WO2017130754A1 - 異方性導電フィルム、接続方法、及び接合体 - Google Patents

異方性導電フィルム、接続方法、及び接合体 Download PDF

Info

Publication number
WO2017130754A1
WO2017130754A1 PCT/JP2017/001119 JP2017001119W WO2017130754A1 WO 2017130754 A1 WO2017130754 A1 WO 2017130754A1 JP 2017001119 W JP2017001119 W JP 2017001119W WO 2017130754 A1 WO2017130754 A1 WO 2017130754A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
anisotropic conductive
conductive film
circuit member
Prior art date
Application number
PCT/JP2017/001119
Other languages
English (en)
French (fr)
Inventor
服部 正明
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020187019677A priority Critical patent/KR20180091084A/ko
Priority to CN201780006103.0A priority patent/CN108603080A/zh
Publication of WO2017130754A1 publication Critical patent/WO2017130754A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to an anisotropic conductive film, a connection method, and a joined body.
  • a tape-like connection material for example, anisotropic conductive film (ACF)
  • ACF anisotropic conductive film
  • This anisotropic conductive film is used, for example, to connect a terminal of a flexible printed circuit (FPC) or IC (Integrated Circuit) chip and an electrode formed on a glass substrate of an LCD (Liquid Crystal Display) panel. In other words, it is used when various terminals are bonded and electrically connected.
  • FPC flexible printed circuit
  • IC Integrated Circuit
  • the anisotropic conductive film normally uses a thermosetting resin
  • heating at a high temperature for example, 180 ° C.
  • the heating causes problems.
  • a glass substrate of a liquid crystal display is used as an object to be connected, the glass substrate is warped and distorted by heating at a high temperature, which causes a problem that display unevenness occurs in the liquid crystal display. Therefore, an anisotropic conductive film that can be used by heating at a low temperature or without the need for heating is desired.
  • Patent Document 1 a photocurable anisotropic conductive film that is cured by light irradiation has been proposed (see, for example, Patent Document 1).
  • Examples of the light source used for the light irradiation include a mercury lamp and an LED (Light Emitting Diode).
  • the LED is widely used because it has advantages such as power saving, long life, and small size.
  • LEDs having a light emission wavelength of 365 nm have become mainstream as light sources used for light irradiation.
  • the anisotropic conductive film is rarely used in a yellow room where ultraviolet light is cut like a photoresist, and is often performed under a fluorescent lamp when an electronic component is connected to a substrate. Therefore, the curing reaction of the photocurable anisotropic conductive film proceeds by ultraviolet light included in room lighting such as a fluorescent lamp, and there is a problem that sufficient connectivity cannot be obtained at the time of connection.
  • An anisotropic conductive film made of is proposed (for example, see Patent Document 2).
  • Patent Document 2 an anisotropic conductive film that is cured by light irradiation using an LED having an emission wavelength of 365 nm and that can provide sufficient connectivity even when exposed to room lighting. Is obtained.
  • the metal wiring part serving as the light shielding part is sufficiently cured, and further improvement in adhesive strength has been desired.
  • the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can be used for light irradiation using an LED having an emission wavelength of 365 nm, and sufficient connectivity can be obtained even when exposed to room lighting, and also in a light shielding part in a metal wiring part.
  • Means for solving the problems are as follows. That is, ⁇ 1> An anisotropic conductive film for anisotropically connecting the terminals of the first circuit member and the terminals of the second circuit member, An anisotropic conductive film comprising a film-forming resin, a radical polymerizable compound, an oxime ester photopolymerization initiator, conductive particles, and a compound having an anthracene skeleton. ⁇ 2> The anisotropic conductive film according to ⁇ 1>, wherein the compound having an anthracene skeleton has a phenyl group as a substituent.
  • ⁇ 3> The anisotropic conductive film according to ⁇ 2>, wherein the compound having an anthracene skeleton is monophenylanthracene.
  • ⁇ 4> The anisotropic conductive film according to any one of ⁇ 1> to ⁇ 3>, wherein the oxime ester type photopolymerization initiator is a compound represented by the following general formula (1).
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and 3 to 3 carbon atoms. Represents any of the 20 heterocyclic groups.
  • R 2 represents any one of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and a heterocyclic group having 3 to 20 carbon atoms.
  • R 3 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, a heterocyclic group having 3 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, a heterocyclic group having 3 to 20 carbon atoms, and an acyl group having 2 to 20 carbon atoms. Represents any of the groups.
  • a represents an integer of 0 to 4.
  • b represents an integer of 0 to 5.
  • X represents an oxygen atom, a sulfur atom, and NR 5 (R 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and a carbon atom. Any one of the heterocyclic groups represented by formula 3 to 20).
  • Y represents a single bond or a carbonyl group.
  • the oxime ester type photopolymerization initiator includes 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)] and ethanone-1- [9-ethyl-6
  • ⁇ 6> A connection method in which the terminals of the first circuit member and the terminals of the second circuit member are anisotropically conductively connected.
  • the anisotropic conductive film is the anisotropic conductive film according to any one of ⁇ 1> to ⁇ 5>.
  • the conventional problems can be solved, the object can be achieved, and it can be used for light irradiation using an LED having an emission wavelength of 365 nm and exposed to room lighting.
  • An anisotropic conductive film capable of obtaining sufficient connectivity, a connection method using the anisotropic conductive film, and a joined body using the anisotropic conductive film can be provided.
  • the anisotropic conductive film of the present invention contains at least a film-forming resin, a radical polymerizable compound, an oxime ester type photopolymerization initiator, conductive particles, and a compound having an anthracene skeleton, and further if necessary. And other ingredients.
  • the anisotropic conductive film is an anisotropic conductive film that anisotropically connects the terminals of the first circuit member and the terminals of the second circuit member.
  • ⁇ Film forming resin> There is no restriction
  • the film forming resin may be used alone or in combination of two or more. Among these, phenoxy resin is preferable from the viewpoint of film forming property, processability, and connection reliability.
  • the phenoxy resin include a resin synthesized from bisphenol A and epichlorohydrin. As the phenoxy resin, an appropriately synthesized product or a commercially available product may be used.
  • the content of the film forming resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20% by mass to 70% by mass, and more preferably 30% by mass to 60% by mass.
  • the radical polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the content of the radical polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20% by mass to 70% by mass, and more preferably 30% by mass to 60% by mass.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and 3 to 3 carbon atoms. Represents any of the 20 heterocyclic groups.
  • R 2 represents any one of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and a heterocyclic group having 3 to 20 carbon atoms.
  • R 3 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, a heterocyclic group having 3 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, a heterocyclic group having 3 to 20 carbon atoms, and an acyl group having 2 to 20 carbon atoms. Represents any of the groups.
  • a represents an integer of 0 to 4.
  • b represents an integer of 0 to 5.
  • X represents an oxygen atom, a sulfur atom, and NR 5 (R 5 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and a carbon atom. Any one of the heterocyclic groups represented by formula 3 to 20).
