WO2017126779A1 - 중합체, 유기막 조성물, 및 패턴형성방법 - Google Patents

중합체, 유기막 조성물, 및 패턴형성방법 Download PDF

Info

Publication number
WO2017126779A1
WO2017126779A1 PCT/KR2016/011759 KR2016011759W WO2017126779A1 WO 2017126779 A1 WO2017126779 A1 WO 2017126779A1 KR 2016011759 W KR2016011759 W KR 2016011759W WO 2017126779 A1 WO2017126779 A1 WO 2017126779A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
polymer
paragraph
Prior art date
Application number
PCT/KR2016/011759
Other languages
English (en)
French (fr)
Inventor
라뜨웰도미니아
정현일
권효영
남궁란
남연희
문수현
송현지
허유미
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201680070703.9A priority Critical patent/CN108291013B/zh
Publication of WO2017126779A1 publication Critical patent/WO2017126779A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • It relates to a polymer, an organic film composition containing the polymer, and a pattern forming method using the organic film composition.
  • Typical lithographic techniques include forming a material layer on a semiconductor substrate, coating a photoresist layer thereon, exposing and developing the photoresist pattern, and then etching the material layer using the photoresist pattern as a mask. do.
  • a fine pattern may be formed by forming an organic film called a hardmask layer between the material layer and the photoresist layer to be etched.
  • the hard mask layer serves as an interlayer that transfers the fine pattern of the photoresist to the material layer through a selective etching process.
  • the hard mask layer needs the characteristics of heat resistance and etching resistance to withstand the multiple etching process.
  • the hard mask layer is formed by a spin-on coating method instead of a chemical vapor deposition method.
  • the spin-on coating method is easy to process and can improve planarization properties.
  • multiple pattern formation is essential. In this case, a buried property of filling the film with a film without voids is required.
  • One embodiment provides a polymer capable of simultaneously securing etch resistance, solubility and storage stability.
  • Another embodiment provides an organic film composition capable of forming an organic film having excellent mechanical properties and film flatness.
  • Another embodiment provides a pattern forming method using the organic film composition.
  • a polymer including a structural unit represented by the following Chemical Formula 1 and a structural unit represented by the following Chemical Formula 2 is provided.
  • a 1 and A 2 are each independently a divalent group including at least one substituted or unsubstituted benzene ring,
  • a 3 is a divalent ring group containing quaternary carbon
  • a 3 may be any one of the groups listed in Group 1 below.
  • Ar 1 to Ar 4 are each independently a substituted or unsubstituted C6 to C30 aryl group
  • R 11 to R 14 are each independently a hydroxyl group, thionyl group, thiol group, cyano group, substituted or unsubstituted amino group, halogen atom, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C6 to C30 aryl Groups, substituted or unsubstituted C1 to C30 alkoxy groups, substituted or unsubstituted C3 to C30 cycloalkenyl groups, substituted or unsubstituted C1 to C20 alkylamine groups, substituted or unsubstituted C7 to C20 arylalkyl groups, substituted or Unsubstituted C1 to C20 heteroalkyl group, substituted or unsubstituted C2 to C30 heterocycloalkyl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C4 alkylether group
  • p, q and r are each independently an integer of 0 to 3
  • L is a single bond, a substituted or unsubstituted C1 to C6 alkylene group, a substituted or unsubstituted C6 to C30 arylene group, or a combination thereof,
  • n 1 to 3
  • At least one of A 1 and A 2 may be a divalent ring group including at least two rings in its structure.
  • a 1 and A 2 are each independently a divalent group derived from any one of the compounds listed in Groups 2 and 3, wherein the divalent group is at least one
  • the hydrogen atom may be substituted or unsubstituted.
  • R ′ and R 2 3 ⁇ 4 R 3 are each independently hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C7 to C30 arylalkyl group, substituted or unsubstituted C1 to C30 heteroalkyl group, substituted or unsubstituted C2 to C30
  • Heterocycloalkyl group substituted or unsubstituted C2 to C30 heterocyclic group, substituted or unsubstituted C2 to C30 alkenyl group, substituted or unsubstituted C2 to C30
  • a 1 and A 2 may be different groups.
  • the increased average molecular weight of the polymer may be 1,000 to 200,000.
  • an organic film composition including a structural unit represented by Chemical Formula 1, a polymer including the structural unit represented by Chemical Formula 2, and a solvent is provided.
  • the polymer may be included in an amount of 0.1 wt% to 50 wt% with respect to the total content of the organic film composition.
  • providing a material layer on a substrate applying the organic film composition on the material layer, heat treating the organic film composition to form a hardmask layer, silicon on the hardmask layer Forming a containing thin film layer, forming a photoresist layer on the silicon containing thin film layer, exposing and developing the photoresist layer to form a photoresist pattern, using the photoresist pattern and the silicon containing thin film layer and the
  • Applying the organic film composition may be performed by a spin-on coating method.
  • the method may further include forming a bottom anti-reflection layer (B ARC) before the forming of the photoresist layer.
  • B ARC bottom anti-reflection layer
  • an organic film material capable of securing film flatness at the same time can be provided.
  • substituted means that a hydrogen atom in a compound is a halogen atom, a hydroxyl group, an alkoxy group, a nitro group, a cyano group, an amino group, an azido group, an amidino group, a hydrazino group, or a hydrazono group , Carbonyl group, carbamyl group, thi group, ester group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid or salt thereof, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 to C20 alkynyl group, C6 to C30 aryl group , C7 to C30 arylalkyl group, C1 to C30 alkoxy group, C1 to C20 heteroalkyl group, C2 to C20 heteroaryl group, C3 to C20 heteroarylalkyl group, C3 to C30 cycloalkyl group
  • hetero means containing 1 to 3 heteroatoms selected from N, 0, S and P.
  • '*' refers to the point of attachment of a compound or compound moiety.
  • the "monovalent group derived" from A compound means the monovalent group formed by substitution of one hydrogen in A compound.
  • the monovalent group derived from the benzene group becomes a phenyl group.
  • a "divalent group derived from an A compound” means a divalent group in which two hydrogens in the A compound are substituted to form two linking points. Divalent groups derived from, for example, benzene groups become phenylene groups.
  • the polymer according to one embodiment includes a structural unit represented by the following Chemical Formula 1, and a structural unit represented by the following Chemical Formula 2.
  • a 1 and A 2 are each independently a divalent group including at least one substituted or unsubstituted benzene ring,
  • a 3 is a divalent ring group containing quaternary carbon
  • the polymer can be synthesized by terpolymerization.
  • the polymer includes a structural unit represented by Chemical Formula 1 and a structural unit represented by Chemical Formula 2, for example, in Chemical Formulas 1 and 2, A 1 and A 2 may be different groups.
  • the structural unit represented by Chemical Formula 1 includes a compound portion containing a benzene ring represented by A 1 , and a ring group portion containing quaternary carbon represented by A 3 .
  • the structural unit represented by Chemical Formula 2 includes a compound portion containing a benzene ring represented by A 2 and a ring group portion containing quaternary carbon represented by A 3 .
  • the polymer according to the embodiment includes both the structural unit represented by the formula (1) and the structural unit represented by the formula (2), thereby ensuring the film density, etching resistance as well as planarization characteristics.
  • quaternary carbon is defined as being carbon in the form in which all four sites of four hydrogens bonded to carbon are substituted with a group other than hydrogen.
  • the divalent ring group containing the quaternary carbon represented by A 3 may be, for example, any one selected from the groups listed in Group 1 below, but is not limited thereto. [Group i]
  • Ar 1 to Ar 4 are each independently substituted or unsubstituted C6 to C30
  • R 1 1 to R 14 are each independently a hydroxyl group, thionyl group, thiol group, cyano group, substituted or unsubstituted amino group, halogen atom, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C6 to C30 Aryl group, substituted or unsubstituted C1 to C30 alkoxy group, substituted or unsubstituted C3 to C30 cycloalkenyl group, substituted or unsubstituted C1 to C20 alkylamine group, substituted or unsubstituted C7 to C20 arylalkyl group, substituted Or an unsubstituted C1 to C20 heteroalkyl group, a substituted or unsubstituted C2 to
  • C30 heterocycloalkyl group substituted or unsubstituted C2 to C30 heteroaral group, substituted or unsubstituted C1 to C4 alkylether group, substituted or unsubstituted C7 to C20 arylalkylene ether group, substituted or unsubstituted C1 to A C30 haloalkyl group, or a combination thereof;
  • p, q and r are each independently integers from 0 to 3
  • L is a single bond, a substituted or unsubstituted C1 to C6 alkylene group, a substituted or unsubstituted C6 to C30 arylene group, or a combination thereof,
  • n 1 to 3
  • At least one of the first and ⁇ ⁇ 2 may be a divalent date ring including at least two rings in its structure.
  • the ⁇ ⁇ 1 and 2 for example, to at least one of groups 2 and 3 and the compound of a divalent group derived from any of the listed in the divalent group at least one hydrogen atom It may be substituted or unsubstituted, but is not limited thereto.
  • RR 2 and R 3 are each independently hydrogen, substituted or unsubstituted C1 to C30 Alkyl group, substituted or unsubstituted C3 to C30 cycloalkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C7 to C30 arylalkyl group, substituted or unsubstituted C1 to C30 heteroalkyl group, substituted or unsubstituted C2 to C30
  • Heterocycloalkyl groups substituted or unsubstituted C2 to C30 heterocyclic groups, substituted or unsubstituted C2 to C30 alkenyl groups, substituted or unsubstituted C2 to C30 alkynyl groups, hydroxy groups, halogen atoms, halogen-containing groups or combinations thereof to be.
  • R 1 , R 2 and R 3 each representing a functional group bonded to a nitrogen (N) atom may be independently hydrogen or a substituted or unsubstituted phenyl group, but are not limited thereto.
  • a 1 and A 2 may each independently be a substituted or unsubstituted form of a divalent group derived from any one of the compounds listed in Group 2, and in another embodiment, A 1 and A 2 may be each independently As a divalent group derived from any one of the compounds listed in Group 3 may be substituted or unsubstituted, as another example, any one of A 1 and A 2 is one of the compounds listed in Group 2
  • the group derived from either may be substituted or unsubstituted, and the other of A 1 and A 2 may be in a substituted or unsubstituted form derived from any one of the compounds listed in Group 3 above.
  • each compound listed in Groups 2 and 3 is linked to Formulas 1 and 2 is not particularly limited.
  • each compound listed in Groups 2 and 3 is represented in an unsubstituted form, any one hydrogen atom of each compound may be substituted with other substituents, and the type and number of substituents are not limited.
  • At least one of A 1 and A 2 is a divalent group derived from any one of the compounds listed in Groups 2 and 3, wherein at least one hydrogen atom contained in the divalent group is, for example, a hydroxy group, O'Nyl group, thiol group, cyano group, substituted or unsubstituted amino group, halogen atom, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C1 to C30 alkoxy group , Substituted or unsubstituted C3 to C30 cycloalkenyl group, substituted or unsubstituted C1 to C20 alkylamine group, substituted or unsubstituted C7 to C20 arylalkyl group, substituted or unsubstituted C1 to C20 heteroalkyl group, substituted or unsubstituted Substituted C
