WO2017133050A1 - 一种二步加压烧结制备透明氧化钇陶瓷部件的方法 - Google Patents

一种二步加压烧结制备透明氧化钇陶瓷部件的方法 Download PDF

Info

Publication number
WO2017133050A1
WO2017133050A1 PCT/CN2016/075448 CN2016075448W WO2017133050A1 WO 2017133050 A1 WO2017133050 A1 WO 2017133050A1 CN 2016075448 W CN2016075448 W CN 2016075448W WO 2017133050 A1 WO2017133050 A1 WO 2017133050A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
transparent
preparing
ceramic component
cerium oxide
Prior art date
Application number
PCT/CN2016/075448
Other languages
English (en)
French (fr)
Inventor
刘伟
陈健
伍海东
白帅星
伍尚华
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2017133050A1 publication Critical patent/WO2017133050A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the invention relates to the technical field of preparation of transparent cerium oxide ceramics, in particular to a method for preparing transparent cerium oxide ceramic parts by two-step pressure sintering.
  • Transparent ceramic materials are a new generation of inorganic non-metallic materials that are of strategic importance to national security and the sustainable development of the national economy. They will play an active role in promoting the implementation of the national medium- and long-term development strategy in the coming period.
  • the study of basic scientific issues of ceramics and the expansion of its application fields have important and far-reaching significance.
  • Cerium oxide is a cubic crystal with optically isotropic properties, which makes it superior in light transmission.
  • the cerium oxide transparent ceramic was first produced by General Electric Company in the 1970s. Its commercial name is "Yttralox", its melting point is as high as 2400 ° C, and it is in the wide wavelength range (0.3 ⁇ 8 ⁇ m), especially in The infrared region has a high light transmittance, so it can be used as a high temperature window material, an infrared transmission window material, a high temperature experimental device material, and the like.
  • Y 2 O 3 transparent ceramics can also be used for microwave substrates, infrared generator tubes, radomes, missile infrared windows and domes. More importantly, Y 2 O 3 -containing highly transparent ceramics with Nd 2 O 3 addition can be used as a laser solid material for lasers at 1.064 ⁇ m in laser technology, with low phonon energy and high thermal conductivity. Its thermal conductivity is higher than that of yttrium aluminum garnet (YAG), so it is more promising than YAG ceramics for high pulse lasers. In addition, since the light transmittance and heat resistance of yttrium oxide are higher than that of alumina ceramics, it has long been desired for scholars to apply it to the field of high-intensity discharge lamps. It can be seen that yttria transparent ceramic is a transparent ceramic material with integrated structure and function, and has broad application potential in many high-tech fields.
  • the sintering method of yttria transparent ceramics is mainly vacuum (atmosphere) sintering and hot isostatic pressing. These conventional sintering methods have the advantages of slow heating rate, low sintering efficiency, high energy consumption, the need for ceramics to be densified at higher temperatures, and the disadvantages of easy cracking and defects.
  • the object of the present invention is to provide a method for preparing a transparent yttria ceramic component by two-step pressure sintering, which avoids the deficiencies of the prior art, and has a high preparation speed and a low sintering temperature, and the prepared transparent yttria ceramic component is microscopically prepared. Fine structure, good compactness and excellent performance.
  • a method for preparing a transparent yttria ceramic component by two-step pressure sintering comprises the following steps:
  • the above-mentioned high-purity ultrafine cerium oxide nanoceramic powder has an average particle diameter of 90 nm.
  • step (1) synthesis of the ceramic powder comprises the following steps:
  • the cerium nitrate solution is added dropwise to a solution of ammonium bicarbonate having a concentration of 2 to 3 mol/L at a titration rate of less than 5 ml/min, and simultaneously stirred by a magnetic stirrer during the titration.
  • the pH of the solution is maintained at 9-11 by additional dropwise addition of ammonia water, and the reaction is aged 1.0-2.0 h after the reaction;
  • the precursor powder is sintered at 700 to 900 ° C for 2 to 3 hours, and sieved to obtain a high-purity ultrafine cerium oxide nano ceramic powder.
  • the stirring speed of the magnetic stirrer during the titration is 300 to 800 rpm.
  • the above step (1.4) is specifically sieved through a sieve having a mesh size of 50 to 100 mesh to obtain a high-purity ultrafine cerium oxide nanoceramic powder.
  • the sintering system is: sintering at a low temperature stage of room temperature to 1000 ° C under a pressure of 8 to 12 MPa; at a high temperature of 1000 ° C to 1450 ° C It is sintered under the pressure of 95 to 110 MPa.
  • the two-step pressurized discharge plasma sintering process of the above step (2) has a sintering system: sintering at a low temperature stage of room temperature to 1000 ° C at a pressure of 10 MPa; at 1000 ° C to 1450 ° C In the high temperature stage, sintering is carried out under the conditions of a pressure of 100 MPa.
  • the two-step pressurized discharge plasma sintering process of the above step (2), the heating system is specifically:
  • the temperature rising rate from room temperature to 1000 ° C is 10 to 50 ° C / min, and is kept at 1000 ° C for 15 to 30 min;
  • the heating rate from 1000 ° C to 1450 ° C is 100 ⁇ 200 ° C / min, and is kept at 1450 ° C for 5 ⁇ 10min;
  • the pressure was relieved after the end of the heat preservation at 1450 °C.
  • the annealing process after the step (3) is specifically: cooling to 800-1000 ° C at a cooling rate of 3 to 5 ° C / min under an air atmosphere, and maintaining at a temperature of 800 to 1000 ° C for 5 to 12 h.
  • the method for preparing transparent yttria ceramic component by the two-step pressure sintering of the invention comprises the following steps: (1) Synthesis of ceramic powder: preparing high-purity ultrafine cerium oxide nano ceramic powder by reverse co-precipitation method, the high-purity ultrafine oxidation ⁇ Nano ceramic powder has a purity greater than 99.9% and an average particle size of 80-200 nm; (2) Sintering of transparent yttria ceramics: oxidation is prepared by a two-step pressurized discharge plasma sintering process ⁇ Nano-transparent ceramics; (3) Post-treatment: After spark plasma sintering, the sample is taken out and annealed and ground and polished to obtain a final finished transparent yttria ceramic component.
  • the method of the invention has the advantages of high preparation speed and low sintering temperature, and the prepared transparent yttria ceramic component has fine microstructure, good compactness and excellent performance.
  • a method for preparing a transparent yttria ceramic component by two-step pressure sintering comprising the following steps:
  • High purity ultrafine cerium oxide nano ceramic powder is prepared by reverse coprecipitation method.
  • the purity of high purity ultrafine cerium oxide nano ceramic powder is greater than 99.9%, the average particle size is 80-200 nm, and the average particle size is preferably 90nm;
  • the method for preparing a transparent yttria ceramic component by the two-step pressure sintering of the present invention preliminarily prepares a nano cerium oxide powder having a small particle size and a uniform distribution by a reverse coprecipitation method, and then is prepared by a two-step pressurized discharge plasma sintering process.
  • the prepared transparent cerium oxide ceramic component has a strength of more than 400 MPa and a transparency of more than 60%.