  • Y represents a single bond or a carbonyl group.
  • the alkyl group having 1 to 20 carbon atoms in R 1 , R 2 , R 3 , R 4 and R 5 is not particularly limited and may be appropriately selected depending on the purpose.
  • the aryl group having 6 to 30 carbon atoms in R 1 , R 2 , R 3 , R 4 and R 5 is not particularly limited and may be appropriately selected depending on the purpose. Group, naphthyl group, anthryl group, phenanthrenyl group and the like. Among these, aryl groups having 6 to 12 carbon atoms are preferable.
  • the arylalkyl group having 7 to 30 carbon atoms in R 1 , R 2 , R 3 , R 4 and R 5 is not particularly limited and may be appropriately selected depending on the purpose. Examples include benzyl group, ⁇ -methylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, phenylethyl group and the like. Among these, an arylalkyl group having 7 to 13 carbon atoms is preferable.
  • the heterocyclic group having 3 to 20 carbon atoms in R 1 , R 2 , R 3 , R 4 and R 5 is not particularly limited and may be appropriately selected depending on the purpose. Examples include a pyridyl group, a pyrimidyl group, a furyl group, a thienyl group, a tetrahydrofuranyl group, and a dioxolanyl group. Among these, a 5- to 7-membered heterocyclic group is preferable.
  • the acyl group having 2 to 20 carbon atoms in R 3 and R 4 is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples of the compound represented by the general formula (1) include a compound represented by the following general formula (2), a compound represented by the following general formula (3), and the like.
  • R 11 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and 3 to 3 carbon atoms.
  • R 12 represents any one of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and a heterocyclic group having 3 to 20 carbon atoms. .
  • Examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, the arylalkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 3 to 20 carbon atoms in R 11 and R 12 include The alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, the arylalkyl group having 7 to 30 carbon atoms, and the complex having 3 to 20 carbon atoms described in the above R 1 and R 2 respectively. And a ring group.
  • R 21 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and 3 to 3 carbon atoms.
  • R 22 represents any one of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and a heterocyclic group having 3 to 20 carbon atoms. .
  • R 23 represents any one of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and a heterocyclic group having 3 to 20 carbon atoms.
  • R 24 represents any one of an alkyl group having 1 to 19 carbon atoms and an aryl group having 6 to 10 carbon atoms which may have an alkyl group having 1 to 6 carbon atoms.
  • R 21 , R 22 , and R 23 each having an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic ring having 3 to 20 carbon atoms
  • the group include the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, and the arylalkyl group having 7 to 30 carbon atoms described in the corresponding R 1 , R 2 , and R 5 .
  • a heterocyclic group having 3 to 20 carbon atoms are examples of the group.
  • the alkyl group having 1 to 19 carbon atoms for R 24 is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the aryl group having 6 to 10 carbon atoms which may have an alkyl group having 1 to 6 carbon atoms in R 24 is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a benzoyl group And methylbenzoyl group.
  • oxime ester type photopolymerization initiator examples include the following compounds.
  • 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)] for example, Irgacure OXE01, structural formula (1), manufactured by BASF
  • ethanone- 1- [9-Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) for example, Irgacure OXE 02 manufactured by BASF, the structural formula (3)
  • Is preferred Irgacure OXE 01
  • the content of the oxime ester photopolymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5% by mass to 8% by mass, and 2% by mass to 5% by mass. Is more preferable. When the content is in the more preferable range, even when exposed to room lighting, it is advantageous in that the conduction resistance is low and the connectivity is very excellent.
  • ⁇ Compound having anthracene skeleton> when the anisotropic conductive film is cured using an LED light irradiation device having an emission wavelength of 365 nm by including the compound having the anthracene skeleton in the anisotropic conductive film, a metal wiring is used. A sufficient curing reaction also proceeds in the light-shielding part of the part, and as a result, the adhesive strength is excellent, and the storage stability of the anisotropic conductive film under indoor lighting such as a fluorescent lamp can be maintained, and exposure to room lighting is performed. An anisotropic conductive film having sufficient connectivity can be obtained.
  • Examples of the compound having an anthracene skeleton include anthracene and anthracene having a substituent.
  • Examples of the substituent include a phenyl group and a butoxy group.
  • an anthracene compound having a phenyl group as a substituent is preferable because the effects of the present invention can be further exhibited.
  • monophenylanthracene and diphenylanthracene are preferable compounds.
  • monophenylanthracene is particularly preferable for obtaining an anisotropic conductive film having excellent adhesive strength.
  • the content of the compound having an anthracene skeleton is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0.1% by mass to 1.5% by mass, and preferably 0.3% by mass to 0%. More preferably, it is 6% by mass. When the content is within the more preferable range, it is advantageous in that the conduction resistance is low and the connectivity is very excellent when not exposed to room lighting.
  • metal particle there is no restriction
  • the metal-coated resin particles are not particularly limited as long as the surfaces of the resin particles are coated with metal, and can be appropriately selected according to the purpose.
  • the surface of the resin particles is nickel, silver, solder , Particles coated with at least one of copper, gold, and palladium.
  • particles in which the surface of resin particles is coated with silver are preferable.
  • the material of the resin particles is not particularly limited and may be appropriately selected depending on the intended purpose.
  • styrene-divinylbenzene copolymer styrene-divinylbenzene copolymer
  • benzoguanamine resin cross-linked polystyrene resin
  • acrylic resin styrene-silica composite resin, etc. Is mentioned.
  • the conductive particles only need to have conductivity during anisotropic conductive connection.
  • the conductive particle may be used as long as the particle is deformed during the anisotropic conductive connection and the metal particle is exposed.
  • the average particle diameter of the conductive particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 50 ⁇ m, more preferably 2 ⁇ m to 25 ⁇ m, and particularly preferably 2 ⁇ m to 10 ⁇ m.
  • the average particle diameter is an average value of particle diameters measured for 10 conductive particles arbitrarily. The particle diameter can be measured, for example, by observation with a scanning electron microscope.
  • the content of the conductive particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5% by mass to 10% by mass, and more preferably 3% by mass to 8% by mass.
  • the silane coupling agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an epoxy silane coupling agent, an acrylic silane coupling agent, a thiol silane coupling agent, and an amine silane. A coupling agent etc. are mentioned. There is no restriction
  • the average thickness of the anisotropic conductive film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 ⁇ m to 60 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m, and particularly preferably 10 ⁇ m to 20 ⁇ m.
  • the first circuit member and the second circuit member are not particularly limited as long as they are terminals that have terminals and are subjected to anisotropic conductive connection using the anisotropic conductive film.
  • the glass substrate having the terminal examples include an ITO (Indium Tin Oxide) glass substrate, an IZO (Indium Zinc Oxide) glass substrate, and other glass pattern substrates. Among these, an ITO glass substrate and an IZO glass substrate are preferable.
