WO2017130354A1 - 固体電解質、及び全固体電池 - Google Patents

固体電解質、及び全固体電池 Download PDF

Info

Publication number
WO2017130354A1
WO2017130354A1 PCT/JP2016/052515 JP2016052515W WO2017130354A1 WO 2017130354 A1 WO2017130354 A1 WO 2017130354A1 JP 2016052515 W JP2016052515 W JP 2016052515W WO 2017130354 A1 WO2017130354 A1 WO 2017130354A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
solid electrolyte
active material
electrolyte
electrode active
Prior art date
Application number
PCT/JP2016/052515
Other languages
English (en)
French (fr)
Inventor
健司 本間
渡邉 悟
山本 保
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/052515 priority Critical patent/WO2017130354A1/ja
Priority to JP2017563476A priority patent/JP6730634B2/ja
Publication of WO2017130354A1 publication Critical patent/WO2017130354A1/ja
Priority to US16/045,074 priority patent/US10854913B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte and an all-solid battery.
  • Energy harvesting technology that stores electricity generated from minute energy such as solar energy, vibration energy, human and animal body temperature, and uses it for sensors, wireless transmission power, etc. is safe and reliable in all global environments A secondary battery is required.
  • the liquid battery has many disadvantages in shape processing, such as securing a thickness for inserting a separator that separates the positive electrode and the negative electrode, even in downsizing.
  • all-solid-state batteries in which the constituent materials are all solid have attracted attention (for example, see Patent Document 1).
  • the all-solid-state battery is advantageous in that it has no fear of liquid leakage or ignition, has excellent cycle characteristics, and has a high degree of freedom in shape.
  • a green sheet method is known as an inexpensive method for producing an all-solid battery.
  • This method is a method in which a powdered positive electrode, a powdered negative electrode, and a powdered solid electrolyte are laminated in layers, and then heat-molded and processed into a single sheet.
  • This method requires a sintering step of 1,000 ° C. or higher in order to reduce the grain boundary resistance between the solid electrolytes to 1 ⁇ 10 ⁇ 5 S / cm or lower.
  • the sintering is performed at 1,000 ° C., there is a problem that the positive electrode material and the negative electrode material are decomposed and cannot operate as a battery.
  • An object of the present invention is to provide a solid electrolyte from which a low-resistance layered material can be obtained by processing at a low temperature, and an all-solid battery using the solid electrolyte.
  • the solid electrolyte is Containing electrolyte particles,
  • the electrolyte particles have at least one of an O—S—O structure and an O—S—OH structure.
  • the all-solid battery is A positive electrode active material-containing layer, a negative electrode active material-containing layer, and a solid electrolyte layer interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer,
  • the solid electrolyte layer is a layer composed of the solid electrolyte.
  • FIG. 1 is an example of an FT-IR spectrum showing absorption of an O—S—O structure and an O—S—OH structure.
  • FIG. 2 is an example of an FT-IR spectrum from 3,000 cm ⁇ 1 to 4,000 cm ⁇ 1 for the O—S—O structure and the O—S—OH structure.
  • FIG. 3 is a graph showing the relationship between the storage humidity environment and ionic conductivity.
  • FIG. 4 is an example of a TG-DTA-MS analysis result of the solid electrolyte.
  • FIG. 5 is a schematic cross-sectional view of an example of an all solid state battery.
  • FIG. 6 is an FT-IR spectrum of LLTOHS before and after the oxidation treatment.
  • FIG. 7 is a diagram showing an example of the discharge capacity during 2.5V charging.
  • FIG. 8 is a diagram showing an example of the discharge capacity at the time of 2.2V charge.
  • FIG. 9 is a discharge curve of Example 1.
  • FIG. 10 is a discharge curve of Comparative Example
  • the disclosed solid electrolyte contains electrolyte particles.
  • the electrolyte particles have at least one of an O—S—O structure and an O—S—OH structure.
  • the solid electrolyte has at least one of the O—S—O structure and the O—S—OH structure
  • the low-resistance layered structure does not require high-temperature heating when the solid electrolyte is processed into a layered structure. You can get things. The reason for this has not been clearly clarified, but the presence of the O—S—O structure and the O—S—OH structure imparts an appropriate amount of water component to the surface of the electrolyte particles, so that the ion conduction path is reduced. It is thought to be built.
  • the electrolyte particle contains a transition metal of the fourth period of the periodic table or the fifth period of the periodic table, and S in at least one of the O—S—O structure and the O—S—OH structure is bonded to the transition metal. It is preferable.
  • the transition metal is Ti, V, Cr, Mn, Fe, Co, from the point that it is a central metal that can constitute oxygen (O) and sulfur (S) and a hexacoordinate octahedral molecule in the crystal structure. It is preferably at least one of Ni, Cu, Zn, Zr, and Nb, and Ti is more preferable.
  • the electrolyte particles preferably include base particles and at least one of the O—S—O structure and the O—S—OH structure.
  • the base particle is not particularly limited as long as it is a material known as a solid electrolyte material, and can be appropriately selected according to the purpose.
  • a material known as a solid electrolyte material for example, an oxide-based solid electrolyte, a sulfide-based solid electrolyte, etc. Is mentioned.
  • LiAON A is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • Li 0.33 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 , and LiNbO 3 are preferable because oxygen defects are easily introduced and replacement of the deficient oxygen and sulfur is easy.
  • the size and shape of the substrate particles are not particularly limited and can be appropriately selected depending on the purpose.
  • the electrolyte particles have at least one of the O—S—O structure and the O—S—OH structure can be confirmed by, for example, FT-IR (Fourier Transform Infrared Spectroscopy) spectroscopy.
  • FT-IR Fastier Transform Infrared Spectroscopy
  • FIG. 1 absorption based on the stretching vibration of O—S—O can be confirmed at 1,000 cm ⁇ 1 to 1,050 cm ⁇ 1 and 1,100 cm ⁇ 1 to 1,150 cm ⁇ 1 .
  • These absorptions confirm the presence of the O—S—O structure and the O—S—OH structure.
  • the O—S—O structure and the O—S—OH structure are different from the sulfonic acid group (—SO 3 H).
  • O—S—O structure differs from the distinction between the O—S—O structure and the O—S—OH structure.
  • FIG. 2 that has an absorption based on OH near 3600 cm -1, an O-S-OH structure, that no absorption based on OH near 3600 cm -1, O-S -O structure.
  • the solid electrolyte preferably has a water component. By doing so, a favorable ion conduction path can be constructed.
  • the water component is preferably present on the surface of the electrolyte particles.
  • the water component includes not only H 2 O but also OH ⁇ and H + .
  • the state of the water component in the solid electrolyte is not particularly limited and can be appropriately selected depending on the purpose. For example, it may be a cluster or H 3 O + (oxonium ion).
  • TG-DTA-MS Thermo Gravimetric Differential Thermal Analysis-Mass Spectrometer analysis described later can be cited. In this case, the water component is detected as H 2 O.
  • the solid electrolyte preferably has 0.8% by mass to 2.4% by mass of water component, and 1.4% by mass to 2.4% by mass of water component from the viewpoint of excellent ion conductivity. More preferably.
  • the reason is as follows.
  • the present inventors investigated the relationship between the content of the water component in the solid electrolyte and the ionic conductivity.
  • the solid electrolyte was stored for 12 hours in a predetermined humidity and 25 ° C. environment. Thereafter, the relationship between the storage humidity environment and the ionic conductivity of the solid electrolyte was examined.
  • the storage humidity environment was a glow box (GB), a dry room, and a relative humidity of 40%, 50%, 60%, 70%, 80%, and 90%.
  • the results are shown in FIG. From FIG. 3, it can be confirmed that the ionic conductivity is improved at a relative humidity of 40% or more, although it has only ionic conductivity corresponding to the original grain boundary resistance in the humidity environment below the dry room.
  • the relative humidity is 60% or more, an ionic conductivity of 10 ⁇ 4 S / cm or more is obtained.
  • TG analysis was performed on the solid electrolytes of the storage humidity environment 40% and 60%, respectively.
