US20050254545A1 - Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes - Google Patents

Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes Download PDF

Info

Publication number
US20050254545A1
US20050254545A1 US11/123,768 US12376805A US2005254545A1 US 20050254545 A1 US20050254545 A1 US 20050254545A1 US 12376805 A US12376805 A US 12376805A US 2005254545 A1 US2005254545 A1 US 2005254545A1
Authority
US
United States
Prior art keywords
electrode
graphite
coke
electrodes
graphite electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/123,768
Inventor
Johann Daimer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Priority to US11/123,768 priority Critical patent/US20050254545A1/en
Publication of US20050254545A1 publication Critical patent/US20050254545A1/en
Priority to US12/206,356 priority patent/US7794519B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained by impregnation of carbon products with a carbonisable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • H05B7/09Self-baking electrodes, e.g. Söderberg type electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to graphite electrodes for electrothermic reduction furnaces, in particular for the production of aluminum, titanium, silicon, ferroalloys, phosphorous.
  • the invention also pertains to a method of producing such graphite electrodes.
  • Reaction (2) takes place at temperatures between 1900 and 2000° C.
  • the actual aluminum producing reaction (3) takes place at temperatures of 2200° C. and above; the reaction rate increases with increasing temperature.
  • volatile Al species including Al 2 O are formed in reactions (2) and (3) and are carried away with the off gas. Unless recovered, these volatile species represent a loss in the yield of aluminum. Both reactions (2) and (3) are endothermic.
  • reaction (2) is substantially confined to a low-temperature compartment.
  • the molten bath of Al 4 C 3 and Al 2 O 3 flows under an underflow partition wall into a high-temperature compartment, where reaction (3) takes-place.
  • the thus generated aluminum forms a layer on the top of a molten slag layer and is tapped from the high-temperature compartment.
  • the off-gases from the low-temperature compartment and from the high-temperature compartment, which contain Al vapor and volatile Al 2 O are reacted in a separate vapor recovery units to form Al 4 C 3 , which is re-injected into the low-temperature compartment.
  • the energy necessary to maintain the temperature in the low-temperature compartment can be provided by way of high intensity resistance heating such as through graphite electrodes submerged into the molten bath.
  • the energy necessary to maintain the temperature in the high-temperature compartment can be provided by a plurality of pairs of electrodes substantially horizontally arranged in the sidewalls of that compartment of the reaction vessel.
  • Self-baking carbon electrodes basically consist of a pasty mixture of carbon-containing material such as anthracite, coke, tar, and pitch, which is filled into a metal casing held in position within an electric arc furnace by way of contact shoes and a suspension/sliding device.
  • the application of high electric currents plus the heat of the arc struck by the electrode during the furnace operation develops sufficient heat to melt the material filled into the casing and form a paste, then cokify the so-formed paste, and finally bale the electrode.
  • the electrode is lowered stepwise, a new casing sheet is joined to the upper part, the casing is filled with the mixture, and the middle section is baked.
  • the electrode may be partly baked at a low temperature of about 600° to 700° C.
  • the lower part of the steel casing dissolves in the bath of molten metal, thus injecting iron into the bath.
  • several solutions have been proposed, which all consist of mechanically detaching the electrode and the steel casing so that the electrode can be caused to slide without the steel casing.
  • U.S. Pat. No. 6,635,198 (Vatland et al.) describes a method for the continuous production of self-baking composite electrodes utilizing sectioned metallic casings. Each new section of casing is mounted upon the section of casing below without applying welding or other means to rigidly affix the section to each other. As the sections of casing are not rigidly affixed to each other by welding or the like, it is easy to remove the casing after the electrode has been baked.
  • a graphite electrode for an electrothermic reduction furnace comprising a shaped graphite electrode body formed from anode grade coke, graphitized at a graphitization temperature below 2700° C., and having an iron content of less than 0.1% by weight, and preferably about 0.05% by weight.
  • the electrode has a specific electrical resistivity of above 5 pOhm ⁇ m and a thermal conductivity of less than 150 W/m ⁇ K.
  • the graphite electrode is particularly suited for an electrothermic reduction furnace for producing aluminum, titanium, silicon, ferroalloys, or phosphorous. Specific emphasis is placed on the direct carbothermal reduction of alumina.
  • an amount of carbon nanofibers and/or carbon fibers is incorporated in the electrode body for increasing a mechanical strength and adjusting a coefficient of thermal expansion thereof.
  • the anode grade coke has a mean particle size of approximately 5 to 10 mm, and preferably between 5 and 7 mm.
  • An intermediate product in the production of the graphite electrode comprising particles of anode grade coke having a mean particle size of between 5 and 10 mm and an ash content of less than 0.5% mixed with a coal tar pitch binder and formed into a green electrode to be baked and graphitized to form the graphite electrode.
  • a graphite pin formed of anode grade coke, graphitized at a graphitization temperature below 2700° C., having an iron content of less than 0.1% by weight.
  • the graphite pin is formed to mate with the graphite electrode body to form an electrode column.
  • the above-summarized graphite electrode is disposed to form a central column of a self-baking composite electrode in an electrothermic reduction furnace.
  • a method of producing a graphite electrode comprises the following method steps:
  • the graphitization temperature is between 2200° C. to 2500° C. and the green electrode is bake at a temperature between 800° C. and 1000° C. It is further preferred to bake the green electrode in a relative absence of air at a heating rate of approximately 1 K to approximately 5 K per hour to the final temperature.
  • the electrode may be impregnating at least one time with coal tar or petroleum pitch after baking. This deposits additional pitch coke in open pores of the electrode. Ech impregnating step is followed with an additional baking step.
  • the green electrode may be formed by extrusion. In that case, it is advantageous to add to the mixture oils or other lubricants to aid in the extrusion throughput.
  • the green electrode may be formed by molding in a conventional forming mold or by vibromolding in an agitated mold.
  • the graphitized electrode formed in the graphitizing step is machined to provide a final form of the graphite electrode.
  • a plurality of graphite electrodes as outline are formed, one or more nipples are formed substantially in the same process sequence and such that the nipples and the electrodes can mesh, and the electrodes and a nipple are connected to form a graphite electrode column.
  • the invention provides for graphite electrodes for electrothermic reduction furnaces, in particular for the production of aluminum, titanium, silicon, ferroalloys as well as phosphorous.
  • the electrodes are produced using anode grade coke and graphitization temperatures below 2700° C.
  • the invention also provides for the utilization of graphite pins to be mated with the above-summarized graphite electrodes to form electrode columns.
  • the pins are preferably produced in the same manner as the electrodes of this invention.
  • the pins also referred to as nipples
  • the pins have the same characteristics, such as CTE and mechanical properties, as the electrodes.
  • novel electrodes lend themselves very favorably in their utilization as central columns for self-baking composite electrodes for electrothermic reduction furnaces.
  • the first step in the production of graphite electrodes comprises combining calcined coke and pitch.
  • graphite electrodes for steel production are produced using well-ordered needle cokes that are characterized by a coefficient of thermal expansion (CTE) of 0.3-1.0 ⁇ 10 4 K ⁇ 1 , anisotropy of thermal expansion of 1.8, and they possess a coarse fibrous microstructure.
  • the graphite electrodes for electrothermic reduction furnaces are produced using anode coke.