  • the method of the invention can be sintered at a relatively fast temperature rising rate and a low temperature, and has the characteristics of high temperature rising speed and low energy consumption.
  • the transparent cerium oxide ceramic component prepared by the method of the present invention can be used as a field of structurally functional integrated ceramic materials.
  • a method for preparing a transparent yttria ceramic component by two-step pressure sintering is carried out by the following steps.
  • high purity ultrafine cerium oxide nano ceramic powder is prepared by reverse coprecipitation method, and the purity of the high purity ultrafine cerium oxide nano ceramic powder described in the present invention is greater than 99.9%, and the average particle diameter is 80-200 nm. Preferably, the average particle diameter is 90 nm.
  • Step (1) The synthesis of the ceramic powder comprises the following steps:
  • the cerium nitrate solution is added dropwise to a solution of ammonium bicarbonate having a concentration of 2 to 3 mol/L at a titration rate of less than 5 ml/min, and simultaneously using a magnetic stirrer at 300 to 800 rpm during the titration. Stirring rate is stirred, the pH of the solution is maintained at 9-11 by additional dropwise addition of ammonia water during the titration, and the aging is 1.0-2.0 h after the reaction is completed;
  • the precursor powder is sintered at 700 to 900 ° C for 2 to 3 hours, and sieved through a sieve having a mesh number of 50 to 100 mesh to obtain a high-purity ultrafine cerium oxide nano ceramic powder.
  • the cerium oxide nanoceramic powder prepared by the reverse coprecipitation method has the characteristics of small particle size and uniform distribution, and provides a guarantee for the finished product prepared by subsequent sintering.
  • the step (2) is performed for sintering.
  • cerium oxide nano-transparent ceramic was prepared by a two-step pressurized discharge plasma sintering process.
  • the two-step pressurized discharge plasma sintering process of the step (2) has a sintering system of low-pressure sintering at a low temperature stage of room temperature to 1000 ° C under a pressure of 8 to 12 MPa to relieve high pressure on grain slip.
  • the suppression promotes grain slippage and eliminates open pores.
  • High-temperature sintering is carried out at a high temperature of 1000 ° C to 1450 ° C under conditions of a pressure of 95 to 110 MPa to achieve high densification of the ceramic.
  • the heating system is specifically: the heating rate from room temperature to 1000 ° C is 10 to 50 ° C / min, and is kept at 1000 ° C for 15 to 30 min; the heating rate from 1000 ° C to 1450 ° C is 100 to 200 ° C / min, at 1450 The temperature is kept at °C for 5 ⁇ 10min; after 1450°C, the pressure is relieved.
  • step (3) After the sintering is completed, the process proceeds to step (3).
  • the annealing process of the post-treatment of the step (3) is specifically: cooling to 800-1000 ° C at a cooling rate of 3 to 5 ° C / min under an air atmosphere, and maintaining at a temperature of 800 to 1000 ° C for 5 to 12 h.
  • the method of the invention has the characteristics of high temperature rising speed and low energy consumption, and the prepared transparent yttria ceramic component has a grain size of nanometer order and uniform particle size.
  • the transparent cerium oxide ceramic component has good compactness and excellent performance, and its strength is more than 400 MPa, and the transparency is more than 60%, and can be used as a structural functional integrated ceramic material field.
  • a method for preparing a transparent yttria ceramic component by two-step pressure sintering the other features are the same as in the second embodiment, except that the two-step pressurized discharge plasma sintering process of the step (2) has a sintering system: Sintering at a low temperature stage of room temperature to 1000 ° C under a pressure of 10 MPa to relieve the inhibition of grain slip by high pressure, promote grain slippage and eliminate open pores; in the high temperature stage of 1000 ° C to 1450 ° C, Sintering at a pressure of 100 MPa achieves high densification of the ceramic.
  • the method of the invention has the characteristics of high temperature rising speed and low energy consumption, and the prepared transparent yttria ceramic component has a grain size of nanometer order and uniform particle size.
  • the transparent cerium oxide ceramic component has good compactness and excellent performance, and its strength is more than 400 MPa, and the transparency is more than 60%, and can be used as a structural functional integrated ceramic material field.
  • a method for preparing a transparent yttria ceramic component by two-step pressure sintering is carried out by the following steps.
  • High-purity ultrafine cerium oxide nano ceramic powder is prepared by reverse co-precipitation method, and the high-purity ultrafine cerium oxide nano ceramic powder described in the present invention has a purity of more than 99.9% and an average particle diameter of 90 nm.
  • Step (1) The synthesis of the ceramic powder comprises the following steps:
  • the precursor powder was sintered at 800 ° C for 2 h, and sieved through a mesh of 80 mesh to obtain a high-purity ultrafine cerium oxide nano ceramic powder.
  • the cerium oxide nanoceramic powder prepared by the reverse coprecipitation method has the characteristics of small particle size and uniform distribution, and provides a guarantee for the finished product prepared by subsequent sintering.
  • the step (2) is performed for sintering.
  • cerium oxide nano-transparent ceramic was prepared by a two-step pressurized discharge plasma sintering process.
  • Step (2) of the two-step pressurized discharge plasma sintering process the sintering system is: low temperature sintering at a low temperature stage of room temperature to 1000 ° C under a pressure of 11 MPa to relieve high pressure on grain slip inhibition Promote the slippage of the grains to eliminate open pores.
  • High-temperature sintering is carried out at a high temperature of 1000 ° C to 1450 ° C under conditions of a pressure of 105 MPa to achieve high densification of the ceramic.
  • the heating system is specifically: heating rate from room temperature to 1000 ° C is 10 ° C / min, and holding at 1000 ° C for 30 min; heating rate from 1000 ° C to 1450 ° C is 100 ° C / min, holding at 1450 ° C for 8 min; at 1450 After the temperature is over, the pressure is released.
  • step (3) After the sintering is completed, the process proceeds to step (3).
  • the annealing process after the step (3) is specifically: cooling to 900 ° C at a cooling rate of 5 ° C / min under an air atmosphere, and holding at a temperature of 1000 ° C for 5 h.
  • the method of the invention has the characteristics of high temperature rising speed and low energy consumption, and the prepared transparent yttria ceramic component has a grain size of nanometer order and uniform particle size.
  • the transparent cerium oxide ceramic component has good compactness and excellent performance, and its strength is more than 400 MPa, and the transparency is more than 60%, and can be used as a structural functional integrated ceramic material field.
  • a method for preparing a transparent yttria ceramic component by two-step pressure sintering is carried out by the following steps.
  • High-purity ultrafine cerium oxide nano ceramic powder is prepared by reverse co-precipitation method, and the high-purity ultrafine cerium oxide nano ceramic powder described in the present invention has a purity of more than 99.9% and an average particle diameter of 88 nm.
  • Step (1) The synthesis of the ceramic powder comprises the following steps:
  • cerium nitrate solution was added dropwise to a 3 mol/L ammonium bicarbonate solution by a reverse titration method at a titration rate of less than 4 ml/min, and simultaneously subjected to a magnetic stirrer at a stirring rate of 700 rpm during the titration. Stirring, the pH of the solution is maintained at 9.5 by additional dropwise addition of ammonia water during the titration, and aging for 1.5 h after the reaction is completed;
