WO2017129808A1 - Neuartiger koks mit additiven - Google Patents

Neuartiger koks mit additiven Download PDF

Info

Publication number
WO2017129808A1
WO2017129808A1 PCT/EP2017/051882 EP2017051882W WO2017129808A1 WO 2017129808 A1 WO2017129808 A1 WO 2017129808A1 EP 2017051882 W EP2017051882 W EP 2017051882W WO 2017129808 A1 WO2017129808 A1 WO 2017129808A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
additives
diameter
graphite
μιτι
Prior art date
Application number
PCT/EP2017/051882
Other languages
English (en)
French (fr)
Inventor
Oswin ÖTTINGER
Heribert Walter
Martin Christ
Johann Daimer
Wilhelm Frohs
Frank Hiltmann
Rainer Schmitt
Original Assignee
Sgl Carbon Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sgl Carbon Se filed Critical Sgl Carbon Se
Priority to CA3012407A priority Critical patent/CA3012407C/en
Priority to JP2018539434A priority patent/JP6758390B2/ja
Priority to EP17705034.1A priority patent/EP3408355A1/de
Priority to RU2018130987A priority patent/RU2716791C2/ru
Priority to CN201780008743.5A priority patent/CN109072087B/zh
Priority to US16/072,283 priority patent/US11434428B2/en
Priority to UAA201808970A priority patent/UA124625C2/uk
Publication of WO2017129808A1 publication Critical patent/WO2017129808A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
    • C10B55/02Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention relates to a novel coke comprising additives and its use.
  • Cokes such as petroleum cokes and coal tar pitch cokes can be used after the
  • Delayed coking process are produced, however, these are made of different raw materials.
  • Raffinie residuals Vauum Resid, Slurry Oil, Decant Oil, Thermal Tar, Ethylene Tar
  • green petroleum coke which is then in a Kalzi - N ists intimid at 1 100 ° C to 1500 ° C in calcined petroleum coke can be converted.
  • coal tar In the production of coal tar, the coal tar resulting from the production of metallurgical coke is distilled and the obtained coal tar pitch is fed to the delayed coker, whereby at temperatures of 450 ° C. to 550 ° C. green coal tar coke is obtained, which subsequently in a calcination step at 1100 ° C to 1500 ° C in calcined coal tar coke can be converted.
  • the life can be improved
  • Titanium diboride (TiB 2 ) is used, for example, in the aluminum industry as an additive in the manufacture of the cathode blocks to achieve better wetting with liquid aluminum.
  • TiB 2 Titanium diboride
  • US6258224 for example, the addition of TiB 2 is described in the upper layer of a layered cathode block.
  • CN101 158048 also discloses a carbon composite containing 20% to 60% TiB 2 described.
  • US6428885 describes a support body with a titanium diboride-containing protective coating.
  • TiB 2 is produced with high energy consumption at high temperatures. In the production of carbon products with improved wetting properties of the coarse-grained coke and fine-grained TiB 2 must be technically very complex homogeneously mixed. This is due to the different ones
  • the object of the invention is therefore to provide a coke which increases the lifetime of the carbon products produced from the coke.
  • the object is achieved by a coke comprising additives, characterized in that additives are accumulated at the flow limits or in the areas enclosed by the flow boundaries.
  • flow limits are understood as meaning the boundary lines between optically non-anisotropic regions formed during the solidification of the mesophase during coke formation.
  • the term "mesophase” defines a characteristic state of order between the liquid and solid phases of a system, and the transition from the liquid phase to the solid phase during pyrolysis involves conversion from a disordered isotropic phase to an ordered anisotropic phase.
  • the properties of the coke can be tailored by the accumulation of additives at the flow limits or in the areas enclosed by the flow boundaries, wherein, for example, the wettability and, by suitable choice of additives
  • Abrasion resistance can be influenced. This influence in turn requires a longer life, the carbon products produced from the coke.
  • the coke is selected from the group consisting of petroleum coke, coal tar coke or coke made from the residues of coal gasification, coal hydrogenation or the Fischer-Tropsch synthesis or from a petroleum pitch or coal tar pitch obtained from the mixture of petroleum and coal tar pitch residues. Mixture or any mixture of said cokes.
  • the additives accumulated at the flow limits or in the regions enclosed by the flow boundaries may be accumulated at the flow boundaries or embedded in the regions enclosed by the flow boundaries or accumulated both at the flow boundaries and in the regions enclosed by flow boundaries be embedded.
  • the additive particles at the yield points include all additive particles that touch the yield point.
  • the accumulation at the yield points or in the regions enclosed by the flow boundaries is understood to mean that at least 70% of the additive particles are arranged at the yield points or in the regions enclosed by the yield points. With less than 70% additive particles, coke properties are not affected.
  • additive particles% is meant the percentage of additive particles in a sample.
  • the accumulation of the additive particles is determined by light microscopy or
  • the additives are selected from the group consisting of acetylene coke, fluid coke, flexi-coke, shot cokes, carbon black, non-graphitizable carbons (chars), non-graphitic anthracite, silicon carbide, titanium carbide, titanium diboride or mixtures thereof.
  • Acetylene coke is a coke which is obtained as a by-product in the production of unsaturated hydrocarbons, in particular of acetylene, and subsequently, irrespective of the type of unsaturated hydrocarbon in the preparation of which it is obtained, is referred to as acetylene coke.
  • Acetylene coke has a fine-grained and onion-peel-like structure.
  • non-graphitic anthracite is meant according to this invention, an anthracite, which is obtained by a temperature treatment of below 2000 ° C.
  • Fluid coke in the context of this invention is understood to mean the coking product of high-boiling hydrocarbon fractions (heavy residues from mineral oil or coal processing produced by the fluid coker process.) Fluid coke has an isotropic structure
  • flexi-coke is understood to mean a coke which is produced by the fluidized bed process, such as, for example, the flexi-coking process developed by Exxon Mobile, a thermal cracking process using fluidized bed reactors are obtained coke particles with spherical to ellipsoidal shape, which is constructed onion-like.
  • shot coke is understood as meaning a coke which is produced by delayed coking (delayed coking).
  • the particles of this coke have a spherical morphology.
  • Carbon black is understood to mean an industrially produced finely divided carbon consisting of spherical primary particles.
  • Chars are non-graphitizable, solid products that are formed during the carbonization process of natural or synthetic organic material (Polymer Carbons by Gwyn Morgan Jenkins, Kiyoshi Kawamura, 1967, "Coals of lowest rank (lignite) are said to possess a Polymerie strueturetinct.
  • coals of low rank isotropic chars (polymer carbon) bituminous coals produce textured crystalline cokes, while anthracites, although not coking in the normal sense, eventually yield graphites at sufficiently high temperatures " ).
  • the additives can also be formed according to a further advantageous embodiment only by an "in-situ formation" in the graphitization of the carbon products produced from the coke.
  • the coke contains B2O3 or B C and ⁇ 2 as precursors.
  • the in-situ formation of titanium diboride in the graphitization of the carbon products produced from the coke has the advantage that the additives formed are homogeneously distributed. This has the advantage, for example, in the case of cathode blocks that the wettability is improved and thus the service life is also increased.
  • complicated mixing processes for producing a homogeneous coke-titanium diboride mixture can be dispensed with.
  • the "in situ formation" of titanium diboride has the advantage that can be dispensed with costly and expensive production of titanium diboride.
  • the additives have a diameter of 0.1 to 49 ⁇ m, more preferably from 1 to 3 ⁇ m.
  • the diameter falling within this range is determined by laser light diffraction (ISO 13320-2009).
  • the Mesophasen Guess is disturbed in the implementation of the Delayed Coker feed material to the extent that a coke is obtained, which has completely different properties, as a coke in which the Mesophasen Struktur is not disturbed ,
  • These properties include coke hardness, achievable material strength, thermal and electrical conductivity, thermal expansion, and isotropy of these properties.