  • the desorption amount of the water component (that is, the content of the water component in the solid electrolyte) was measured by flowing dry argon at 25 ° C. at which SO 2 desorption did not occur. The measurement was performed for 60 minutes.
  • the weight loss curve was close to saturation after 10 minutes and fully saturated after 20 minutes. Therefore, from the weight reduction after 20 minutes, it was confirmed that the content of the water component of the solid electrolyte in the storage humidity environment 40% was 0.8% by mass. Further, from the weight reduction after 20 minutes, it was confirmed that the content of the water component of the solid electrolyte in the storage humidity environment 60% was 1.4% by mass. Further, the content of the water component of the solid electrolyte in a storage humidity environment of 90% is calculated to be 2.4% by mass from these results and the curve of FIG.
  • the solid electrolyte preferably has a water component of 0.8% by mass to 2.4% by mass, and 1.4% by mass to 2.4% by mass from the viewpoint of excellent ion conductivity. % Water component is more preferable.
  • the structure of the solid electrolyte is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include granular and layered forms. That is, the solid electrolyte may be a powder obtained by collecting the electrolyte particles, or may be a layered product obtained by processing the electrolyte particles into a layer.
  • the method for producing the solid electrolyte is not particularly limited and may be appropriately selected depending on the purpose.
  • the solid electrolyte includes a sulfidation treatment and a surface stabilization treatment, and further includes a reduction treatment or the like as necessary. Including processing.
  • the sulfurization treatment is not particularly limited as long as it is a treatment that causes the base particles to react with sulfur and imparts S to the surface of the base particles, and can be appropriately selected according to the purpose. Examples include a method of mixing material particles and sulfur and heating them under vacuum. By doing so, for example, a structure in which S is bonded to the transition metal (Ti) on the surface of the base particle as represented by the following partial structural formula is obtained.
  • the ratio of the base particles and the sulfur in the mixing is not particularly limited and can be appropriately selected depending on the purpose.
  • the mass ratio (base particles: sulfur) is 1.0 to 0. .05-1.0: 0.5 and the like.
  • the surface stabilization treatment is not particularly limited as long as it is a treatment that exposes the substrate particles with S added to the surface in the presence of moisture after the sulfurization treatment and oxidizes S, depending on the purpose. For example, there may be mentioned a method of exposing the substrate particles having S added to the surface to a high humidity atmosphere.
  • oxidizing S by the surface stabilization treatment for example, S bonded to the transition metal (Ti) on the surface of the base particle is oxidized, and the O—S is represented by the following partial structural formula. A —O structure or an O—S—OH structure is obtained.
  • electrolyte particles having at least one of the O—S—O structure and the O—S—OH structure on the surface can be obtained.
  • the surface stabilization treatment since H 2 O is used during the oxidation of S, a water component is present on the surface of the electrolyte particles after the surface stabilization treatment.
  • the reduction treatment is a pretreatment for the sulfurization treatment and is not particularly limited as long as it is a treatment that reduces the surface of the substrate particles, and can be appropriately selected according to the purpose. For example, in a hydrogen atmosphere The method of heating is mentioned. Depending on the storage state, the surface of the substrate particles may be oxidized. Therefore, by performing the reduction treatment, it is possible to reduce the surface of the base particle and facilitate the subsequent sulfurization treatment.
  • the disclosed all solid state battery has at least a positive electrode active material-containing layer, a negative electrode active material-containing layer, and a solid electrolyte layer interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer, and further necessary Depending on the case, it has other members.
  • the positive electrode active material-containing layer is not particularly limited as long as it is a layer containing a positive electrode active material, and can be appropriately selected depending on the purpose.
  • the positive electrode active material-containing layer may be the positive electrode active material itself or a mixture of the positive electrode active material and the solid electrolyte.
  • the positive electrode active material-containing layer is a layer made of a mixture of the positive electrode active material and the solid electrolyte, as a ratio of the positive electrode active material and the solid electrolyte in the positive electrode active material-containing layer, There is no particular limitation, and it can be appropriately selected according to the purpose.
  • the mass ratio (positive electrode active material: solid electrolyte) is preferably 1.0: 0.1 to 1.0: 2.0, 1.0 : 0.3 to 1.0: 1.5 is more preferable, and 1.0: 0.5 to 1.0: 1.0 is particularly preferable.
  • the lithium-containing composite oxide is not particularly limited as long as it is a composite oxide containing lithium and another metal, and can be appropriately selected according to the purpose.
  • the average thickness of the positive electrode active material-containing layer is not particularly limited, but may be appropriately selected from the range of, for example, about 0.1 mm to 1.0 mm according to the target battery capacity and the battery shape. Can do.
  • the solid electrolyte layer is composed of the disclosed solid electrolyte.
  • the average thickness of the solid electrolyte layer is not particularly limited and may be appropriately selected depending on the purpose so that the positive electrode and the negative electrode are not short-circuited, but is preferably 0.05 mm to 3.0 mm, preferably 0.1 mm to 2.0 mm is more preferable, and 0.5 mm to 1.5 mm is particularly preferable.
  • the negative electrode active material-containing layer is not particularly limited as long as it is a layer containing a negative electrode active material, and can be appropriately selected according to the purpose.
  • the negative electrode active material-containing layer may be the negative electrode active material itself or a mixture of the negative electrode active material and the solid electrolyte.
  • the negative electrode active material-containing layer is a layer composed of a mixture of the negative electrode active material and the solid electrolyte, as a ratio of the negative electrode active material and the solid electrolyte in the negative electrode active material-containing layer, There is no particular limitation and can be appropriately selected according to the purpose.
  • the mass ratio (negative electrode active material: solid electrolyte) is preferably 1.0: 0.1 to 1.0: 2.0, 1.0 : 0.3 to 1.0: 1.5 is more preferable, and 1.0: 0.5 to 1.0: 1.0 is particularly preferable.
  • the negative electrode active material is not particularly limited and may be appropriately selected depending on the purpose, for example, lithium, lithium alloy, Li 4 Ti 5 O 12, LiVO 3, amorphous carbon, natural graphite, artificial graphite , TiS 2 , TiO 2 , CoO 2 and the like.
  • the average thickness of the negative electrode active material-containing layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.05 mm to 3.0 mm, more preferably 0.1 mm to 2.0 mm, 0.5 mm to 1.5 mm is particularly preferable.
  • Positive electrode current collector There is no restriction
  • the material of the positive electrode current collector include die steel, stainless steel, aluminum, aluminum alloy, titanium alloy, copper, and nickel.
  • Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, and a mesh shape.
  • Negative electrode current collector >> There is no restriction
  • the material of the negative electrode current collector include die steel, gold, indium, nickel, copper, and stainless steel.
  • the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh shape.
  • the well-known laminate film etc. which can be used with the conventional all-solid-state battery are mentioned.
  • the laminate film include a resin laminate film, a film obtained by vapor-depositing a metal on a resin laminate film, and the like.
  • the shape of the all-solid battery is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a cylindrical shape, a square shape, a button shape, a coin shape, and a flat shape.