  • the precursor powder was sintered at 900 ° C for 2 h, and sieved through a sieve having a mesh size of 50 mesh to obtain a high-purity ultrafine cerium oxide nano ceramic powder.
  • the cerium oxide nanoceramic powder prepared by the reverse coprecipitation method has the characteristics of small particle size and uniform distribution, and provides a guarantee for the finished product prepared by subsequent sintering.
  • the step (2) is performed for sintering.
  • cerium oxide nano-transparent ceramic was prepared by a two-step pressurized discharge plasma sintering process.
  • Step (2) of the two-step pressurized discharge plasma sintering process the sintering system is: low temperature sintering at a low temperature stage of room temperature to 1000 ° C under a pressure of 10.5 MPa to relieve high pressure on grain slip Suppresses, promotes grain slippage and eliminates open pores. High-temperature sintering is carried out at a high temperature of 1000 ° C to 1450 ° C under a pressure of 1050 MPa to achieve high densification of the ceramic.
  • the heating system is specifically: heating rate from room temperature to 1000 ° C is 50 ° C / min, and holding at 1000 ° C for 30 min; heating rate from 1000 ° C to 1450 ° C is 160 ° C / min, holding at 1450 ° C for 10 min; at 1450 After the temperature is over, the pressure is released.
  • step (3) After the sintering is completed, the process proceeds to step (3).
  • the annealing process after the step (3) is specifically: cooling to 980 ° C at a cooling rate of 5 ° C / min under an air atmosphere, and holding at a temperature of 800 ° C for 9 h.
  • the method of the invention has the characteristics of high temperature rising speed and low energy consumption, and the prepared transparent yttria ceramic component has a grain size of nanometer order and uniform particle size.
  • a method for preparing a transparent yttria ceramic component by two-step pressure sintering is carried out by the following steps.
  • High-purity ultrafine cerium oxide nano ceramic powder is prepared by reverse co-precipitation method, and the high-purity ultrafine cerium oxide nano ceramic powder described in the present invention has a purity of more than 99.9% and an average particle diameter of 100 ⁇ m.
  • Step (1) The synthesis of the ceramic powder comprises the following steps:
  • the filtration was repeated three times, and the rinsing was carried out.
  • the precursor powder was obtained by placing at a temperature of 90 ° C for 17 hours;
  • the precursor powder was sintered at 780 ° C for 2.6 h, and sieved through a mesh of 80 mesh to obtain a high-purity ultrafine cerium oxide nanoceramic powder.
  • the cerium oxide nanoceramic powder prepared by the reverse coprecipitation method has the characteristics of small particle size and uniform distribution, and provides a guarantee for the finished product prepared by subsequent sintering.
  • the step (2) is performed for sintering.
  • cerium oxide nano-transparent ceramic was prepared by a two-step pressurized discharge plasma sintering process.
  • Step (2) of the two-step pressurized discharge plasma sintering process the sintering system is: low temperature sintering at a low temperature stage of room temperature to 1000 ° C under a pressure of 11.5 MPa to relieve high pressure on grain slip Suppresses, promotes grain slippage and eliminates open pores.
  • High-temperature sintering is carried out at a high temperature of 1000 ° C to 1450 ° C under a pressure of 100 MPa to achieve high densification of the ceramic.
  • the heating system is specifically: the temperature rising rate from room temperature to 1000 ° C is 40 ° C / min, and is kept at 1000 ° C for 20 min; the heating rate from 1000 ° C to 1450 ° C is 170 ° C / min, held at 1450 ° C for 6 min; at 1450 After the temperature is over, the pressure is released.
  • step (3) After the sintering is completed, the process proceeds to step (3).
  • the annealing process of the post-treatment of the step (3) is specifically: cooling to 900 ° C at a cooling rate of 4.5 ° C / min under an air atmosphere, and holding at a temperature of 1000 ° C for 10 h.
  • the method of the invention has the characteristics of high temperature rising speed and low energy consumption, and the prepared transparent yttria ceramic component has a grain size of nanometer order and uniform particle size.
  • the transparent cerium oxide ceramic component has good compactness and excellent performance, and its strength is more than 400 MPa, and the transparency is more than 60%, and can be used as a structural functional integrated ceramic material field.
  • a method for preparing a transparent yttria ceramic component by two-step pressure sintering is carried out by the following steps.
  • High-purity ultrafine cerium oxide nano ceramic powder was prepared by reverse co-precipitation method, and the high-purity ultrafine cerium oxide nano ceramic powder described in the present invention has a purity of more than 99.9% and an average particle diameter of 96 ⁇ m.
  • Step (1) The synthesis of the ceramic powder comprises the following steps:
  • the precursor powder was obtained by placing at a temperature of 83 ° C for 19 hours;
  • the precursor powder was sintered at 820 ° C for 3 h, and sieved through a mesh of 80 mesh to obtain a high-purity ultrafine cerium oxide nano ceramic powder.
  • the cerium oxide nanoceramic powder prepared by the reverse coprecipitation method has the characteristics of small particle size and uniform distribution, and provides a guarantee for the finished product prepared by subsequent sintering.
  • the step (2) is performed for sintering.
  • cerium oxide nano-transparent ceramic was prepared by a two-step pressurized discharge plasma sintering process.
  • the two-step pressurized discharge plasma sintering process of the step (2) has a sintering system of low-pressure sintering at a low temperature stage of room temperature to 1000 ° C under a pressure of 12 MPa to suppress the suppression of grain slip by high pressure. Promote the slippage of the grains to eliminate open pores.
  • High-temperature sintering is carried out at a high temperature of 1000 ° C to 1450 ° C under conditions of a pressure of 98 MPa to achieve high densification of the ceramic.
  • the heating system is specifically: heating rate from room temperature to 1000 ° C is 50 ° C / min, and holding at 1000 ° C for 20 min; heating rate from 1000 ° C to 1450 ° C is 100 ° C / min, holding at 1450 ° C for 9 min; at 1450 After the temperature is over, the pressure is released.
  • step (3) After the sintering is completed, the process proceeds to step (3).
  • Step (3) post-treatment annealing process is specifically: in the air atmosphere, with a drop of 3 ⁇ 5 ° C / min The temperature was lowered to 960 ° C and maintained at a temperature of 800 to 1000 ° C for 10 h.
  • the method of the invention has the characteristics of high temperature rising speed and low energy consumption, and the prepared transparent yttria ceramic component has a grain size of nanometer order and uniform particle size.
  • the transparent cerium oxide ceramic component has good compactness and excellent performance, and its strength is more than 400 MPa, and the transparency is more than 60%, and can be used as a structural functional integrated ceramic material field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种二步加压烧结制备透明氧化钇陶瓷部件的方法,包括如下步骤:(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末;(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化钇纳米透明陶瓷;(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。该二步加压烧结制备透明氧化钇陶瓷部件的方法通过反向共沉淀方法预先制备出粒径较小且分布均匀的纳米氧化钇粉末,再通过二步加压的放电等离子烧结工艺制备出致密性好、粒径均匀、性能优良的透明氧化钇陶瓷部件。所制备的透明氧化钇陶瓷部件强度大于400MPa,透明度大于60%。