  • an ITO glass substrate and an IZO glass substrate are preferable.
  • substrate which has a terminal, the flexible substrate which has a terminal, etc. are mentioned.
  • the IC include a liquid crystal screen control IC chip in a flat panel display (FPD).
  • the first circuit member and the second circuit member may be the same circuit member or different circuit members.
  • connection method of the present invention includes at least a first arrangement step, a second arrangement step, and a light irradiation step, and further includes other steps as necessary.
  • the connection method is a method in which the terminal of the first circuit member and the terminal of the second circuit member are anisotropically conductively connected.
  • the said illustrated by description of the said anisotropic conductive film of this invention The first circuit member and the second circuit member can be cited, respectively, and it is preferable that the circuit member transmits 365 nm light that cures the anisotropic conductive film of the present invention.
  • Examples of such a circuit member include an ITO glass substrate.
  • the first disposing step is not particularly limited as long as it is a step of disposing the anisotropic conductive film of the present invention on the terminal of the first circuit member, and can be appropriately selected according to the purpose. it can.
  • the light irradiation step is not particularly limited as long as it is a step of irradiating the anisotropic conductive film with 365 nm light, and can be appropriately selected according to the purpose.
  • the light irradiation may be performed on the anisotropic conductive film from the side of the first circuit member or from the side of the second circuit member. That is, the irradiation of the light to the anisotropic conductive film may be performed through the first circuit member or may be performed through the second circuit member.
  • the light irradiation source (light irradiation source) is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an LED lamp.
  • the heating and pressing treatment is preferably started before the light irradiation and is performed until the light irradiation is completed.
  • the process to heat and press there is no restriction
  • the heating and pressing member include a pressing member having a heating mechanism.
  • the pressing member having the heating mechanism include a heat tool.
  • the heating temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 80 ° C to 140 ° C.
  • the pressing pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 MPa to 100 MPa.
  • the heating and pressing time is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.5 seconds to 120 seconds.
  • the joined body of the present invention includes at least a first circuit member, a second circuit member, and a cured product of an anisotropic conductive film, and further includes other members as necessary.
  • the anisotropic conductive film is the anisotropic conductive film of the present invention.
  • the cured product of the anisotropic conductive film is interposed between the first circuit member and the second circuit member, and includes a terminal of the first circuit member and a terminal of the second circuit member. Electrically connected.
  • the joined body can be manufactured, for example, by the connection method of the present invention.
  • Example 1 Preparation of anisotropic conductive film> 47 parts by mass of phenoxy resin (product name: PKFE, Sakai Kogyo Co., Ltd.), 35 parts by mass of urethane acrylate (product name: EBECRYL600, manufactured by Daicel Cytec Co., Ltd.), acrylic monomer (product name: A-DCP, Shin-Nakamura Chemical Co., Ltd.) 5 parts by mass, silane coupling agent (product name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.), 3 parts by mass, oxime ester type photopolymerization initiator (product name: Irgacure OXE 01, manufactured by BASF), 0.5 part by mass of anthracene and 6 parts by mass of conductive particles (product name: AUL704, manufactured by Sekisui Chemical Co., Ltd., average particle diameter: 4 ⁇ m) were mixed uniformly.
  • the blended mixture was coated on a silicone-treated PET (polyethylene terephthal
  • the joined body was manufactured by the following method.
  • a glass substrate thickness 0.5 mm, ITO surface resistance value 10 ⁇ / ⁇
  • an IC chip (outer shape 1.8 mm ⁇ 20 mm, thickness 0.5 mm, bump height 15 ⁇ m, bump outer shape 85 ⁇ m ⁇ 30 ⁇ m) was used.
  • the anisotropic conductive film slit to a width of 2.0 mm was disposed on the first circuit member. When arranging, it was pasted at 80 ° C., 1 MPa, and 1 second.
  • the second circuit member was disposed on the anisotropic conductive film so as not to protrude from the anisotropic conductive film.
  • the pressure-applied first pressure was applied after pressure bonding at 100 ° C., 60 MPa for 5 seconds with a heating tool (width 6.0 mm) through a buffer material (Teflon (registered trademark), thickness 50 ⁇ m). From the circuit member side, light with a wavelength of 365 nm was irradiated for 2 seconds (illuminance 600 W / cm) with an LED-UV device (ZUV-30H, manufactured by OMRON Corporation) to obtain a joined body.
  • the initial conduction resistance value ( ⁇ ) of the joined body was measured by the following method. About the manufactured said joined body, the resistance value ((ohm)) between the terminals of 30ch was measured using the digital multimeter (Product number: Digital multimeter 7555, Yokogawa Electric Corporation make). Specifically, the resistance value when a current of 1 mA was passed by the four-terminal method was measured at 10 locations for each of the median value and the end portion, and the average value thereof was taken as the measured value.
  • ⁇ Reaction rate Using an infrared spectrometer (Fourier transform infrared spectroscopy (FT-IR)), vinyl groups (polymerizable groups) before and after connection were measured, and the reaction rate was measured from the change. Specifically, IR analysis is performed immediately after the production of the anisotropic conductive film, and the “opening” and the “light-shielding part (metal wiring) after connection under the condition that the fluorescent lamp is not exposed on the basis of absorption at 1,640 cm ⁇ 1. Part) ”Measure the reaction rate of each, the reaction rate before connection after exposure to fluorescent light, and the reaction rate of“ opening ”and“ light-shielding part (metal wiring part) after connection under fluorescent light exposure conditions ” did.
  • FT-IR infrared spectrometer
  • Example 1 (Examples 2 to 3, Comparative Examples 1 to 4) ⁇ Preparation of anisotropic conductive film>
  • an anisotropic conductive film was obtained in the same manner as in Example 1 except that anthracene was not added or changed to another compound as shown in Table 1 below. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Examples 1 to 3 a result with excellent conduction resistance was obtained in both cases with and without fluorescent lamp exposure. Further, the reaction rate after connection was high not only at the opening but also at the light shielding part, and the adhesive strength was excellent. Among them, Examples 2 and 3 containing anthracene having a phenyl group as an additive exhibited particularly excellent adhesive strength.
  • Comparative Example 1 the conduction resistance was insufficient when the fluorescent lamp was exposed.
  • Comparative Examples 2 to 4 the light-shielding portion was not sufficiently cured and the adhesive strength was insufficient.
  • the anisotropic conductive film of the present invention can be used for light irradiation using an LED having an emission wavelength of 365 nm, can provide sufficient connectivity even when exposed to room lighting, and further shields light from a metal wiring portion. Since a sufficient curing reaction also proceeds in the part to express a better adhesive strength, it can be suitably used for connection of circuit members using an LED lamp having a wavelength of 365 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polymerisation Methods In General (AREA)
  • Conductive Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Adhesive Tapes (AREA)