  • the all-solid-state battery is a so-called thin-film all-solid battery in which the positive electrode active material-containing layer, the solid electrolyte layer, and the negative electrode active material-containing layer are stacked using a vapor phase method. It is preferable at an excellent point.
  • FIG. 5 is a schematic cross-sectional view of an example of the disclosed all solid state battery.
  • the positive electrode active material-containing layer 2, the solid electrolyte layer 3, the negative electrode active material-containing layer 4, and the negative electrode current collector 5 are laminated on the positive electrode current collector 1 in this order. .
  • the operation principle of the all-solid battery will be described using a lithium ion all-solid secondary battery as an example.
  • Li is ionized and escapes from the positive electrode active material-containing layer, moves through the solid electrolyte to the negative electrode active material-containing layer side, and is inserted into the negative electrode active material-containing layer.
  • Li ions inserted into the negative electrode active material-containing layer move in the solid electrolyte to the positive electrode active material-containing layer side and return to the positive electrode active material-containing layer.
  • charging and discharging are performed by movement of Li ions between the positive electrode and the negative electrode.
  • the method for producing the all-solid battery is not particularly limited and may be appropriately selected depending on the purpose.
  • a powder of a material constituting the positive electrode active material-containing layer a powdered solid electrolyte
  • the solid electrolyte it is not necessary to heat to a high temperature during the pressure molding, and an all-solid battery having excellent battery performance at a low temperature can be produced.
  • Examples of the pressure in the pressure molding include 127 kgf / cm 2 to 1,270 kgf / cm 2 . As temperature in the said pressure molding, normal temperature etc. are mentioned, for example.
  • Example 1 ⁇ Method for synthesizing solid electrolyte> ⁇ Reduction treatment >> LLTO particles (Li 0.33 La 0.55 TiO 3 , manufactured by Toyoshima Seisakusho Co., Ltd.) having an average particle diameter of 2 ⁇ m were pelletized by pressure molding. The obtained pellet was subjected to a reduction treatment for 30 minutes in a hydrogen atmosphere at 900 ° C. Let the green compact after reduction be LLTOH.
  • the obtained LLTOH was sealed under an N 2 atmosphere and moved into a glove box (GB) in an Ar atmosphere having a dew point of ⁇ 70 ° C.
  • the obtained LLTOH was mixed using an agate mortar at a mass ratio of sulfur (S) and 10: 1 (LLTOH: sulfur).
  • S sulfur
  • LLTOH sulfur
  • the obtained powder was pressure-pellet-molded and then put into a quartz jar.
  • the quartz soot was decompressed to 10 Pa and vacuum sealed with a gas burner.
  • the vacuum sealed quartz jar was fired at 200 ° C. for 2 hours.
  • the quartz jar was moved into GB and opened in GB to obtain sulfided LLTOHS.
  • the mixing operation and the charging operation to quartz were all performed in GB.
  • a green compact battery (all-solid-state battery) was manufactured using a PET tube equipped with an SKD11 jig having a diameter of 10 mm. Specifically, it was produced by the following method. LiCoO 2 (LCO) was used as the positive electrode active material, and TiS 2 was used as the negative electrode active material. LLTOHS after the oxidation treatment was used as the solid electrolyte. The production atmosphere was a positive electrode mixture and a negative electrode mixture in an atmosphere of 25 ° C. ⁇ 55% RH. A positive electrode mixture in which 6 mg of LCO and 4 mg of LLTOHS were mixed was used for the positive electrode.
  • LCO LiCoO 2
  • TiS 2 was used as the negative electrode active material
  • LLTOHS after the oxidation treatment was used as the solid electrolyte.
  • the production atmosphere was a positive electrode mixture and a negative electrode mixture in an atmosphere of 25 ° C. ⁇ 55% RH.
  • a negative electrode mixture in which 3 mg of TiS 2 and 2 mg of LLTOHS were mixed was used for the negative electrode.
  • As the solid electrolyte 70 mg of LLTOHS after oxidation treatment was used.
  • the positive electrode mixture (10 mg), the solid electrolyte (70 mg), and the negative electrode mixture (5 mg) were put in this order in a PET tube, and the SKD11 jig was pressed to perform pressure molding.
  • the pressure molding was performed at 25 ° C., pressure: 1,270 kgf / cm 2 , and pressure time: 30 seconds.
  • the measurement conditions for FT-IR are shown below.
  • Nicolet 8700 manufactured by Thermo Scientific was used. Unpolarized infrared light was irradiated at an incident angle of 80 ° of the reflection optical system. A glower lamp was used as the light source. A Michelson interferometer and a TGS (triglycine sulfate) detector were used. The measured interference pattern was Fourier transformed. The wave number resolution of the device is 4 cm ⁇ 1 . The number of integrations was 64.
  • FIG. 4 shows the TG-DTA-MS measurement results of LLTOHS after the oxidation treatment.
  • a weight change of 1.8 mass% due to the volatilization of water was observed from room temperature to around 100 ° C., SO 2 gas was detected around 100 ° C., and the O—S—O structure of the surface constituting the high ion conductive layer was It can be confirmed that they are detached. It is considered that a high ionic conduction state controlled by a charging voltage of 2.2 V exists between room temperature and 100 ° C. until the start of desorption of the O—S—O structure, but the solid electrolyte before reaching 100 ° C. Even when the ionic conductivity is measured, the ionic conductivity is only as low as 10 ⁇ 8 S / cm.
  • FIG. 7 shows the maximum discharge capacity when the charging voltage reaches 2.5 V in the all solid state battery.
  • the numerical value given to each plot is the end voltage when the constant current charge with a current density of 0.31 mA / cm 2 is cut off after 1 hour. Until the voltage reaches 2.2 V, most of the charging current is used for the decomposition of surplus adsorbed water, so charging is not performed. As a result, the Coulomb efficiency (discharge / charge ⁇ 100 [%]) is low. Thereafter, when the charging voltage is increased to 2.5 V, the base solid electrolyte begins to be decomposed, the internal resistance increases, charging becomes impossible, and the coulomb efficiency decreases.
  • FIG. 8 shows the maximum discharge capacity when the charging voltage reaches 2.2 V in the all solid state battery.
  • the numerical value attached to each plot is the end voltage when the constant current charge with a current density of 0.31 mA / cm 2 is cut off after 1 hour. Until the voltage reaches 2.2 V, most of the charging current is used for the decomposition of surplus adsorbed water, so charging is not performed. As a result, the Coulomb efficiency (discharge / charge ⁇ 100 [%]) is low. Thereafter, when the charging voltage is continuously controlled to 2.2 V, the solid electrolyte is not decomposed, only excess H 2 O is decomposed, and the coulomb is improved. That is, by setting the battery voltage (charging voltage) to 2.2 V, only excess H 2 O adsorbed on the solid electrolyte is decomposed, and the coulomb efficiency of the battery can be improved.
  • Discharge curve of all solid state battery >> The discharge curve of the all solid state battery was obtained. The results are shown in FIG. The charging was performed at a constant current of 0.31 mA / cm 2 with 2.2 V as the upper limit voltage. Discharging conditions were carried out at a constant current of 0.31 mA / cm 2 with 0.5 V as the lower limit voltage. The discharge curve showed an average potential of 1.5 V and a discharge capacity of 20% with respect to the LCO theoretical capacity.
  • Example 1 An all solid state battery was produced in the same manner as in Example 1 except that ⁇ Sulfurization Treatment >> was not performed in Example 1. By not performing the sulfidation treatment, sulfur (S) does not exist on the surface of the LLTO particles. About the obtained all-solid-state battery, it carried out similarly to Example 1, and calculated
  • Example 2 An all solid state battery was produced in the same manner as in Example 1 except that ⁇ surface stabilization treatment >> was not performed. By not performing the surface stabilization treatment, sulfur (S) is present on the surface of the LLTO particle, but no O—S—O structure or O—S—OH structure is present. About the obtained all-solid-state battery, it carried out similarly to Example 1, and calculated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電解質粒子を含有し、前記電解質粒子が、O-S-O構造及びO-S-OH構造の少なくともいずれかを有する固体電解質である。