  • the polymer when at least one of A 1 and A 2 is in a form substituted by a hydrophilic functional group such as a hydroxy group, the polymer has an increased affinity with the lower film so that the organic film prepared therefrom has a more flat film. Can be improved.
  • the polymer may include a plurality of structural units represented by Chemical Formula 1, and a plurality of structural units represented by Chemical Formula 2.
  • Structural units represented by Formula 1 may have the same structure or may have different structures, and likewise, the structural units represented by Formula 2 may have the same structure or have different structures. You may also
  • the polymer can secure rigid properties by containing carbon ring groups in its structure, and the solubility and storage stability of the polymer can be improved by containing quaternary carbon in the structure as described above. It is advantageous to apply to the on-coating method. In addition, the introduction of the quaternary carbon minimizes the hydrogen of the benzene (benzylic hydrogen) and maximizes the ring parameters (ring parameter) can ensure excellent heat resistance.
  • the polymer may have a weight average molecular weight of about 1,000 to 200,000.
  • a weight average molecular weight in the above range for the carbon content and the solvent of the organic film composition (eg, hard mask composition) comprising the polymer
  • Solubility can be adjusted to optimize.
  • an organic film composition including the polymer and a solvent is provided.
  • the solvent is not particularly limited as long as it has sufficient solubility or dispersibility in the polymer, for example, propylene glycol, propylene glycol diacetate, methoxy propanediol, diethylene glycol, diethylene glycol butyl ether, tri (ethylene glycol) mono Methyl ether, propylene glycol monomethyl ether,
  • the polymer may be included in about 0.1 to 50% by weight based on the total content of the organic film composition. By including the polymer in the above range it is possible to control the thickness, surface roughness and degree of planarization of the organic film.
  • the organic layer composition may further include additives such as a surfactant, a crosslinking agent, a thermal acid generator, and a plasticizer.
  • additives such as a surfactant, a crosslinking agent, a thermal acid generator, and a plasticizer.
  • the surfactant may be, for example, alkylbenzenesulfonic acid salt, alkylpyridinium salt,
  • Polyethylene glycol, quaternary ammonium salts and the like can be used, but are not limited thereto.
  • the crosslinking agent may be, for example, melamine type, substituted element type, or these polymer type.
  • at least two in the cross-linking agent having a substituent of cross-link for example, meteuk during methylation glycoside ruril, buteuk during methylation glycoside ruril, methoxy hydroxy melamine, Appendix when melamine, methoxy hydroxy methylated benzoguanamine, Appendix when Compounds, such as methylated benzoguanamine, a methoxymethylated urea, a subspecific methylation urea, a methimethylated thiourea, or a methimethylated thiourea, can be used.
  • a crosslinking agent having high heat resistance may be used as the crosslinking agent.
  • numerator can be used.
  • the thermal acid generators include, for example, P-luenesulfonic acid, trifluoromethanesulfonic acid, pyridinium P-luluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid,
  • Acidic compounds such as hydroxybenzoic acid and naphthalenecarboxylic acid, and / or 2,4,4,6-tetrabromocyclonuxadienone, benzointosylate, 2-nitrobenzyltosylate, and other alkyl esters It may be used, but is not limited thereto.
  • the additive may be included in an amount of about 0.001 to 40 parts by weight based on 100 parts by weight of the organic film composition. By including in the said range, solubility can be improved without changing the optical characteristic of an organic film composition.
  • an organic film prepared using the organic film composition described above is provided.
  • the organic layer may be in a form that is cured through a heat treatment after coating the above-described organic layer composition, for example on a substrate, for example, a hard mask layer, And an organic thin film used in an electronic device such as a planarization film, a sacrificial film, a layering agent, and the like.
  • a method of forming a pattern includes: providing a material layer on a substrate, applying an organic film composition including the polymer and a solvent on the material layer, and heat treating the organic film composition to form a hard mask layer. Forming a photoresist layer on the hard mask layer; exposing and developing the photoresist layer; forming a photoresist pattern by exposing and developing the photoresist layer; Selectively the silicon-containing thin film layer and the hard mask layer using
  • the substrate may be, for example, a silicon wafer, a glass substrate or a polymer substrate.
  • the material layer is a material to be finally patterned, and may be, for example, a metal layer such as aluminum or copper, a semiconductor layer such as silicon, or an insulating layer such as silicon oxide, silicon nitride, or the like.
  • the material layer can be formed, for example, by chemical vapor deposition.
  • the organic film composition is as described above, it may be prepared in a solution form and applied by a spin-on coating method. At this time, the coating thickness of the organic film composition is not particularly limited, and for example, may be applied to a thickness of about 50 to 10,000 A.
  • the heat treatment of the organic layer composition may be performed, for example, at about 100 to 500 ° C. for about 10 seconds to 1 hour.
  • the silicon-containing thin film layer may be formed of a material such as SiCN, SiOC, SiON, SiOCN, SiC, and / or SiN.
  • a bottom anti-reflective coating may be further formed on the silicon-containing thin film layer before the forming of the photoresist layer.
  • Exposing the photoresist layer may be performed using, for example, ArF, KrF or EUV.
  • the heat treatment process at about 100 to 500 ° C after exposure Can be done.
  • Etching the exposed portion of the material layer may be performed by dry etching using an etching gas, which may use, for example, CHF 3 , CF 4 , Cl 2 , BC1 3, and a combination thereof.
  • an etching gas which may use, for example, CHF 3 , CF 4 , Cl 2 , BC1 3, and a combination thereof.
  • the etched material layer may be formed in a plurality of patterns, and the plurality of patterns may be a metal pattern, a semiconductor pattern, an insulation pattern, or the like, and may be applied, for example, in various patterns in a semiconductor integrated circuit device.
  • the weight average molecular weight (Mw) and polydispersity (PD) of polymers synthesized using gel permeation chromatography (GPC) were determined.
  • a polymer was obtained in the same manner as in Synthesis example 1, except that 2-hydroxyanthracene was used instead of 1-hydroxypyrene.
  • Mw weight average molecular weight
  • PD polydispersity
  • a polymer was obtained in the same manner as in Synthesis example 1, except that 1,6-dihydroxypyrene was used instead of 1-hydroxypyrene.
  • the weight average molecular weight (Mw) and polydispersity (PD) of polymers synthesized using gel permeation chromatography (GPC) were determined. Measured. (Mw: 1,900, PD: 1.65)
  • a polymer was obtained in the same manner as in Synthesis example 1, except that 1-hydroxycoronene was used instead of 1-hydroxypyrene.
  • Mw weight average molecular weight
  • PD polydispersity
  • a polymer was obtained in the same manner as in Synthesis Example 4, except that 1-hydroxypyrene was used instead of 1-nap.
  • the weight average molecular weight (Mw) and polydispersity (PD) of polymers synthesized using gel permeation chromatography (GPC) were determined.
  • a polymer was obtained in the same manner as in Synthesis Example 1, except that 1,6-dihydroxypyrene was used instead of 1-nap.
  • the weight average molecular weight (Mw) and polydispersity (PD) of polymers synthesized using gel permeation chromatography (GPC) were determined.
  • the weight average molecular weight (Mw) and polydispersity (PD) of polymers synthesized using gel permeation chromatography (GPC) were determined.
  • the weight average molecular weight (Mw) and polydispersity (PD) of polymers synthesized using gel permeation chromatography (GPC) were determined.
  • a hard mask composition was prepared by dissolving in a mixed solvent of propylene glycol monomethyl ether acetate ( PGMEA) and cyclohexanone (7: 3 (v / v)) and filtering.
  • the content of the polymer was controlled in the content range of 3 to 15 parts by weight 0/0 relative to the total weight of the hard mask composition, depending on the thickness to be objective.
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Synthesis Example 2 was used instead of the polymer obtained in Synthesis Example 1.
  • Example 3
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Synthesis Example 3 was used instead of the polymer obtained in Synthesis Example 1.
  • Example 4
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Synthesis Example 4 was used instead of the polymer obtained in Synthesis Example 1.
  • Example 5
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Synthesis Example 5 was used instead of the polymer obtained in Synthesis Example 1.
  • Example 6
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Synthesis Example 6 was used instead of the polymer obtained in Synthesis Example 1.
  • Example 7
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Synthesis Example 7 was used instead of the polymer obtained in Synthesis Example 1.
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Synthesis Example 8 was used instead of the polymer obtained in Synthesis Example 1. Comparative Example 1
  • Comparative Synthesis Example 1 The polymer obtained in Comparative Synthesis Example 1 was used instead of the polymer obtained in Synthesis Example 1. Except that a hard mask composition was prepared in the same manner as in Example 1. Comparative Example 2
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Comparative Synthesis Example 2 was used instead of the polymer obtained in Synthesis Example 1. Comparative Example 3
  • a hardmask composition was prepared in the same manner as in Example 1, except that the polymer obtained in Comparative Synthesis Example 3 was used instead of the polymer obtained in Synthesis Example 1. evaluation
  • the film was heat-treated at 240 ° C. for 1 minute on a hot plate to form a thin film having a thickness of 4,000 A. Then K-MAC
  • the thickness of the thin film was measured using a thin film thickness meter. Then on the thin film
  • the bulk etch rate (BER) was calculated by the following equation 1 from the thickness and etching time of the thin film before and after dry etching.
  • BER (Initial thin film thickness—thin film thickness after etching) / etch time (A / s)
  • Example 4 21.2 23.9
  • Example 5 20.4 22.1
  • Example 6 20.8 24.0
  • Example 7 23.7 26.0
  • Example 8 23.5 25.7
  • Comparative Example 1 25.0 27.9
  • Comparative Example 2 24.1 26.2 Comparative Example 3 25.2 28.1
  • the heat treatment temperature and time were 400 ° Recalculation of C and 2 minutes. The results are shown in Table 2.
  • Comparative Example E6.1 G8.9 Referring to Tables 1 and 2, the thin film formed from the hard mask composition according to Examples 1 to 8 was compared with the thin film formed from the hard mask composition according to Comparative Examples 1 to 3 for the etching gas. Due to the excellent corrosion resistance, bulk etch characteristics
  • Solubility evaluation measured the mass of the polymer dissolved in 20 g of the ethyl lactate solvent and converted it to a percentage.
  • Example 1 0 Example 2 0 Example 3 0 Example 4 0 Example 5 0 Example 6 0 Example 7 0 Example 8 0 Comparative Example 1 X
  • Comparative Example 2 X Referring to Tables 3 and 4, the polymers according to Synthesis Examples 1 to 8 are not only excellent in solubility in each solvent but also good in storage stability as compared to the polymers according to Comparative Synthesis Examples 1 and 2. You can check it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)