  • Anode cokes have a CTE above 1.2 ⁇ 10 6 K ⁇ 1 , an anisotropy of thermal expansion of 1.5 and a mosaic microstructure. These cokes are very pure. They have an ash content of less than 0.3%. They are readily available at a significantly lower cost than needle cokes and they are used in large quantities for the production of carbon anodes for the Hall-Heroult aluminum smelting process.
  • the crushed, sized and milled calcined anode coke is mixed with a coal-tar pitch.
  • the particle size of the calcined coke is selected according to the end use of the electrode. Generally, in graphite electrodes for use in processing steel, particles up to about 25 millimeters (mm) in average diameter are employed in the blend. For the graphite electrodes of this invention, an average particle size of 5 to 10 mm, more preferably of 5 to 7 mm, is appropriate.
  • Other ingredients that may be incorporated into the blend at low levels include carbon nanofibers or carbon fibers to provide additional mechanical strength or to adjust the CTE of the final electrode as well as oils or other lubricants to facilitate extrusion of the blend.
  • the electrode body is formed (or shaped) either by extrusion though a die or molded in conventional forming molds or vibromolded in agitated molds to form a so-called green electrode.
  • the forming step is conducted at a temperature close to the softening point of the pitch, which is usually about 100° C. or higher.
  • the die or mold can form the electrode in substantially final form and size, machining of the finished electrode is usually needed, at the very least to provide threads or other recesses, which may be required to mate with a pin or nipple to from an electrode column.
  • the circumference of the graphite electrodes of this invention may be rectangular or circular.
  • the green electrode is then baked at a temperature of between about 700° C. and about 1100° C., more preferably between about 800° C. and about 1000° C., to carbonize the pitch binder to solid coke, to give the electrode permanency of form, high mechanical strength, good thermal conductivity, and comparatively low electrical resistance.
  • the baking step is carried out in the relative absence of air at a heating rate of about 1 K to about 5 K per hour to the final temperature.
  • the electrode may be impregnated one or more times with coal tar or petroleum pitch, or other types of pitches known in the industry, to deposit additional pitch coke in any open pores of the electrode. Each impregnation is then followed by an additional baking step.
  • the electrode is only impregnated one time with such pitch.
  • the electrode referred to at this stage as a carbonized electrode—is then graphitized by heat treatment at a final temperature between 2100° C. to 2700° C., more preferably between 2200° C. to 2500° C., for a time sufficient to cause the carbon atoms in the calcined coke and pitch coke binder to transform from a poorly ordered state into the crystalline structure of graphite. Because of the purity of the anode coke, the comparably low graphitization temperatures are sufficient to reach the required final electrode ash contents. In the case of graphite electrodes for steel production, graphitization is performed at a temperature of between about 2700° C. and about 3200° C.
  • the time required for maintenance at the graphitization temperature is no more than about 12 hours, preferably about 30 min to about 3 hours.
  • Graphitization can be performed in Acheson furnaces or in lengthwise graphitization (LWG) furnaces, the latter can also be operated in a continuous mode. After graphitization is completed, the finished electrode can be cut to size and then machined or otherwise formed into its final configuration.
  • LWG lengthwise graphitization
  • the finished electrodes can be mounted in electrothermic reduction furnaces as single-piece electrodes, as electrode bundles, or they can be continuously supplied as electrode columns joined by graphite pins.
  • the electrode has typically an internal section that is axially tapered from an end to a lengthwise middle portion to receive a graphite pin, and then threads are machined into the tapered portion of the electrode, to permit mating with corresponding threads of the pin, to form the electrode column.
  • the graphite permits machining to a high degree of tolerance, thus permitting a strong connection between the pin and the electrode.
  • the graphite pins used to join electrode columns can be substantially the same pins as used for electrode columns for steel production or, more preferably, are produced in the same manner as the graphite electrodes of this invention.
  • the pins would have similar properties to the electrodes which is advantageous for preventing cracking of the electrode column due to uneven thermal expansion of electrodes and pins.
  • the pins have to resist heavier mechanical load than the electrodes.
  • the raw material mixture of the pins is somewhat altered while the processing sequence remains the same as described for the electrodes.
  • the electrodes and pins can be equipped with means to prevent loosening of the electrode column during operation, such as holes or recesses containing binder pitch or other means.
  • An additional embodiment of this invention is the utilization of graphite electrodes as described above as central columns for self-baking composite electrodes for electrothermic reduction furnaces.
  • Söderberg-type electrodes can be produced as composite electrodes consisting of a carbon or graphite electrode core column embedded in Söderberg paste.
  • Conventional graphite electrodes for steel-manufacturing typically have low open porosity at about 15% or below. Hence, the surface contact with the Söderberg paste would be limited.
  • graphite electrodes produced as described above provide an economic way to manufacture such self-baking composite electrodes for electrothermic reduction furnaces having low iron content and having an intimate surface contact between the graphite core column and the Söderberg paste.
  • a further object of this invention is to provide a process to manufacture anode grade coke-based electrodes for electrothermic reduction furnaces using a self-baking carbon electrode manufacturing sequence followed by graphitization at temperatures below 2700° C.
  • conventional self-baking electrodes comprise a vertically disposed cylindrical metal casing which extends downwardly through an opening in the roof of an electrothermic reduction furnace.
  • the upper end of the casing is open to permit the insertion of a carbonaceous paste-like material which first melts and then cures to a solid state as it passes downwardly through the casing as a result of heat which is conducted upwardly from the cured portion of the electrode extending below the lower end of the casing.
  • Such paste may be made, for example, by calcining anthracite or petroleum or asphalt cokes which is then mixed with a bonding material such as pitch or tar.
  • a self-baking carbon electrode is produced in a similar manner by using a paste composed of calcined anode grade coke and pitch. Instead of feeding the electrode directly into the electrothermic reduction furnace, it is, if necessary, detached from its metal casing and graphitized at a final temperature between 2100° C. to 2700° C., more preferably between 2200° C. to 2500° C.
  • the graphitization step can be carried out in a separate graphitization furnace, such as an Acheson furnace or an LWG furnace, or in a continuous-mode graphitization furnace which is ideally located between the self-baking unit and the electrothermic reduction furnace.
  • the electrodes prepared in accordance with the present invention offer numerous advantages over the art. For electrothermic reduction furnaces, they are an economical alternative to high-temperature graphite electrodes for steel production and, at the same time, provide a high purity alternative to Söderberg electrodes. Further, they can be manufactured using several routes which are essentially based on existing manufacturing equipment.
  • the graphite electrodes of this invention Due to the lower graphitization temperatures, the graphite electrodes of this invention (GE electrothermic ) have a higher specific electrical resistivity and lower thermal conductivity compared to those of graphite electrodes for steel production (GE steel ). This renders them suitable with regard to the requirements of the electrothermic reduction furnaces having comparably low current densities. Besides the significant cost advantage, the graphite electrodes of this invention excel in their high purity specifically with respect to their iron content. The common Söderberg electrodes can cause contamination of the electrothermic melt, especially with iron. Furthermore, their relatively poor electrical as well as thermal conductivity, a compared to graphite electrodes, also has adverse effects on the energy consumption during smelting operations.

