放或进一步处理,二沉池与二级软化池产生污泥通过排泥管道排出,进行浓缩和脱水处理。
整个软化处理过程中,经核算,吨水软化成本约为10元;由于加入晶种,在减少药剂投放的同时,也减少了污泥处理量,污泥处理成本可较常规脱硫废水软化处理工艺降低40%。
需说明的是,以上所述,为本发明的较佳实施案例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (10)

  1. 一种脱硫废水软化处理装置,其特征在于,包括:
    一析出反应池,设有一晶种投放装置;
    与所述析出反应池连通的一初沉池,其底部设有一第一排泥管道;所述第一排泥管道通过一回流管道连通至所述析出反应池;
    与所述初沉池连通的一除钙沉淀池组。
  2. 如权利要求1所述的脱硫废水软化处理装置,其特征在于,所述除钙沉淀池组包括依次连通的一二级软化池、一絮凝反应池及一二沉池;所述二级软化池设有一第一加药管路;所述絮凝反应池设有一第二加药管路;所述二沉池与一出水管路连通;所述二级软化池的底部与二沉池的底部与一第二排泥管道连通。
  3. 如权利要求2所述的脱硫废水软化处理装置,其特征在于,所述析出反应池、二级软化池及絮凝反应池均设有液混装置。
  4. 如权利要求3所述的脱硫废水软化处理装置,其特征在于,所述液混装置为一搅拌装置或一曝气装置。
  5. 如权利要求2所述的脱硫废水软化处理装置,其特征在于,所述析出反应池、初沉池、二级软化池及二沉池的底部均为斗状,所述斗状的尖端连通第一排泥管道或第二排泥管道。
  6. 基于权利要求1至5任一项所述装置的脱硫废水软化处理方法,包括以下步骤:
    步骤一,脱硫废水进入析出反应池,向析出反应池中加入硫酸钙晶种,控制晶种质量浓度为1%~15%,反应时间控制在10~60分钟,降低废水中硫酸钙浓度,得到低浓度脱硫废水;
    步骤二,低浓度脱硫废水通过管道或溢流方式进入初沉池,进行沉淀分离,得到沉淀污泥和初澄清废水,至少部分沉淀污泥回流至析出反应池,作为补充晶种;
    步骤三,初澄清废水通过管道或溢流方式进入二级软化池,向二级软化池内加入一组合药剂A,控制pH值在9~12之间,去除初澄清废水中的钙、镁和重金属污染物,得到二级软化废水;
    步骤四,二级软化废水通过管道或溢流方式进入絮凝反应池,向絮凝反应池内加入一组合药剂B,提高二级软化废水中悬浮物沉降性能,得到沉降废水;
    步骤五,沉降废水通过管道或溢流方式进入二沉池,通过沉淀后得到沉淀污泥和出水。
  7. 如权利要求6所述的脱硫废水软化处理方法,其特征在于,所述硫酸钙晶种为二水硫酸钙。
  8. 如权利要求6所述的脱硫废水软化处理方法,其特征在于,步骤一中,使脱硫废水中硫 酸钙浓度降低至近饱和状态。
  9. 如权利要求6所述的脱硫废水软化处理方法,其特征在于,未回流至析出反应池的剩余沉淀污泥通过污泥管道排入一石膏脱水机,作为石膏副产品综合利用。
  10. 如权利要求6所述的脱硫废水软化处理方法,其特征在于,所述组合药剂A包括碱性物质、碳酸盐和有机硫;所述组合药剂B包括絮凝剂和助凝剂。
PCT/CN2017/072023 2016-02-05 2017-01-22 一种脱硫废水软化处理装置及方法 WO2017133513A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610081294.4A CN105585177A (zh) 2016-02-05 2016-02-05 一种脱硫废水软化处理装置及方法
CN201610081294.4 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017133513A1 true WO2017133513A1 (zh) 2017-08-10

Family

ID=55925124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072023 WO2017133513A1 (zh) 2016-02-05 2017-01-22 一种脱硫废水软化处理装置及方法

Country Status (2)