Abstract

본 발명은 화학식 1로 표현되는 구조단위 및 화학식 2로 표현되는 구조단위를 포함하는 중합체, 상기 중합체를 포함하는 유기막 조성물, 그리고 상기 유기막 조성물을 사용하는 패턴형성방법을 제공한다. 상기 화학식 1 및 2에서, A1 및 A2는 각각 독립적으로 치환 또는 비치환된 벤젠 고리를 적어도 하나 포함하는 2가의 기이고, A3은 4차 탄소와 고리를 각각 함유하는 2가의 기이고, *는 연결지점이다.

Description

【명세서】
【발명의 명칭】
중합체, 유기막 조성물, 및 패턴형성방법
【기술분야】
중합체, 상기 중합체를 포함하는 유기막 조성물, 그리고 상기 유기막 조성물을 사용하는 패턴형성방법에 관한 것이다.
【배경기술】
최근 반도체 산업은 수백 나노미터 크기의 패턴에서 수 내지 수십
나노미터 크기의 패턴을 가지는 초미세 기술로 발전하고 있다. 이러한 초미세 기술을 실현하기 위해서는 효과적인 리쏘그래픽 기법이 필수적이다.
전형적인 리쏘그래픽 기법은 반도체 기판 위에 재료층을 형성하고 그 위에 포토레지스트 층을 코팅하고 노광 및 현상올 하여 포토레지스트 패턴을 형성한 후, 상기 포토레지스트 패턴을 마스크로 하여 재료층을 식각하는 과정을 포함한다. 근래, 형성하고자 하는 패턴의 크기가 감소함에 따라 상술한 전형적인 리쏘그래픽 기법만으로는 양호한 프로파일을 가진 미세 패턴을 형성하기 어렵다. 이에 따라 식각하고자 하는 재료층과 포토레지스트 층 사이에 일명 하드마스크 층 (hardmask layer)이라고 불리는 유기막을 형성하여 미세 패턴을 형성할 수 있다. 하드마스크 층은 선택적 식각 과정을 통하여 포토레지스트의 미세 패턴을 재료 층으로 전사해주는 중간막으로서 역할을 한다. 따라서 하드마스크 층은 다중 식각 과정 동안 견딜 수 있도록 내열성 및 내식각성의 특성이 필요하다. 한편, 근래 하드마스크 층은 화학기상증착 방법 대신 스핀-온 코팅 (spin-on coating) 방법으로 형성하는 것이 제안되었다. 스핀-온 코팅 방법은 공정이 용이할 뿐만 아니라 평탄화 특성을 개선할 수 있다. 미세 패턴을 실현하기 위해서는 다중 패턴 형성이 필수적인데 이 때 패턴 안을 공극 없이 막으로 매립하는 매립 특성이 필요하게 된다. 또한, 피가공 기판에 단차가 있는 경우나 패턴 밀집 부분 및 패턴이 없는 영역이 웨이퍼 상에 함께 존재하는 경우, 하층막에 의해서 막 표면을 평탄화시킬 필요가 있다.
상술한 하드마스크 층에 요구되는 특성들을 만족할 수 있는 유기막 재료가 요구된다.
【발명의 상세한 설명】 【기술적 과제】
일 구현예는 내식각성, 용해도 및 저장안정성을 동시에 확보할 수 있는 중합체를 제공한다.
다른 구현예는 기계적 특성 및 막 평탄성이 우수한 유기막을 형성할 수 있는 유기막 조성물을 제공한다.
또 다른 구현예는 상기 유기막 조성물을 사용한 패턴 형성 방법을 제공한다.
【기술적 해결방법】
일 구현예에 따르면, 하기 화학식 1로 표현되는 구조단위, 그리고 하기 화학식 2로 표현되는 구조단위를 포함하는 중합체를 제공한다.
[화학식 1]
Figure imgf000004_0001
[화학식 2]
Figure imgf000004_0002
상기 화학식 1 및 2에서,
A1 및 A2는 각각 독립적으로 치환 또는 비치환된 벤젠 고리를 적어도 하나 포함하는 2가의 기이고,
A3은 4차 탄소를 함유하는 2가의 고리기이고,
*는 연결지점이다.
상기 A3은 하기 그룹 1에 나열된 기들 중 어느 하나일 수 있다.
[그룹 1]
Figure imgf000004_0003
상기 그룹 1에서,
Ar1 내지 Ar4는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기이고,
R11내지 R14는 각각 독립적으로 히드록시기, 티오닐기, 티올기, 시아노기, 치환 또는 비치환된 아미노기, 할로겐 원자, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C3 내지 C30 사이클로알케닐기, 치환 또는 비치환된 C1 내지 C20 알킬아민기, 치환 또는 비치환된 C7 내지 C20 아릴알킬기, 치환 또는 비치환된 C1 내지 C20 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30 해테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C4 알킬에테르기, 치환 또는 비치환된 C7 내지 C20 아릴알킬렌 에테르기, 치환또는 비치환된 C1 내지 C30 할로알킬기, 또는 이들의 조합이고,
0, p, q 및 r는 각각 독립적으로 0 내지 3인 정수이고,
L은 단일 결합, 치환 또는 비치환된 C1 내지 C6 알킬렌기, 치환 또는 비치환된 C6 내지 C30아릴렌기, 또는 이들의 조합이고,
m은 1 내지 3의 정수이고,
*은 연결지점이다.
상기 A1 및 A2 중 적어도 하나는 그 구조 내에 적어도 2개의 고리를 포함하는 2가의 고리기일 수 있다.
상기 A1 및 A2는 각각 독립적으로 하기 그룹 2 및 3에 나열된 화합물들 중 어느 하나로부터 유도된 2가의 기이고, 상기 2가의 기는 적어도 하나의
수소원자가 치환되거나 또는 비치환된 것일 수 있다.
Figure imgf000006_0001
상기 그룹 3에서,
R', R2 ¾ R3은 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C7 내지 C30 아릴알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30
헤테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 해테로고리기, 치환 또는 비치환된 C2 내지 C30 알케닐기, 치환 또는 비치환된 C2 내지 C30
알키닐기, 히드록시기, 할로겐 원자, 할로겐 함유기 또는 이들의 조합이다.
상기 A1 및 A2는 서로 다른 기일 수 있다.
상기 중합체의 증량평균분자량은 1,000 내지 200,000일 수 있다.
다른 구현예에 따르면, 상기 상기 화학식 1로 표현되는 구조단위, 그리고 상기 화학식 2로 표현되는 구조단위를 포함하는 중합체, 그리고 용매를 포함하는 유기막 조성물을 제공한다.
상기 중합체는 상기 유기막 조성물의 총 함량에 대하여 0.1 중량 % 내지 50 중량 %로 포함될 수 있다.
또 다른 구현예에 따르면, 기판 위에 재료 층을 제공하는 단계, 상기 재료 층 위에 상기 유기막 조성물을 적용하는 단계, 상기 유기막 조성물을 열처리하여 하드마스크 층을 형성하는 단계, 상기 하드마스크 층 위에 실리콘 함유 박막층을 형성하는 단계, 상기 실리콘 함유 박막층 위에 포토레지스트 층을 형성하는 단계, 상기 포토레지스트 층을 노광 및 현상하여 포토레지스트 패턴을 형성하는 단계, 상기 포토레지스트 패턴을 이용하여 상기 실리콘 함유 박막층 및 상기
하드마스크 층을 선택적으로 제거하고 상기 재료 층의 일부를 노출하는 단계, 그리고 상기 재료 층의 노출된 부분을 식각하는 단계를 포함하는 패턴 형성 방법을 제공한다.
상기 유기막 조성물을 적용하는 단계는 스핀-온 코팅 방법으로 수행할 수 있다.
상기 포토레지스트 층을 형성하는 단계 전에 바닥 반사 방지 층 (B ARC)을 형성하는 단계를 더 포함할 수 있다.
【발명의 효과】
내식각성 및 막밀도와 같은 기계적 특성뿐만 아니라, 막 평탄성을 동시에 확보할 수 있는 유기막 재료를 제공할 수 있다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명의 구현예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.
본 명세서에서 별도의 정의가 없는 한, '치환된'이란, 화합물 중의 수소 원자가 할로겐 원자, 히드록시기, 알콕시기, 니트로기, 시아노기, 아미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 카르보닐기, 카르바밀기, 티을기, 에스테르기, 카르복실기나 그의 염, 술폰산기나 그의 염, 인산이나 그의 염, C1 내지 C20 알킬기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C6 내지 C30 아릴기, C7 내지 C30 아릴알킬기, C1 내지 C30 알콕시기, C1 내지 C20 헤테로알킬기, C2 내지 C20 헤테로아릴기, C3 내지 C20 헤테로아릴알킬기, C3 내지 C30 사이클로알킬기, C3 내지 C15의 사이클로알케닐기, C6 내지 C15 사이클로알키닐기, C2 내지 C30 헤테로사이클로알킬기 및 이들의 조합에서 선택된 치환기로 치환된 것을 의미한다.
또한, 본 명세서에서 별도의 정의가 없는 한,'헤테로 '란 , N, 0, S 및 P에서 선택된 헤테로 원자를 1 내지 3개 함유한 것을 의미한다.
또한, 본 명세서에서 별도의 정의가 없는 한, ' *'는 화합물 또는 화합물 부분 (moiety)의 연결 지점을 가리킨다.
또한 , Α 화합물로부터 '유도된 1가의 기'란 Α 화합물 내의 1개의 수소가 치환되어 형성된 1가의 기를 의미한다. 예컨대 벤젠기로부터 유도된 1가의 기는 페닐기가 된다. 또한 , Α 화합물로부터 '유도된 2가의 기'란 Α 화합물 내의 2개의 수소가 치환되어 2개의 연결지점이 형성된 2가의 기를 의미한다. 예컨대 벤젠기로부터 유도된 2가의 기는 페닐렌기가 된다.
이하 일 구현예에 따른 중합체를 설명한다.
일 구현예에 따른 중합체는 하기 화학식 1로 표현되는 구조단위, 그리고 하기 화학식 2로 표현되는 구조단위를 포함한다.
[화학식 1]
Figure imgf000008_0001
[화학식 2]
Figure imgf000009_0001
상기 화학식 1 및 2에서,
A1 및 A2는 각각 독립적으로 치환 또는 비치환된 벤젠 고리를 적어도 하나 포함하는 2가의 기이고,
A3은 4차 탄소를 함유하는 2가의 고리기이고,
*는 연결지점이다.