Description

一种二步加压烧结制备透明氧化钇陶瓷部件的方法 技术领域
本发明涉及透明氧化钇陶瓷制备技术领域,特别涉及一种二步加压烧结制备透明氧化钇陶瓷部件的方法。
背景技术
透明陶瓷材料是一类对国家安全和国民经济可持续发展具有重大战略意义的新一代无机非金属材料,在未来一段时期将对国家中长期发展战略的实施起到积极推动作用,因此,开展透明陶瓷的基础科学问题研究和拓展其应用领域具有重要深远的意义。
在诸多透明陶瓷材料中,氧化钇透明陶瓷以其优异的性能而受到广泛关注。氧化钇是立方晶系晶体,具有光学各向同性的性质,使得其具有优越的透光性能。氧化钇透明陶瓷最早由美国通用电器公司在二十世纪七十年代制成,其商用名为“Yttralox”,其熔点高达2400℃,且在宽广的波长(0.3~8μm)范围内,特别是在红外区中具有很高的透光率,因此可以用作高温窗口材料、红外透过窗材料、高温实验装置材料等。此外,Y2O3透明陶瓷还可用于微波基板、红外发生器管、天线罩、导弹红外窗口和球罩等。具有更重要意义的是,含Nd2O3添加的Y2O3高度透明陶瓷,在激光技术中可用作在1.064μm波长使用的激光器固体材料,氧化钇具有低声子能量和高热导率,其热导率要高于钇铝石榴石(YAG),因此用作高脉冲激光器方面比YAG陶瓷更有前景。此外,由于氧化钇的透光率与耐热性均高于氧化铝陶瓷,因此很早就有学者期望将其应用于高强度气体放电灯领域。由此可见,氧化钇透明陶瓷是一种集结构功能一体化的透明陶瓷材料,在诸多高技术领域有着广阔的应用潜质。
氧化钇透明陶瓷的烧结方式,目前主要是真空(气氛)烧结和热等静压烧结。这些传统的烧结方式存在升温速率慢、烧结效率低、能耗高、需要陶瓷在较高的温度下才能实现致密化、并且存在易开裂、缺陷多等缺点。
因此,针对现有技术不足,提供一种二步加压烧结制备透明氧化钇陶瓷部件的方法以克服现有技术不足甚为必要。
发明内容
本发明的目的在于避免现有技术的不足之处而提供一种二步加压烧结制备透明氧化钇陶瓷部件的方法,具有制备速度快、烧结温度低,所制备的透明氧化钇陶瓷部件显微结构精细、致密性好、性能优良。
本发明的上述目的通过如下技术手段实现。
提供一种二步加压烧结制备透明氧化钇陶瓷部件的方法,包括如下步骤:
(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,所述高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为80~200nm;
(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备 氧化钇纳米透明陶瓷;
(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。
上述高纯超细氧化钇纳米陶瓷粉末的平均粒径为90nm。
上述步骤(1)陶瓷粉体的合成包括如下步骤:
(1.1)称取氧化钇原料,用浓硝酸溶解,配制成浓度为0.2-0.8mol/L的硝酸钇溶液;
(1.2)用反向滴定法以小于5ml/min的滴定速率将硝酸钇溶液滴加到浓度为2~3mol/L的碳酸氢铵溶液中,在滴定的过程中同时用磁力搅拌机进行搅拌,在滴定过程中通过另外滴加氨水使得溶液的pH值保持在9~11,反应结束后陈化1.0~2.0h;
(1.3)对(1.2)陈化后的溶液进行抽滤,然后分别用离子水和无水乙醇进行沉淀物冲洗;
冲洗之后再重复进行4~5次抽滤、冲洗,抽滤冲洗完毕后在80~90℃的温度下放置12~24h得到前驱体粉末;
(1.4)将前驱体粉末在700~900℃下烧结2~3h,过筛后得到高纯超细氧化钇纳米陶瓷粉末。
上述步骤(1.2)中,在滴定的过程中磁力搅拌机的搅拌速率为300~800rpm。
上述步骤(1.4)具体通过目数为50~100目的筛子进行过筛后得到高纯超细氧化钇纳米陶瓷粉末。
上述步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为8~12MPa的条件下烧结;在1000℃~1450℃的高温阶段,在压力为95~110MPa的条件下烧结。
进一度的,上述步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为10MPa的条件下烧结;在1000℃~1450℃的高温阶段,在压力为100MPa的条件下烧结。
上述步骤(2)的二步加压的放电等离子烧结工艺,其升温制度具体为:
从室温~1000℃的升温速率为10~50℃/min,并在1000℃保温15~30min;
从1000℃~1450℃的升温速率为100~200℃/min,在1450℃保温5~10min;
在1450℃保温结束后卸压。
上述步骤(3)后处理的退火工艺具体是:在空气气氛下、以3~5℃/min的降温速率降温至800~1000℃,并在800~1000℃的温度下保温5~12h。
本发明的二步加压烧结制备透明氧化钇陶瓷部件的方法,包括如下步骤:(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,所述高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为80~200nm;(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化 钇纳米透明陶瓷;(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。本发明的方法制备速度快、烧结温度低,所制备的透明氧化钇陶瓷部件显微结构精细、致密性好、性能优良。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1。
一种二步加压烧结制备透明氧化钇陶瓷部件的方法,包括如下步骤:
(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为80~200nm,优选平均粒径为90nm;
(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化钇纳米透明陶瓷;
(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。
本发明的二步加压烧结制备透明氧化钇陶瓷部件的方法通过反向共沉淀方法预先制备出粒径较小且分布均匀的纳米氧化钇粉末,再通过二步加压的放电等离子烧结工艺制备出致密性好、粒径均匀、性能优良的透明氧化钇陶瓷部件。所制备的透明氧化钇陶瓷部件强度大于400MPa,透明度大于60%。