Country Link
CN (1) CN105585177A (zh)
WO (1) WO2017133513A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311384A (zh) * 2017-08-28 2017-11-03 国电环境保护研究院 一种燃煤电厂废水处理系统
CN109179610A (zh) * 2018-10-23 2019-01-11 广东通朗环保科技有限公司 一种污水沉淀反应装置
CN109179775A (zh) * 2018-10-23 2019-01-11 广东通朗环保科技有限公司 一种污水处理装置
CN111847699A (zh) * 2019-04-27 2020-10-30 无锡利信能源科技有限公司 以湿法脱硫废水为原料的碳酸钙制备方法及湿法脱硫废水处理方法
CN112851069A (zh) * 2020-12-31 2021-05-28 天津工程机械研究院有限公司 一种带式浓缩脱水一体机以及工作方法
CN113200623A (zh) * 2020-03-13 2021-08-03 大唐环境产业集团股份有限公司 一种脱硫废水处理系统及方法
CN114044589A (zh) * 2021-11-25 2022-02-15 抚顺赛瑞特环保科技有限公司 一种分选现场污水净化循环系统
CN116444105A (zh) * 2023-06-14 2023-07-18 华电电力科学研究院有限公司 一种高硬度高矿化度煤矿矿井水资源化预处理方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585177A (zh) * 2016-02-05 2016-05-18 大唐环境产业集团股份有限公司 一种脱硫废水软化处理装置及方法
CN105819608A (zh) * 2016-05-23 2016-08-03 西安西热水务环保有限公司 一种火电厂末端废水分盐结晶系统
CN106379953A (zh) * 2016-10-14 2017-02-08 北京姚魏环保技术有限公司 一种脱硫废水泥水混合装置
CN108623063B (zh) * 2017-03-20 2021-11-05 国家能源投资集团有限责任公司 一种脱硫废水的处理方法和处理系统
CN107311352A (zh) * 2017-08-17 2017-11-03 大唐环境产业集团股份有限公司 一种高镁低钙脱硫废水软化预处理装置及方法
CN107311349A (zh) * 2017-08-17 2017-11-03 大唐环境产业集团股份有限公司 一种高镁低钙脱硫废水软化预处理装置及方法
CN109179743A (zh) * 2018-08-22 2019-01-11 烟台金正环保科技有限公司 一种高硫酸钙矿化度的废水预处理系统及方法
CN112624417A (zh) * 2020-12-23 2021-04-09 华能陇东能源有限责任公司 一种疏干水的预处理方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743146B1 (ko) * 2006-06-05 2007-07-27 주식회사 동화엔텍 탈황탈질폐수의 전처리 방법
CN203754565U (zh) * 2014-03-12 2014-08-06 武汉凯迪电力环保有限公司 一种烟气脱硫废水的物化与生化组合处理装置
CN204369733U (zh) * 2014-12-24 2015-06-03 浙江蓝天求是环保股份有限公司 一种烟气脱硫废水处理系统
CN105000713A (zh) * 2015-07-21 2015-10-28 北京中航泰达环保科技股份有限公司 一种脱硫废水处理系统及方法
CN105254101A (zh) * 2015-10-29 2016-01-20 中国能建集团装备有限公司南京技术中心 一种燃煤电厂脱硫废水零排放处理工艺
CN105585177A (zh) * 2016-02-05 2016-05-18 大唐环境产业集团股份有限公司 一种脱硫废水软化处理装置及方法
CN205556300U (zh) * 2016-02-05 2016-09-07 大唐环境产业集团股份有限公司 一种脱硫废水软化处理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305800A1 (de) * 1983-02-19 1984-08-23 Philipp Müller, Nachf. Eugen Bucher GmbH & Co., 7000 Stuttgart Abwasseraufbereitungsverfahren
CN1245245C (zh) * 2004-05-25 2006-03-15 浙江天蓝脱硫除尘有限公司 双碱法烟气脱硫除尘诱导结晶循环利用工艺
CN101746874B (zh) * 2010-02-04 2012-01-04 武汉中新化工有限公司 一种烟气湿法脱硫废水的处理方法
CN103025403B (zh) * 2010-06-23 2015-03-25 维利亚水务解决方案及技术支持公司 降低废水流中硫酸盐浓度的方法
CN103991997B (zh) * 2014-05-30 2016-04-13 中国石油集团东北炼化工程有限公司吉林设计院 浓盐水蒸发结晶系统
CN104828999A (zh) * 2015-04-14 2015-08-12 无锡市润源环保设备有限公司 一种电厂脱硫废水的超声雾化处理工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743146B1 (ko) * 2006-06-05 2007-07-27 주식회사 동화엔텍 탈황탈질폐수의 전처리 방법
CN203754565U (zh) * 2014-03-12 2014-08-06 武汉凯迪电力环保有限公司 一种烟气脱硫废水的物化与生化组合处理装置
CN204369733U (zh) * 2014-12-24 2015-06-03 浙江蓝天求是环保股份有限公司 一种烟气脱硫废水处理系统
CN105000713A (zh) * 2015-07-21 2015-10-28 北京中航泰达环保科技股份有限公司 一种脱硫废水处理系统及方法
CN105254101A (zh) * 2015-10-29 2016-01-20 中国能建集团装备有限公司南京技术中心 一种燃煤电厂脱硫废水零排放处理工艺
CN105585177A (zh) * 2016-02-05 2016-05-18 大唐环境产业集团股份有限公司 一种脱硫废水软化处理装置及方法
CN205556300U (zh) * 2016-02-05 2016-09-07 大唐环境产业集团股份有限公司 一种脱硫废水软化处理装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311384A (zh) * 2017-08-28 2017-11-03 国电环境保护研究院 一种燃煤电厂废水处理系统
CN109179610A (zh) * 2018-10-23 2019-01-11 广东通朗环保科技有限公司 一种污水沉淀反应装置
CN109179775A (zh) * 2018-10-23 2019-01-11 广东通朗环保科技有限公司 一种污水处理装置
CN111847699A (zh) * 2019-04-27 2020-10-30 无锡利信能源科技有限公司 以湿法脱硫废水为原料的碳酸钙制备方法及湿法脱硫废水处理方法
CN113200623A (zh) * 2020-03-13 2021-08-03 大唐环境产业集团股份有限公司 一种脱硫废水处理系统及方法
CN112851069A (zh) * 2020-12-31 2021-05-28 天津工程机械研究院有限公司 一种带式浓缩脱水一体机以及工作方法
CN114044589A (zh) * 2021-11-25 2022-02-15 抚顺赛瑞特环保科技有限公司 一种分选现场污水净化循环系统
CN116444105A (zh) * 2023-06-14 2023-07-18 华电电力科学研究院有限公司 一种高硬度高矿化度煤矿矿井水资源化预处理方法及装置
CN116444105B (zh) * 2023-06-14 2023-09-08 华电电力科学研究院有限公司 一种高硬度高矿化度煤矿矿井水资源化预处理方法及装置