상기 중합체는 삼원 공중합에 의해 합성될 수 있다. 상기 중합체는 화학식 1로 표현되는 구조단위와 화학식 2로 표현되는 구조단위를 각각 포함하며, 예컨대 상기 화학식 1 및 2에서, 상기 A1 및 A2는 서로 다른 기일 수 있다.
상기 화학식 1로 표현되는 구조단위는 A1으로 표현되는 벤젠 고리를 함유하는 화합물 부분, 및 A3으로 표현되는 4차 탄소를 함유하는 고리기 부분을 포함한다. 상기 화학식 2로 표현되는 구조단위는 A2로 표현되는 벤젠 고리를 함유하는 화합물 부분 및 A3으로 표현되는 4차 탄소를 함유하는 고리기 부분을 포함한다.
일 구현예에 따른 중합체는 화학식 1로 표현되는 구조단위와 화학식 2로 표현되는 구조단위를 모두 포함함으로써, 막 밀도, 내식각성 뿐만 아니라 평탄화 특성을 함께 확보할 수 있다.
본 명세서에서, 4차 탄소란 탄소에 결합된 4개의 수소 중 4개 자리 모두가 수소 이외의 다른 기로 치환된 형태의 탄소인 것으로 정의된다.
상기 화학식 1 및 2에서 , Α3으로 표현되는 4차 탄소를 함유하는 2가의 고리기는 예컨대 하기 그룹 1에 나열된 기들 중에서 선택된 어느 하나일 수 있으나, 이에 한정되는 것은 아니다. [그룹 i]
Figure imgf000010_0001
상기 그룹 1에서,
Ar1 내지 Ar4는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30
아릴기이고,
R1 1내지 R14는 각각 독립적으로 히드록시기, 티오닐기, 티을기, 시아노기, 치환 또는 비치환된 아미노기, 할로겐 원자, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C3 내지 C30 사이클로알케닐기, 치환 또는 비치환된 C1 내지 C20 알킬아민기, 치환 또는 비치환된 C7 내지 C20 아릴알킬기, 치환 또는 비치환된 C1 내지 C20 헤테로알킬기, 치환 또는 비치환된 C2 내지
C30 헤테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로아랄기, 치환 또는 비치환된 C1 내지 C4 알킬에테르기, 치환 또는 비치환된 C7 내지 C20 아릴알킬렌 에테르기, 치환 또는 비치환된 C1 내지 C30 할로알킬기, 또는 이들의 조합이고,
0, p, q 및 r는 각각 독립적으로 0 내지 3인 정수이고,
L은 단일 결합, 치환 또는 비치환된 C1 내지 C6 알킬렌기, 치환 또는 비치환된 C6 내지 C30아릴렌기, 또는 이들의 조합이고,
m은 1 내지 3의 정수이고,
*은 연결지점이다.
예를 들어, 상기 화학식 1 및 2에서 , Α1 및 Α2 중 적어도 하나는 그 구조 내에 적어도 2개의 고리를 포함하는 2가의 고리기일 수 있다. 구체적으로, 상기 Α1 및 Α2 중 적어도 하나는 예컨대 하기 그룹 2 및 3에 나열된 화합물들 중 어느 하나로부터 유도된 2가의 기이고, 상기 2가의 기는 적어도 하나의 수소원자가 치환되거나 또는 비치환된 것일 수 있으나 이에 한정되는 것은 아니다.
[그룹 2]
Figure imgf000011_0001
상기 그룹 3에서,
R R2및 R3은 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C7 내지 C30 아릴알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30
헤테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기, 치환 또는 비치환된 C2 내지 C30 알케닐기, 치환 또는 비치환된 C2 내지 C30 알키닐기, 히드록시기, 할로겐 원자, 할로겐 함유기 또는 이들의 조합이다.
상기 그룹 3에서, 예를 들어, 질소 (N) 원자에 결합된 작용기를 나타내는 R1, R2및 R3은 각각 독립적으로 수소, 또는 치환 또는 비치환된 페닐기일 수 있으나 이에 한정되는 것은 아니다.
일 예로 상기 A1 및 A2는 각각 독립적으로 상기 그룹 2에 나열된 화합물들 중 어느 하나로부터 유도된 2가의 기가 치환또는 비치환된 형태일 수 있고, 다른 일 예로 상기 A1 및 A2는 각각 독립적으로 상기 그룹 3에 나열된 화합물들 중 어느 하나로부터 유도된 2가의 기가 치환 또는 비치환된 형태일 수 있고, 또 다른 일 예로, 상기 A1 및 A2 중 어느 하나는 상기 그룹 2에 나열된 화합물들 중 어느 하나로부터 유도된 기가 치환 또는 비치환된 형태이고 상기 A1 및 A2 중 다른 하나는 상기 그룹 3에 나열된 화합물들 중 어느 하나로부터 유도된 기가 치환 또는 비치환된 형태일 수 있다.
상기 그룹 2 및 3에 나열된 각 화합물이 상기 화학식 1 및 2에 연결되는 지점은 특별히 제한되지 않는다. 또한, 상기 그룹 2 및 3에 나열된 각 화합물은 비치환된 형태로 표현되었으나, 각 화합물의 어느 하나의 수소 원자가 다른 치환기로 치환될 수 있고 이 때 치환기 종류 및 개수는 한정되지 않는다.
예를 들어, 상기 A1 및 A2 중 적어도 하나는 상기 그룹 2 및 3에 나열된 화합물들 중 어느 하나로부터 유도된 2가의 기로서, 상기 2가의 기에 함유된 적어도 하나의 수소원자는 예컨대 히드록시기, 티오닐기, 티을기, 시아노기, 치환 또는 비치환된 아미노기, 할로겐 원자, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C3 내지 C30 사이클로알케닐기, 치환 또는 비치환된 C1 내지 C20 알킬아민기, 치환 또는 비치환된 C7 내지 C20 아릴알킬기, 치환 또는 비치환된 C1 내지 C20 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 해테로아릴기, 치환 또는 비치환된 C1 내지 C4 알킬에테르기, 치환 또는 비치환된 C7 내지 C20 아릴알킬렌 에테르기, 치환 또는 비치환된 C1 내지 C30 할로알킬기, 또는 이들의 조합에 의해 치환될 수 있으며, 치환기 종류 및 개수는 당업자가 중합체의 물성을 고려하여 적절히 선택할 수 있다.
예를 들어, 상기 A1 및 A2 중 적어도 하나가 예컨대 히드록시기와 같은 친수성 작용기에 의해 치환된 형태인 경우, 상기 중합체는 하부 막질과의 친화도가 증가하여 이로부터 제조된 유기막은 막 평탄성이 더욱 향상될 수 있다. 상기 중합체는 상기 화학식 1로 표현되는 구조단위, 및 상기 화학식 2로 표현되는 구조단위를 각각 복수 개 포함할 수 있다. 복수 개의 화학식 1로 표현되는 구조단위들끼리는 서로 같은 구조를 가져도 되고 서로 다른 구조를 가져도 되고, 마찬가지로 복수 개의 화학식 2로 표현되는 구조단위들끼리는 서로 같은 구조를 가져도 되고 서로 다른 구조를 가져도 된다.
상기 중합체는 그 구조 내에 탄소 고리기를 함유함으로써 기본적으로 단단한 (rigid) 특성을 확보할 수 있으며, 상술한 바와 같이 그 구조 내에 4차 탄소를 함유함으로써 중합체의 용해성과 저장 안정성이 향상될 수 있어 스핀-온 코팅 방법에 적용하기 유리하다. 또한, 상기 4차 탄소의 도입에 따라 벤젠의 수소 (benzylic hydrogen)가 최소화하고 링 파라미터 (ring parameter)가 극대화되어 우수한 내열성을 확보할 수 있다.
예를 들어, 상기 중합체는 약 1 ,000 내지 200,000의 중량평균분자량을 가질 수 있다. 상기 범위의 중량평균분자량을 가짐으로써 상기 중합체를 포함하는 유기막 조성물 (예컨대, 하드마스크 조성물)의 탄소 함량 및 용매에 대한
용해도를 조절하여 최적화할 수 있다.
다른 구현예에 따르면, 상술한 중합체, 그리고 용매를 포함하는 유기막 조성물을 제공한다.
상기 용매는 상기 중합체에 대한 충분한 용해성 또는 분산성을 가지는 것이면 특별히 한정되지 않으나, 예컨대 프로필렌글리콜, 프로필렌글리콜 디아세테이트, 메록시 프로판디올, 디에틸렌글리콜, 디에틸렌글리콜 부틸에테르, 트리 (에틸렌글리콜)모노메틸에테르, 프로필렌글리콜 모노메틸에테르,
프로필렌글리콜 모노메틸에테르 아세테이트, 사이클로핵사논, 에틸락테이트, 감마- 부티로락톤 , Ν,Ν-디메틸포름아미드 , Ν,Ν-디메틸아세트아미드, 메틸피를리돈, 메틸피를리디논, 아세틸아세톤 및 에틸 3-에록시프로피오네이트에서 선택되는 적어도 하나를 포함할 수 있다.
상기 중합체는 상기 유기막 조성물의 총 함량에 대하여 약 0.1 내지 50 중량 %로 포함될 수 있다. 상기 범위로 중합체가 포함됨으로써 유기막의 두께, 표면 거칠기 및 평탄화 정도를 조절할 수 있다.
상기 유기막 조성물은 추가적으로 계면활성제, 가교제, 열산 발생제, 가소제 등의 첨가제를 더 포함할 수 있다.
상기 계면활성제는 예컨대 알킬벤젠설폰산 염, 알킬피리디늄 염,
폴리에틸렌글리콜, 계 4 암모늄 염 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 가교제는 예컨대 멜라민계, 치환요소계, 또는 이들 폴리머계 등을 들 수 있다. 바람직하게는, 적어도 2개의 가교형성 치환기를 갖는 가교제로, 예를 들면, 메특시메틸화 글리코루릴, 부특시메틸화 글리코루릴, 메록시메틸화 멜라민, 부록시메틸화 멜라민, 메록시메틸화 벤조구아나민, 부록시메틸화 벤조구아나민, 메록시메틸화요소, 부특시메틸화요소, 메특시메틸화 티오요소, 또는 메특시메틸화 티오요소 등의 화합물을 사용할 수 있다.
또한, 상기 가교제로는 내열성이 높은 가교제를 사용할 수 있다. 내열성이 높은 가교제로는 분자 내에 방향족환 (예를 들면 벤젠환, 나프탈렌환)을 가지는 가교형성 치환기를 함유하는 화합물을 사용할 수 있다.
상기 열산발생제는 예컨대 P-를루엔술폰산, 트리플루오로메탄술폰산, 피리디늄 P-를루엔술폰산, 살리실산, 술포살리실산, 구연산, 안식향산,
하이드록시안식향산, 나프탈렌카르본산 등의 산성 화합물 또는 /및 2,4,4,6- 테트라브로모시클로핵사디에논, 벤조인토실레이트, 2-니트로벤질토실레이트, 그 밖에 유기술폰산알킬에스테르 등을 사용할 수 있으나 이에 한정되는 것은 아니다. 상기 첨가제는 상기 유기막 조성물 100 중량부에 대하여 약 0.001 내지 40 중량부로 포함될 수 있다. 상기 범위로 포함함으로써 유기막 조성물의 광학적 특성을 변경시키지 않으면서 용해도를 향상시킬 수 있다.