此外本发明的方法可以在较快的升温速度、较低的温度下烧结,具有升温速度快,能耗低的特点。
本发明的方法所制备的透明氧化钇陶瓷部件可以用作结构功能一体化陶瓷材料领域。
实施例2。
一种二步加压烧结制备透明氧化钇陶瓷部件的方法,通过如下步骤进行。
(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,本发明中所述的高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为80~200nm,优选平均粒径为90nm。
步骤(1)陶瓷粉体的合成包括如下步骤:
(1.1)称取氧化钇原料,用浓硝酸溶解,配制成浓度为0.2-0.8mol/L的硝酸钇溶液;
(1.2)用反向滴定法以小于5ml/min的滴定速率将硝酸钇溶液滴加到浓度为2~3mol/L的碳酸氢铵溶液中,在滴定的过程中同时用磁力搅拌机以300~800rpm的搅拌速率进行搅拌,在滴定过程中通过另外滴加氨水使得溶液的pH值保持在9~11,反应结束后陈化1.0~2.0h;
(1.3)对(1.2)陈化后的溶液进行抽滤,然后分别用离子水和无水乙醇进行冲洗;
冲洗之后再重复进行4~5次抽滤、冲洗,抽滤冲洗完毕后在80~90℃的温 度下放置12~24h得到前驱体粉末;
(1.4)将前驱体粉末在700~900℃下烧结2~3h,通过目数为50~100目的筛子过筛后得到高纯超细氧化钇纳米陶瓷粉末。
通过反向共沉淀方法制备出的氧化钇纳米陶瓷粉末具有粒径较小且分布均匀的特点,为后续烧结制备的成品提供了保障。
制备好高纯超细氧化钇纳米陶瓷粉末后,进入步骤(2)进行烧结。
(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化钇纳米透明陶瓷。
步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为8~12MPa的条件下进行低压烧结,以解除高压对晶粒滑移的抑制,促进晶粒的滑移从而消除开口气孔。在1000℃~1450℃的高温阶段,在压力为95~110MPa的条件下进行高压烧结,实现陶瓷的高度致密化。
其升温制度具体为:从室温~1000℃的升温速率为10~50℃/min,并在1000℃保温15~30min;从1000℃~1450℃的升温速率为100~200℃/min,在1450℃保温5~10min;在1450℃保温结束后卸压。
烧结完毕后,进入步骤(3)后处理。
(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。
步骤(3)后处理的退火工艺具体是:在空气气氛下、以3~5℃/min的降温速率降温至800~1000℃,并在800~1000℃的温度下保温5~12h。
本发明的方法具有升温速度快,能耗低的特点,所制备的透明氧化钇陶瓷部件的晶粒尺寸为纳米级,且颗粒尺寸均匀。透明氧化钇陶瓷部件致密性好、性能优良,其强度大于400MPa,透明度大于60%,可用作结构功能一体化陶瓷材料领域。
实施例3。
一种二步加压烧结制备透明氧化钇陶瓷部件的方法,其它特征与实施例2相同,不同之处在于:步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为10MPa的条件下烧结,以解除高压对晶粒滑移的抑制,促进晶粒的滑移从而消除开口气孔;在1000℃~1450℃的高温阶段,在压力为100MPa的条件下烧结,实现陶瓷的高度致密化。
本发明的方法具有升温速度快,能耗低的特点,所制备的透明氧化钇陶瓷部件的晶粒尺寸为纳米级,且颗粒尺寸均匀。透明氧化钇陶瓷部件致密性好、性能优良,其强度大于400MPa,透明度大于60%,可用作结构功能一体化陶瓷材料领域。
实施例4。
一种二步加压烧结制备透明氧化钇陶瓷部件的方法,通过如下步骤进行。
(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,本发明中所述的高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为90纳米。
步骤(1)陶瓷粉体的合成包括如下步骤:
(1.1)称取粒径为80纳米的氧化钇原料,用浓硝酸溶解,配制成浓度为0.5mol/L的硝酸钇溶液;
(1.2)用反向滴定法以2ml/min的滴定速率将硝酸钇溶液滴加到浓度为2mol/L的碳酸氢铵溶液中,在滴定的过程中同时用磁力搅拌机以500rpm的搅拌速率进行搅拌,在滴定过程中通过另外滴加氨水使得溶液的pH值保持在10,反应结束后陈化1.0h;
(1.3)对(1.2)陈化后的溶液进行抽滤,然后分别用离子水和无水乙醇对沉淀物进行冲洗;
冲洗之后再重复进行4~5次抽滤、冲洗,抽滤冲洗完毕后在85℃的温度下放置24h得到前驱体粉末;
(1.4)将前驱体粉末在800℃下烧结2h,通过目数为80目的筛子过筛后得到高纯超细氧化钇纳米陶瓷粉末。
通过反向共沉淀方法制备出的氧化钇纳米陶瓷粉末具有粒径较小且分布均匀的特点,为后续烧结制备的成品提供了保障。
制备好高纯超细氧化钇纳米陶瓷粉末后,进入步骤(2)进行烧结。
(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化钇纳米透明陶瓷。
步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为11MPa的条件下进行低压烧结,以解除高压对晶粒滑移的抑制,促进晶粒的滑移从而消除开口气孔。在1000℃~1450℃的高温阶段,在压力为105MPa的条件下进行高压烧结,实现陶瓷的高度致密化。
其升温制度具体为:从室温~1000℃的升温速率为10℃/min,并在1000℃保温30min;从1000℃~1450℃的升温速率为100℃/min,在1450℃保温8min;在1450℃保温结束后卸压。
烧结完毕后,进入步骤(3)后处理。
(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。
步骤(3)后处理的退火工艺具体是:在空气气氛下、以5℃/min的降温速率降温至900℃,并在1000℃的温度下保温5h。
本发明的方法具有升温速度快,能耗低的特点,所制备的透明氧化钇陶瓷部件的晶粒尺寸为纳米级,且颗粒尺寸均匀。透明氧化钇陶瓷部件致密性好、性能优良,其强度大于400MPa,透明度大于60%,可用作结构功能一体化陶瓷材料领域。