Description

固体電解質、及び全固体電池
 本発明は、固体電解質、及び全固体電池に関する。
 太陽光エネルギー、振動エネルギー、人及び動物の体温などの微小なエネルギーから発電した電気を蓄え、センサー、無線発信電力などに利用する環境発電技術には、あらゆる地球環境下において安全で信頼性の高い二次電池が必要である。
 現在、広く利用されている有機溶媒溶液を用いた液系電池では、サイクルを重ねると正極活物質が劣化し、電池容量低下が起こることが懸念される。また、前記液系電池では、デンドライト形成による電池短絡によって電池内の有機電解液に引火し、発火することが懸念される。また、前記液系電池では、小型化においても、正極と負極を隔てるセパレータ挿入のための厚みの確保など、形状加工等において不利な点が多い。
 そこで、近年、構成材料をすべて固体にした全固体電池が注目されている(例えば、特許文献1参照)。全固体電池は液漏れや発火などの恐れもなくサイクル特性も優れ、形状の自由度が高いことが利点である。
 全固体電池の安価な作製方法として、グリーンシート法が知られている。この方法は、粉体の正極、粉体の負極、及び粉体の固体電解質を層状に積層した後に、加熱成型し、一枚のシート状に加工する方法である。この工法では固体電解質間の粒界抵抗を1×10-5S/cm以下に低減する為に、1,000℃以上の焼結工程が必要である。しかし、1,000℃の焼結を行うと正極材料及び負極材料が分解してしまい電池として動作しなくなるという問題がある。
 したがって、低温での加工で低抵抗の層状物が得られる固体電解質が求められているのが現状である。
特開2010-33876号公報
 本発明は、低温での加工で低抵抗の層状物が得られる固体電解質、及び前記固体電解質を用いた全固体電池を提供することを目的とする。
 前記課題を解決するための手段としては、以下のとおりである。即ち、
 1つの態様では、固体電解質は、
 電解質粒子を含有し、
 前記電解質粒子が、O-S-O構造及びO-S-OH構造の少なくともいずれかを有する。
 また、1つの態様では、全固体電池は、
 正極活物質含有層と、負極活物質含有層と、前記正極活物質含有層及び前記負極活物質含有層の間に介在する固体電解質層とを有し、
 前記固体電解質層が、前記固体電解質で構成される層である。
 1つの側面として、低温での加工で低抵抗の層状物が得られる固体電解質を提供できる。
 また、1つの側面として、低温で作製できる全固体電池を提供できる。
図1は、O-S-O構造及びO-S-OH構造の吸収を示すFT-IRのスペクトルの一例である。 図2は、O-S-O構造及びO-S-OH構造に関する3,000cm-1~4,000cm-1のFT-IRスペクトルの一例である。 図3は、保存湿度環境と、イオン伝導率との関係を示すグラフである。 図4は、固体電解質のTG-DTA-MS分析結果の一例である。 図5は、全固体電池の一例の概略断面図である。 図6は、酸化処理前後のLLTOHSのFT-IRスペクトルである。 図7は、2.5V充電時の放電容量を示す一例の図である。 図8は、2.2V充電時の放電容量を示す一例の図である。 図9は、実施例1の放電曲線である。 図10は、比較例1の放電曲線である。 図11は、比較例2の放電曲線である。
(固体電解質)
 開示の固体電解質は、電解質粒子を含有する。
 前記電解質粒子は、O-S-O構造及びO-S-OH構造の少なくともいずれかを有する。
 前記固体電解質において、O-S-O構造及びO-S-OH構造の少なくともいずれかを有すると、前記固体電解質を層状に加工する際に、高温の加熱を要さずに、低抵抗な層状物を得ることができる。この理由は明確には解明できていないが、O-S-O構造及びO-S-OH構造の存在により、前記電解質粒子の表面に水成分が適度に付与されることにより、イオン伝導経路が構築されるためと考えられる。
 前記電解質粒子は、周期表第4周期又は周期表第5周期の遷移金属を含有し、前記O-S-O構造及びO-S-OH構造の少なくともいずれかにおけるSが、前記遷移金属と結合していることが好ましい。
 前記遷移金属としては、結晶構造内で酸素(O)及び硫黄(S)と6配位の八面体分子が構成可能な中心金属である点から、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、及びNbの少なくともいずれかであることが好ましく、Tiがより好ましい。
 前記電解質粒子は、基材粒子と、前記O-S-O構造及びO-S-OH構造の少なくともいずれかと、を有することが好ましい。
<基材粒子>
 前記基材粒子としては、固体電解質材料として知られている材料であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化物系固体電解質、硫化物系固体電解質などが挙げられる。
 前記酸化物系固体電解質としては、例えば、以下の材料などが挙げられる。
 ・LiLaTiO
   x=0.3~0.7、y=0.3~0.7
 ・LiLaZr12
 ・LiLaTa12
 ・Li3.5Zn0.25GeO
 ・LiTi12
 ・Li1+x+y(Al,Ga)(Ti,Ge)2-xSi3-y12
   0≦x≦1、0≦y≦1
 ・LiNbO
 ・LiPO
 ・LiPON
 ・LiPOD
   Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、及びAuから選ばれた少なくとも1種
 ・LiAON
   Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種
 これらの中でも、酸素欠陥が導入され易く、欠損した酸素と硫黄の置換が容易な点から、Li0.33La0.55TiO、LiLaZr12、及びLiNbOが好ましい。
 前記基材粒子の大きさ、形状としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記電解質粒子が、前記O-S-O構造及びO-S-OH構造の少なくともいずれかを有することは、例えば、FT-IR(Fourier Transform Infrared Spectroscopy:フーリエ変換赤外)分光法により確認できる。
 例えば、図1に示すように、1,000cm-1~1,050cm-1及び1,100cm-1~1,150cm-1に、O-S-Oの伸縮振動に基づく吸収が確認できる。これらの吸収により、O-S-O構造及びO-S-OH構造の存在が確認できる。
 なお、ここで、O-S-O構造及びO-S-OH構造は、スルホン酸基(-SOH)とは異なる。
 また、O-S-O構造及びO-S-OH構造の区別は、FT-IR分光法により確認できる。
 例えば、図2に示すように、3600cm-1付近にOHに基づく吸収を有するのが、O-S-OH構造であり、3600cm-1付近にOHに基づく吸収を持たないのが、O-S-O構造である。
<水成分>
 前記固体電解質においては、水成分を有することが好ましい。そうすることにより、良好なイオン伝導経路を構築できる。前記水成分は、前記電解質粒子の表面に有することが好ましい。