Abstract

A graphite electrode for an electrothermic reduction furnace is formed from anode grade coke and graphitized at a graphitization temperature below 2700° C. The resulting electrode is particularly suited for carbothermal reduction of alumina. It has an iron content of about 0.05% by weight, a specific electrical resistivity of above 5 μOhm·m, and a thermal conductivity of less than 150 W/m·K. The graphite electrode is manufactured by first mixing calcined anode coke with a coal-tar pitch binder, and a green electrode is formed from the mixture at a temperature close to the softening point of the pitch binder. The green electrode is then baked to carbonize the pitch binder to solid coke. The resultant carbonized electrode, after further optional processing is then graphitized at a temperature below 2700° C. for a time sufficient to cause the carbon atoms in the carbonized electrode to organize into the crystalline structure of graphite.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit under 35 U.S.C. § 119 (e), of copending U.S. Provisional Application No. 60/570,984, filed May 12, 2004.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to graphite electrodes for electrothermic reduction furnaces, in particular for the production of aluminum, titanium, silicon, ferroalloys, phosphorous. The invention also pertains to a method of producing such graphite electrodes.
  • 2. Description of the Related Art
  • For a century the aluminum industry has relied on the Hall-Heroult process for aluminum smelting. In comparison with processes used to produce competing materials, such as steel and plastics, the process is energy-intensive and costly. Hence, alternative aluminum production processes have been sought.
  • One such alternative is the process referred to as direct carbothermic reduction of alumina. As described in U.S. Pat. No. 2,974,032 (Grunert et al.) the process, which can be summarized with the overall reaction
    Al2O3+3C=2Al+3CO   (1)
    takes place, or can be made to take place, in two steps:
    2Al2O3+9C=Al4C3+6CO   (2)
    Al4C3+Al2O3=6Al+3CO   (3).
  • Reaction (2) takes place at temperatures between 1900 and 2000° C. The actual aluminum producing reaction (3) takes place at temperatures of 2200° C. and above; the reaction rate increases with increasing temperature. In addition to the species stated in reactions (2) and (3), volatile Al species including Al2O are formed in reactions (2) and (3) and are carried away with the off gas. Unless recovered, these volatile species represent a loss in the yield of aluminum. Both reactions (2) and (3) are endothermic.
  • Various attempts have been made to develop efficient production technology for the direct carbothermic reduction of alumina (cf. Marshall Bruno, Light Metals 2003, TMS (The Minerals, Metals & Materials Society) 2003). U.S. Pat. No. 3,607,221 (Kibby) describes a process in which all products quickly vaporize to essentially only gaseous aluminum and CO, containing the vaporous mixture with a layer of liquid aluminum at a temperature sufficiently low that the vapor pressure of the liquid aluminum is less than the partial pressure of the aluminum vapor in contact with it and sufficiently high to prevent the reaction of carbon monoxide and aluminum and recovering the substantially pure aluminum.
  • Other patents relating to carbothermic reduction to produce aluminum include U.S. Pat. No. 4,486,229 (Troup et al.) and U.S. Pat. No. 4,491,472 (Stevenson et al.). Dual reaction zones are described in U.S. Pat. No. 4,099,959 (Dewing et al.). More recent efforts by Alcoa and Elkem led to a novel two-compartment reactor design as described in U.S. Pat. No. 6,440,193 (Johansen et al.).
  • In the two-compartment reactor, reaction (2) is substantially confined to a low-temperature compartment. The molten bath of Al4C3 and Al2O3 flows under an underflow partition wall into a high-temperature compartment, where reaction (3) takes-place. The thus generated aluminum forms a layer on the top of a molten slag layer and is tapped from the high-temperature compartment. The off-gases from the low-temperature compartment and from the high-temperature compartment, which contain Al vapor and volatile Al2O are reacted in a separate vapor recovery units to form Al4C3, which is re-injected into the low-temperature compartment. The energy necessary to maintain the temperature in the low-temperature compartment can be provided by way of high intensity resistance heating such as through graphite electrodes submerged into the molten bath. Similarly, the energy necessary to maintain the temperature in the high-temperature compartment can be provided by a plurality of pairs of electrodes substantially horizontally arranged in the sidewalls of that compartment of the reaction vessel.
  • With the exception of aluminum production, electrothermic reduction of various metals and also non-metals, such as titanium, silicon, ferroalloys, as well as phosphorous, are well-established industrial processes. Due to the relatively low current densities, ranging from 6 to 10 A/cm2, in many of these processes self-baking carbon electrodes (also called “Söderberg electrodes”) are being used.
  • The use of self-baking carbon electrodes has been known for a long time (see U.S. Pat. Nos. 1,440,724 and 1,441,037 to Söderberg). Self-baking carbon electrodes basically consist of a pasty mixture of carbon-containing material such as anthracite, coke, tar, and pitch, which is filled into a metal casing held in position within an electric arc furnace by way of contact shoes and a suspension/sliding device. The application of high electric currents plus the heat of the arc struck by the electrode during the furnace operation develops sufficient heat to melt the material filled into the casing and form a paste, then cokify the so-formed paste, and finally bale the electrode. In accordance with its consumption rate the electrode is lowered stepwise, a new casing sheet is joined to the upper part, the casing is filled with the mixture, and the middle section is baked. In a variation, the electrode may be partly baked at a low temperature of about 600° to 700° C. In the context of the Söderberg electrode, the lower part of the steel casing dissolves in the bath of molten metal, thus injecting iron into the bath. To avoid this contamination by iron, several solutions have been proposed, which all consist of mechanically detaching the electrode and the steel casing so that the electrode can be caused to slide without the steel casing.
  • U.S. Pat. No. 6,635,198 (Vatland et al.) describes a method for the continuous production of self-baking composite electrodes utilizing sectioned metallic casings. Each new section of casing is mounted upon the section of casing below without applying welding or other means to rigidly affix the section to each other. As the sections of casing are not rigidly affixed to each other by welding or the like, it is easy to remove the casing after the electrode has been baked.
  • Another solution is a mounting configuration as described in U.S. Pat. No. 4,575,856 (Persson) which involves supporting the weight of the electrode by means of a column formed from pre-baked carbon or graphite electrodes being enclosed by the baked paste, both the column and the paste being consumed at the same time.
  • Modern electric arc furnaces for steel production are operated at current densities in excess of 25 A/cm2 and thus require highly conductive graphite electrodes. To achieve electrical resistivities below 10 μOhm m, such graphite electrodes are produced using well-ordered needle cokes and they are graphitized at temperatures above 3000° C. The use of costly needle coke and the high electricity costs for graphitization bar such electrodes from being used in low-power electric furnaces that are used for producing non-steel materials. Furthermore, iron oxides are added to the electrode raw material mixture to inhibit puffing (caused by the release of sulfur from its bond with carbon inside the coke particles). Hence, the increased iron content can contaminate the melt and cause high electrode erosion in melt furnace atmospheres that are rich in CO, such as in the case of carbothermic reduction of alumina.
  • SUMMARY OF THE INVENTION
  • It is accordingly an object of the invention to provide a graphite electrode for electrothermic reduction furnaces, in particular for the production of aluminum, titanium, silicon, ferroalloys, and phosphorous, as well as a production method for such electrodes and electrode columns, which overcome the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which provide for graphite electrodes that do not contaminate the melt with iron, which can be used in melt furnace atmospheres that are rich in CO, and which are economical to produce.
  • With the foregoing and other objects in view there is provided, in accordance with the invention, a graphite electrode for an electrothermic reduction furnace comprising a shaped graphite electrode body formed from anode grade coke, graphitized at a graphitization temperature below 2700° C., and having an iron content of less than 0.1% by weight, and preferably about 0.05% by weight.