实施例5。
一种二步加压烧结制备透明氧化钇陶瓷部件的方法,通过如下步骤进行。
(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,本发明中所述的高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为88纳米。
步骤(1)陶瓷粉体的合成包括如下步骤:
(1.1)称取氧化钇原料,用浓硝酸溶解,配制成浓度为0.6mol/L的硝酸钇溶液;
(1.2)用反向滴定法以小于4ml/min的滴定速率将硝酸钇溶液滴加到浓度为3mol/L的碳酸氢铵溶液中,在滴定的过程中同时用磁力搅拌机以700rpm的搅拌速率进行搅拌,在滴定过程中通过另外滴加氨水使得溶液的pH值保持在9.5,反应结束后陈化1.5h;
(1.3)对(1.2)陈化后的溶液进行抽滤,然后分别用离子水和无水乙醇进行冲洗;
冲洗之后再重复进行4~5次抽滤、冲洗,抽滤冲洗完毕后在90℃的温度下放置12h得到前驱体粉末;
(1.4)将前驱体粉末在900℃下烧结2h,通过目数为50目的筛子过筛后得到高纯超细氧化钇纳米陶瓷粉末。
通过反向共沉淀方法制备出的氧化钇纳米陶瓷粉末具有粒径较小且分布均匀的特点,为后续烧结制备的成品提供了保障。
制备好高纯超细氧化钇纳米陶瓷粉末后,进入步骤(2)进行烧结。
(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化钇纳米透明陶瓷。
步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为10.5MPa的条件下进行低压烧结,以解除高压对晶粒滑移的抑制,促进晶粒的滑移从而消除开口气孔。在1000℃~1450℃的高温阶段,在压力为1050MPa的条件下进行高压烧结,实现陶瓷的高度致密化。
其升温制度具体为:从室温~1000℃的升温速率为50℃/min,并在1000℃保温30min;从1000℃~1450℃的升温速率为160℃/min,在1450℃保温10min;在1450℃保温结束后卸压。
烧结完毕后,进入步骤(3)后处理。
(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。
步骤(3)后处理的退火工艺具体是:在空气气氛下、以5℃/min的降温速率降温至980℃,并在800℃的温度下保温9h。
本发明的方法具有升温速度快,能耗低的特点,所制备的透明氧化钇陶瓷部件的晶粒尺寸为纳米级,且颗粒尺寸均匀。透明氧化钇陶瓷部件致密性 好、性能优良,其强度大于400MPa,透明度大于60%,可用作结构功能一体化陶瓷材料领域。
实施例6。
一种二步加压烧结制备透明氧化钇陶瓷部件的方法,通过如下步骤进行。
(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,本发明中所述的高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为100微米。
步骤(1)陶瓷粉体的合成包括如下步骤:
(1.1)称取氧化钇原料,用浓硝酸溶解,配制成浓度为0.3mol/L的硝酸钇溶液;
(1.2)用反向滴定法以4ml/min的滴定速率将硝酸钇溶液滴加到浓度为2.5mol/L的碳酸氢铵溶液中,在滴定的过程中同时用磁力搅拌机以700rpm的搅拌速率进行搅拌,在滴定过程中通过另外滴加氨水使得溶液的pH值保持在9,反应结束后陈化1.8h;
(1.3)对(1.2)陈化后的溶液进行抽滤,然后分别用离子水和无水乙醇进行冲洗;
冲洗之后再重复进行3次抽滤、冲洗,抽滤冲洗完毕后在90℃的温度下放置17h得到前驱体粉末;
(1.4)将前驱体粉末在780℃下烧结2.6h,通过目数为80目的筛子过筛后得到高纯超细氧化钇纳米陶瓷粉末。
通过反向共沉淀方法制备出的氧化钇纳米陶瓷粉末具有粒径较小且分布均匀的特点,为后续烧结制备的成品提供了保障。
制备好高纯超细氧化钇纳米陶瓷粉末后,进入步骤(2)进行烧结。
(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化钇纳米透明陶瓷。
步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为11.5MPa的条件下进行低压烧结,以解除高压对晶粒滑移的抑制,促进晶粒的滑移从而消除开口气孔。在1000℃~1450℃的高温阶段,在压力为100MPa的条件下进行高压烧结,实现陶瓷的高度致密化。
其升温制度具体为:从室温~1000℃的升温速率为40℃/min,并在1000℃保温20min;从1000℃~1450℃的升温速率为170℃/min,在1450℃保温6min;在1450℃保温结束后卸压。
烧结完毕后,进入步骤(3)后处理。
(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。
步骤(3)后处理的退火工艺具体是:在空气气氛下、以4.5℃/min的降温速率降温至900℃,并在1000℃的温度下保温10h。
本发明的方法具有升温速度快,能耗低的特点,所制备的透明氧化钇陶瓷部件的晶粒尺寸为纳米级,且颗粒尺寸均匀。透明氧化钇陶瓷部件致密性好、性能优良,其强度大于400MPa,透明度大于60%,可用作结构功能一体化陶瓷材料领域。
实施例7。
一种二步加压烧结制备透明氧化钇陶瓷部件的方法,通过如下步骤进行。
(1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,本发明中所述的高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为96微米。
步骤(1)陶瓷粉体的合成包括如下步骤:
(1.1)称取氧化钇原料,用浓硝酸溶解,配制成浓度为0.7mol/L的硝酸钇溶液;
(1.2)用反向滴定法以5ml/min的滴定速率将硝酸钇溶液滴加到浓度为2.6mol/L的碳酸氢铵溶液中,在滴定的过程中同时用磁力搅拌机以400rpm的搅拌速率进行搅拌,在滴定过程中通过另外滴加氨水使得溶液的pH值保持在10.5,反应结束后陈化1.8h;
(1.3)对(1.2)陈化后的溶液进行抽滤,然后分别用离子水和无水乙醇进行冲洗;
冲洗之后再重复进行5次抽滤、冲洗,抽滤冲洗完毕后在83℃的温度下放置19h得到前驱体粉末;