  • Another property that can be affected is the wettability of the surface; For example, in a "drained cell", it is desired that the wettability be increased with molten aluminum, living in one Metal crucible wettability is to be lowered.
  • the extent of wettability can be tailored.
  • the coefficient of thermal expansion (CTE) is increased 10 times by the addition of the additives, depending on the amount and size of the additives.
  • the CTE is a parameter for thermal expansion and describes the behavior of a substance with respect to changes in its dimensions in the event of temperature changes.
  • the CTE is measured according to DIN 51909 (2009-05).
  • a coke obtained by mesophase-forming disorder has a higher hardness of up to 2 to 3 times a coke produced without additive.
  • HGI Hardgrove Index
  • the proportion of additives in the coke is 0.5 to 8 wt .-%, preferably 1 to 4 wt .-%.
  • an additive content of more than 8% by weight there is no further increase in the hardness of the coke.
  • At less than 0.5% by weight, the additives have no influence on the disruption of mesophase formation.
  • the content of coke particles is 96% by weight.
  • the additives have a diameter of 0.05 mm to 5 mm, preferably 1 to 3 mm.
  • the diameters in this range are determined by sieve analysis (DIN I 66165-2016, method F). With these diameters of the additives, an embedding is achieved in the areas enclosed by the flow limits. With a smaller diameter than 0.05 mm, as described above, the mesophase formation is disturbed and an accumulation of the additives occurs at the yield points. With a diameter greater than 5 mm, no embedding takes place in the areas enclosed by the flow boundaries, since the diameter of the additives is greater than the diameter of the areas enclosed by the flow boundaries. These blends are used in the production of polygranular carbon and graphite material.
  • the embedding of the additives in the areas enclosed by the flow limits causes an increase of the CTE by 2 to 3 times depending on the type, size and amount of the additives. Likewise, the hardness of the resulting coke is increased by 2 to 3 times.
  • the additives can be used to produce a custom coke. This results in a higher hardness and a higher CTE, whereby the products produced from the coke have a longer life.
  • the proportion of additives is 1 to 40% by weight, preferably 5 to 20% by weight. With a proportion of additives of greater than 20% by weight, no further increase in hardness can be achieved by embedding the additives in the regions enclosed by the flow limits. With less than 1% by weight of additives, the incorporated additives have no influence on the properties of the coke.
  • the coke is coke and additives, and the proportion of the additives is 20% by weight, then the coke content is 80% by weight.
  • the additives are present as a mixture of additives with a diameter of 0.1 ⁇ m to 49 ⁇ m and a diameter of 0.05 mm to 5 mm.
  • the coke By using a mixture of additive of different diameters, the coke can be more flexibly tailored in terms of coke hardness, achievable material strength, thermal and electrical conductivity, thermal expansion, and isotropy of these properties than when using one-diameter additives become. As a result, the carbon products produced therefrom have a longer service life.
  • Additives with a diameter of 0.05 mm to 5 mm are embedded in the areas enclosed by the flow limits. Whereas, by additives of the mixture having a diameter smaller than 0.05 mm, as described above, the mesophase formation is disturbed and accumulation of the additives at the yield points occurs.
  • the proportion of the mixture of additives having a diameter of from 0.1 ⁇ m to 49 ⁇ m is from 0.5 to 8% by weight, preferably 2% by weight and with a diameter of from 0.05 mm to 5 mm, from 5 to 20 Wt .-%, preferably 10 wt .-%.
  • the proportion of additives having a diameter of from 0.1 ⁇ m to 49 ⁇ m is greater than 8% by weight, and with a diameter of from 0.05 mm to 5 mm greater than 20% by weight, then the coke properties occur, such as strength , thermal and electrical conductivity and the thermal expansion in the background and the additive properties begin to dominate.
  • the coke properties occur, such as strength , thermal and electrical conductivity and the thermal expansion in the background and the additive properties begin to dominate.
  • a further subject matter of the present invention is the use of a previously described coke for blast furnace blocks, graphite electrodes for steelmaking, graphite bodies for connecting graphite electrodes, cathode blocks for aluminum production, nuclear applications, apparatus construction for process technologies in the field of highly corrosive media, shell and tube heat exchangers, special graphite for example for silicon production, solar wafer production, electrodes for spark erosion and heating elements, mechanical seals, graphite bearings, graphite pump impellers or graphite crucible, preferably for blast furnace blocks, for graphite electrodes for steel production or for cathode blocks for aluminum production.
  • new cathode blocks can be made according to the Drained Cell concept, which results in energy savings in aluminum production.
  • Figure 1 is a schematic representation of a section of a coke with
  • Figure 2 is a schematic representation of a section of a coke with
  • Figure 3 is a schematic representation of a section of a coke with
  • Figure 1 shows a schematic representation of a section of a coke with an accumulation of additives (1) at the flow limits (2).
  • the additives (1) have a diameter which is selected from the range 0.1 m to 49 ⁇ .
  • FIG. 2 shows a schematic representation of a section of a coke with an accumulation of additives (3) in the areas (4) enclosed by the flow boundaries.
  • the additives (3) have a diameter selected from the range 0.05 mm to 5 mm.
  • Figure 3 shows a schematic representation of a section of a coke with accumulation of additives (1) at the flow limits (2) and in the areas enclosed by the flow limits areas (4).
  • the additives (1) have a diameter which is selected from the range 0.1 ⁇ m to 49 ⁇ m.
  • the additives (3) have a diameter selected from the range 0.05 mm to 5 mm.
  • the additives may be accumulated at the flow limits or in the areas enclosed by the flow boundaries.
  • the wetting behavior of cathode blocks over aluminum melts can be improved.
  • the wetting behavior can be tailored.
  • a gas-calcined anthracite was ground on an impact mill to a diameter of about 3 ⁇ m and from this, by means of sieving, a grain fraction of 1 -3 ⁇ m was produced. provides. This was dispersed at 10% by weight in an ethylene tar. This dispersion was placed in a delayed coker at a temperature of 490 ° C. The coking pressure was 6.6 bar with a coking time of 10 hours. The green petroleum coke was calcined at 1300 ° C. The result is an isotropic petroleum coke with a CTE of 4.5 10 "6 K" 1 and an ash content of 0.09%, the boron content was 0.2 ppm. This coke is suitable for high-purity isographites and reactor graphite in nuclear power plants.
  • the additives having 70% additive particles are accumulated at the flow limits.
  • a petrol-based vacuum residue is fed to 460 ° C a Delayed Coker.
  • the coking pressure was 5.0 bar and a coking time of 8 hours.
  • 10% of the coker feed was added as a dispersion of vacuum residue and 10% by weight acetylene coke with a diameter of 0.4 to 0.8 mm at the top of the coke drum.
  • acetylene coke results.
  • the coke CTE was 3.5 10 "6 K -1.
  • the mechanical abrasion resistance was increased by 6% over a comparable coke without Acetylenkokseinlagerept.
  • the additives in this embodiment are accumulated by the space enclosed by the yield stress areas 70 additive% in the ,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)
  • Ceramic Products (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Koks umfassend Additive, dadurch gekennzeichnet, dassan den Fließgrenzen oder in den von den Fließgrenzen umschlossenen Bereichen Additive angehäuft sind. Zur homogenen Verteilung werden die Additive dem Delayed Coker während der Befüllungszeit kontinuierlich zudosiert. Die Zudosierung kann durch staubförmiges Einblasen mit einem Inertgas (Stickstoff) erfolgen oder auch verteilt in einem Slurry bestehend aus den Reaktionskomponenten und einem Teilstrom des Kokerzulaufes ( Vaccuum Resid, Pytar, Decant Oil oder Steinkohlenteerdestillate) erfolgen. Nach einer vorteilhaften Ausführungsform weisen die Additive einen Durchmesser von 0,05 mm bis 5 mm, bevorzugt 1 bis 3 mm auf. Vorteilhafterweise werden die Additive aus der Gruppe bestehend aus Acetylenkoks, Flu id- Koks, Flexi-Koks, Shot-Kokse, Carbon Black, nicht-graphitierbare Kohlenstoffe (Chars), nicht-graphitischem Anthrazit, Siliziumcarbid, Titancarbid, Titandiborid oder Mischungen davon, ausgewählt. Der Wärmeausdehungskoeffizient (coefficient of thermal expansion, CTE) wird durch die Zugabe der Additive je nach Menge und Größe der Additive um das 10 fache erhöht.