또 다른 구현예에 따르면, 상술한 유기막 조성물을 사용하여 제조된 유기막을 제공한다. 상기 유기막은 상술한 유기막 조성물을 예컨대 기판 위에 코팅한 후 열처리 과정을 통해 경화된 형태일 수 있으며, 예컨대 하드마스크 층, 평탄화 막, 희생막, 층진제, 등 전자 디바이스에 사용되는 유기 박막을 포함할 수 있다.
이하 상술한 유기막 조성물을 사용하여 패턴을 형성하는 방법에 대하여 설명한다.
일 구현예에 따른 패턴 형성 방법은 기판 위에 재료 층을 제공하는 단계, 상기 재료 층 위에 상술한 중합체 및 용매를 포함하는 유기막 조성물을 적용하는 단계, 상기 유기막 조성물을 열처리하여 하드마스크 층을 형성하는 단계, 상기 하드마스크 층 위에 실리콘 함유 박막층을 형성하는 단계, 상기 실리콘 함유 박막층 위에 포토레지스트 층을 형성하는 단계, 상기 포토레지스트 층을 노광 및 현상하여 포토레지스트 패턴을 형성하는 단계, 상기 포토레지스트 패턴을 이용하여 상기 실리콘 함유 박막층 및 상기 하드마스크 층을 선택적으로
제거하고 상기 재료 층의 일부를 노출하는 단계, 그리고 상기 재료 층의 노출된 부분을 식각하는 단계를 포함한다.
상기 기판은 예컨대 실리콘웨이퍼, 유리 기판 또는 고분자 기판일 수 있다. 상기 재료 층은 최종적으로 패턴하고자 하는 재료이며, 예컨대 알루미늄, 구리 등과 같은 금속층, 실리콘과 같은 반도체 층 또는 산화규소, 질화규소 등과 같은 절연층일 수 있다. 상기 재료 층은 예컨대 화학기상증착 방법으로 형성될 수 있다.
상기 유기막 조성물은 전술한 바와 같으며, 용액 형태로 제조되어 스핀-온 코팅 방법으로 도포될 수 있다. 이 때 상기 유기막 조성물의 도포 두께는 특별히 한정되지 않으나, 예컨대 약 50 내지 10,000 A 두께로 도포될 수 있다. 상기 유기막 조성물을 열처리하는 단계는 예컨대 약 100 내지 500 °C에서 약 10초 내지 1시간 동안 수행할 수 있다.
상기 실리콘 함유 박막층은 예컨대 SiCN, SiOC, SiON, SiOCN, SiC 및 /또는 SiN 등의 물질로 형성할 수 있다.
또한 상기 포토레지스트 층을 형성하는 단계 전에 상기 실리콘 함유 박막층 상부에 바닥 반사방지 층 (bottom anti-reflective coating, BARC)을 더 형성할 수도 있다.
상기 포토레지스트 층을 노광하는 단계는 예컨대 ArF, KrF 또는 EUV 등을 사용하여 수행할 수 있다. 또한 노광 후 약 100 내지 500 °C에서 열처리 공정을 수행할 수 있다.
상기 재료 층의 노출된 부분을 식각하는 단계는 식각 가스를 사용한 건식 식각으로 수행할 수 있으며, 식각 가스는 예컨대 CHF3, CF4, Cl2, BC13 및 이들의 흔합 가스를 사용할 수 있다.
상기 식각된 재료 층은 복수의 패턴으로 형성될 수 있으며, 상기 복수의 패턴은 금속 패턴, 반도체 패턴, 절연 패턴 등 다양할 수 있으며, 예컨대 반도체 집적 회로 디바이스 내의 다양한 패턴으로 적용될 수 있다.
【발명의 실시를 위한 형태】
이하 실시예를 통하여 상술한 본 발명의 구현예를 보다 상세하게 설명한다. 다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 본 발명의 범위를 제한하는 것은 아니다. 합성예
합성예 1
기계교반기와 넁각관을 구비한 500ml 2구 플라스크에 1—하이드록시파이렌 (1-Hydroxypyrene) 100g (0.46몰), 1-나프를 (l-Naphthol) 16.5g(0.1 1몰), 9-플루오레논 (9- Fluorenone) 87/7g (0.49몰), 메탄설포닐산 (Methanesulfonic acid) 55g (0.57몰), 및 3- 머캅토프로피온산 (3-Mercaptopropionic acid) 30.4g (0.29몰)을 86.4g의 1,4_다이옥산 (1,4-Dioxane)에 담고 잘 저어준 후에 온도를 105 °C로 올려 12시간 동안
교반하였다. 반웅 종료 후 플라스크 내부 온도를 60~70 °C로 낮춘 다음
테트라하이드로퓨란 300g을 넣어 화합물이 굳지 않게 처리하였다. 그 후 7%의 소듐바이카보네이트 수용액 (Sodium bicarbonate)으로 화합물의 Ph가 5~6 정도가 되도록 조절하였다. 그 후 에틸아세테이트 1000ml를 부어 계속 교반한 후에 분별깔때기를 이용하여, 유기층만 추출하였다. 다시 물을 500ml를 분별깔때기에 넣고 흔들어서 남아있는 산과 소듐염을 제거하는 과정을 3번 이상 반복하고 난 후에 유기층을 최종적으로 추출하였다.
그 후, 얻어진 유기용액을 증발기로 농축하였고, 얻어진 화합물에
테트라하이드로퓨란 500g을 첨가하여 용액을 얻었다. 상기 용액을 교반되고 있는 핵산 2500ml가 들어있는 비커에 천천히 적가하여 침전을 형성하여 중합체를 얻었다.
겔투과크로마토그래피 (Gel permeation chromatography: GPC)를 사용하여 합성된 중합체의 중량평균분자량 (Mw) 및 다분산도 (Polydispersity, PD)를
측정하였다 (Mw: 1,780, PD: 1.76).
얻어진 증합체의 구조단위들을 하기 화학식 la에 나타낸다.
[
Figure imgf000017_0001
합성예 2
합성예 1에서 1-하이드록시파이렌 대신 2-하이드록시안트라센 (2- Hydroxyanthracene)을 사용한 것을 제외하고 같은 방법을 사용하여 중합체를 얻었다. - 겔투과크로마토그래피 (Gel permeation chromatography: GPC)를 사용하여 합성된 중합체의 중량평균분자량 (Mw) 및 다분산도 (Polydispersity, PD)를
측정하였다. (Mw: 2,400, PD: 1.75)
얻어진 중합체의 구조단위들을 하기 화학식 lb에 나타낸다.
화학식 lb]
Figure imgf000017_0002
합성예 3
합성예 1에서 1-하이드톡시파이렌 대신 1,6-다이하이드록시파이렌 (1,6- Dihydroxypyrene)을 사용한 것을 제외하고 같은 방법을 사용하여 중합체를 얻었다. 겔투과크로마토그래피 (Gel permeation chromatography: GPC)를 사용하여 합성된 중합체의 중량평균분자량 (Mw) 및 다분산도 (Polydispersity, PD)를 측정하였다. (Mw: 1,900, PD: 1.65)
얻어진 중합체의 구조단위들을 하기 화학식 lc에 나타낸다.
화학식 lc]
Figure imgf000018_0001
합성예 4
합성예 1에서 1-하이드록시파이렌 대신 1-하이드록시코로넨 (1- Hydroxycoronene)을 사용한 것을 제외하고 같은 방법을 사용하여 중합체를 얻었다. 겔투과크로마토그래피 (Gel permeation chromatography: GPC)를 사용하여 합성된 중합체의 중량평균분자량 (Mw) 및 다분산도 (Polydispersity, PD)를
측정하였다. (Mw: 1,600, PD: 1.51)
얻어진 중합체의 구조단위들을 하기 화학식 Id에 나타낸다.
[
Figure imgf000018_0002
합성예 5
합성예 4에서 1-나프를 대신 1-하이드록시파이렌을 사용한 것을 제외하고 같은 방법을 사용하여 중합체를 얻었다.
겔투과크로마토그래피 (Gel permeation chromatography: GPC)를 사용하여 합성된 중합체의 중량평균분자량 (Mw) 및 다분산도 (Polydispersity, PD)를
측정하였다. (Mw: 1,910, PD: 1.57)
얻어진 중합체의 구조단위들을 하기 화학식 le에 나타낸다. 화학식 le]
Figure imgf000019_0001
합성예 6
합성예 1에서 1-나프를 대신 1,6-다이하이드록시파이렌을 사용한 것을 제외하고 같은 방법을 사용하여 중합체를 얻었다.
겔투과크로마토그래피 (Gel permeation chromatography: GPC)를 사용하여 합성된 중합체의 중량평균분자량 (Mw) 및 다분산도 (Polydispersity, PD)를
측정하였다. (Mw: 1,900, PD: 1.5)
얻어진 중합체의 구조단위들을 하기 화학식 If에 나타낸다.
[화학식 If]
Figure imgf000019_0002
합성예 7
온도계, 콘덴서 및 기계교반기를 구비한 500ml 플라스크에 Ι,Γ-binaphthyl-
2,2'-diol (22.9g, 0.08 mol), fluorenone (18.0g, 0.1 mol), p-Toluenesulfonic acid monohydrate (19.04 g, 0.1 mol), 및 PGMEA (313.23g)을 첨가한 후 120°C에서 교반하였다. 1시간 간격으로 상기 중합반응물로부터 시료를 취하여,그 시료의 중량평균 분자량이 1,000 일 때
Figure imgf000019_0003
(3.6 0.02 1^1)을 투입하였다. 1시간 간격으로 상기 중합반응물로부터 시료를 취하여 그 시료의 중량평균 분자량이 1,200 내지 2,000 일때 반응을 완료하였다. 반웅이 완료되면 소량의 테트라하이드로퓨란과 에틸아세테이트를 첨가한 후 증류수로 산 촉매를 제거하였고, 이 과정을 3번 반복한다. 그 후 유기 용매층을 추출하여 감압한 뒤 테트라하이드로퓨란 50g을 첨가하고 핵산 300g에서 침전을 형성시킨 다음 여과 과정을 거쳐 증합체를 얻었다.
겔투과크로마토그래피 (Gel permeation chromatography: GPC)를 사용하여 합성된 중합체의 중량평균분자량 (Mw) 및 다분산도 (Polydispersity, PD)를
측정하였다. (Mw: 2,154, PD: 1.67)
얻어진 중합체의 구조단위들을 하기 화학식 lg에 나타낸다.
lg]
Figure imgf000020_0001
합성예 8