(1.4)将前驱体粉末在820℃下烧结3h,通过目数为80目的筛子过筛后得到高纯超细氧化钇纳米陶瓷粉末。
通过反向共沉淀方法制备出的氧化钇纳米陶瓷粉末具有粒径较小且分布均匀的特点,为后续烧结制备的成品提供了保障。
制备好高纯超细氧化钇纳米陶瓷粉末后,进入步骤(2)进行烧结。
(2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化钇纳米透明陶瓷。
步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为12MPa的条件下进行低压烧结,以解除高压对晶粒滑移的抑制,促进晶粒的滑移从而消除开口气孔。在1000℃~1450℃的高温阶段,在压力为98MPa的条件下进行高压烧结,实现陶瓷的高度致密化。
其升温制度具体为:从室温~1000℃的升温速率为50℃/min,并在1000℃保温20min;从1000℃~1450℃的升温速率为100℃/min,在1450℃保温9min;在1450℃保温结束后卸压。
烧结完毕后,进入步骤(3)后处理。
(3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。
步骤(3)后处理的退火工艺具体是:在空气气氛下、以3~5℃/min的降 温速率降温至960℃,并在800~1000℃的温度下保温10h。
本发明的方法具有升温速度快,能耗低的特点,所制备的透明氧化钇陶瓷部件的晶粒尺寸为纳米级,且颗粒尺寸均匀。透明氧化钇陶瓷部件致密性好、性能优良,其强度大于400MPa,透明度大于60%,可用作结构功能一体化陶瓷材料领域。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,包括如下步骤:
    (1)陶瓷粉体的合成:采用反向共沉淀法制备高纯超细氧化钇纳米陶瓷粉末,所述高纯超细氧化钇纳米陶瓷粉末的纯度大于99.9%,平均粒径为80~200nm;
    (2)透明氧化钇陶瓷的烧结:采用二步加压的放电等离子烧结工艺制备氧化钇纳米透明陶瓷;
    (3)后处理:在放电等离子烧结后,将样品取出退火并进行研磨抛光得到最终的成品透明氧化钇陶瓷部件。
  2. 根据权利要求1所述的二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,所述高纯超细氧化钇纳米陶瓷粉末的平均粒径为90nm。
  3. 根据权利要求1或2所述的二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,所述步骤(1)陶瓷粉体的合成包括如下步骤:
    (1.1)称取氧化钇原料,用浓硝酸溶解,配制成浓度为0.2~0.8mol/L的硝酸钇溶液;
    (1.2)用反向滴定法以小于5ml/min的滴定速率将硝酸钇溶液滴加到浓度为2~3mol/L的碳酸氢铵溶液中,在滴定的过程中同时用磁力搅拌机进行搅拌,在滴定过程中通过另外滴加氨水使得溶液的pH值保持在9~11,反应结束后陈化1.0~2.0h;
    (1.3)对(1.2)陈化后的溶液进行抽滤,然后分别用离子水和无水乙醇进行沉淀物冲洗;
    冲洗之后再重复进行4~5次抽滤、冲洗,抽滤冲洗完毕后在80~90℃的温度下放置12~24h得到前驱体粉末;
    (1.4)将前驱体粉末在700~900℃下烧结2~3h,过筛后得到高纯超细氧化钇纳米陶瓷粉末。
  4. 根据权利要求3所述的二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,所述步骤(1.2)中,在滴定的过程中磁力搅拌机的搅拌速率为300~800rpm。
  5. 根据权利要求4所述的二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,所述步骤(1.4)具体通过目数为50~100目的筛子进行过筛后得到高纯超细氧化钇纳米陶瓷粉末。
  6. 根据权利要求3所述的二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,
    所述步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为8~12MPa的条件下烧结;在1000℃~1450℃的高温阶段,在压力为95~110MPa的条件下烧结。
  7. 根据权利要求3所述的二步加压烧结制备透明氧化钇陶瓷部件的方法, 其特征在于,
    所述步骤(2)的二步加压的放电等离子烧结工艺,其烧结制度为:在室温~1000℃的低温阶段,在压力为10MPa的条件下烧结;在1000℃~1450℃的高温阶段,在压力为100MPa的条件下烧结。
  8. 根据权利要求7所述的二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,
    所述步骤(2)的二步加压的放电等离子烧结工艺,其升温制度具体为:
    从室温~1000℃的升温速率为10~50℃/min,并在1000℃保温15~30min;
    从1000℃~1450℃的升温速率为100~200℃/min,在1450℃保温5~10min;
    在1450℃保温结束后卸压。
  9. 根据权利要求7所述的二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,
    所述步骤(3)后处理的退火工艺具体是:在空气气氛下、以3~5℃/min的降温速率降温至800~1000℃,并在800~1000℃的温度下保温5~12h。
  10. 根据权利要求1所述的二步加压烧结制备透明氧化钇陶瓷部件的方法,其特征在于,所制备的透明氧化钇陶瓷部件的陶瓷晶粒尺寸为纳米级,透明氧化钇陶瓷部件的强度大于400Mpa、透明度大于60%。
PCT/CN2016/075448 2016-02-04 2016-03-03 一种二步加压烧结制备透明氧化钇陶瓷部件的方法 WO2017133050A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610079474.9 2016-02-04
CN201610079474.9A CN105777123B (zh) 2016-02-04 2016-02-04 一种二步加压烧结制备透明氧化钇陶瓷部件的方法