  • In accordance with an added feature of the invention, the electrode has a specific electrical resistivity of above 5 pOhm·m and a thermal conductivity of less than 150 W/m·K.
  • The graphite electrode is particularly suited for an electrothermic reduction furnace for producing aluminum, titanium, silicon, ferroalloys, or phosphorous. Specific emphasis is placed on the direct carbothermal reduction of alumina.
  • In accordance with an additional feature of the invention, an amount of carbon nanofibers and/or carbon fibers is incorporated in the electrode body for increasing a mechanical strength and adjusting a coefficient of thermal expansion thereof.
  • In accordance with another feature of the invention, the anode grade coke has a mean particle size of approximately 5 to 10 mm, and preferably between 5 and 7 mm.
  • An intermediate product in the production of the graphite electrode comprising particles of anode grade coke having a mean particle size of between 5 and 10 mm and an ash content of less than 0.5% mixed with a coal tar pitch binder and formed into a green electrode to be baked and graphitized to form the graphite electrode.
  • With the above and other objects in view there is also provided, in accordance with the invention, a graphite pin formed of anode grade coke, graphitized at a graphitization temperature below 2700° C., having an iron content of less than 0.1% by weight. The graphite pin is formed to mate with the graphite electrode body to form an electrode column.
  • In accordance with a further feature of the invention, the above-summarized graphite electrode is disposed to form a central column of a self-baking composite electrode in an electrothermic reduction furnace.
  • With the above and other objects in view there is also provided, in accordance with the invention, a method of producing a graphite electrode. The method comprises the following method steps:
      • providing calcined anode coke with an average particle size of 5 to 10 mm and mixing the anode coke with a coal-tar pitch binder to form a mixture;
      • forming an electrode body from the mixture to form a green electrode at a temperature in a vicinity of a softening point of the pitch binder;
      • baking the green electrode at a temperature of between approximately 700° C. and approximately 1100° C., to carbonize the pitch binder to solid coke, to form a carbonized electrode;
      • graphitizing the carbonized electrode with a heat treatment at a final temperature between 2100° C. to 2700° C. for a time sufficient to cause carbon atoms in the carbonized electrode to organize into a crystalline structure of graphite.
  • Preferably, the graphitization temperature is between 2200° C. to 2500° C. and the green electrode is bake at a temperature between 800° C. and 1000° C. It is further preferred to bake the green electrode in a relative absence of air at a heating rate of approximately 1 K to approximately 5 K per hour to the final temperature.
  • In accordance with again an added feature of the invention, the electrode may be impregnating at least one time with coal tar or petroleum pitch after baking. This deposits additional pitch coke in open pores of the electrode. Ech impregnating step is followed with an additional baking step.
  • The green electrode may be formed by extrusion. In that case, it is advantageous to add to the mixture oils or other lubricants to aid in the extrusion throughput. Alternatively, the green electrode may be formed by molding in a conventional forming mold or by vibromolding in an agitated mold.
  • In accordance with again an additional feature of the invention, the graphitized electrode formed in the graphitizing step is machined to provide a final form of the graphite electrode.
  • In accordance with a concomitant feature of the invention, a plurality of graphite electrodes as outline are formed, one or more nipples are formed substantially in the same process sequence and such that the nipples and the electrodes can mesh, and the electrodes and a nipple are connected to form a graphite electrode column.
  • In sum, the invention provides for graphite electrodes for electrothermic reduction furnaces, in particular for the production of aluminum, titanium, silicon, ferroalloys as well as phosphorous. The electrodes are produced using anode grade coke and graphitization temperatures below 2700° C.
  • The invention also provides for the utilization of graphite pins to be mated with the above-summarized graphite electrodes to form electrode columns. The pins are preferably produced in the same manner as the electrodes of this invention. In this way, the pins (also referred to as nipples) have the same characteristics, such as CTE and mechanical properties, as the electrodes.
  • The novel electrodes lend themselves very favorably in their utilization as central columns for self-baking composite electrodes for electrothermic reduction furnaces.
  • Other features which are considered as characteristic for the invention are set forth in the appended claims.
  • Although the invention is illustrated and described herein as embodied in a graphite electrode for electrothermic reduction and a production method, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
  • The construction of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of the specific examples and embodiments of the invention.
  • DETAILED DESCRIPTION OF A BEST MODE EXEMPLARY EMBODIMENT
  • The first step in the production of graphite electrodes comprises combining calcined coke and pitch. As noted above, graphite electrodes for steel production are produced using well-ordered needle cokes that are characterized by a coefficient of thermal expansion (CTE) of 0.3-1.0×104 K−1, anisotropy of thermal expansion of 1.8, and they possess a coarse fibrous microstructure. According to this invention, the graphite electrodes for electrothermic reduction furnaces are produced using anode coke. Anode cokes have a CTE above 1.2×106 K−1, an anisotropy of thermal expansion of 1.5 and a mosaic microstructure. These cokes are very pure. They have an ash content of less than 0.3%. They are readily available at a significantly lower cost than needle cokes and they are used in large quantities for the production of carbon anodes for the Hall-Heroult aluminum smelting process.
  • The crushed, sized and milled calcined anode coke is mixed with a coal-tar pitch. The particle size of the calcined coke is selected according to the end use of the electrode. Generally, in graphite electrodes for use in processing steel, particles up to about 25 millimeters (mm) in average diameter are employed in the blend. For the graphite electrodes of this invention, an average particle size of 5 to 10 mm, more preferably of 5 to 7 mm, is appropriate. Other ingredients that may be incorporated into the blend at low levels include carbon nanofibers or carbon fibers to provide additional mechanical strength or to adjust the CTE of the final electrode as well as oils or other lubricants to facilitate extrusion of the blend.
  • After mixing calcined coke and pitch binder, the electrode body is formed (or shaped) either by extrusion though a die or molded in conventional forming molds or vibromolded in agitated molds to form a so-called green electrode. The forming step is conducted at a temperature close to the softening point of the pitch, which is usually about 100° C. or higher. Although the die or mold can form the electrode in substantially final form and size, machining of the finished electrode is usually needed, at the very least to provide threads or other recesses, which may be required to mate with a pin or nipple to from an electrode column. The circumference of the graphite electrodes of this invention may be rectangular or circular.
  • The green electrode is then baked at a temperature of between about 700° C. and about 1100° C., more preferably between about 800° C. and about 1000° C., to carbonize the pitch binder to solid coke, to give the electrode permanency of form, high mechanical strength, good thermal conductivity, and comparatively low electrical resistance. The baking step is carried out in the relative absence of air at a heating rate of about 1 K to about 5 K per hour to the final temperature. After baking, the electrode may be impregnated one or more times with coal tar or petroleum pitch, or other types of pitches known in the industry, to deposit additional pitch coke in any open pores of the electrode. Each impregnation is then followed by an additional baking step. Preferably the electrode is only impregnated one time with such pitch.