온도계, 콘덴서 및 기계교반기를 구비한 500ml 플라스크에 phenanthren-2-ol (15.5g, 0.08 mol), fluorenone (23.03g, 0.1 mol), methanesulfonic acid (9.61 g, 0.1 mol), mercaptopropionic acid (5.3 lg, 0.05mmol), 및 PGMEA (313.23g)을 첨가한 후
120 °C에서 교반하였다. 1시간 간격으로 상기 중합 반응물로부터 시료를 취하여, 그 시료의 중량평균 분자량이 1,000 일 때 l-phenyl-lH-indole (19.04 g, 0.1 mol)을 투입하였다. 1시간 간격으로 상기 중합반응물로부터 시료를 취하여 그 시료의 중량평균분자량이 1 ,200 내지 2,000 일때 반응을 완료하였다. 반웅이 완료되면 소량의 테트라하이드로퓨란과 에틸아세테이트를 첨가한 후 증류수로 산 촉매를 제거하였고, 이 과정을 3번 반복하였다. 그 후 유기 용매층을 추출하여 감압한 뒤 테트라하이드로퓨란 50g올 첨가하고 헥산 300g에서 침전을 형성시킨 다음 여과과정을 거쳐 중합체를 얻었다.
겔투과크로마토그래피 (Gel permeation chromatography: GPC)를 사용하여 합성된 중합체의 중량평균분자량 (Mw) 및 다분산도 (Polydispersity, PD)를
측정하였다. (Mw: 2,500, PD: 1.78)
얻어진 중합체의 구조단위들을 하기 화학식 lh에 나타낸다.
Figure imgf000021_0001
비교합성예 1
500ml 플라스크에 1-하이드록시안트라센 20g (0.103 몰) 및 파라포름 알데히드 3.08g (0.103 몰)을 순차적으로 넣고 프로필렌글리콜
모노메틸에테르아세테이트 (PGMEA) 42 g에 녹인 후, 파라 를루엔설포닉 액시드 0.4 g (0.002 몰)을 투입한 다음, 90 내지 120°C에서 5 내지 10 시간 정도 교반하였다. 1시간 간격으로 상기 중합반응물로부터 시료를 취하여, 그 시료의 중량평균 분자량이 3,000 내지 4,200 때 반웅을 완료하여 하기 화학식 A로 표현되는 중합체를 얻었다 (Mw= 3,200, PD= 1.85).
[화학식 A]
Figure imgf000021_0002
비교합성예 2
500ml 플라스크에 1-하이드록시파이렌 50g (0.23몰) 및 1-나프탈데하이드 (1- Naphthaldehyde) 35.9g (0.23 몰)을 순차적으로 넣고 프로필렌글리콜
모노메틸에테르아세테이트 (PGMEA) 200 g에 녹인 후, 파라 를루엔설포닉 액시드 1 g (0.005 몰)을 투입한 다음, 90 내지 120°C에서 8 시간 정도 교반하였다. 1시간 간격으로 상기 중합반웅물로부터 시료를 취하여,그 시료의 중량평균 분자량이
3,000 내지 4,000 때 반응을 완료하여 하기 화학식 B로 표현되는 중합체를 얻었다 (Mw= 3,540, PD= 2.12). 화학식 B]
Figure imgf000022_0001
비교합성예 3
플라스크에 fluorenone (2.3g, 0.01 mol), carbazole (1.67g, 0.01 mol), p- Toluenesulfonic acid monohydrate (1.9g, 0.01 mol) 및 1 ,4-다이옥산 (25g) 을 첨가한 후 120 °C 교반하였다. 1시간 간격으로 상기 중합반웅물로부터 시료를 취하여, 그 시료의 중량평균 분자량이 2,500 내지 3,500 때 반응을 완료하였다. 반응이 완결되면 핵산 100g을 넣어 1,4-다이옥산을 추출해 낸 후 물과 메탄올을 첨가하여 침전을 여과하고 남아있는 단량체를 메탄올을 이용하여 제거하여 하기 화학식 C로 표현되는 중합체를 얻었다 (MW:3,100, PD= 1.75).
화학식 C]
Figure imgf000022_0002
하드마스크조성물의 제조
실시예 1
합성예 1에서 얻은 중합체를
프로필렌글리콜모노메틸에테르아세테이트 (propylene glycol monomethyl ether acetate: PGMEA)와 사이클로핵사논 (cyclohexanone)(7:3(v/v))의 흔합 용매에 녹인 후 여과하여 하드마스크 조성물을 제조하였다. 목적하고자 하는 두께에 따라 상기 중합체의 함량은 상기 하드마스크 조성물 총 중량에 대해 3 내지 15 중량0 /0의 함량 범위에서 조절하였다. 실시예 2
합성예 1에서 얻은 중합체 대신 합성예 2에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 실시예 3
합성예 1에서 얻은 중합체 대신 합성예 3에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 실시예 4
합성예 1에서 얻은 중합체 대신 합성예 4에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 실시예 5
합성예 1에서 얻은 중합체 대신 합성예 5에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 실시예 6
합성예 1에서 얻은 중합체 대신 합성예 6에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 실시예 7
합성예 1에서 얻은 중합체 대신 합성예 7에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 실시예 8
합성예 1에서 얻은 중합체 대신 합성예 8에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 비교예 1
합성예 1에서 얻은 중합체 대신 비교합성예 1에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 비교예 2
합성예 1에서 얻은 증합체 대신 비교합성예 2에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 비교예 3
합성예 1에서 얻은 중합체 대신 비교합성예 3에서 얻은 중합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하드마스크 조성물을 제조하였다. 평가
평가 1: 내식각성
실리콘 웨이퍼 위에 실시예 1 내지 8과 비교예 1 내지 3에 따른
하드마스크 조성물을 스핀-온 코팅한 후 핫플레이트 위에서 240 °C로 1분간 열처리하여 두께 4,000 A의 박막을 형성하였다. 이어서 K-MAC社의
박막두께측정기를 이용하여 상기 박막의 두께를 측정하였다. 이어서 상기 박막에
N2/02 흔합 가스 및 CFx 가스를 사용하여 각각 60초 및 100초 동안 건식 식각한 후 박막의 두께를 다시 측정하였다. 건식 식각 전후의 박막의 두께와 식각 시간으로부터 하기 계산식 1에 의해 식각율 (bulk etch rate, BER)을 계산하였다.
[계산식 1] J
식각율 (Bulk etch rate, BER) = (초기 박막 두께 —식각 후 박막 두께) /식각 시간 (A/s)
그 결과는 표 1과 같다.
[표 1]
Figure imgf000024_0001
실시예 4 21.2 23.9 실시예 5 20.4 22.1 실시예 6 20.8 24.0 실시예 7 23.7 26.0 실시예 8 23.5 25.7 비교예 1 25.0 27.9 비교예 2 24.1 26.2 비교예 3 25.2 28.1 한편, 상기 열처리 온도 및 시간을 400 °C 및 2분 다시 계산하였다. 그 결과는 표 2와 같다.
[표 2]
Figure imgf000025_0001
비교예 E6.1 G8.9 표 1 및 2를 참고하면, 실시예 1 내지 8에 따른 하드마스크 조성물로부터 형성된 박막은 비교예 1 내지 3에 따른 하드마스크 조성물로부터 형성된 박막과 비교하여 식각 가스에 대한 층분한 내식각성이 있어서 벌크 에치 특성이
향상됨을 확인할 수 있다. 평가 2: 용해도 및 저장 안정성
에틸락테이트 (Ethyl Lactate, EL) 용매 20g에 합성예 1 내지 8, 그리고 비교합성예 1 및 2에 따른 중합체를 첨가하여 용해되는 정도를 육안으로
확인하였다. 용해도 평가는 상기 에틸락테이트 용매 20g에 녹는 중합체의 질량을 측정하여 이를 백분율로 환산하였다.
이어서, 상기 용매를 프로필렌글리콜모노메틸이써아세테이트 (Propylene glycol monomethyl ether acetate, PGMEA), 및 프로필렌글리콜모노메틸이써 (Propylene glycol monomethyl ether, PGME)로 바꾸어 동일한 방법에 따라 용해도를 평가하였다. 한편, 저장안정성은 합성예 1 내지 8, 그리고 비교합성예 1 및 2에 따른 중합체를 에틸락테이트 (Ethyl Lactate, EL)에 녹여 용액 (중합체 함유량: 10 중량0 /。)을 제조한 후, 상기 용액을 원자외선이 차단되고 온도가 23 °C로 조절되는 클린 룸에서 한 달 동안 보관한 후 겔투과 크로마토그래피 (Gel Permeation
Chromatography, GPC)를 이용하여 추세 곡선의 변화를 관찰하였다. 추세 곡선에 변화가 있으면 저장안정성 없음 ('X')으로, 추세곡선에 변화가 없으면 저장안정성 있음 ('0')으로 판정하였다.
그 결과는 표 3 및 4와 같다.
[표 3]
EL(%) PGMEA (%) PGME (%) 실시예 1 45.7 50.3 51.6 실시예 2 59.7 61.9 65.3 실시예 3 55.6 57.3 59.7 실시예 4 28.4 29.4 30.7 실시예 5 23.4 25.7 24.9 실시예 6 35.2 34.1 40.7 실시예 7 37.2 34.1 39.2
실시예 8 35.4 25.7 24.9
비교예 1 | l3.2 10.0 12.2
비교예 2 3.5 9.2 7.2
[표 4]
저장안정성
실시예 1 0 실시예 2 0 실시예 3 0 실시예 4 0 실시예 5 0 실시예 6 0 실시예 7 0 실시예 8 0 비교예 1 X
비교예 2 X 표 3 및 4를 참고하면, 합성예 1 내지 8에 따른 중합체는 비교합성예 1 및 2에 따른 중합체와 비교하여 각 용매에 대한 용해도가 우수할 뿐만 아니라, 저장 안정성 또한 양호함을 확인할 수 있다. 이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.