Description

NEUARTIGER KOKS MIT ADDITIVEN
Die Erfindung betrifft einen neuartigen Koks umfassend Additive und dessen Ver- wendung.
Kokse wie Petrolkokse als auch Steinkohlenteerpechkokse können nach dem
Delayed Coking Verfahren hergestellt werden, allerdings werden diese aus unterschiedlichen Rohstoffen hergestellt. Zur Herstellung von Petrolkoksen werden Raffinie erückstände (Vacuum Resid, Slurry Oil, Decant Oil, Thermal Tar, Ethylene Tar) dem Delayed Coker zugeführt, wobei bei Temperaturen von 450 °C bis 550 °C sogenannter grüner Petrolkoks erhalten wird, welcher anschließend in einem Kalzi- nierungsschritt bei 1 100 °C bis 1500 °C in kalzinierten Petrolkoks umgewandelt werden kann.
Bei der Herstellung von Steinkohlenteerpechkoks wird der bei der Herstellung von Hütten- bzw. Zechenkoks (Metallurgischer Koks) anfallende Steinkohlenteer destilliert und das erhaltene Steinkohlenteerpech dem Delayed Coker zugeführt, wobei bei Temperaturen von 450 °C bis 550 °C grüner Steinkohlenteerpechkoks erhalten wird, welcher anschließend in einem Kalzinierungsschritt bei 1 100 °C bis 1500 °C in kalzinierten Steinkohlenteerpechkoks umgewandelt werden kann.
Es ist bekannt, dass durch Zugabe von Kohlenstofffasern in den Delayed Coker eine strukturelle Verbesserung des Kokses erreicht werden kann (US726284B2). Weiterhin ist bekannt, dass die Eigenschaften der Kohlenstoffprodukte, wie bei- spielsweise Graphitelektroden oder Kathodenblöcke durch Zugabe von Additiven bei der Herstellung der Kohlenstoffprodukte, zu beeinflussen sind.
Hierdurch kann beispielsweise die Lebensdauer verbessert werden
(DE102010029538A1 ).
Titandiborid (TiB2) wird beispielsweise in der Aluminiumindustrie als Additiv bei der Herstellung der Kathodenblöcke zugesetzt um eine bessere Benetzung mit flüssigem Aluminium zu erreichen. In US6258224 wird beispielsweise der Zusatz von TiB2 in der oberen Schicht eines schichtartig aufgebauten Kathodenblocks beschrieben. In CN101 158048 wird ebenfalls ein Kohlenstoff-Kompositmaterial, enthaltend 20 % bis 60 % TiB2 beschrieben. Die US6428885 beschreibt einen Tragkörper mit einer Titandiborid-haltigen Schutzbeschichtung.
TiB2 wird unter hohem Energieaufwand bei hohen Temperaturen hergestellt. Bei der Herstellung von Kohlenstoffprodukten mit verbesserten Benetzungseigenschaften müssen der grobkörnige Koks und feinkörniges TiB2 technisch sehr aufwendig homogen vermischt werden. Dies ist durch die unterschiedlichen
Partikelgrößenverteilung und Dichten der Materialien zu erklären, denn diese bedingen, dass diese sich leicht entmischen.
Ein weiterer Nachteil, der sich aus den unterschiedlichen Partikelgrößen ergibt ist, dass bei der Bearbeitung der Kohlenstoffprodukte oder durch Verschleiß an der Oberfläche Bereiche vorliegen, die nur Kohlenstoff des grobkörnigen Kokses enthalten und Inseln, die TiB2 und gegebenenfalls Staub und Bindermatrix enthalten. Dies führt dazu, dass sich die Oberfläche aufgrund der Inselbildung nicht so gut mit Aluminium benetzen lässt. Dies führt letztendlich dazu, dass aufgrund von mechanischer und chemischer Beanspruchung des Kohlenstoffproduktes die Lebensdauer verkürzt wird. Aufgabe der Erfindung ist daher einen Koks bereitzustellen, der die Lebensdauer der aus dem Koks hergestellten Kohlenstoffprodukte erhöht.
Die Aufgabe wird durch einen Koks umfassend Additive, dadurch gekennzeichnet, dass an den Fließgrenzen oder in den von den Fließgrenzen umschlossenen Berei- chen Additive angehäuft sind, gelöst.
Unter Fließgrenzen werden im Rahmen dieser Erfindung, die bei der Erstarrung der Mesophase bei der Koksbildung entstandenen Grenzlinien zwischen optisch nicht anisotropen Bereichen verstanden.
Der Begriff„Mesophase" definiert einen charakteristischen Ordnungszustand zwischen der flüssigen und der festen Phase eines Systems. Beim Übergang von der flüssigen in die feste Phase während der Pyrolyse erfolgt eine Umwandlung von einer ungeordneten isotropen Phase in eine geordnete anisotrope Phase. Erfindungsgemäß wurde erkannt, dass durch die Anhäufung von Additiven an den Fließgrenzen oder in den von den Fließgrenzen umschlossenen Bereichen, die Eigenschaften des Kokses maßgeschneidert werden können, wobei durch die geeig- nete Wahl von Additiven beispielsweise die Benetzbarkeit und die
Abrasionsbeständigkeit beeinflusst werden. Diese Beeinflussung bedingt wiederum eine längere Lebensdauer, der aus dem Koks hergestellten Kohlenstoffprodukte.
Vorteilhafterweise wird der Koks aus der Gruppe bestehen aus Petrolkoks, Stein- kohlenteerpechkoks oder aus den Rückständen der Kohlevergasung, Kohlehydrierung oder auch der Fischer-Tropsch-Synthese erhaltenen Kokse oder aus einer durch die Mischung von Petrol- und Steinkohlenteerpechrückständen erhaltene Pe- trol/Steinkohlenteerpechkoks-Mischung oder einer beliebigen Mischung der genannten Kokse ausgewählt werden.
Erfindungsgemäß können die an den Fließgrenzen oder in den von den Fließgrenzen umschlossenen Bereichen angehäuften Additive, an den Fließgrenzen angehäuft sein, oder in die von den Fließgrenzen umschlossenen Bereichen eingebettet sein oder sowohl an den Fließgrenzen angehäuft sein und in die die von Fließgren- zen umschlossenen Bereiche eingebettet sein.
Zu den Additivteilchen an den Fließgrenzen zählen alle Additivteilchen, die die Fließgrenze berühren.
Unter der Anhäufung an den Fließgrenzen oder in den von den Fließgrenzen umschlossenen Bereichen wird verstanden, dass mindestens 70 Additivteilchen% an den Fließgrenzen oder in den von den Fließgrenzen umschlossenen Bereiche angeordnet sind. Bei weniger als 70 Additivteilchen% werden die Kokseigenschaften nicht beeinflusst.
Unter Additivteilchen% wird der prozentuale Anteil der Additivteilchen in einer Probe verstanden.
Bestimmt wird die Anhäufung der Additivteilchen durch Lichtmikroskopie bzw.
Rasterelektronenmikroskopie mit angeschlossenem EDX (energiedispersive Rönt- genspektroskopie). Vorteilhafterweise werden die Additive aus der Gruppe bestehend aus Acetylenkoks, Fluid-Koks, Flexi-Koks, Shot-Kokse, Carbon Black, nicht-graphitierbare Kohlenstoffe (Chars), nicht-graphitischem Anthrazit, Siliziumcarbid, Titancarbid, Titandiborid oder Mischungen davon, ausgewählt.
Bei Acetylenkoks handelt es sich um einen Koks, welcher bei der Herstellung ungesättigter Kohlenwasserstoffe, insbesondere von Acetylen, als Nebenprodukt anfällt und nachfolgend, unabhängig von der Art des ungesättigten Kohlenwasserstoffs, bei deren Herstellung er anfällt, als Acetylenkoks bezeichnet wird. Acetylenkoks weist eine feinkörnige und zwiebelschalenartige Struktur auf.
Unter nicht-graphitischem Anthrazit wird gemäß dieser Erfindung ein Anthrazit verstanden, der durch eine Temperaturbehandlung von unter 2000 °C erhalten wird.
Unter Fluid-Koks wird im Rahmen dieser Erfindung das Verkokungsprodukt von hochsiedenden Kohlenwasserstoff-Fraktionen (schwere Rückstände aus der Mineralöl- oder Kohlenverarbeitung hergestellt nach dem Fluid-Koker-Prozess, verstanden. Fluid-Koks weist eine isotrope Struktur auf. Der Massenanteil der entfernbaren flüchtigen Bestandteile beträgt 6 %. Unter Flexi-Koks, wird im Rahmen dieser Erfindung ein Koks verstanden, welcher im Wirbelschichtverfahren hergestellt wird, wie beispielsweise bei dem von Exxon Mobile entwickelten Flexi-Coking-Verfahren, einem thermischen Crackverfahren unter Verwendung von Wirbelschichtreaktoren. Mit diesem Verfahren werden Kokspartikel mit kugelförmiger bis ellipsoidförmiger Gestalt erhalten, welcher zwiebelschalenartig aufgebaut ist.
Unter Shot-Koks wird im Rahmen dieser Erfindung ein Koks verstanden, welcher durch verzögertes Koksbilden ("delayed coking") hergestellt wird. Die Partikel dieses Koks weisen eine sphärische Morphologie auf.
Unter Carbon Black wird ein industriell hergestellter feinteiliger Kohlenstoff, bestehend aus kugelförmigen Primärteilchen verstanden. Bei Chars handelt es sich um nicht-graphitierbare, feste Produkte, die beim Verkoh- lungsprozess von natürlichen oder synthetischen organischem Material entstehen (Polymerie Carbons von Gwyn Morgan Jenkins, Kiyoshi Kawamura, 1967,„Coals of lowest rank (lignite) are said to possess a Polymerie strueture [...]. On pyrolysis, coals of low rank form isotropic chars (Polymerie carbon), bituminous coals produce textured crystalline cokes, while anthracites, although not coking in the normal sense, eventually yield graphites at sufficiently high temperatures").
Die Additive können auch nach einer weiteren vorteilhaften Ausführungsform erst durch eine "in-situ-Bildung" bei der Graphitierung der aus dem Koks hergestellten Kohlenstoffprodukte gebildet werden. Hierzu enthält der Koks B2O3 oder B C und ΤΊΟ2 als Precursoren. Die in-situ-Bildung der von Titandiborid bei der Graphitierung der aus dem Koks hergestellten Kohlenstoffprodukte hat den Vorteil, dass die gebildeten Additive homogen verteilt sind. Dies hat beispielsweise bei Kathodenblöcken den Vorteil, dass die Benetzbarkeit verbessert wird und somit auch die Lebensdauer erhöht wird. Zudem kann auf aufwendige Mischprozesse zur Herstellung einer homogenen Koks-Titandiborid- Mischung verzichtet werden. Die„in-situ-Bildung" von Titandiborid hat den Vorteil, dass auf aufwendige und teurere Herstellungsverfahren von Titandiborid verzichtet werden kann.
Im Rahmen der Erfindung wird es bevorzugt, dass die Additive einen Durchmesser von 0,1 bis 49 μιτι, besonders bevorzugt von 1 bis 3 μιτι aufweisen. Bestimmt werden die in diesen Bereich fallenden Durchmesser mit der Laserlichtbeugung (ISO 13320-2009).
Bei einem Additivdurchmesser von 0,1 bis 49 μιτι wird die Mesophasenbildung bei der Umsetzung des dem Delayed Coker zugeführten Zulaufmaterials in dem Maße gestört, so dass ein Koks erhalten wird, der gänzlich andere Eigenschaften aufweist, als ein Koks bei dem die Mesophasenbildung nicht gestört wird. Diese Eigenschaften betreffen die Kokshärte, die erreichbare Materialfestigkeit, thermische und elek- irische Leitfähigkeit, die Wärmeausdehnung, sowie die Isotropie dieser Eigenschaften. Eine weitere Eigenschaft, die beeinflusst werden kann, ist die Benetzbarkeit der Oberfläche; beispielsweise ist es bei einer„Drained Cell" gewünscht, dass die Benetzbarkeit mit schmelzflüssigem Aluminium erhöht wird, wohngegen bei einem Metallschmelztiegel die Benetzbarkeit erniedrigt werden soll. Das Ausmaß der Benetzbarkeit kann maßgeschneidert werden. Der Wärmeausdehungskoeffizient (coefficient of thermal expansion, CTE) wird durch die Zugabe der Additive je nach Menge und Größe der Additive um das 10 fache erhöht.
Der CTE ist ein Kennwert für die Wärmeausdehnung und beschreibt das Verhalten eines Stoffes bezüglich der Veränderungen seiner Abmessungen bei Temperaturveränderungen. Gemessen wird der CTE nach DIN 51909 (2009-05). Zudem weist ein durch Mesophasenbildungsstörung erhaltener Koks eine größere Härte von bis zum 2-3 fachen eines ohne Additive hergestellten Kokses auf.
Die Härte eines Kokses wird durch den sogenannten Hardgrove-Index (HGI) beschrieben und nach der DIN51742 (2001 -07) bestimmt.
Erfindungsgemäß beträgt der Anteil an Additiven im Koks 0,5 bis 8 Gew.-%, bevorzugt 1 bis 4 Gew.-%. Bei einem Additivanteil von größer als 8 Gew.-% ist keine wei- tere Steigerung der Härte des Kokses mehr vorhanden. Bei kleiner als 0,5 Gew.-% haben die Additive keinen Einfluss auf die Störung der Mesophasenbildung.
Wenn der Koks beispielsweise aus Kokspartikeln und Additiven besteht, und der Anteil an Additiven 4 Gew.-% beträgt, dann beträgt der Anteil an Kokspartikeln 96 Gew.-%.
Nach einer weiteren vorteilhaften Ausführungsform weisen die Additive einen Durchmesser von 0,05 mm bis 5 mm, bevorzugt 1 bis 3 mm auf. Die Durchmesser in diesem Bereich werden mit der Siebanalyse (DIN I 66165-2016; Verfahren F) bestimmt. Bei diesen Durchmessern der Additive wird eine Einbettung in die von den Fließgrenzen umschlossenen Bereiche erreicht. Bei einem kleineren Durchmesser als 0,05 mm wird wie oben beschrieben die Mesophasenbildung gestört und es erfolgt eine Anhäufung der Additive an den Fließgrenzen. Bei einem Durchmesser größer als 5 mm erfolgt keine Einbettung in die von den Fließgrenzen umschlossenen Bereiche, da der Durchmesser der Additive größer ist als der Durchmesser der von den Fließgrenzen umschlossenen Bereiche. Verwendung finden diese Mischungen bei der Herstellung von polygranulareren Kohlenstoff- und Graphitmaterialein. Die Einbettung der Additive in die von den Fließgrenzen umschlossenen Bereiche bedingt eine Erhöhung des CTE in Abhängigkeit von der Art, Größe und Menge der Additive um das 2 bis 3 fache. Ebenso wird die Härte des resultierenden Kokses um das 2 bis 3 fache erhöht. Durch die Additive kann ein in den Eigenschaften maßge- schneiderter Koks hergestellt werden. Dies bedingt eine höhere Härte und einen höheren CTE, wodurch die aus dem Koks hergestellten Produkte eine längere Lebensdauer aufweisen.
Erfindungsgemäß beträgt der Anteil an Additiven 1 bis 40 Gew.-%, bevorzugt 5 bis 20 Gew.-%. Bei einem Anteil von Additiven von größer als 20 Gew.-% kann durch die Einbettung der Additive in die von den Fließgrenzen umschlossenen Bereiche keine weitere Steigerung der Härte mehr erreicht werden. Bei weniger als 1 Gew.-% Additive haben die eingelagerten Additive keinen Einfluss auf die Eigenschaften des Kokses.
Wenn der Koks beispielsweise aus Koks und Additiven besteht, und der Anteil der Additive 20 Gew.-% beträgt, dann beträgt der Anteil an Koks 80 Gew.-%.
Nach einer weiteren vorteilhaften Ausführungsform wird bevorzugt, dass die Additive als eine Mischung aus Additiven mit einem Durchmesser von 0,1 μιτι bis 49 μιτι und einem Durchmesser von 0,05 mm bis 5 mm vorliegen.
Durch die Verwendung einer Mischung von Additiv mit unterschiedlichen Durchmessern kann der Koks im Hinblick auf die Eigenschaften die Kokshärte, die erreichbare Materialfestigkeit, thermische und elektrische Leitfähigkeit, die Wärmeausdehnung, sowie die Isotropie dieser Eigenschaften noch flexibler als bei der Verwendung von Additiven mit einem Durchmesser maßgeschneidert werden. Die daraus hergestellten Kohlenstoffprodukte weisen dadurch bedingt eine längere Lebensdauer auf. Additive mit einem Durchmesser von 0,05 mm bis 5 mm werden in die von den Fließgrenzen umschlossenen Bereiche eingebettet. Wohingegen durch Additive der Mischung, die einen kleineren Durchmesser als 0,05 mm aufweisen, wird wie oben beschrieben, die Mesophasenbildung gestört und es erfolgt eine Anhäufung der Additive an den Fließgrenzen. Bei einem Durchmesser größer als 5 mm erfolgt keine Einbettung in die von den Fließgrenzen umschlossenen Bereiche, da die Additive größer als der Durchmesser der von den Fließgrenzen umschlossenen Bereiche sind. Die Mischung der Additive unterschiedlicher Durchmesser bedingt also je nach Größe sowohl eine Einbettung in die von den Fließgrenzen umschlossenen Bereiche als auch einer Anhäufung an den Fließgrenzen. Erfindungsgemäß beträgt der Anteil der Mischung der Additive mit einem Durchmesser von 0,1 μιτι bis 49 μιτι 0,5 bis 8 Gew.-%, bevorzugt 2 Gew.-% und mit einem Durchmesser von 0,05 mm bis 5 mm 5 bis 20 Gew.-%, bevorzugt 10 Gew.-%.
Wird der Anteil der Additive mit einem Durchmesser von 0,1 μιτι bis 49 μιτι größer als 8 Gew.-%, und mit einem Durchmesser von 0,05 mm bis 5 mm größer als 20 Gew.- %, dann treten die Kokseigenschaften wie Festigkeit, thermische und elektrische Leitfähigkeit und die thermische Ausdehnung in den Hintergrund und die Additiveigenschaften beginnen zu dominieren. Bei einem Anteil der Additive mit einem
Durchmesser von 0,1 μιτι bis 49 μιτι kleiner als 2 Gew.-%, und mit einem Durch- messer von 0,05 mm bis 5 mm kleiner als 5 Gew.-%, haben die Additive keinen Ein- fluss auf die Eigenschaften des erhaltenen Kokses.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines zuvor beschriebenen Kokses für Hochofensteine, Graphitelektroden für die Stahlherstel- lung, Graphitkörper zur Verbindung von Graphitelektroden, Kathodenblöcke für die Aluminiumherstellung, Nuklearanwendungen, den Apparatebau für Prozesstechniken im Bereich stark korrosiver Medien, Rohrbündelwärmetauscher, Spezial- graphite für beispielsweise die Silizium-Herstellung, die Solar Wafer Herstellung, Elektroden für das Funkenerodieren und Heizelemente, Gleitringdichtungen, Gra- phitlager, Graphitpumpenlaufräder oder Graphitschmelztiegel, bevorzugt für Hochofensteine, für Graphitelektroden für die Stahlherstellung oder für Kathodenblöcke für die Aluminiumherstellung. Durch die Verwendung von diesen neuartigem Koks können neue Kathodenblöcke gemäß dem Drained Cell Konzept hergestellt werden, welche zu einer Energieeinsparung bei der Aluminiumherstellung führen.
Grundsätzlich jedoch in allen Anwendungen von Kohlenstoff- und Graphitmaterialien wo Isotropie, Abrasionsbeständigkeit, chemische Beständigkeit, Bruchzähigkeit und Benetzbarkeit im Vordergrund stehen. Weitere Merkmale und Vorteile der Erfindung werden nun unter Bezugnahme auf die nachfolgenden Figuren erläutert, ohne diese auf sie einzuschränken. Es zeigt:
Figur 1 eine schematische Darstellung eines Ausschnitts aus einem Koks mit
Anhäufung von Additiven an den Fließgrenzen.
Figur 2 eine schematische Darstellung eines Ausschnitts aus einem Koks mit
Anhäufung von Additiven in den von den Fließgrenzen
umschlossenen Bereichen.
Figur 3 eine schematische Darstellung eines Ausschnitts aus einem Koks mit
Anhäufung von Additiven an den Fließgrenzen und in den von den
Fließgrenzen umschlossenen Bereichen.
Figur 1 zeigt eine schematische Darstellung eines Ausschnitts aus einem Koks mit einer Anhäufung von Additiven (1 ) an den Fließgrenzen (2). Die Additive (1 ) weisen einen Durchmesser auf, der aus dem Bereich 0,1 m bis 49 μιτι ausgewählt wird.
Figur 2 zeigt eine schematische Darstellung eines Ausschnitts aus einem Koks mit einer Anhäufung von Additiven (3) in den von den Fließgrenzen umschlossenen Bereichen (4). Die Additive (3) weisen einen Durchmesser auf, der aus dem Bereich 0,05 mm bis 5 mm ausgewählt wird.
Figur 3 zeigt eine schematische Darstellung eines Ausschnitts aus einem Koks mit Anhäufung von Additiven (1 ) an den Fließgrenzen (2) und in den von den Fließgrenzen umschlossenen Bereichen (4). Die Additive (1) weisen einen Durchmesser auf, der aus dem Bereich 0,1 μιτι bis 49 μιτι ausgewählt wird. Die Additive (3) weisen einen Durchmesser auf, der aus dem Bereich 0,05 mm bis 5 mm ausgewählt wird. Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen erläutert, wobei die Ausführungsbeispiele keine Einschränkung der Erfindung darstellen. Ausführungsbeispiel 1
Zur homogenen Verteilung der späteren Reaktionskomponenten im Koksmaterial werden ΤΊΟ2 und B2O3 mit jeweils einem Partikeldurchmesser von 1 -3 μιτι in dem stöchiometrischen Verhältnis 1 :1 dem Delayed Coker während der Befüllung szeit von 12 Stunden kontinuierlich zudosiert. Die Zudosierung kann durch staubförmiges Einblasen mit einem Inertgas (Stickstoff) erfolgen oder auch verteilt in einem Slurry bestehend aus den Reaktionskomponenten und einem Teilstrom des Kokerzulaufes ( Vaccuum Resid, Pytar, Decant Oil oder Steinkohlenteerdestillate) erfolgen. Die Konzentration der Reaktionskomponenten richtet sich nach den gewünschten TiB2 Konzentrationen im Endprodukt. Im vorliegenden Beispiel wurde ein Slurry mit den anteiligen Gew.-% wie folgt zudosiert:
Slurry (Vakuum-Rückstand) = 84,3 Gew.-%, TiO28,4 Gew.-%, B2O37,3 Gew.% Daraus resultiert der gewünschte Koks mit folgenden Anteilen: Koks = 61 ,6 Gew.-%, ΤΊΟ2 = 20,5 Gew.-% und B2O3 = 17,9 Gew.-%. Daraus resultiert eine nach der Grünfertigung , dem Brennen und der thermischen Endbehandlung oberhalb von 2200 °C ein synthetischer Graphitkörper mit einem fein verteilten TiB2-Anteil von 25,5 Gew.-%.
Es liegen 70 Additivteilchen% an den Fließgrenzen vor.
In diesem Ausführungsbeispiel können je nach Additivdurchmesser die Additive an den Fließgrenzen oder in den von den Fließgrenzen umschlossenen Bereichen angehäuft sein. Beispielsweise kann das Benetzungsverhalten von Kathodenblöcken gegenüber Aluminiumschmelzen verbessert werden. Durch die Steuerung des Additivanteils kann das Benetzungsverhalten maßgeschneidert werden. Ausführungsbeispiel 2
Ein gas-kalzinierter Anthrazit wurde auf einer Prallmühle auf einen Durchmesser von ca. 3 μιτι gemahlen und daraus mittels Siebung eine Kornfraktion von 1 -3 μιτι herge- stellt. Diese wurde mit 10 Gew.-% in einem Ethylen Tar dispergiert. Diese Dispersion wurde mit einer Temperatur von 490 °C in einen Delayed Coker eingebracht. Der Verkokungsdruck betrug 6,6 bar bei einer Verkokungszeit von 10 Stunden. Der grüne Petrolkoks wurde bei 1300 °C calciniert. Das Resultat ist ein isotroper Petrol- koks mit einem CTE von 4,5 10"6 K"1 und einem Aschegehalt von 0,09 %, wobei der Borgehalt bei 0,2 ppm lag. Dieser Koks eignet sich für hochreine Isographite und Reaktorgraphit in Kernkraftwerken.
In diesem Ausführungsbeispiel sind die Additive mit 70 Additivteilchen% an den Fließgrenzen angehäuft.
Ausführungsbeispiel 3
Ein petrolbasierender Vakuumrückstand wird mit 460 °C einem Delayed Coker zugeführt. Der Verkokungsdruck betrug 5,0 bar und einer Verkokungszeit von 8 Stun- den. Während des gesamten Verkokungszeitraumes wurden 10 % des Kokerzulaufes als eine Dispersion aus Vakuumrückstand und 10 Gew.- % Acetylenkoks mit einem Durchmesser von 0,4 bis 0,8 mm am Kopf der Kokstrommel zugegeben. Nach der Kalzinierung des grünen Kokses ergibt sich ein Petrolkoks mit einem eingebetteten Anteil von 4 Gew.-% Acetylenkoks. Der Koks- CTE betrug 3,5 10"6 K~1. Die mechanische Abrasionsbeständigkeit war um 6 % erhöht gegenüber einem vergleichbaren Koks ohne Acetylenkokseinlagerungen. Die Additive in diesem Ausführungsbeispiel sind in den von den von den Fließgrenzen umschlossenen Bereichen mit 70 Additivteilchen% angehäuft.
Der Einsatz dieses Kokses in einer graphitierten Kathode in der Aluminium- Schmelzflusselektolyse würde einer Lebensdauerverlängerung um 1 -2 Jahre gleichkommen.
Bezugszeichenliste 1 Additiv mit einem Durchmesser aus dem Bereich 0,1 μιτι bis 49 μιτι
2 Fließgrenze
3 Additiv mit einem Durchmesser aus dem Bereich 0,05 mm bis 5 mm
4 Von den von den Fließgrenzen umschlossener Bereichen

Claims

Ansprüche
1 . Koks umfassend Additive, dadurch gekennzeichnet, dass an den Fließgrenzen oder in den von den Fließgrenzen umschlossenen Bereichen Additive angehäuft sind.
2. Koks nach Anspruch 1 dadurch gekennzeichnet, dass der Koks aus der
Gruppe bestehend aus Petrolkoks, Steinkohlenteerpechkoks oder aus den Rückständen der Kohlevergasung, Kohlehydrierung oder auch der Fischer- Tropsch-Synthese erhaltenen Kokse oder aus einer durch die Mischung von Petrol- und Steinkohlenteerpechrückständen erhaltene Petrol/Steinkohlen- teerpechkoks-Mischung oder einer beliebigen Mischung der genannten Kokse ausgewählt werden.
3. Koks nach Anspruch 1 , dadurch gekennzeichnet, dass die Additive an den Fließgrenzen angehäuft sind oder in die von den Fließgrenzen umschlossenen Bereiche eingebettet sind oder sowohl an den Fließgrenzen angehäuft und in die von den Fließgrenzen umschlossenen Bereiche eingebettet sind.
4. Koks nach Anspruch 3, dadurch gekennzeichnet, dass die Additive aus der Gruppe bestehend aus Acetylenkoks, Fluid-Koks, Flexi-Koks, Shot-Kokse, Carbon Black, nicht-graphitierbare Kohlenstoffe (Chars), nicht-graphitischem Anthrazit, Siliziumcarbid, Titancarbid, Titandiborid, oder Mischungen ausgewählt werden.
5. Koks nach Anspruch 4, dadurch gekennzeichnet, dass die Additive einen Durchmesser von 0,1 bis 49 μιτι aufweisen.
6. Koks nach Anspruch 4, dadurch gekennzeichnet, dass die Additive einen Durchmesser von 0,05 mm bis 5 mm aufweisen.
7. Koks nach Anspruch 4, dadurch gekennzeichnet, dass die Additive als eine Mischung aus Additiven mit einem Durchmesser von 0,1 μιτι bis 49 μιτι und einem Durchmesser von 0,05 mm bis 5 mm vorliegen.
8. Koks nach Anspruch 5 dadurch gekennzeichnet, dass der Anteil an Additiven 0,5 bis 8 Gew.-% beträgt.
9. Koks nach Anspruch 6 dadurch gekennzeichnet, dass der Anteil an Additiven 1 bis 40 Gew.-% beträgt.
10. Koks nach Anspruch 7, dadurch gekennzeichnet, dass der Anteil der Mischung der Additive mit einem Durchmesser von 0,1 μιτι bis 49 μιτι 0,5 bis 8 Gew.-% und mit einem Durchmesser von 0,05 mm bis 5 mm 5 bis 20 Gew.-% beträgt.
1 1 . Verwendung des Koks nach zumindest einem der vorangegangenen Ansprüche für Hochofensteine, Graphitelektroden für die Stahlherstellung, Graphitkörper zur Verbindung von Graphitelektroden, Kathodenblöcke für die Aluminiumherstellung, Nuklearanwendungen, den Apparatebau für Prozesstechniken im Bereich stark korrosiver Medien, Rohrbündelwärmetauscher, Spe- zialgraphite für beispielsweise die Silizium-Herstellung, die Solar Wafer Herstellung, Elektroden für das Funkenerodieren und Heizelemente, Gleitringdichtungen, Graphitlager, Graphitpumpenlaufräder oder Graphitschmelztiegel.
PCT/EP2017/051882 2016-01-29 2017-01-30 Neuartiger koks mit additiven WO2017129808A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3012407A CA3012407C (en) 2016-01-29 2017-01-30 Novel coke with additives
JP2018539434A JP6758390B2 (ja) 2016-01-29 2017-01-30 添加物を備える新規コークス
EP17705034.1A EP3408355A1 (de) 2016-01-29 2017-01-30 Neuartiger koks mit additiven
RU2018130987A RU2716791C2 (ru) 2016-01-29 2017-01-30 Кокс нового типа с добавками
CN201780008743.5A CN109072087B (zh) 2016-01-29 2017-01-30 具有添加剂的新型焦炭
US16/072,283 US11434428B2 (en) 2016-01-29 2017-01-30 Coke with additives
UAA201808970A UA124625C2 (uk) 2016-01-29 2017-01-30 Кокс нового типу з домішками

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016201429.3A DE102016201429A1 (de) 2016-01-29 2016-01-29 Neuartiger Koks mit Additiven
DE102016201429.3 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017129808A1 true WO2017129808A1 (de) 2017-08-03

Family

ID=58044021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/051882 WO2017129808A1 (de) 2016-01-29 2017-01-30 Neuartiger koks mit additiven

Country Status (9)