Abstract

第1の回路部材の端子と第2の回路部材の端子とを異方性導電接続させる異方性導電フィルムであって、膜形成樹脂と、ラジカル重合性化合物と、オキシムエステル型光重合開始剤と、導電性粒子と、アントラセン骨格を有する化合物とを含有する異方性導電フィルムである。

Description

異方性導電フィルム、接続方法、及び接合体
 本発明は、異方性導電フィルム、接続方法、及び接合体に関する。
 従来より、電子部品を基板と接続する手段として、導電性粒子が分散された熱硬化性樹脂を剥離フィルムに塗布したテープ状の接続材料(例えば、異方性導電フィルム(ACF;Anisotropic Conductive Film))が用いられている。
 この異方性導電フィルムは、例えば、フレキシブルプリント基板(FPC)やIC(Integrated Circuit)チップの端子と、LCD(Liquid Crystal Display)パネルのガラス基板上に形成された電極とを接続する場合を始めとして、種々の端子同士を接着すると共に電気的に接続する場合に用いられている。
 異方性導電フィルムは、通常、熱硬化性樹脂を用いているため、前記異方性導電フィルムを硬化させる際には、高温(例えば、180℃)での加熱が行われる。しかし、接続対象の基板の種類によってはその加熱により不具合が生じる。例えば、接続対象に液晶ディスプレイのガラス基板を用いた場合には、高温での加熱により前記ガラス基板に反り及び歪みが生じ、それが原因となり、液晶ディスプレイに表示ムラが生じるという問題がある。
 したがって、低温での加熱により、又は加熱を必要とせずに用いることができる異方性導電フィルムが望まれている。
 そこで、光照射によって硬化する光硬化型の異方性導電フィルムが提案されている(例えば、特許文献1参照)。
 前記光照射に用いる光源としては、例えば、水銀灯、LED(Light Emitting Diode、発光ダイオード)などが挙げられる。これらの中でも、前記LEDは、省電力、長寿命、小型などの利点を有することから幅広く利用されている。
 そして昨今、光照射に用いる光源としては、発光波長が365nmであるLEDが主流となっている。
 しかし、異方性導電フィルムは、フォトレジストのように紫外光をカットしたイエロールームで用いられることは少なく、電子部品を基板と接続する際には、蛍光灯下で行われることが多い。そのため、蛍光灯などの室内照明に含まれる紫外光によって光硬化型の異方性導電フィルムの硬化反応が進行してしまい、接続時に十分な接続性が得られないという問題がある。
 そこで、膜形成樹脂、ラジカル重合性化合物、オキシムエステル型光重合開始剤に、波長365nmの光の透過率が40%以上かつ波長400nmの光の透過率が30%以下の化合物を配合した組成物からなる異方性導電フィルムが提案されている(例えば、特許文献2参照)。
 特許文献2に記載の従来の技術によれば、発光波長が365nmのLEDを用いた光照射により硬化し、かつ、室内照明に曝露されても十分な接続性が得られる異方性導電性フィルムが得られる。しかし、特許文献2に記載の従来の技術では、遮光部となる金属配線部における硬化が十分とはいえず、接着強度においてさらなる改良が望まれていた。
 したがって、発光波長が365nmであるLEDを用いた光照射に対して利用でき、かつ室内照明に曝露されても十分な接続性が得られ、さらに金属配線部における遮光部においても十分な硬化反応が進行することにより、接着強度がより優れた異方性導電フィルム、並びに前記異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体の提供が求められているのが現状である。
特開2007-045900号公報 特開2014-210878号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、発光波長が365nmであるLEDを用いた光照射に対して利用でき、かつ室内照明に曝露されても十分な接続性が得られ、さらに金属配線部における遮光部においても十分な硬化反応が進行することにより、接着強度がより優れた異方性導電フィルム、並びに前記異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 第1の回路部材の端子と第2の回路部材の端子とを異方性導電接続させる異方性導電フィルムであって、
 膜形成樹脂と、ラジカル重合性化合物と、オキシムエステル型光重合開始剤と、導電性粒子と、アントラセン骨格を有する化合物とを含有することを特徴とする異方性導電フィルムである。
 <2> 前記アントラセン骨格を有する化合物が、置換基としてフェニル基を有する前記<1>に記載の異方性導電性フィルムである。
 <3> 前記アントラセン骨格を有する化合物が、モノフェニルアントラセンである前記<2>に記載の異方性導電性フィルムである。
 <4> 前記オキシムエステル型光重合開始剤が、下記一般式(1)で表される化合物である前記<1>から<3>のいずれかに記載の異方性導電フィルムである。
Figure JPOXMLDOC01-appb-C000002
 ただし、前記一般式(1)中、Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、炭素数3~20の複素環基、炭素数2~20のアシル基、及び結合手(前記結合手は、隣接するベンゼン環の炭素原子の1つと結合し、-X-と一緒になって環構造を形成する結合手である。)のいずれかを表す。Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、炭素数3~20の複素環基、及び炭素数2~20のアシル基のいずれかを表す。aは、0~4の整数を表す。bは、0~5の整数を表す。Xは、酸素原子、硫黄原子、及びNR(Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。)のいずれかを表す。Yは、単結合、及びカルボニル基のいずれかを表す。
 <5> 前記オキシムエステル型光重合開始剤が、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、及びエタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)の少なくともいずれかである前記<4>に記載の異方性導電フィルムである。
 <6> 第1の回路部材の端子と第2の回路部材の端子とを異方性導電接続させる接続方法であって、
 前記第1の回路部材の端子上に前記<1>から<5>のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
 前記異方性導電フィルム上に前記第2の回路部材を、前記第2の回路部材の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
 前記異方性導電フィルムに365nmの光を照射する光照射工程とを含むことを特徴とする接続方法である。
 <7> 端子を有する第1の回路部材と、端子を有する第2の回路部材と、前記第1の回路部材と前記第2の回路部材との間に介在して前記第1の回路部材の端子と前記第2の回路部材の端子とを電気的に接続する異方性導電フィルムの硬化物とを有し、
 前記異方性導電フィルムが、前記<1>から<5>のいずれかに記載の異方性導電フィルムであることを特徴とする接合体である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、発光波長が365nmであるLEDを用いた光照射に対して利用でき、かつ室内照明に曝露されても十分な接続性が得られる異方性導電フィルム、並びに前記異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体を提供することができる。
(異方性導電フィルム)
 本発明の異方性導電フィルムは、膜形成樹脂と、ラジカル重合性化合物と、オキシムエステル型光重合開始剤と、導電性粒子と、アントラセン骨格を有する化合物とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 前記異方性導電フィルムは、第1の回路部材の端子と第2の回路部材の端子とを異方性導電接続させる異方性導電フィルムである。
<膜形成樹脂>
 前記膜形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。前記膜形成樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、製膜性、加工性、接続信頼性の点からフェノキシ樹脂が好ましい。
 前記フェノキシ樹脂としては、例えば、ビスフェノールAとエピクロルヒドリンより合成される樹脂などが挙げられる。
 前記フェノキシ樹脂は、適宜合成したものを使用してもよいし、市販品を使用してもよい。
 前記膜形成樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、20質量%~70質量%が好ましく、30質量%~60質量%がより好ましい。
<ラジカル重合性化合物>
 前記ラジカル重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、前記アクリレートをメタクリレートにしたものが挙げられ、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記ラジカル重合性化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、20質量%~70質量%が好ましく、30質量%~60質量%がより好ましい。
<オキシムエステル型光重合開始剤>
 前記オキシムエステル型光重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができるが、下記一般式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
 ただし、前記一般式(1)中、Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、炭素数3~20の複素環基、炭素数2~20のアシル基、及び結合手(前記結合手は、隣接するベンゼン環の炭素原子の1つと結合し、-X-と一緒になって環構造を形成する結合手である。)のいずれかを表す。Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、炭素数3~20の複素環基、及び炭素数2~20のアシル基のいずれかを表す。aは、0~4の整数を表す。bは、0~5の整数を表す。Xは、酸素原子、硫黄原子、及びNR(Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。)のいずれかを表す。Yは、単結合、及びカルボニル基のいずれかを表す。
 前記R、前記R、前記R、前記R及び前記Rにおける炭素数1~20のアルキル基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、アミル基、イソアミル基、t-アミル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、t-オクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基などが挙げられる。これらの中でも、炭素数1~12のアルキル基が好ましい。
 前記R、前記R、前記R、前記R及び前記Rにおける炭素数6~30のアリール基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェニル基、ナフチル基、アントリル基、フェナンスレニル基などが挙げられる。これらの中でも、炭素数6~12のアリール基が好ましい。
 前記R、前記R、前記R、前記R及び前記Rにおける炭素数7~30のアリールアルキル基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンジル基、α-メチルベンジル基、α、α-ジメチルベンジル基、フェニルエチル基などが挙げられる。これらの中でも、炭素数7~13のアリールアルキル基が好ましい。
 前記R、前記R、前記R、前記R及び前記Rにおける炭素数3~20の複素環基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ピリジル基、ピリミジル基、フリル基、チエニル基、テトラヒドロフラニル基、ジオキソラニル基などが挙げられる。これらの中でも、5~7員複素環基が好ましい。
 前記R、及び前記Rにおける炭素数2~20のアシル基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アセチル基、プロピオニル基、ベンゾイル基、メチルベンゾイル基などが挙げられる。
 前記一般式(1)で表される化合物としては、例えば、下記一般式(2)で表される化合物、下記一般式(3)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000004
 ただし、前記一般式(2)中、R11は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。R12は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。
 前記R11、及び前記R12における炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基としては、それぞれ対応する前記R、及び前記Rにおいて説明した炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基などが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 ただし、前記一般式(3)中、R21は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。R22は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。R23は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。R24は、炭素数1~19のアルキル基、及び炭素数1~6のアルキル基を有していてもよい炭素数6~10のアリール基のいずれかを表す。
 前記R21、前記R22、及び前記R23における炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基としては、それぞれ対応する前記R、前記R、及び前記Rにおいて説明した炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基などが挙げられる。
 前記R24における炭素数1~19のアルキル基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、アミル基、イソアミル基、t-アミル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、t-オクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基などが挙げられる。
 前記R24における炭素数1~6のアルキル基を有していてもよい炭素数6~10のアリール基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾイル基、メチルベンゾイル基などが挙げられる。
 前記オキシムエステル型光重合開始剤としては、具体的には、例えば、以下の化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 これらの中でも、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](例えば、BASF社製のイルガキュア OXE 01、前記構造式(1))、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(例えば、BASF社製のイルガキュア OXE 02、前記構造式(3))が好ましい。
 前記オキシムエステル型光重合開始剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%~8質量%が好ましく、2質量%~5質量%がより好ましい。前記含有量が、前記より好ましい範囲内であると、室内照明に曝露される場合であっても、導通抵抗が低く、接続性が非常に優れる点で、有利である。
<アントラセン骨格を有する化合物>
 本発明においては、前記アントラセン骨格を有する化合物を前記異方性導電フィルムに含有させることで、発光波長365nmであるLED光照射装置を用いて前記異方性導電フィルムを硬化させる際に、金属配線部における遮光部においても十分な硬化反応が進行し、その結果、接着強度に優れ、かつ蛍光灯などの室内照明下での前記異方性導電フィルムの保存安定性を維持でき、室内照明に曝露されても十分な接続性を有する異方性導電フィルムが得られる。
 前記アントラセン骨格を有する化合物としては、例えば、アントラセン、あるいは置換基を有するアントラセンが挙げられる。置換基としては、例えば、フェニル基、ブトキシ基などが挙げられる。中でも、置換基としてフェニル基を有するアントラセン化合物が本発明の効果をより発揮することができ好ましい。より具体的には、モノフェニルアントラセン、ジフェニルアントラセンが好ましい化合物として挙げられる。中でも、モノフェニルアントラセンは、接着強度が優れた異方性導電フィルムを得るうえで、特に好ましい。
 前記アントラセン骨格を有する化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1質量%~1.5質量%が好ましく、0.3質量%~0.6質量%がより好ましい。前記含有量が、前記より好ましい範囲内であると、室内照明に曝露されない場合に、導通抵抗が低く、接続性が非常に優れる点で、有利である。
<導電性粒子>
 前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。
 前記金属粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニッケル、コバルト、銀、銅、金、パラジウム、半田などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、ニッケル、銀、銅が好ましい。これらの金属粒子は、表面酸化を防ぐ目的で、その表面に金、パラジウムを施していてもよい。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
 前記金属被覆樹脂粒子としては、樹脂粒子の表面を金属で被覆した粒子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂粒子の表面をニッケル、銀、半田、銅、金、及びパラジウムの少なくともいずれかの金属で被覆した粒子などが挙げられる。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。低抵抗を考慮した接続の場合、樹脂粒子の表面を銀で被覆した粒子が好ましい。
 前記樹脂粒子への金属の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無電解めっき法、スパッタリング法などが挙げられる。
 前記樹脂粒子の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン-ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン-シリカ複合樹脂などが挙げられる。
 前記導電性粒子は、異方性導電接続の際に、導電性を有していればよい。例えば、金属粒子の表面に絶縁皮膜を施した粒子であっても、異方性導電接続の際に前記粒子が変形し、前記金属粒子が露出するものであれば、前記導電性粒子である。
 前記導電性粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~50μmが好ましく、2μm~25μmがより好ましく、2μm~10μmが特に好ましい。
 前記平均粒子径は、任意に10個の導電性粒子について測定した粒子径の平均値である。
 前記粒子径は、例えば、走査型電子顕微鏡観察により測定できる。
 前記導電性粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%~10質量%が好ましく、3質量%~8質量%がより好ましい。
<その他の成分>
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シランカップリング剤などが挙げられる。
-シランカップリング剤-
 前記シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ系シランカップリング剤、アクリル系シランカップリング剤、チオール系シランカップリング剤、アミン系シランカップリング剤などが挙げられる。
 前記シランカップリング剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記異方性導電フィルムの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、2μm~60μmが好ましく、5μm~30μmがより好ましく、10μm~20μmが特に好ましい。
<第1の回路部材、第2の回路部材>
 前記第1の回路部材、及び前記第2の回路部材としては、端子を有し、前記異方性導電フィルムを用いた異方性導電接続の対象となる回路部材であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、端子を有するガラス基板、端子を有するプラスチック基板、IC(Integrated Circuit)、TAB(Tape Automated Bonding)テープ、Flex-on-Glass(フレックスオンガラス、FOG)、Chip-on-Glass(チップオンガラス、COG)、Chip-on-Flex(チップオンフレックス、COF)、Flex-on-Board(フレックスオンボード、FOB)、Flex-on-Flex(フレックスオンフレックス、FOF)、液晶パネルなどが挙げられる。
 前記端子を有するガラス基板としては、例えば、ITO(Indium Tin Oxide)ガラス基板、IZO(Indium Zinc Oxide)ガラス基板、その他のガラスパターン基板などが挙げられる。これらの中でも、ITOガラス基板、IZOガラス基板が好ましい。
 前記端子を有するプラスチック基板の材質、構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、端子を有するリジット基板、端子を有するフレキシブル基板などが挙げられる。
 前記ICとしては、例えば、フラットパネルディスプレイ(FPD)における液晶画面制御用ICチップなどが挙げられる。
 前記第1の回路部材、及び前記第2の回路部材の形状、大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記第1の回路部材、及び前記第2の回路部材は、同じ回路部材であってもよいし、異なる回路部材であってもよい。
(接続方法)
 本発明の接続方法は、第1の配置工程と、第2の配置工程と、光照射工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 前記接続方法は、第1の回路部材の端子と第2の回路部材の端子とを異方性導電接続させる方法である。