Claims

【청구의 범위】 【청구항 1】 하기 화학식 1로 표현되는 구조단위, 그리고 하기 화학식 2로 표현되는 구조단위 를 포함하는 중합체:
[화학식 1]
Figure imgf000029_0001
[화학식 2]
Figure imgf000029_0002
상기 화학식 1 및 2에서,
A1 및 A2는 각각 독립적으로 치환 또는 비치환된 벤젠 고리를 적어도 하나 포함하는 2가의 기이고,
A3은 4차 탄소를 함유하는 2가의 고리기이고,
*는'연결지점이다.
【청구항 2】
제 1항에서,
상기 A3은 하기 그룹 1에 나열된 기들 중 어느 하나인 중합체:
[그룹 1]
Figure imgf000029_0003
상기 그룹 1에서,
Ar1 내지 Ar4는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기이고, Rl l내지 R"는 각각 독립적으로 히드록시기, 티오닐기, 티올기, 시아노기, 치환 또는 비치환된 아미노기, 할로겐 원자, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C3 내지 C30 사이클로알케닐기, 치환 또는 비치환된 C1 내지 C20 알킬아민기, 치환 또는 비치환된 C7 내지 C20 아릴알킬기, 치환 또는 비치환된 C 1 내지 C20 해테로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C4 알킬에테르기, 치환 또는 비치환된 C7 내지 C20 아릴알킬렌 에테르기, 치환 또는 비치환된 C 1 내지 C30 할로알킬기, 또는 이들의 조합이고,
0, p, q 및 r는 각각 독립적으로 0 내지 3인 정수이고,
L은 단일 결합, 치환 또는 비치환된 C1 내지 C6 알킬렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 또는 이들의 조합이고,
m은 1 내지 3의 정수이고,
*은 연결지점이다.
【청구항 3】
제 1항에서,
상기 A1 및 A2 중 적어도 하나는 그 구조 내에 적어도 2개의 고리를 포함하는 2가의 고리기인 중합체.
【청구항 4】
제 3항에서,
상기 A1 및 A2는 각각 독립적으로 하기 그룹 2 및 3에 나열된 화합물들 중 어느 하나로부터 유도된 2가의 기이고, 상기 2가의 기는 적어도 하나의
수소원자가 치환되거나 또는 비치환된 것인 중합체:
Figure imgf000031_0001
Figure imgf000031_0002
상기 그룹 3에서,
R',R2및 R3은 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C7 내지 C30 아릴알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30 해테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기, 치환 또는 비치환된 C2 내지 C30 알케닐기, 치환 또는 비치환된 C2 내지 C30 알키닐기, 히드록시기, 할로겐 원자, 할로겐 함유기 또는 이들의 조합이다.
【청구항 5】
제 1항에서,
상기 A1 및 A2는 서로 다른 기인 중합체.
【청구항 6】
제 1항에서,
중량평균분자량이 1,000 내지 200,000인 중합체.
【청구항 7]
하기 화학식 1로 표현되는 구조단위, 그리고
하기 화학식 2로 표현되는 구조단위
를 포함하는 중합체, 그리고
용매
를 포함하는 유기막 조성물:
화학식 1]
Figure imgf000032_0001
[화학식 2]
Figure imgf000032_0002
상기 화학식 1 및 2에서,
A1 및 A2는 각각 독립적으로 치환 또는 비치환된 벤젠 고리를 적어도 하나 포함하는 2가의 기이고,
A3은 4차 탄소를 함유하는 2가의 고리기이고,
*는 연결지점이다.
【청구항 8】 제 7항에서,
상기 A3은 하기 그룹 1에 나열된 기들 중 어느 하나인 유기막 조성물: [그룹 1]
Figure imgf000033_0001
상기 그룹 1에서,
Ar1 내지 Ar4는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기이고,
. R11내지 R14는 각각 독립적으로 히드록시기, 티오닐기, 티올기, 시아노기, 치환 또는 비치환된 아미노기, 할로겐 원자, 치환 또는 비치환된 C1 내지 C30 알 기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C3 내지 C30 사이클로알케닐기, ^환 또는 비치환된 C1 내지 C20 알킬아민기, 치환 또는 비치환된 C7 내지 C20 아릴알킬기, 치환 또는 비치환된 C1 내지 C20 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C4 알킬에테르기, 치환 또는 비치환된 C7 내지 C20 아릴알킬렌 에테르기, 치환 또는 비치환된 C1 내지 C30 할로알킬기, 또는 이들의 조합이고,
0, p, q 및 r는 각각 독립적으로 0 내지 3인 정수이고,
L은 단일 결합, 치환 또는 비치환된 C1 내지 C6 알킬렌기, 치환 또는 비치환된 C6 내지 C30아릴렌기, 또는 이들의 조합이고,
m은 1 내지 3의 정수이고,
*은 연결지점이다.
【청구항 9】
제 7항에서, 상기 A1 및 A2 중 적어도 하나는 그 구조 내에 적어도 2개의 고리를 포함하는 2가의 고리기인 유기막 조성물.
【청구항 10】
제 9항에서,
상기 A1 및 A2는 각각 독립적으로 하기 그룹 2 및 3에 나열된 화합물들 중 어느 하나로부터 유도된 2가의 기이고, 상기 2가의 기는 적어도 하나의
수소원자가 치환되거나 또는 비치환된 것인 유기막 조성물:
[그룹 2]
Figure imgf000034_0001
Figure imgf000035_0001
상기 그룹 3에서,
R2및 R3은 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C7 내지 C30 아릴알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로사이클로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기, 치환 또는 비치환된 C2 내지 C30 알케닐기, 치환 또는 비치환된 C2 내지 C30 알키닐기, 히드록시기, 할로겐 원자, 할로겐 함유기 또는 이들의 조합이다.
【청구항 1 1】
제 7항에서,
상기 A1 및 A2는 서로 다른 기인 유기막 조성물.
【청구항 12】 저 17항에서,
상기 중합체의 중량평균분자량이 1 ,000 내지 200,000인 유기막 조성물.
【청구항 13】
제 7항에서,
상기 중합체는 상기 유기막 조성물의 총 함량에 대하여 0.1 중량 % 내지 50 중량 %로 포함되어 있는 유기막 조성물.
【청구항 14】
기판 위에 재료 층을 제공하는 단계,
상기 재료 층 위에 게 7항 내지 제 13항 중 어느 한 항에 따른 유기막 조성물을 적용하는 단계,
상기 유기막 조성물을 열처리하여 하드마스크 층을 형성하는 단계, 상기 하드마스크 층 위에 실리콘 함유 박막층을 형성하는 단계,
상기 실리콘 함유 박막층 위에 포토레지스트 층을 형성하는 단계, 상기 포토레지스트 층을 노광 및 현상하여 포토레지스트 패턴을 형성하는 단계
상기 포토레지스트 패턴을 이용하여 상기 실리콘 함유 박막층 및 상기 하드마스크 층을 선택적으로 제거하고 상기 재료 층의 일부를 노출하는 단계, 그리고
상기 재료 층의 노출된 부분을 식각하는 단계
를 포함하는 패턴 형성 방법.
【청구항 15】
제 14항에서,
상기 유기막 조성물을 적용하는 단계는 스핀-온 코팅 방법으로 수행하는 패턴 형성 방법.
【청구항 16】
제 14항에서,
상기 포토레지스트 층을 형성하는 단계 전에 바닥 반사 방지 층 (BARC)을 형성하는 단계를 더 포함하는 패턴 형성 방법.
PCT/KR2016/011759 2016-01-20 2016-10-19 중합체, 유기막 조성물, 및 패턴형성방법 WO2017126779A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680070703.9A CN108291013B (zh) 2016-01-20 2016-10-19 聚合物、有机层组成物及图案形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0007089 2016-01-20
KR1020160007089A KR101962419B1 (ko) 2016-01-20 2016-01-20 중합체, 유기막 조성물, 및 패턴형성방법