  • After baking, the electrode—referred to at this stage as a carbonized electrode—is then graphitized by heat treatment at a final temperature between 2100° C. to 2700° C., more preferably between 2200° C. to 2500° C., for a time sufficient to cause the carbon atoms in the calcined coke and pitch coke binder to transform from a poorly ordered state into the crystalline structure of graphite. Because of the purity of the anode coke, the comparably low graphitization temperatures are sufficient to reach the required final electrode ash contents. In the case of graphite electrodes for steel production, graphitization is performed at a temperature of between about 2700° C. and about 3200° C. At these high-temperatures, all elements other than carbon are volatilized and escape as vapors. The time required for maintenance at the graphitization temperature is no more than about 12 hours, preferably about 30 min to about 3 hours. Graphitization can be performed in Acheson furnaces or in lengthwise graphitization (LWG) furnaces, the latter can also be operated in a continuous mode. After graphitization is completed, the finished electrode can be cut to size and then machined or otherwise formed into its final configuration.
  • The finished electrodes can be mounted in electrothermic reduction furnaces as single-piece electrodes, as electrode bundles, or they can be continuously supplied as electrode columns joined by graphite pins.
  • In the latter case, the electrode has typically an internal section that is axially tapered from an end to a lengthwise middle portion to receive a graphite pin, and then threads are machined into the tapered portion of the electrode, to permit mating with corresponding threads of the pin, to form the electrode column. Given its nature, the graphite permits machining to a high degree of tolerance, thus permitting a strong connection between the pin and the electrode.
  • The graphite pins used to join electrode columns can be substantially the same pins as used for electrode columns for steel production or, more preferably, are produced in the same manner as the graphite electrodes of this invention. In the latter case, the pins would have similar properties to the electrodes which is advantageous for preventing cracking of the electrode column due to uneven thermal expansion of electrodes and pins. However, the pins have to resist heavier mechanical load than the electrodes. To achieve the required mechanical properties, yet to have thermal expansion behavior matching that of the electrodes, typically the raw material mixture of the pins is somewhat altered while the processing sequence remains the same as described for the electrodes.
  • Further, the electrodes and pins can be equipped with means to prevent loosening of the electrode column during operation, such as holes or recesses containing binder pitch or other means.
  • An additional embodiment of this invention is the utilization of graphite electrodes as described above as central columns for self-baking composite electrodes for electrothermic reduction furnaces. As described in U.S. Pat. No. 4,575,856 (Persson), in order to avoid iron contamination, Söderberg-type electrodes can be produced as composite electrodes consisting of a carbon or graphite electrode core column embedded in Söderberg paste. Using conventional graphite electrodes for steel-manufacturing would, however, increase costs as well as iron contamination. Furthermore, it was determined that the nature of the bond between the graphite and the paste baked into the graphite consist of interpenetration of the paste at their surface of contact. Conventional graphite electrodes for steel-manufacturing typically have low open porosity at about 15% or below. Hence, the surface contact with the Söderberg paste would be limited.
  • In contrast, graphite electrodes produced as described above provide an economic way to manufacture such self-baking composite electrodes for electrothermic reduction furnaces having low iron content and having an intimate surface contact between the graphite core column and the Söderberg paste.
  • A further object of this invention is to provide a process to manufacture anode grade coke-based electrodes for electrothermic reduction furnaces using a self-baking carbon electrode manufacturing sequence followed by graphitization at temperatures below 2700° C.
  • As described above, conventional self-baking electrodes comprise a vertically disposed cylindrical metal casing which extends downwardly through an opening in the roof of an electrothermic reduction furnace. The upper end of the casing is open to permit the insertion of a carbonaceous paste-like material which first melts and then cures to a solid state as it passes downwardly through the casing as a result of heat which is conducted upwardly from the cured portion of the electrode extending below the lower end of the casing. Such paste may be made, for example, by calcining anthracite or petroleum or asphalt cokes which is then mixed with a bonding material such as pitch or tar.
  • According to this embodiment of the invention, in a first step, a self-baking carbon electrode is produced in a similar manner by using a paste composed of calcined anode grade coke and pitch. Instead of feeding the electrode directly into the electrothermic reduction furnace, it is, if necessary, detached from its metal casing and graphitized at a final temperature between 2100° C. to 2700° C., more preferably between 2200° C. to 2500° C. The graphitization step can be carried out in a separate graphitization furnace, such as an Acheson furnace or an LWG furnace, or in a continuous-mode graphitization furnace which is ideally located between the self-baking unit and the electrothermic reduction furnace.
  • The electrodes prepared in accordance with the present invention offer numerous advantages over the art. For electrothermic reduction furnaces, they are an economical alternative to high-temperature graphite electrodes for steel production and, at the same time, provide a high purity alternative to Söderberg electrodes. Further, they can be manufactured using several routes which are essentially based on existing manufacturing equipment.
  • The following examples are presented to further illustrate and explain the present invention and should not be viewed as limiting in any regard. Unless otherwise indicated, all parts and percentages are by weight, and are based on the weight of the product at the particular stage in processing indicated.
  • EXAMPLE 1
  • 85% anode coke having an average particle size of 6 mm and 15% coal-tar pitch were mixed in an intense mixer at 150° C. The mixture was then cooled and extruded to about 600 mm diameter× about 2400 mm long green electrodes. The green electrodes were processed as described above. The physical properties of these electrodes (GE etectrothermic) compared to those of graphite electrodes for steel production (GE steel) as well as Söderberg electrodes are shown below.
    Electrode type GEelectrothermic GEsteel Söderberg
    Bulk Density (g/cm3) 1.62 1.75 1.38
    Open Porosity (%) 25 16 34
    Specific electrical (μOhm m) 11 4.5 29
    resisivity
    Thermal Conductivity (W/mK) 100 180 8
    Iron content (%) 0.05 0.2 >1
  • Due to the lower graphitization temperatures, the graphite electrodes of this invention (GEelectrothermic) have a higher specific electrical resistivity and lower thermal conductivity compared to those of graphite electrodes for steel production (GEsteel). This renders them suitable with regard to the requirements of the electrothermic reduction furnaces having comparably low current densities. Besides the significant cost advantage, the graphite electrodes of this invention excel in their high purity specifically with respect to their iron content. The common Söderberg electrodes can cause contamination of the electrothermic melt, especially with iron. Furthermore, their relatively poor electrical as well as thermal conductivity, a compared to graphite electrodes, also has adverse effects on the energy consumption during smelting operations.
  • EXAMPLE 2
  • 80% anode coke having an average particle size of 6 mm and 20% coal-tar pitch were mixed in an intense mixer at 150° C., cooled, and extruded to about 330 mm diameter× about 2100 mm long green cylindrical bodies. The green cylindrical bodies were processed as the electrodes as described above. After graphitization, out of each cylindrical body 3 graphite pins were machined, having a double-conical shape with threaded surface to mate with the electrode threads. The physical properties of both, pins and corresponding electrodes, essentially matched each other. The assembled electrode column did not crack under thermal stress.
  • The above description is intended to enable the person skilled in the art to practice the invention. It is not intended to detail all of the possible variations and modifications that will become apparent to the skilled worker upon reading the description. It is intended, however, that all such modifications and variations be included within the scope of the invention that is defined by the following claims. The claims are intended to cover the indicated elements and steps in any arrangement or sequence that is effective to meet the objectives intended for the invention, unless the context specifically indicates the contrary.