 前記第1の回路部材、及び前記第2の回路部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記第1の回路部材、及び前記第2の回路部材がそれぞれ挙げられるが、本発明の前記異方性導電フィルムを硬化させる365nmの光を透過する回路部材であることが好ましい。そのような回路部材としては、例えば、ITOガラス基板などが挙げられる。
<第1の配置工程>
 前記第1の配置工程としては、前記第1の回路部材の端子上に本発明の前記異方性導電フィルムを配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<第2の配置工程>
 前記第2の配置工程としては、前記異方性導電フィルム上に前記第2の回路部材を、前記第2の回路部材の端子が前記異方性導電フィルムと接するように配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<光照射工程>
 前記光照射工程としては、前記異方性導電フィルムに365nmの光を照射する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記光の照射は、前記異方性導電フィルムに対して、前記第1の回路部材の側から行ってもよいし、前記第2の回路部材の側から行ってもよい。即ち、前記異方性導電フィルムへの前記光の照射は、前記第1の回路部材越しに行ってもよいし、前記第2の回路部材越しに行ってもよい。
 前記光の照射源(光照射源)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、LEDランプなどが挙げられる。
 前記光照射工程の際には、前記異方性導電フィルムを加熱及び押圧する処理を併用することが好ましい。
 前記加熱及び押圧する処理は、前記光照射を行う前に開始し、前記光照射が終了するまで行うことが好ましい。
 前記加熱及び押圧する処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱押圧部材を用いて行うことができる。
 前記加熱押圧部材としては、例えば、加熱機構を有する押圧部材などが挙げられる。前記加熱機構を有する押圧部材としては、例えば、ヒートツールなどが挙げられる。
 前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、80℃~140℃が好ましい。
 前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1MPa~100MPaが好ましい。
 前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.5秒間~120秒間が挙げられる。
(接合体)
 本発明の接合体は、第1の回路部材と、第2の回路部材と、異方性導電フィルムの硬化物とを少なくとも有し、更に必要に応じて、その他の部材を有する。
 前記第1の回路部材、及び前記第2の回路部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記第1の回路部材、及び前記第2の回路部材がそれぞれ挙げられる。
 前記異方性導電フィルムは、本発明の前記異方性導電フィルムである。
 前記異方性導電フィルムの硬化物は、前記第1の回路部材と前記第2の回路部材との間に介在して前記第1の回路部材の端子と前記第2の回路部材の端子とを電気的に接続している。
 前記接合体は、例えば、本発明の前記接続方法により製造できる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
<異方性導電フィルムの作製>
 フェノキシ樹脂(品名:PKFE、巴工業株式会社製)47質量部、ウレタンアクリレート(品名:EBECRYL600、ダイセル・サイテック株式会社製)35質量部、アクリルモノマー(品名:A-DCP、新中村化学工業株式会社製)5質量部、シランカップリング剤(品名:KBM-503、信越化学工業株式会社製)2質量部、オキシムエステル型光重合開始剤(品名:イルガキュア OXE 01、BASF社製)3質量部、アントラセン0.5質量部、及び導電性粒子(品名:AUL704、積水化学工業株式会社製、平均粒子径4μm)6質量部を均一に混合した。混合後の配合物をシリコーン処理したPET(ポリエチレンテレフタレート)上に、乾燥後の平均厚みが14μmとなるようにバーコーターで塗布し、70℃で5分間乾燥し、導電性導電フィルムを作製した。
<接合体の製造>
 以下の方法により接合体を製造した。
 第1の回路部材として、所定の金属配線が形成されたガラス基板(厚み0.5mm、ITOの表面抵抗値は10Ω/□)を用いた。
 第2の回路部材として、ICチップ(外形1.8mm×20mm、厚み0.5mm、バンプ高さ15μm、バンプ外形85μm×30μm)を用いた。
 前記第1の回路部材上に、幅2.0mmにスリットした前記異方性導電フィルムを配置した。配置する際、80℃、1MPa、1秒間で貼り付けた。続いて、その異方性導電フィルム上に、前記第2の回路部材を前記異方性導電フィルムからはみ出さないように配置した。続いて、緩衝材(テフロン(登録商標)、厚み50μm)を介して、加熱ツール(幅6.0mm)により100℃、60MPa、5秒間にて圧着後、圧力を加えた状態で前記第1の回路部材側からLED-UV装置(ZUV-30H、オムロン株式会社製)にて、波長365nmの光を2秒間照射(照度600W/cm)し、接合体を得た。
<評価>
 作製した接合体について、以下の評価を行った。結果を表1に示す。
 蛍光灯曝露では、蛍光灯(FPL27EX-N、TWINBIRD社製、27W)の直下2mに異方性導電フィルムを置き、3時間放置した。
<<導通抵抗>>
 接合体の初期の導通抵抗値(Ω)を以下の方法で測定した。
 製造した上記接合体について、デジタルマルチメーター(品番:デジタルマルチメータ7555、横河電機株式会社製)を用いて30chの端子間の抵抗値(Ω)を測定した。
 具体的には、4端子法にて電流1mAを流したときの抵抗値を、中央値及び端部のそれぞれについて10箇所測定し、それらの平均値を測定値とした。
<<反応率>>
 赤外分光装置(フーリエ変換型赤外分光(FT-IR))を用いて、接続前後のビニル基(重合性基)を測定し、その変化から反応率を測定した。
 具体的には、異方性導電フィルム作製直後にIR分析を行い、1,640cm-1の吸収を基準として、蛍光灯曝露をしない条件における接続後の「開口部」および「遮光部(金属配線部)」それぞれの反応率、蛍光灯曝露後の接続前の反応率、蛍光灯曝露をした条件での接続後の「開口部」および「遮光部(金属配線部)」それぞれの反応率を測定した。
(実施例2から3、比較例1から4)
<異方性導電フィルムの作製>
 実施例1において、アントラセンを、下記表1に示すように、添加しない、もしくは別の化合物に変えた以外は、実施例1と同様にして、異方性導電フィルムを得た。
 実施例1と同様にして、評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 実施例1~3では、蛍光灯曝露がある場合、及びない場合のいずれにおいても、導通抵抗に優れる結果が得られた。また、接続後の反応率は開口部において高いだけでなく、遮光部においても高く、接着強度に優れていた。
 中でも添加剤として、フェニル基を有するアントラセンを含有した実施例2及び3は、特に優れた接着強度を示していた。
 比較例1は、蛍光灯曝露ありの場合、導通抵抗が不十分であった。
 比較例2~4では、遮光部における硬化が不十分で、接着強度が不十分であった。
 本発明の異方性導電フィルムは、発光波長が365nmであるLEDを用いた光照射に対して利用でき、かつ室内照明に曝露されても十分な接続性が得られ、さらに金属配線部における遮光部においても十分な硬化反応が進行することにより、より優れた接着強度を発現することから、波長365nmのLEDランプを用いた回路部材の接続に好適に用いることができる。