Publications (1)

Publication Number Publication Date
WO2017126779A1 true WO2017126779A1 (ko) 2017-07-27

Family

ID=59362466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011759 WO2017126779A1 (ko) 2016-01-20 2016-10-19 중합체, 유기막 조성물, 및 패턴형성방법

Country Status (4)

Country Link
KR (1) KR101962419B1 (ko)
CN (1) CN108291013B (ko)
TW (1) TWI667547B (ko)
WO (1) WO2017126779A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200074962A (ko) * 2017-11-16 2020-06-25 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법, 패터닝된 기판의 제조 방법 그리고 화합물
CN111542558A (zh) * 2017-12-26 2020-08-14 三星Sdi株式会社 聚合物、有机膜组成物及图案形成方法
US11409198B2 (en) 2018-12-26 2022-08-09 Samsung Sdi Co., Ltd. Hardmask composition, hardmask layer and method of forming patterns
US11512162B2 (en) 2018-07-18 2022-11-29 Samsung Sdi Co., Ltd. Polymer, organic layer composition and method of forming patterns

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278459B1 (ko) * 2018-08-21 2021-07-16 삼성에스디아이 주식회사 중합체, 유기막 조성물 및 패턴 형성 방법
KR102393686B1 (ko) * 2019-05-21 2022-05-02 삼성에스디아이 주식회사 중합체, 하드마스크 조성물 및 패턴 형성 방법
KR102194297B1 (ko) * 2019-08-06 2020-12-22 최상준 인돌-플루오렌 중합체를 함유하는 반사방지용 하드마스크 조성물
KR102322627B1 (ko) * 2020-01-22 2021-11-08 (주)코이즈 유기 하드마스크용 공중합체 및 이를 포함하는 유기 하드마스크용 조성물
KR102246532B1 (ko) * 2020-10-28 2021-04-29 최상준 반사방지용 하드마스크 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105145A (ko) * 2006-03-14 2008-12-03 제이에스알 가부시끼가이샤 하층막 형성용 조성물 및 패턴 형성 방법
KR20130026761A (ko) * 2011-09-06 2013-03-14 주식회사 동진쎄미켐 페놀계 자가가교 고분자 및 이를 포함하는 레지스트 하층막 조성물
KR20140127691A (ko) * 2013-04-25 2014-11-04 제일모직주식회사 레지스트 하층막용 조성물, 이를 사용한 패턴 형성 방법 및 상기 패턴을 포함하는 반도체 집적회로 디바이스
KR20150131916A (ko) * 2014-05-16 2015-11-25 삼성에스디아이 주식회사 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR20160006122A (ko) * 2014-07-08 2016-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 다층막 형성방법 및 패턴 형성방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024779A1 (ja) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
KR20140090144A (ko) * 2011-09-30 2014-07-16 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 플루오렌 구조를 가지는 수지 및 리소그래피용 하층막 형성재료
KR101855506B1 (ko) * 2011-10-13 2018-05-08 주식회사 동진쎄미켐 방향족 고리 함유 고분자 및 이를 포함하는 레지스트 하층막 조성물
JP6124025B2 (ja) * 2012-08-21 2017-05-10 日産化学工業株式会社 多核フェノール類を有するノボラック樹脂を含むレジスト下層膜形成組成物
KR102066229B1 (ko) * 2013-03-26 2020-01-15 주식회사 동진쎄미켐 레지스트 하층막 조성물 및 이를 이용한 패턴 형성 방법
KR101788091B1 (ko) * 2014-09-30 2017-11-15 삼성에스디아이 주식회사 중합체, 유기막 조성물, 유기막, 및 패턴형성방법
KR101821734B1 (ko) * 2015-02-17 2018-01-24 삼성에스디아이 주식회사 중합체, 유기막 조성물, 유기막, 및 패턴형성방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105145A (ko) * 2006-03-14 2008-12-03 제이에스알 가부시끼가이샤 하층막 형성용 조성물 및 패턴 형성 방법
KR20130026761A (ko) * 2011-09-06 2013-03-14 주식회사 동진쎄미켐 페놀계 자가가교 고분자 및 이를 포함하는 레지스트 하층막 조성물
KR20140127691A (ko) * 2013-04-25 2014-11-04 제일모직주식회사 레지스트 하층막용 조성물, 이를 사용한 패턴 형성 방법 및 상기 패턴을 포함하는 반도체 집적회로 디바이스
KR20150131916A (ko) * 2014-05-16 2015-11-25 삼성에스디아이 주식회사 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR20160006122A (ko) * 2014-07-08 2016-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 다층막 형성방법 및 패턴 형성방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200074962A (ko) * 2017-11-16 2020-06-25 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법, 패터닝된 기판의 제조 방법 그리고 화합물
KR102677284B1 (ko) 2017-11-16 2024-06-24 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법, 패터닝된 기판의 제조 방법 그리고 화합물
CN111542558A (zh) * 2017-12-26 2020-08-14 三星Sdi株式会社 聚合物、有机膜组成物及图案形成方法
CN111542558B (zh) * 2017-12-26 2023-07-25 三星Sdi株式会社 聚合物、有机层组成物及形成图案的方法
US11512162B2 (en) 2018-07-18 2022-11-29 Samsung Sdi Co., Ltd. Polymer, organic layer composition and method of forming patterns
US11409198B2 (en) 2018-12-26 2022-08-09 Samsung Sdi Co., Ltd. Hardmask composition, hardmask layer and method of forming patterns

Also Published As

Publication number Publication date
KR20170087294A (ko) 2017-07-28
CN108291013B (zh) 2020-10-16
KR101962419B1 (ko) 2019-03-26
TW201727376A (zh) 2017-08-01
TWI667547B (zh) 2019-08-01
CN108291013A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2017126779A1 (ko) 중합체, 유기막 조성물, 및 패턴형성방법
KR101413069B1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR101788091B1 (ko) 중합체, 유기막 조성물, 유기막, 및 패턴형성방법
TWI619739B (zh) 聚合物、有機層組成物、有機層以及形成圖案的方法
CN105093834B (zh) 硬掩模组成物和使用所述硬掩模组成物形成图案的方法
KR101566533B1 (ko) 하드마스크 조성물 및 이를 사용한 패턴형성방법
KR101788090B1 (ko) 중합체, 유기막 조성물, 유기막, 및 패턴형성방법
KR101747229B1 (ko) 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR102037818B1 (ko) 중합체, 유기막 조성물 및 패턴형성방법
KR20160112847A (ko) 유기막 조성물, 유기막, 및 패턴형성방법
KR101413071B1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR101804257B1 (ko) 중합체, 유기막 조성물, 유기막, 및 패턴형성방법
WO2014104544A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR101848345B1 (ko) 중합체, 유기막 조성물, 및 패턴형성방법
WO2018088673A1 (ko) 중합체, 유기막 조성물 및 패턴형성방법
WO2018079937A1 (ko) 유기막 조성물 및 패턴형성방법
WO2018021619A1 (ko) 유기막 조성물 및 패턴형성방법
CN111542558B (zh) 聚合物、有机层组成物及形成图案的方法
KR101693612B1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR101757809B1 (ko) 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2019088396A1 (ko) 중합체, 유기막 조성물 및 패턴 형성 방법
KR101583226B1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR101747230B1 (ko) 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR101937319B1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR101754903B1 (ko) 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886622

Country of ref document: EP

Kind code of ref document: A1