Claims (23)

1. In an electrothermic reduction furnace, a graphite electrode comprising a shaped graphite electrode body formed from anode grade coke, graphitized at a graphitization temperature below 2700° C., and having an iron content of less than 0.1% by weight.
2. The graphite electrode according to claim 1, wherein said electrode body has a specific electrical resistivity of above 5 μOhm·m and a thermal conductivity of less than 150 W/m·K.
3. The graphite electrode according to claim 1, wherein said electrode body has an iron content of approximately 0.05% by weight.
4. The graphite electrode according to claim 1 configured for an electrothermic reduction furnace for producing one of aluminum, titanium, silicon, ferroalloys, and phosphorous.
5. The graphite electrode according to claim 1, which further comprises an amount of carbon nanofibers incorporated in said electrode body for increasing a mechanical strength and adjusting a coefficient of thermal expansion thereof.
6. The graphite electrode according to claim 1, which further comprises an amount of carbon fibers incorporated in said electrode body for increasing a mechanical strength and adjusting a coefficient of thermal expansion thereof.
7. The graphite electrode according to claim 1, wherein said anode grade coke has a mean particle size of approximately 5 to approximately 10 mm.
8. The graphite electrode according to claim 7, wherein said mean particle size is between 5 and 7 mm.
9. In a reactor for direct carbothermic reduction of alumina, the carbon electrode according to claim 1.
10. An intermediate product in the production of a graphite electrode, comprising: particles of anode grade coke having a mean particle size of between 5 and 10 mm and an ash content of less than 0.5% mixed with a pitch binder and formed into a green electrode to be baked and graphitized to form a graphite electrode.
11. In combination with the graphite electrode according to claim 1, a graphite pin formed of anode grade coke, graphitized at a graphitization temperature below 2700° C., having an iron content of less than 0.1% by weight, and being formed to mate with said graphite electrode body to form an electrode column.
12. In a self-baking composite electrode for an electrothermic reduction furnace, the graphite electrode according to claim 1 disposed to form a central column of the self-baking composite electrode.
13. A method of producing a graphite electrode, which comprises:
providing calcined anode coke with an average particle size of 5 to 10 mm and mixing the anode coke with a coal-tar pitch binder to form a mixture;
forming an electrode body from the mixture to form a green electrode at a temperature in a vicinity of a softening point of the pitch binder;
baking the green electrode at a temperature of between approximately 700° C. and approximately 1100° C., to carbonize the pitch binder to solid coke, to form a carbonized electrode;
graphitizing the carbonized electrode with a heat treatment at a final temperature between 2100° C. to 2700° C. for a time sufficient to cause carbon atoms in the carbonized electrode to organize into a crystalline structure of graphite.
14. The method according to claim 13, which comprises graphitizing at a temperature of between 2200° C. to 2500° C.
15. The method according to claim 13, which comprises baking the green electrode at a temperature between 800° C. and 1000° C.
16. The method according to claim 13, which comprises baking the green electrode in a relative absence of air at a heating rate of approximately 1 K to approximately 5 K per hour to the final temperature.
17. The method according to claim 13, which comprises, after the baking, impregnating the electrode at least one time with coal tar or petroleum pitch for depositing additional pitch coke in open pores of the electrode, and following each impregnating step with an additional baking step.
18. The method according to claim 13, which adding oils or other lubricants into the mixture and forming the green electrode by extrusion.
19. The method according to claim 13, which comprises forming the green electrode by molding in a forming mold or by vibromolding in an agitated mold.
20. The method according to claim 13, which comprises adding a relatively low proportion of carbon fibers or carbon nanofibers into the mixture for forming the green electrode.
21. The method according to claim 13, which further comprises machining the graphitized electrode formed in the graphitizing step to provide a final form of the graphite electrode.
22. The method according to claim 13, which comprises providing the calcined anode coke with an average particle size of 5 to 7 mm.
23. A method of producing a graphite electrode column, which comprises producing a plurality of graphitized electrodes with the method according to claim 13, producing a nipple configured to mesh with the graphitized electrodes, and connecting the electrodes and the nipple to form a graphite electrode column.
US11/123,768 2004-05-12 2005-05-05 Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes Abandoned US20050254545A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/123,768 US20050254545A1 (en) 2004-05-12 2005-05-05 Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes
US12/206,356 US7794519B2 (en) 2004-05-12 2008-09-08 Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57098404P 2004-05-12 2004-05-12
US11/123,768 US20050254545A1 (en) 2004-05-12 2005-05-05 Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/206,356 Continuation US7794519B2 (en) 2004-05-12 2008-09-08 Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes

Publications (1)

Publication Number Publication Date
US20050254545A1 true US20050254545A1 (en) 2005-11-17

Family

ID=34967904

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/123,768 Abandoned US20050254545A1 (en) 2004-05-12 2005-05-05 Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes
US12/206,356 Expired - Fee Related US7794519B2 (en) 2004-05-12 2008-09-08 Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/206,356 Expired - Fee Related US7794519B2 (en) 2004-05-12 2008-09-08 Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes

Country Status (6)