Claims (7)

  1.  第1の回路部材の端子と第2の回路部材の端子とを異方性導電接続させる異方性導電フィルムであって、
     膜形成樹脂と、ラジカル重合性化合物と、オキシムエステル型光重合開始剤と、導電性粒子と、アントラセン骨格を有する化合物とを含有することを特徴とする異方性導電フィルム。
  2.  前記アントラセン骨格を有する化合物が、置換基としてフェニル基を有する請求項1に記載の異方性導電性フィルム。
  3.  前記アントラセン骨格を有する化合物が、モノフェニルアントラセンである請求項2に記載の異方性導電性フィルム。
  4.  前記オキシムエステル型光重合開始剤が、下記一般式(1)で表される化合物である請求項1から3のいずれかに記載の異方性導電フィルム。
    Figure JPOXMLDOC01-appb-C000001
     ただし、前記一般式(1)中、Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、炭素数3~20の複素環基、炭素数2~20のアシル基、及び結合手(前記結合手は、隣接するベンゼン環の炭素原子の1つと結合し、-X-と一緒になって環構造を形成する結合手である。)のいずれかを表す。Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、炭素数3~20の複素環基、及び炭素数2~20のアシル基のいずれかを表す。aは、0~4の整数を表す。bは、0~5の整数を表す。Xは、酸素原子、硫黄原子、及びNR(Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数3~20の複素環基のいずれかを表す。)のいずれかを表す。Yは、単結合、及びカルボニル基のいずれかを表す。
  5.  前記オキシムエステル型光重合開始剤が、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、及びエタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)の少なくともいずれかである請求項4に記載の異方性導電フィルム。
  6.  第1の回路部材の端子と第2の回路部材の端子とを異方性導電接続させる接続方法であって、
     前記第1の回路部材の端子上に請求項1から5のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
     前記異方性導電フィルム上に前記第2の回路部材を、前記第2の回路部材の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
     前記異方性導電フィルムに365nmの光を照射する光照射工程とを含むことを特徴とする接続方法。
  7.  端子を有する第1の回路部材と、端子を有する第2の回路部材と、前記第1の回路部材と前記第2の回路部材との間に介在して前記第1の回路部材の端子と前記第2の回路部材の端子とを電気的に接続する異方性導電フィルムの硬化物とを有し、
     前記異方性導電フィルムが、請求項1から5のいずれかに記載の異方性導電フィルムであることを特徴とする接合体。
PCT/JP2017/001119 2016-01-29 2017-01-13 異方性導電フィルム、接続方法、及び接合体 WO2017130754A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187019677A KR20180091084A (ko) 2016-01-29 2017-01-13 이방성 도전 필름, 접속 방법, 및 접합체
CN201780006103.0A CN108603080A (zh) 2016-01-29 2017-01-13 各向异性导电膜、连接方法以及接合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016023A JP2017135065A (ja) 2016-01-29 2016-01-29 異方性導電フィルム、接続方法、及び接合体
JP2016-016023 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130754A1 true WO2017130754A1 (ja) 2017-08-03

Family

ID=59397922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001119 WO2017130754A1 (ja) 2016-01-29 2017-01-13 異方性導電フィルム、接続方法、及び接合体

Country Status (4)

Country Link
JP (1) JP2017135065A (ja)
KR (1) KR20180091084A (ja)
CN (1) CN108603080A (ja)
WO (1) WO2017130754A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050005A1 (ja) * 2017-09-11 2019-03-14 日立化成株式会社 接着剤フィルム収容セット及びその製造方法
KR20210141953A (ko) * 2019-03-13 2021-11-23 쇼와덴코머티리얼즈가부시끼가이샤 회로 접속용 접착제 필름 및 그 제조 방법, 회로 접속 구조체의 제조 방법, 및, 접착제 필름 수용 세트

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109303A1 (ja) * 2013-01-11 2014-07-17 川崎化成工業株式会社 アントラセン化合物及びその光重合増感剤としての用途
JP2014210878A (ja) * 2013-04-19 2014-11-13 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
JP2015167187A (ja) * 2014-03-04 2015-09-24 日立化成株式会社 電子部品の製造方法及び電子部品の中間体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967276B2 (ja) 2005-08-09 2012-07-04 日立化成工業株式会社 回路接続材料並びに回路端子の接続構造体及び接続方法
JP5953319B2 (ja) * 2012-01-13 2016-07-20 日本化薬株式会社 光学部材及びその製造に用いる紫外線硬化型接着剤
JP6260851B2 (ja) * 2013-09-19 2018-01-17 川崎化成工業株式会社 ラジカル重合増感剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109303A1 (ja) * 2013-01-11 2014-07-17 川崎化成工業株式会社 アントラセン化合物及びその光重合増感剤としての用途
JP2014210878A (ja) * 2013-04-19 2014-11-13 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
JP2015167187A (ja) * 2014-03-04 2015-09-24 日立化成株式会社 電子部品の製造方法及び電子部品の中間体

Also Published As

Publication number Publication date
KR20180091084A (ko) 2018-08-14
JP2017135065A (ja) 2017-08-03
CN108603080A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6185742B2 (ja) 異方性導電フィルム、接続方法、及び接合体
CN1926675B (zh) 各向异性导电连接方法及各向异性导电粘合膜
WO2012137754A1 (ja) 異方性導電フィルム、接合体の製造方法、及び接合体
KR101517323B1 (ko) 접속 방법, 접속체의 제조 방법, 접속체
WO2015137008A1 (ja) 異方性導電接着剤、接続体の製造方法及び電子部品の接続方法
WO2017130754A1 (ja) 異方性導電フィルム、接続方法、及び接合体
JP2001126541A (ja) 異方導電フィルム及び電気・電子部品
WO2018180685A1 (ja) 異方性導電接着剤及び接続体の製造方法
JP2017097974A (ja) 異方性導電フィルム、電子部品の接続方法、及び接続構造体の製造方法
JP5956362B2 (ja) 異方性導電フィルム、接続方法、及び接合体
CN109957349B (zh) 各向异性导电膜、用于形成其的组合物及其应用
CN109957350B (zh) 各向异性导电膜、用于形成其的组合物及其应用
JP2000044905A (ja) 異方導電性接着剤及びそれを用いた電子機器
JP2019077756A (ja) 接着剤組成物、フィルム状接着剤、接続構造体及びその製造方法
CN105940559B (zh) 各向异性导电膜及其制造方法
JP2018168345A (ja) 異方性導電接着剤
JP6456170B2 (ja) 接続方法、及び接合体
CN109957351B (zh) 各向异性导电膜、用于形成其的组合物及其应用
JP2016072239A (ja) 異方性導電フィルム、及び接続方法
JP6783537B2 (ja) 接続体の製造方法
JP7234032B2 (ja) 接着フィルムの製造方法、接着フィルム、及び接続体の製造方法
JP6370562B2 (ja) 接続体の製造方法、フレキシブル基板の接続方法、接続体及びフレキシブル基板
JP2018119103A (ja) 接着剤組成物、フィルム状接着剤、接続構造体及びその製造方法
JP2001323233A (ja) 異方導電性接着剤
JP6517130B2 (ja) リペア方法、及び接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187019677

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019677

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743985

Country of ref document: EP

Kind code of ref document: A1