Publications (1)

Publication Number Publication Date
WO2017133050A1 true WO2017133050A1 (zh) 2017-08-10

Family

ID=56403287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075448 WO2017133050A1 (zh) 2016-02-04 2016-03-03 一种二步加压烧结制备透明氧化钇陶瓷部件的方法

Country Status (2)

Country Link
CN (1) CN105777123B (zh)
WO (1) WO2017133050A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174645A (zh) * 2020-09-27 2021-01-05 中国科学院上海光学精密机械研究所 一种制备致密纳米晶粒陶瓷的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106396672A (zh) * 2016-08-29 2017-02-15 彭展忠 陶瓷刀具的制备方法
CN106380196A (zh) * 2016-08-29 2017-02-08 彭展忠 陶瓷刀具的成型工艺
CN106396674A (zh) * 2016-08-29 2017-02-15 彭展忠 高韧性陶瓷刀具的生产方法
CN106396673A (zh) * 2016-08-29 2017-02-15 彭展忠 陶瓷刀具的加工工艺
CN106588015A (zh) * 2016-12-23 2017-04-26 东华大学 一种基于介孔氧化钇制备氧化钇陶瓷的方法
CN107673390B (zh) * 2017-10-10 2019-04-26 厦门大学 一种玲珑球状纳米氧化钇的制备方法
CN108546097A (zh) * 2018-07-03 2018-09-18 洛阳欣珑陶瓷有限公司 冰瓷及其制备工艺
CN109467434B (zh) * 2018-12-27 2022-04-12 东北大学 一种高断裂韧性高抗热震性氧化钇材料及其制备方法
CN115677341A (zh) * 2021-07-28 2023-02-03 中国科学院上海硅酸盐研究所 一种高透明度的铋层状铁电陶瓷及其制备方法
CN116675536B (zh) * 2023-05-11 2024-04-30 武汉科技大学 一种钛合金熔炼用氧化钇陶瓷坩埚及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101224974A (zh) * 2007-08-24 2008-07-23 中国科学院上海硅酸盐研究所 钇铝系小晶粒透明陶瓷材料及制备方法
CN101269964A (zh) * 2008-04-29 2008-09-24 烁光特晶科技有限公司 氧化钇透明陶瓷的制备方法
CN102190499A (zh) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 氧化钇透明陶瓷的制备方法
CN104529449A (zh) * 2014-12-18 2015-04-22 徐州市江苏师范大学激光科技有限公司 一种采用两步烧结制备氧化钇基透明陶瓷的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020470B (zh) * 2009-09-17 2013-03-13 中国科学院上海硅酸盐研究所 高光学质量的氧化钇透明陶瓷的制备方法
CN101698601B (zh) * 2009-11-04 2012-05-30 中国科学院上海硅酸盐研究所 一种氧化钇基透明陶瓷的烧结方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101224974A (zh) * 2007-08-24 2008-07-23 中国科学院上海硅酸盐研究所 钇铝系小晶粒透明陶瓷材料及制备方法
CN101269964A (zh) * 2008-04-29 2008-09-24 烁光特晶科技有限公司 氧化钇透明陶瓷的制备方法
CN102190499A (zh) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 氧化钇透明陶瓷的制备方法
CN104529449A (zh) * 2014-12-18 2015-04-22 徐州市江苏师范大学激光科技有限公司 一种采用两步烧结制备氧化钇基透明陶瓷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN, LIQIONG ET AL.: "Transparent Yttria Produced by Spark Plasma Sintering at Moderate Temperature and Pressure Profiles", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 5, no. 32, 14 December 2011 (2011-12-14), pages 1035 - 1040, XP028439716, ISSN: 0955-2219 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174645A (zh) * 2020-09-27 2021-01-05 中国科学院上海光学精密机械研究所 一种制备致密纳米晶粒陶瓷的方法
CN112174645B (zh) * 2020-09-27 2022-05-31 中国科学院上海光学精密机械研究所 一种制备致密纳米晶粒陶瓷的方法

Also Published As

Publication number Publication date
CN105777123B (zh) 2018-08-21
CN105777123A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2017133050A1 (zh) 一种二步加压烧结制备透明氧化钇陶瓷部件的方法
Ikesue et al. Synthesis of Nd3+, Cr3+‐codoped YAG ceramics for high‐efficiency solid‐state lasers
Xu et al. Synthesis of monodispersed spherical yttrium aluminum garnet (YAG) powders by a homogeneous precipitation method
CN104529449A (zh) 一种采用两步烧结制备氧化钇基透明陶瓷的方法
CN105753473B (zh) 一种磁光氧化铽透明陶瓷的制备方法
CN103058644B (zh) 一种通过合成稀土掺杂y2o3纳米粉体制备稀土掺杂钇铝石榴石透明陶瓷的方法
Shi et al. Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics
TW200940450A (en) Nanoparticle synthesis by solvothermal process
Dai et al. Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders
Wang et al. Microwave synthesis of homogeneous YAG nanopowder leading to a transparent ceramic
CN103820859A (zh) 掺杂钇铝石榴石陶瓷转变为单晶的制备方法
CN102815941B (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
CN106673652A (zh) 一种具有核壳结构的氧化钇基激光陶瓷及其制备方法
CN106833627A (zh) 一种发光材料、其制备方法及应用
CN108046794B (zh) 利用共沉淀法合成粉体制备钛酸钇透明陶瓷的方法
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN101386531A (zh) 稀土掺杂钇铝石榴石透明陶瓷的制备方法
CN102815945B (zh) 锆酸镧钆透明陶瓷材料及其制备方法
CN109354497B (zh) Ho掺杂的透明氧化钪陶瓷及其制备方法
Li et al. Ethanol-dependent solvothermal synthesis of monodispersed YAG powders with precursor obtained through bubbling ammonia
CN101285206B (zh) 氧化锌与铝酸锌复合纳米管及阵列的制备方法
CN108788126B (zh) 一种钴纳米磁性材料的制备方法
CN106631022B (zh) 一种Tm敏化的氧化钇基激光陶瓷及其制备方法
CN110256074A (zh) 一种钇稳定氧化铽粉体、磁光透明陶瓷及其制备方法
Jiao et al. Preparation and properties of Nd: YAG ultra-fine powders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888874

Country of ref document: EP

Kind code of ref document: A1