 ここで、前記水成分とは、HOのみならず、OH、Hをも含む。また、前記固体電解質における前記水成分の状態は、特に制限はなく、目的に応じて適宜選択することができ、例えば、クラスターやH(オキソニウムイオン)であってよい。
 前記電解質粒子の表面に前記水成分がどのような構造、及び状態で存在しているかを直接確認する分析方法は知られていない。間接的に確認する方法としては、例えば、後述するTG-DTA-MS(ThermoGravimetric Differential Thermal Analysis - Mass Spectrometer)分析が挙げられるが、その場合、前記水成分は、HOとして検出される。
 前記固体電解質においては、優れたイオン伝導性の点から、0.8質量%~2.4質量%の水成分を有することが好ましく、1.4質量%~2.4質量%の水成分を有することがより好ましい。理由は以下のとおりである。
 本発明者らは、前記固体電解質における水成分の含有量と、イオン伝導率との関係とを調べた。
 まず、前記固体電解質を、所定の湿度及び25℃環境下に、12時間保存した。その後、保存湿度環境と、前記固体電解質のイオン伝導率との関係を調べた。保存湿度環境は、グローボックス(GB)、ドライルーム、相対湿度40%、50%、60%、70%、80%、90%とした。結果を図3に示す。
 図3より、ドライルーム以下の湿度環境では、本来の粒界抵抗に相当するイオン伝導率しか有さないが、相対湿度40%以上では、イオン伝導率が向上していることが確認できる。更に相対湿度60%以上では、10-4S/cm以上のイオン伝導率が得られている。
 次に、前記固体電解質についてTG-DTA-MS分析を行うと、図4のような結果が得られた。この分析では、固体電解質の重量減少と、前記固体電解質からの水成分の脱離及びSOの脱離が確認できる。更に、水成分は、低温でも脱離し、SOは、100℃以上で脱離していることが確認できる。即ち、固体電解質の水成分量は、低温でのTG分析により確認できることがわかる。
 そこで、保存湿度環境40%、60%それぞれの固体電解質について、TG分析を行った。ここでは、SOの脱離が生じない25℃で乾燥アルゴンをフローすることで、水成分の脱離量(即ち前記固体電解質における水成分の含有量)を測定した。測定は、60分間行った。重量減少曲線は、10分後には、飽和状態に近くなり、20分後には、完全に飽和した。
 そのため、20分後の重量減少から、保存湿度環境40%の固体電解質の水成分の含有量が、0.8質量%であることが確認できた。
 また、20分後の重量減少から、保存湿度環境60%の固体電解質の水成分の含有量が、1.4質量%であることが確認できた。
 また、保存湿度環境90%の固体電解質の水成分の含有量は、これらの結果と、図3の曲線とから、2.4質量%であると計算される。
 以上の結果から、前記固体電解質においては、優れたイオン伝導性の点から、0.8質量%~2.4質量%の水成分を有することが好ましく、1.4質量%~2.4質量%の水成分を有することがより好ましいことが導かれる。
 前記固体電解質の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、粒状、層状などが挙げられる。即ち、前記固体電解質は、前記電解質粒子が集合して得られる粉体であってもよいし、前記電解質粒子が層状に加工されて得られる層状物であってもよい。
<固体電解質の製造方法>
 前記固体電解質の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫化処理と、表面安定化処理とを含み、更に必要に応じて、還元処理などのその他の処理を含む。
<<硫化処理>>
 前記硫化処理としては、基材粒子を、硫黄と反応させ、基材粒子の表面にSを付与する処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、基材粒子と、硫黄とを混合し、真空下において加熱する方法などが挙げられる。そうすることにより、例えば、下記部分構造式で表されるような、基材粒子表面の遷移金属(Ti)にSが結合した構造が得られる。
Figure JPOXMLDOC01-appb-C000001
 前記混合における前記基材粒子と、前記硫黄との割合としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、質量比(基材粒子:硫黄)で1.0~0.05~1.0:0.5などが挙げられる。
 前記加熱における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、150℃~250℃などが挙げられる。
 前記加熱における加熱時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1時間~5時間などが挙げられる。
<<表面安定化処理>>
 前記表面安定化処理としては、前記硫化処理の後に、表面にSが付与された前記基材粒子を湿気存在下に曝し、Sを酸化させる処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、表面にSが付与された前記基材粒子を高湿度大気に曝す方法などが挙げられる。
 ここで、前記表面安定化処理により、Sを酸化させることで、例えば、基材粒子表面の遷移金属(Ti)結合したSが酸化され、下記部分構造式で表されるような、O-S-O構造又はO-S-OH構造が得られる。
Figure JPOXMLDOC01-appb-C000002
 以上により、表面にO-S-O構造及びO-S-OH構造の少なくともいずれかを有する電解質粒子が得られる。
 なお、前記表面安定化処理では、Sの酸化の際にHOが用いられるため、前記表面安定化処理後には、前記電解質粒子の表面に水成分が存在している。
<<還元処理>>
 前記還元処理は、前記硫化処理の前処理であって、基材粒子の表面を還元する処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、水素雰囲気下で加熱する方法などが挙げられる。
 前記基材粒子は、保存状態によっては、その表面が酸化されていることがある。そのため、前記還元処理を行うことで、前記基材粒子の表面を還元し、続く前記硫化処理を行いやすくすることができる。
(全固体電池)
 開示の全固体電池は、正極活物質含有層と、負極活物質含有層と、前記正極活物質含有層及び前記負極活物質含有層の間に介在する固体電解質層とを少なくとも有し、更に必要に応じて、その他の部材を有する。
<正極活物質含有層>
 前記正極活物質含有層としては、例えば、正極活物質を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記正極活物質含有層は、前記正極活物質自体であってもよいし、前記正極活物質と、前記固体電解質とを混合した混合物であってもよい。