Country Link
US (2) US20050254545A1 (en)
EP (1) EP1749121A1 (en)
JP (1) JP2007537565A (en)
CN (1) CN1950547A (en)
RU (1) RU2374342C2 (en)
WO (1) WO2006000276A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000425A1 (en) * 2004-05-12 2009-01-01 Sgl Carbon Ag Graphite Electrode for Electrothermic Reduction Furnaces, Electrode Column, and Method of Producing Graphite Electrodes
CN101808435A (en) * 2010-03-31 2010-08-18 焦作市东星炭电极有限公司 Full-diameter carbon electrode made from schungite and production method thereof
ITMI20092203A1 (en) * 2009-12-16 2011-06-17 Italghisa S P A ELECTRODIC PASTE FOR GRAPHITE ELECTRODES WITHOUT "BINDER" WITH HYDROCARBURIC BASIS
CN102173409A (en) * 2011-01-04 2011-09-07 兴和县鑫源碳素有限公司 Preparation method for graphite carbon material
US20120138253A1 (en) * 2009-07-30 2012-06-07 Paolo Appolonia Advanced technology for iron-chrome alloys production and related plant
WO2012003228A3 (en) * 2010-07-01 2013-08-22 Graftech International Holdings Inc. Graphite electrode
US8932513B2 (en) 2011-06-10 2015-01-13 South Dakota Board Of Regents Process of making titanium carbide (TiC) nano-fibrous felts
CN108863364A (en) * 2018-06-28 2018-11-23 百色皓海碳素有限公司 The preparation method of graphitization cathode
CN108883995A (en) * 2016-03-17 2018-11-23 新日铁住金化学株式会社 The manufacturing method of artificial graphite electrode
CN111116200A (en) * 2019-12-27 2020-05-08 重庆东星炭素材料有限公司 Carbon electrode with conical central hole and preparation method thereof
CN112457014A (en) * 2020-10-21 2021-03-09 大同宇林德石墨新材料股份有限公司 Ultrahigh-power graphite electrode joint and preparation process thereof
CN112876249A (en) * 2021-01-13 2021-06-01 山西沁新能源集团股份有限公司 Method for preparing prebaked anode, prebaked anode and application thereof
CN113860874A (en) * 2021-08-23 2021-12-31 吉林炭素有限公司 Design method for dry material grain composition in graphite electrode joint formula
WO2022164877A1 (en) 2021-01-26 2022-08-04 Arq Ip Limited Improved binder pitch for use in carbon composite materials

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247057A (en) * 2006-02-16 2007-09-27 Sumitomo Chemical Co Ltd Cathode graphite material for aluminum three layer electrorefining
CN101255564B (en) * 2007-12-17 2010-06-02 中国铝业股份有限公司 Drying method for ring-form calcining furnace
CN102268697B (en) * 2011-05-16 2013-11-27 方大炭素新材料科技股份有限公司 Graphite anode for magnesium electrolysis and preparation method thereof
PL2703523T3 (en) * 2012-08-31 2017-05-31 Rütgers Germany GmbH Improved carbon electrode manufacturing
FR3031045A1 (en) * 2014-12-30 2016-07-01 Solios Carbone PROCESS FOR PRODUCING CARBONATE PULP FOR MANUFACTURING HIGH DENSITY ELECTRODES
KR102094053B1 (en) * 2015-07-07 2020-03-26 임정규 Method of manufacturing Ferro Alloy using Carbon Paste for Self-baking Electrode
CN105177624B (en) * 2015-09-30 2017-07-25 湖南创元铝业有限公司 A kind of cavity method for baking coke particles of aluminium cell half
DE102015222434A1 (en) * 2015-11-13 2017-05-18 Sgl Carbon Se New processes for the production of polygranular graphite bodies
DE102015222439A1 (en) * 2015-11-13 2017-05-18 Sgl Carbon Se New process for the production of graphite bodies
DE102016201429A1 (en) 2016-01-29 2017-08-03 Sgl Carbon Se Novel coke with additives
CN111092368B (en) * 2019-12-31 2021-04-30 山西捷力通防雷科技有限公司 Preparation and installation process of graphene composite lightning rod

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1440724A (en) * 1919-09-08 1923-01-02 Norske Elektrokemisk Ind As Electrode for electric furnaces and process for manufacturing the same
US1441037A (en) * 1923-01-02 soderberg
US2974032A (en) * 1960-02-24 1961-03-07 Pechiney Reduction of alumina
US3607221A (en) * 1969-02-17 1971-09-21 Reynolds Metals Co Carbothermic production of aluminum
US4096097A (en) * 1976-12-27 1978-06-20 Mobil Oil Corporation Method of producing high quality sponge coke or not to make shot coke
US4099959A (en) * 1976-05-28 1978-07-11 Alcan Research And Development Limited Process for the production of aluminium
US4140623A (en) * 1977-09-26 1979-02-20 Continental Oil Company Inhibition of coke puffing
US4312745A (en) * 1979-02-02 1982-01-26 Great Lakes Carbon Corporation Non-puffing petroleum coke
US4486229A (en) * 1983-03-07 1984-12-04 Aluminum Company Of America Carbothermic reduction with parallel heat sources
US4491472A (en) * 1983-03-07 1985-01-01 Aluminum Company Of America Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
US4575856A (en) * 1984-05-18 1986-03-11 Pennsylvania Engineering Corporation Iron free self baking electrode
US4998709A (en) * 1988-06-23 1991-03-12 Conoco Inc. Method of making graphite electrode nipple
US6207024B1 (en) * 1999-10-04 2001-03-27 Astaris Llc Method of preparing phosphorus
US6440193B1 (en) * 2001-05-21 2002-08-27 Alcoa Inc. Method and reactor for production of aluminum by carbothermic reduction of alumina
US20030086859A1 (en) * 2001-10-04 2003-05-08 Soichiro Kawakami Method for producing nanocarbon materials
US6635198B1 (en) * 1998-04-24 2003-10-21 Elkem Asa Method for producing elongated carbon bodies
US6900149B1 (en) * 1999-09-06 2005-05-31 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US20050249260A1 (en) * 2004-04-23 2005-11-10 Smith Robert E Male-female electrode joint