Country Link
US (1) US11434428B2 (de)
EP (1) EP3408355A1 (de)
JP (1) JP6758390B2 (de)
CN (1) CN109072087B (de)
CA (1) CA3012407C (de)
DE (1) DE102016201429A1 (de)
RU (1) RU2716791C2 (de)
UA (1) UA124625C2 (de)
WO (1) WO2017129808A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016186A1 (en) * 2018-07-19 2020-01-23 Basf Se Blend composition comprising petroleum coke and pyrolytic carbon for electrodes
SG11202112213TA (en) * 2019-05-09 2021-12-30 Arq Ip Ltd Processes for utilisation of purified coal to upgrade refinery process components in the manufacture of petroleum coke
WO2022056189A1 (en) * 2020-09-11 2022-03-17 Arq Ip Limited Methods for the production of increased anisotropic coke
CN113088311B (zh) * 2021-03-29 2024-04-19 临沂锦盛坤工贸有限公司 一种电解铝行业废阴极炭块的重利用方法及成焦剂
CN116444274B (zh) * 2023-03-21 2024-04-16 湖南大学 一种超细结构各向同性石墨材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US726284A (en) 1901-11-05 1903-04-28 John W Hamilton Baling-press.
DE2517814A1 (de) * 1974-07-02 1976-01-22 Continental Oil Co Verfahren zur herstellung von petrolkoks nach dem delayed coking- verfahren
US5174891A (en) * 1991-10-29 1992-12-29 Conoco Inc. Method for producing isotropic coke
US6024863A (en) * 1998-08-17 2000-02-15 Mobil Oil Corporation Metal passivation for anode grade petroleum coke
US6258224B1 (en) 1998-12-16 2001-07-10 Alcan International Limited Multi-layer cathode structures
US6428885B1 (en) 1997-04-08 2002-08-06 Aventis Research & Technologies Gmbh & Co Kg Substrate body with a protective coating
WO2004104139A1 (en) * 2003-05-16 2004-12-02 Exxonmobil Research And Engineering Company Delayed coking process for producing free-flowing shot coke
CN101158048A (zh) 2007-08-03 2008-04-09 中国铝业股份有限公司 一种铝电解槽用石墨化可湿润阴极炭块及其生产方法
DE102010029538A1 (de) 2010-05-31 2011-12-01 Sgl Carbon Se Kohlenstoffkörper, Verfahren zur Herstellung eines Kohlenstoffkörpers und seine Verwendung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082650A (en) * 1975-11-28 1978-04-04 Continental Oil Company Manufacture of petroleum coke with fines recycling
US4366048A (en) * 1981-07-09 1982-12-28 Exxon Research And Engineering Co. Fluid coking with the addition of solids
JPH0269308A (ja) 1988-09-02 1990-03-08 Nippon Steel Corp 生ピッチコークス及び等方性高密度炭素材料の製造方法
JP3751020B2 (ja) * 1994-04-07 2006-03-01 新日鐵化学株式会社 黒鉛電極用ニードルコークス及びその製造方法
JP4107038B2 (ja) 2002-10-07 2008-06-25 三菱化学株式会社 仮焼コークスの製造方法
US7658838B2 (en) * 2003-05-16 2010-02-09 Exxonmobil Research And Engineering Company Delayed coking process for producing free-flowing coke using polymeric additives
JP2004131739A (ja) * 2003-12-15 2004-04-30 Jfe Steel Kk コークスの製造方法
US7276284B2 (en) 2003-12-18 2007-10-02 Sgl-Carbon Ag Carbon fiber reinforced coke from the delayed coker
US20050254545A1 (en) * 2004-05-12 2005-11-17 Sgl Carbon Ag Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes
DE102013217882A1 (de) 2013-09-06 2015-03-12 Sgl Carbon Se Elektrodensubstrat aus Kohlenstofffasern
RU2560442C2 (ru) * 2013-11-18 2015-08-20 Государственное унитарное предприятие "Институт нефтехимпереработки Республики Башкортостан" (ГУП "ИНХП РБ") Способ получения коксующей добавки замедленным коксованием
CN104610993A (zh) * 2015-02-09 2015-05-13 马新攀 一种改焦炭性能的炼焦添加剂和炼焦方法
CN105199765A (zh) * 2015-09-14 2015-12-30 镇江华立煤质制样设备有限公司 一种炼焦添加剂

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US726284A (en) 1901-11-05 1903-04-28 John W Hamilton Baling-press.
DE2517814A1 (de) * 1974-07-02 1976-01-22 Continental Oil Co Verfahren zur herstellung von petrolkoks nach dem delayed coking- verfahren
US5174891A (en) * 1991-10-29 1992-12-29 Conoco Inc. Method for producing isotropic coke
US6428885B1 (en) 1997-04-08 2002-08-06 Aventis Research & Technologies Gmbh & Co Kg Substrate body with a protective coating
US6024863A (en) * 1998-08-17 2000-02-15 Mobil Oil Corporation Metal passivation for anode grade petroleum coke
US6258224B1 (en) 1998-12-16 2001-07-10 Alcan International Limited Multi-layer cathode structures
WO2004104139A1 (en) * 2003-05-16 2004-12-02 Exxonmobil Research And Engineering Company Delayed coking process for producing free-flowing shot coke
CN101158048A (zh) 2007-08-03 2008-04-09 中国铝业股份有限公司 一种铝电解槽用石墨化可湿润阴极炭块及其生产方法
DE102010029538A1 (de) 2010-05-31 2011-12-01 Sgl Carbon Se Kohlenstoffkörper, Verfahren zur Herstellung eines Kohlenstoffkörpers und seine Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GWYN MORGAN JENKINS; KIYOSHI KAWAMURA: "Coals of lowest rank (lignite) are said to possess a polymeric structure [...]. On pyrolysis, coals of low rank form isotropic chars (polymeric carbon), bituminous coals produce textured crystalline cokes, while anthracites, although not coking in the normal sense, eventually yield graphites...", POLYMERIC CARBONS, 1967

Also Published As

Publication number Publication date
CN109072087B (zh) 2022-07-12
UA124625C2 (uk) 2021-10-20
JP6758390B2 (ja) 2020-09-23
RU2716791C2 (ru) 2020-03-16
RU2018130987A (ru) 2020-03-02
DE102016201429A1 (de) 2017-08-03
CA3012407A1 (en) 2017-08-03
JP2019504914A (ja) 2019-02-21
US11434428B2 (en) 2022-09-06
CN109072087A (zh) 2018-12-21
EP3408355A1 (de) 2018-12-05
CA3012407C (en) 2020-11-03
US20190031961A1 (en) 2019-01-31
RU2018130987A3 (de) 2020-03-02

Similar Documents

Publication Publication Date Title
EP3408355A1 (de) Neuartiger koks mit additiven
EP2576870B1 (de) Kohlenstoffkörper, verfahren zur herstellung eines kohlenstoffkörpers und seine verwendung
NO821537L (no) Titandiborid-grafitt-kompositter
WO2017080661A1 (de) Neues verfahren zur herstellung von graphitkörpern
DE3034359A1 (en) Process for producing high-density,high-strength carbon and graphite material
US2998375A (en) Electrode of carbon material from bituminous coal and method of making the same
EP3408225B1 (de) Katalytisch wirksame additive für petrolstaemmige oder kohlestaemmige kokse
DE3630986C2 (de) Verfahren zur Herstellung von hochreinem Koks
DE1471139A1 (de) Koksgemisch und Verfahren zu dessen Herstellung
DE102010038669A1 (de) Kathodenblock für eine Aluminium-Elektrolysezelle und ein Verfahren zu seiner Herstellung
EP2673396A2 (de) Graphitierter kathodenblock mit einer abrasionsbeständigen oberfläche
EP2673401A2 (de) Oberflächenprofilierter graphit-kathodenblock mit einer abrasionsbeständigen oberfläche
WO2017080662A1 (de) Neue verfahren zur herstellung von polygranularen graphitkörpern
EP2809833B1 (de) Verfahren zur herstellung eines kathodenblocks für eine aluminium-elektrolysezelle
EP2956573A1 (de) Kathodenblock mit einer benetzbaren und abrasionsbeständigen oberfläche
DE102010038665A1 (de) Verfahren zum Herstellen eines Kathodenblocks für eine Aluminium-Elektrolysezelle und einen Kathodenblock
EP2598673A1 (de) Verfahren zur herstellung eines kathodenblocks für eine aluminium-elektrolysezelle und einen kathodenblock
AT222378B (de) Verfahren zur Herstellung von Kohleelektroden
DE1256138B (de) Verfahren zur Herstellung von karbidhaltigen Kunstkohleformkoerpern
EP3272187A1 (de) Elektrodenmasse
CH380958A (de) Verfahren zur Herstellung von Kohleelektroden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17705034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3012407

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018539434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201808970

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2017705034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017705034

Country of ref document: EP

Effective date: 20180829