 前記正極活物質含有層が、前記正極活物質と、前記固体電解質との混合物からなる層である場合、前記正極活物質含有層における、前記正極活物質と、前記固体電解質との割合としては、特に制限はなく、目的に応じて適宜選択することができるが、質量比(正極活物質:固体電解質)で、1.0:0.1~1.0:2.0が好ましく、1.0:0.3~1.0:1.5がより好ましく、1.0:0.5~1.0:1.0が特に好ましい。
 前記正極活物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウム含有複合酸化物などが挙げられる。前記リチウム含有複合酸化物としては、リチウムと他の金属とを含有する複合酸化物であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、LiCoO、LiNiO、LiCrO、LiVO、LiMMn2-x(Mは、Co、Ni、Fe、Cr及びCuの少なくともいずれかである。0≦x<2)、LiFePO、LiCoPO、LiNiPO、LiNi1/3Mn1/3Co1/3などが挙げられる。
 前記正極活物質含有層の平均厚みとしては、特に制限はないが、例えば、0.1mm~1.0mm程度の範囲の中から、目的とする電池容量や、電池形状に応じて適宜選択することができる。
<固体電解質層>
 前記固体電解質層は、開示の前記固体電解質から構成される。
 前記固体電解質層の平均厚みとしては、特に制限はなく、目的に応じて正極及び負極が短絡しない厚みで、適宜選択することができるが、0.05mm~3.0mmが好ましく、0.1mm~2.0mmがより好ましく、0.5mm~1.5mmが特に好ましい。
<負極活物質含有層>
 前記負極活物質含有層としては、例えば、負極活物質を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記負極活物質含有層は、前記負極活物質自体であってもよいし、前記負極活物質と、前記固体電解質とを混合した混合物であってもよい。
 前記負極活物質含有層が、前記負極活物質と、前記固体電解質との混合物からなる層である場合、前記負極活物質含有層における、前記負極活物質と、前記固体電解質との割合としては、特に制限はなく、目的に応じて適宜選択することができるが、質量比(負極活物質:固体電解質)で、1.0:0.1~1.0:2.0が好ましく、1.0:0.3~1.0:1.5がより好ましく、1.0:0.5~1.0:1.0が特に好ましい。
 前記負極活物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウム、リチウム合金、LiTi12、LiVO、非晶質カーボン、天然黒鉛、人造黒鉛、TiS、TiO、CoOなどが挙げられる。
 前記負極活物質含有層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.05mm~3.0mmが好ましく、0.1mm~2.0mmがより好ましく、0.5mm~1.5mmが特に好ましい。
<その他の部材>
 前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、正極集電体、負極集電体、電池ケースなどが挙げられる。
<<正極集電体>>
 前記正極集電体の大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記正極集電体の材質としては、例えば、ダイス鋼、ステンレス鋼、アルミニウム、アルミニウム合金、チタン合金、銅、ニッケルなどが挙げられる。
 前記正極集電体の形状としては、例えば、箔状、板状、メッシュ状などが挙げられる。
<<負極集電体>>
 前記負極集電体の大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記負極集電体の材質としては、例えば、ダイス鋼、金、インジウム、ニッケル、銅、ステンレス鋼などが挙げられる。
 前記負極集電体の形状としては、例えば、箔状、板状、メッシュ状などが挙げられる。
<<電池ケース>>
 前記電池ケースとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、従来の全固体電池で使用可能な公知のラミネートフィルムなどが挙げられる。前記ラミネートフィルムとしては、例えば、樹脂製のラミネートフィルム、樹脂製のラミネートフィルムに金属を蒸着させたフィルムなどが挙げられる。
 前記全固体電池の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円筒型、角型、ボタン型、コイン型、扁平型などが挙げられる。
 前記全固体電池は、前記正極活物質含有層、前記固体電解質層、及び前記負極活物質含有層を、気相法を用いて積層した、いわゆる薄膜型全固体電池であることが、サイクル寿命が優れる点で好ましい。
 図5は、開示の全固体電池の一例の断面模式図である。図5の全固体電池においては、正極集電体1上に、正極活物質含有層2、固体電解質層3、負極活物質含有層4、及び負極集電体5がこの順で積層されている。
 前記全固体電池の動作原理について、リチウムイオン全固体二次電池を例として説明する。充電時、Liは、イオン化して正極活物質含有層から抜けて、固体電解質中を負極活物質含有層側に移動し、負極活物質含有層に挿入される。一方、放電時、負極活物質含有層に挿入されたLiイオンは、固体電解質中を正極活物質含有層側に移動し、正極活物質含有層に戻る。このように、リチウムイオン電池では正極と負極との間をLiイオンが移動することにより充電、放電を行っている。
<全固体電池の製造方法>
 前記全固体電池の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、正極活物質含有層を構成する材料の粉体と、粉体状の固体電解質と、負極活物質を構成する材料の粉体とを、層状に積層し、加圧成型する方法が挙げられる。
 前記固体電解質を用いると、この加圧成型の際に、高温に加熱する必要がなく、低温で電池性能に優れる全固体電池を製造することができる。
 前記加圧成型における圧力としては、例えば、127kgf/cm~1,270kgf/cmなどが挙げられる。
 前記加圧成型における温度としては、例えば、常温などが挙げられる。
 以下、開示の技術の実施例について説明するが、開示の技術は下記実施例に何ら限定されるものではない。
(実施例1)
<固体電解質の合成方法>
<<還元処理>>
 平均粒径2μmのLLTO粒子(Li0.33La0.55TiO、株式会社豊島製作所製)を加圧成型によりペレット化した。得られたペレットを、900℃の水素雰囲気下で30分の還元処理を行った。還元後の圧粉体をLLTOHとする。
 得られたLLTOHは、N雰囲気下で密封し、露点-70℃のAr雰囲気のグローブボックス(GB)内へ移動した。
<<硫化処理>>
 得られたLLTOHを硫黄(S)と10:1(LLTOH:硫黄)の質量比でメノウ乳鉢を用いて混合した。得られた粉体を加圧ペレット成型した後、石英菅に投入した。石英菅を10Paに減圧にし、ガスバーナーで真空封入を行った。真空封入した石英菅を、200℃で2時間焼成した。徐冷後、石英菅をGB内に移動し、GB内で開封し硫化されたLLTOHSを得た。
 なお、混合操作、および石英への投入操作はすべてGB内で行った。
<<表面安定化処理>>
 得られたLLTOHSを、25℃×90%RHの大気雰囲気に6時間曝すことで、LLTOHS固体電解質表面に水(HO)を吸着させ固体電解質表面を酸化させた。
<圧粉体電池の構築>
 直径10mmのSKD11冶具を備えるPET管を用いて圧粉体電池(全固体電池)を作製した。具体的には以下の方法で作製した。
 正極活物質にLiCoO(LCO)、負極活物質にTiSを用いた。
 固体電解質には酸化処理後のLLTOHSを用いた。
 作製雰囲気は25℃×55%RHの雰囲気で正極合材、及び負極合材を作製した。
 正極には、LCOを6mg、及びLLTOHSを4mg混合した正極合材を用いた。
 負極には、TiSを3mg、及びLLTOHSを2mg混合した負極合材を用いた。
 固体電解質には、酸化処理後のLLTOHSを70mg用いた。
 PET管に、前記正極合材(10mg)、前記固体電解質(70mg)、及び前記負極合材(5mg)を、この順で投入し、SKD11冶具を押し付けて、加圧成型を行った。加圧成型は、25℃、圧力:1,270kgf/cm、加圧時間:30秒で行った。
<酸化処理後の水分量の制御>
 作製した全固体電池は2.2Vを上限として充電操作を行った。充電過程で2.2Vに達した電池を定電流0.25mAで放電操作したところ、正極理論容量に対して20%の放電容量を確認した。内部抵抗からイオン導電率を算出したところイオン導電率は、1.4×10-4S/cmであった。
 酸化処理後のLLTOHSの表面構造を確認するためにFT-IR測定した。その結果、固体電解質の表面にはO-S-O(またはO-S-OH)構造が構築されていたことを確認した。FT-IR測定結果を図6に示す。
 図6において(A)で示す曲線が、酸化処理後のLLTOHSのFI-IRスペクトルである。(B)で示す曲線は、酸化処理前のLLTOHSのFI-IRスペクトルである。
 FT-IRの測定条件を以下に示す。
 測定装置として、サーモサイエンティフィック(Thermo Scientific)製のNicolet8700を用いた。
 反射光学系の入射角80°で無偏光の赤外光を照射した。
 光源としてグローワーランプを用いた。
 マイケルソン型の干渉計とTGS(硫酸トリグリシン)系検出器を用いた。
 測定される干渉パターンをフーリエ変換した。
 装置の波数分解能は4cm-1である。
 積算回数は64回とした。
<<TG-DTA-MS測定>>
 酸化処理後のLLTOHSのTG-DTA-MS測定結果を図4に示す。
 TG-DTA-MSの測定条件を以下に示す。
 測定装置:リガク製 Thermo Mass Photo
 測定雰囲気:He(露点温度-76℃)
 ガス流量:300mL/min
 温度範囲:室温→1,000℃→室温
 昇温速度:10℃/min
<MS条件>
 イオン化法:EI法(約70eV)
 質量範囲:SCAN法 m/z=10~200
 室温から100℃付近までに水の揮発による1.8質量%の重量変化を観測した、100℃付近ではSOガスが検出され、高イオン伝導層を構成する表面のO-S-O構造が脱離していることが確認できる。室温から100℃の、O-S-O構造の脱離開始までの間に、2.2Vの充電電圧で制御された高いイオン伝導状態が存在すると考えられるが、100℃に達する前の固体電解質を取り出し、イオン導電率を測定したとしても、10-8S/cm程度の低いイオン導電率しか示さない。
 これは、熱による水の揮発では水成分量の制御精度が低く高イオン伝導状態を作り出しにくいことを示す。即ち、これは、正極活物質含有層/固体電解質/負極活物質含有層からなる全固体電池において、電池電位を2.2Vとする水成分の電気分解によって、固体電解質表面の水成分量の制御を行うことが好ましいことを意味している。その理由は以下のとおりである。
-2.5V充電-
 図7に、前記全固体電池において、充電電圧が2.5Vに達した時の最大の放電容量を示した。図7において、各プロットに付した数値は、電流密度0.31mA/cmの定電流充電を1時間後にカットオフした際の終止電圧である。
 2.2Vに達するまでは充電電流のほとんどが余剰吸着水の分解に使われるため、充電が行われない。その結果クーロン効率(放電/充電×100[%])が低い。
 その後、2.5Vまで充電電圧を上げていくと、ベース固体電解質が分解されはじめ、内部抵抗が上昇し、充電ができなくなりクーロン効率が低下していく。
-2.2V充電-
 図8に、前記全固体電池において、充電電圧が2.2Vに達した時の最大の放電容量を示した。図8において、各プロットに付した数値は、電流密度0.31mA/cmの定電流充電を1時間後にカットオフした際の終止電圧である。
 2.2Vに達するまでは充電電流のほとんどが余剰吸着水の分解に使われるため、充電が行われない。その結果クーロン効率(放電/充電×100[%])が低い。
 その後、2.2Vに充電電圧を制御し続けると、固体電解質は分解されず、余剰のHOだけが分解され、クーロンは向上していく。
 即ち、電池電圧(充電電圧)を2.2Vにすることで、固体電解質に吸着されている余剰のHOだけが分解され、電池のクーロン効率を向上させることができる。
<<全固体電池の放電曲線>>
 全固体電池の放電曲線を求めた。結果を図9に示した。
 充電条件は2.2Vを上限電圧として、電流密度0.31mA/cmの定電流で充電を行った。
 放電条件は0.5Vを下限電圧として、電流密度0.31mA/cmの定電流で放電を行った。
 放電曲線は平均電位1.5VでLCO理論容量に対して20%の放電容量を示した。
(比較例1)
 実施例1において、<<硫化処理>>を行わなかった以外は、実施例1と同様にして、全固体電池を作製した。硫化処理を行わないことで、LLTO粒子の表面には、硫黄(S)が存在しない。
 得られた全固体電池について、実施例1と同様にして、放電曲線を求めた。結果を図10に示した。図10において、放電曲線は、0.00mAhで垂直に立ち上がっている。そのため、図10において、放電曲線は、縦軸と重なっている。即ち、放電曲線は平均電位1.5VでLCO理論容量に対して0%の放電容量を示した。
(比較例2)
 実施例1において、<<表面安定化処理>>を行わなかった以外は、実施例1と同様にして、全固体電池を作製した。表面安定化処理を行わないことで、LLTO粒子の表面には、硫黄(S)が存在するものの、O-S-O構造、又はO-S-OH構造は存在しない。
 得られた全固体電池について、実施例1と同様にして、放電曲線を求めた。結果を図11に示した。図11において、放電曲線は、0.00mAhで垂直に立ち上がっている。そのため、図11において、放電曲線は、縦軸と重なっている。即ち、放電曲線は平均電位1.5VでLCO理論容量に対して0%の放電容量を示した。
 1   正極集電体
 2   正極活物質含有層
 3   固体電解質層
 4   負極活物質含有層
 5   負極集電体

Claims (15)

  1.  電解質粒子を含有し、
     前記電解質粒子が、O-S-O構造及びO-S-OH構造の少なくともいずれかを有する、
     ことを特徴とする固体電解質。
  2.  水成分を有する請求項1に記載の固体電解質。         
  3.  0.8質量%~2.4質量%の水成分を有する請求項1又は2に記載の固体電解質。
  4.  前記電解質粒子が、周期表第4周期又は周期表第5周期の遷移金属を含有し、
     前記O-S-O構造及びO-S-OH構造の少なくともいずれかにおけるSが、前記遷移金属と結合している、
     請求項1から3のいずれかに記載の固体電解質。
  5.  前記遷移金属が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、及びNbの少なくともいずれかである請求項4に記載の固体電解質。
  6.  前記遷移金属が、Tiである請求項4又は5に記載の固体電解質。
  7.  前記電解質粒子が、基材粒子と、前記O-S-O構造及びO-S-OH構造の少なくともいずれかとを有し、
     前記基材粒子が、Li0.33La0.55TiO、LiLaZr12、及びLiNbOのいずれかである、
     請求項1から5のいずれかに記載の固体電解質。
  8.  正極活物質含有層と、負極活物質含有層と、前記正極活物質含有層及び前記負極活物質含有層の間に介在する固体電解質層とを有し、
     前記固体電解質層が、固体電解質で構成される層であり、
     前記固体電解質が、電解質粒子を含有し、
     前記電解質粒子が、O-S-O構造及びO-S-OH構造の少なくともいずれかを有する、
     ことを特徴とする全固体電池。
  9.  前記固体電解質が、水成分を有する請求項8に記載の全固体電池。
  10.  前記固体電解質が、0.8質量%~2.0質量%の水成分を有する請求項8又は9に記載の全固体電池。
  11.  前記電解質粒子が、周期表第4周期又は周期表第5周期の遷移金属を含有し、
     前記O-S-O構造及びO-S-OH構造の少なくともいずれかにおけるSが、前記遷移金属と結合している、
     請求項8から10のいずれかに記載の全固体電池。
  12.  前記遷移金属が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、及びNbの少なくともいずれかである請求項11に記載の全固体電池。
  13.  前記遷移金属が、Tiである請求項11又は12に記載の全固体電池。
  14.  前記電解質粒子が、基材粒子と、前記O-S-O構造及びO-S-OH構造の少なくともいずれかとを有し、
     前記基材粒子が、Li0.33La0.55TiO、LiLaZr12、及びLiNbOのいずれかである、
     請求項8から12のいずれかに記載の全固体電池。
  15.  前記正極活物質含有層が、LiCoOを含有し、
     前記負極活物質含有層が、TiSを含有する、
     請求項8から14のいずれかに記載の全固体電池。
PCT/JP2016/052515 2016-01-28 2016-01-28 固体電解質、及び全固体電池 WO2017130354A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/052515 WO2017130354A1 (ja) 2016-01-28 2016-01-28 固体電解質、及び全固体電池
JP2017563476A JP6730634B2 (ja) 2016-01-28 2016-01-28 固体電解質、及び全固体電池
US16/045,074 US10854913B2 (en) 2016-01-28 2018-07-25 Solid electrolyte and all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/052515 WO2017130354A1 (ja) 2016-01-28 2016-01-28 固体電解質、及び全固体電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/045,074 Continuation US10854913B2 (en) 2016-01-28 2018-07-25 Solid electrolyte and all-solid battery

Publications (1)

Publication Number Publication Date
WO2017130354A1 true WO2017130354A1 (ja) 2017-08-03

Family

ID=59397700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052515 WO2017130354A1 (ja) 2016-01-28 2016-01-28 固体電解質、及び全固体電池

Country Status (3)

Country Link
US (1) US10854913B2 (ja)
JP (1) JP6730634B2 (ja)
WO (1) WO2017130354A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109182A1 (en) * 2019-09-11 2022-04-07 Mitsui Mining & Smelting Co., Ltd. Sulfide solid-state electrolyte, electrode mixture, solid-state battery and sulfide-solid-state-electrolyte manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216537A (ja) * 2001-01-16 2002-08-02 Kansai Research Institute プロトン伝導性固体電解質及びプロトン伝導性固体電解質シート
JP2004095342A (ja) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd 全固体電池とその製造方法
JP2009245913A (ja) * 2007-09-11 2009-10-22 Sumitomo Electric Ind Ltd リチウム電池
JP2012014892A (ja) * 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd 非水電解質電池
JP2012094445A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 硫化物固体電解質粒子
WO2013136446A1 (ja) * 2012-03-13 2013-09-19 株式会社 東芝 リチウムイオン伝導性酸化物、固体電解質二次電池および電池パック
JP2015035334A (ja) * 2013-08-09 2015-02-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
JP2016039128A (ja) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 全固体電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69814232T2 (de) * 1997-06-03 2004-04-08 Matsushita Electric Industrial Co., Ltd., Kadoma Negative Elektrodenaktivmaterialen für nicht-wässerige Elektrolyt Sekundärbatterien und entsprechenden Batterien
JP2008285388A (ja) 2007-05-21 2008-11-27 Toyota Motor Corp リチウムイオン伝導性向上材
JP2010033876A (ja) 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd ポリマー被覆固体電解質、及びそれを用いた全固体二次電池
US9337509B2 (en) * 2011-06-02 2016-05-10 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, solid state battery, and method for producing solid electrolyte material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216537A (ja) * 2001-01-16 2002-08-02 Kansai Research Institute プロトン伝導性固体電解質及びプロトン伝導性固体電解質シート
JP2004095342A (ja) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd 全固体電池とその製造方法
JP2009245913A (ja) * 2007-09-11 2009-10-22 Sumitomo Electric Ind Ltd リチウム電池
JP2012014892A (ja) * 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd 非水電解質電池
JP2012094445A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 硫化物固体電解質粒子
WO2013136446A1 (ja) * 2012-03-13 2013-09-19 株式会社 東芝 リチウムイオン伝導性酸化物、固体電解質二次電池および電池パック
JP2015035334A (ja) * 2013-08-09 2015-02-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
JP2016039128A (ja) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 全固体電池

Also Published As

Publication number Publication date
US10854913B2 (en) 2020-12-01
US20180331390A1 (en) 2018-11-15
JPWO2017130354A1 (ja) 2018-11-29
JP6730634B2 (ja) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6748344B2 (ja) 全固体電池
US9853322B2 (en) Solid electrolyte and all-solid state lithium ion secondary battery
KR101987608B1 (ko) 전고체 리튬 유황 전지 및 그 제조 방법
US9160034B2 (en) Method for producing sulfide solid electrolyte material and method for producing lithium solid state battery
WO2012005296A1 (ja) 固体電解質材料およびリチウム電池
Yu et al. High-temperature chemical stability of Li1. 4Al0. 4Ti1. 6 (PO4) 3 solid electrolyte with various cathode materials for solid-state batteries
KR20170070180A (ko) 층상 산화물 재료 및 이의 제조 방법, 극편, 2차 전지 및 이의 용도
JP5686300B2 (ja) 固体電解質材料及び全固体リチウム二次電池
JP7283657B2 (ja) 硫黄正極合材およびその製造方法、硫黄正極、リチウム硫黄固体電池
JP2011222415A (ja) 固体電解質材料、リチウム電池および固体電解質材料の製造方法
JP2012243408A (ja) リチウムイオン電池
JP2013041749A (ja) 電池システム
CN111446492A (zh) 硫化物固体电解质粒子及其制造方法和全固体电池
CN110112410B (zh) 一种改性锂离子电池正极材料及其制备方法
JP5516463B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP7451746B2 (ja) 固体電解質、それを含む電気化学電池、及び固体電解質の製造方法
JP2020173992A (ja) 硫化物固体電解質、硫化物固体電解質の製造方法、電極体および全固体電池
US10854913B2 (en) Solid electrolyte and all-solid battery
Zhang et al. Enhanced structural, electrochemical, and electrode kinetic properties of Na0. 5Ni0. 2Mg0. 1Mn0. 7O2 material for sodium-ion battery applications
CN111446491A (zh) 硫化物固体电解质粒子和全固体电池
CN115699212A (zh) 固体电解质材料、固体电解质、它们的制造方法和全固体电池
JP6652705B2 (ja) 固体電解質、及び全固体電池
Jin et al. Novel lithium titanate for high power applications
WO2021251409A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
CN105720264A (zh) 一种锑酸铁锂锂离子电池正极材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017563476

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887941

Country of ref document: EP

Kind code of ref document: A1