Also Published As

Publication number Publication date
CN105585177A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2017133513A1 (zh) 一种脱硫废水软化处理装置及方法
WO2017148229A1 (zh) 一种低污泥产生量的脱硫废水处理装置及方法
WO2017133514A1 (zh) 脱硫废水软化处理装置及方法
CN106007046B (zh) 一种脱硫废水硬度离子资源化预处理工艺
WO2017133511A1 (zh) 脱硫废水零排放处理的装置及方法
CN103304104B (zh) 天然气气田开发污水零排放的新型工艺
CN106746016A (zh) 一种处理废水的方法和装置
CN107673514A (zh) 硫酸根去除与污泥资源化利用的废水处理系统及处理方法
CN102863097A (zh) 高含硫油气田含硫废液的达标处理回注方法
CN206799333U (zh) 一种燃煤电厂脱硫废水资源化系统
CN107285489A (zh) 一种脱硫废水预处理的装置及方法
CN105461136B (zh) 一种火电厂废水综合处理及化学资源回收系统及方法
CN107055885A (zh) 一种燃煤电厂脱硫废水资源化系统及工作方法
CN103011462B (zh) 重复利用电厂中水石灰软化法处理循环补充水的废渣的装置及方法
CN107215980A (zh) 新型脱硫废水处理的装置及方法
CN107265696A (zh) 一种脱硫废水软化处理装置及方法
CN110697939A (zh) 一种火电厂烟气脱硫废水降氯回用系统及工艺
KR20160003936A (ko) 질소와 인 제거, 회수 장치 및 그 방법
CN105692986B (zh) 一种废盐综合利用的处理方法
CN109485189A (zh) 高浓度干扰物废水中Ca2+和SO42-的沉淀方法
CN206901925U (zh) 新型脱硫废水处理的装置
CN106430713A (zh) 一种湿法脱硫废水零排放处理装置
CN207738544U (zh) 一种脱硫废水软化处理装置
CN205556299U (zh) 脱硫废水软化处理装置
CN104355387A (zh) 一种含磷废水处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746833

Country of ref document: EP

Kind code of ref document: A1