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678205A (en) * 1950-06-08 1954-05-11 Kaiser Aluminium Chem Corp System for heat treating shaped bodies
US3451921A (en) * 1965-01-25 1969-06-24 Union Carbide Corp Coke production
US3617480A (en) * 1969-05-29 1971-11-02 Great Lakes Carbon Corp Two stages of coking to make a high quality coke
JPS5849483B2 (en) * 1976-04-02 1983-11-04 東洋カ−ボン株式会社 Cathode carbon block manufacturing method for aluminum electrolyzer
JPS6129092A (en) * 1984-07-20 1986-02-08 ト−カロ株式会社 Arc electric furnace electrode
US4795548A (en) * 1986-10-27 1989-01-03 Intevep, S.A. Process for making anode grade coke
DD279007A1 (en) * 1988-12-29 1990-05-23 Elektrokohle Lichtenberg Veb METHOD FOR PRODUCING VIBRATION COMPRESSED CARBON BODIES WITH HIGH THERMOSHOCK STABILITY
JPH09290326A (en) * 1996-04-25 1997-11-11 Yoshiyuki Uno Carbon electrode
US6395220B1 (en) * 1999-11-02 2002-05-28 Ucar Carbon Technology Corporation Carbon fiber binder pitch
US6280663B1 (en) * 2000-02-25 2001-08-28 Ucar Carbon Company Inc. Process of making pins for connecting carbon electrodes
US20040041291A1 (en) * 2002-08-27 2004-03-04 Ucar Carbon Company Inc. Process of making carbon electrodes
US7544316B2 (en) * 2003-08-27 2009-06-09 Graftech International Holdings Inc. Process for making graphite articles
US20050254545A1 (en) 2004-05-12 2005-11-17 Sgl Carbon Ag Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1441037A (en) * 1923-01-02 soderberg
US1440724A (en) * 1919-09-08 1923-01-02 Norske Elektrokemisk Ind As Electrode for electric furnaces and process for manufacturing the same
US2974032A (en) * 1960-02-24 1961-03-07 Pechiney Reduction of alumina
US3607221A (en) * 1969-02-17 1971-09-21 Reynolds Metals Co Carbothermic production of aluminum
US4099959A (en) * 1976-05-28 1978-07-11 Alcan Research And Development Limited Process for the production of aluminium
US4096097A (en) * 1976-12-27 1978-06-20 Mobil Oil Corporation Method of producing high quality sponge coke or not to make shot coke
US4140623A (en) * 1977-09-26 1979-02-20 Continental Oil Company Inhibition of coke puffing
US4312745A (en) * 1979-02-02 1982-01-26 Great Lakes Carbon Corporation Non-puffing petroleum coke
US4486229A (en) * 1983-03-07 1984-12-04 Aluminum Company Of America Carbothermic reduction with parallel heat sources
US4491472A (en) * 1983-03-07 1985-01-01 Aluminum Company Of America Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
US4575856A (en) * 1984-05-18 1986-03-11 Pennsylvania Engineering Corporation Iron free self baking electrode
US4998709A (en) * 1988-06-23 1991-03-12 Conoco Inc. Method of making graphite electrode nipple
US6635198B1 (en) * 1998-04-24 2003-10-21 Elkem Asa Method for producing elongated carbon bodies
US6900149B1 (en) * 1999-09-06 2005-05-31 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US6207024B1 (en) * 1999-10-04 2001-03-27 Astaris Llc Method of preparing phosphorus
US6440193B1 (en) * 2001-05-21 2002-08-27 Alcoa Inc. Method and reactor for production of aluminum by carbothermic reduction of alumina
US20030086859A1 (en) * 2001-10-04 2003-05-08 Soichiro Kawakami Method for producing nanocarbon materials
US20050249260A1 (en) * 2004-04-23 2005-11-10 Smith Robert E Male-female electrode joint

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000425A1 (en) * 2004-05-12 2009-01-01 Sgl Carbon Ag Graphite Electrode for Electrothermic Reduction Furnaces, Electrode Column, and Method of Producing Graphite Electrodes
US7794519B2 (en) 2004-05-12 2010-09-14 Sgl Carbon Se Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes
US20120138253A1 (en) * 2009-07-30 2012-06-07 Paolo Appolonia Advanced technology for iron-chrome alloys production and related plant
ITMI20092203A1 (en) * 2009-12-16 2011-06-17 Italghisa S P A ELECTRODIC PASTE FOR GRAPHITE ELECTRODES WITHOUT "BINDER" WITH HYDROCARBURIC BASIS
WO2011073153A1 (en) * 2009-12-16 2011-06-23 Italghisa S.P.A. Electrode paste for electrodes in binder-free graphite with hydrocarbon base
EP2651184A1 (en) * 2009-12-16 2013-10-16 Italghisa S.p.A. Electrode paste for electrodes in binder-free graphite with hydrocarbon base
US9131538B2 (en) 2009-12-16 2015-09-08 Italghisa S.P.A. Electrode paste for electrodes in a graphite and/or anthracite with hydrocarbon base
CN101808435A (en) * 2010-03-31 2010-08-18 焦作市东星炭电极有限公司 Full-diameter carbon electrode made from schungite and production method thereof
US9497804B2 (en) 2010-07-01 2016-11-15 Graftech International Holdings Inc. Graphite electrode
WO2012003228A3 (en) * 2010-07-01 2013-08-22 Graftech International Holdings Inc. Graphite electrode
US8923360B2 (en) 2010-07-01 2014-12-30 Graftech International Holdings Inc. Graphite electrodes
US9253827B2 (en) 2010-07-01 2016-02-02 Graftech International Holdings, Inc. Graphite electrodes
CN102173409A (en) * 2011-01-04 2011-09-07 兴和县鑫源碳素有限公司 Preparation method for graphite carbon material
US8932513B2 (en) 2011-06-10 2015-01-13 South Dakota Board Of Regents Process of making titanium carbide (TiC) nano-fibrous felts
US10519580B2 (en) 2011-06-10 2019-12-31 South Dakota Board Of Regents Titanium carbide (TiC) nano-fibrous felts
CN108883995A (en) * 2016-03-17 2018-11-23 新日铁住金化学株式会社 The manufacturing method of artificial graphite electrode
CN108863364A (en) * 2018-06-28 2018-11-23 百色皓海碳素有限公司 The preparation method of graphitization cathode
CN111116200A (en) * 2019-12-27 2020-05-08 重庆东星炭素材料有限公司 Carbon electrode with conical central hole and preparation method thereof
CN112457014A (en) * 2020-10-21 2021-03-09 大同宇林德石墨新材料股份有限公司 Ultrahigh-power graphite electrode joint and preparation process thereof
CN112876249A (en) * 2021-01-13 2021-06-01 山西沁新能源集团股份有限公司 Method for preparing prebaked anode, prebaked anode and application thereof
WO2022164877A1 (en) 2021-01-26 2022-08-04 Arq Ip Limited Improved binder pitch for use in carbon composite materials
CN113860874A (en) * 2021-08-23 2021-12-31 吉林炭素有限公司 Design method for dry material grain composition in graphite electrode joint formula

Also Published As

Publication number Publication date
RU2006143767A (en) 2008-06-20
CN1950547A (en) 2007-04-18
WO2006000276A1 (en) 2006-01-05
US7794519B2 (en) 2010-09-14
US20090000425A1 (en) 2009-01-01
EP1749121A1 (en) 2007-02-07
JP2007537565A (en) 2007-12-20
RU2374342C2 (en) 2009-11-27

Similar Documents

Publication Publication Date Title
US7794519B2 (en) Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes
US7736413B2 (en) Method for using fracture resistant electrodes in a carbothermic reduction furnace
US4376029A (en) Titanium diboride-graphite composits
US4439382A (en) Titanium diboride-graphite composites
CN101949034B (en) Cathode graphitizing current stop block for aluminum electrolysis
EP1545861A4 (en) Process of making graphite articles
CN108439391A (en) The method for obtaining coal measures graphite using silicon carbide furnace transformer and matched resistance furnace
RU2586381C2 (en) Graphitised cathode unit having wear-resistant surface
US20060202393A1 (en) Process for the production of carbon bodies
CA2805866A1 (en) Cathode block for an aluminium electrolysis cell and a process for the production thereof
CN108662910A (en) The method for forging coal and electric forging coal using graphitization waste heat substitution calcining furnace production Tai Xipu
CA2805562C (en) Process for producing a cathode block for an aluminium electrolysis cell and a cathode block
CA2900418C (en) Cathode block having an abrasion-resistant surface that can be wetted
CA2805729C (en) Process for producing a cathode block for an aluminium electrolysis cell and a cathode block
JP2016514204A5 (en)
CA2862277A1 (en) Method for producing a cathode block for an aluminium electrolytic cell
CA1163762A (en) Titanium diboride-graphite composites
Juel et al. Composite of TiB 2-graphite

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION