WO2017126631A1 - 排ガス浄化装置 - Google Patents

排ガス浄化装置 Download PDF

Info

Publication number
WO2017126631A1
WO2017126631A1 PCT/JP2017/001812 JP2017001812W WO2017126631A1 WO 2017126631 A1 WO2017126631 A1 WO 2017126631A1 JP 2017001812 W JP2017001812 W JP 2017001812W WO 2017126631 A1 WO2017126631 A1 WO 2017126631A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceria
exhaust gas
catalyst layer
gas purification
supported
Prior art date
Application number
PCT/JP2017/001812
Other languages
English (en)
French (fr)
Inventor
知弘 糟谷
健一 滝
悟司 松枝
将 星野
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to US16/071,444 priority Critical patent/US10618034B2/en
Priority to EP17741508.0A priority patent/EP3406322B1/en
Priority to JP2017528239A priority patent/JP6180697B1/ja
Priority to CN201780007090.9A priority patent/CN108472590B/zh
Publication of WO2017126631A1 publication Critical patent/WO2017126631A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9025Three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification device.
  • a three-way catalyst is known as an exhaust gas purification device for purifying these three types of exhaust gas purification components.
  • the three-way catalyst has a configuration including a base material and a catalyst coat layer in which a noble metal such as Rh, Pt, or Pd is supported on carrier particles on the base material.
  • a noble metal such as Rh, Pt, or Pd
  • Rh is mainly reduction of NO x
  • Pt and Pd is mainly responsible for oxidizing HC and CO.
  • Patent Document 1 discloses an exhaust gas purifying apparatus having a catalyst layer containing alumina support particles supporting Pd and ceria-zirconia support particles supporting Pt and / or Rh on a substrate. .
  • Patent Document 1 by supporting Pd on alumina carrier particles having excellent heat resistance, it is possible to suppress the growth of Pd grains and maintain high catalytic activity, and to maintain oxygen in the atmosphere by ceria in the ceria-zirconia carrier particles. The density can be adjusted. Thus the reduction reaction of NO x, as well as to improve the oxidation reaction of CO and HC, have reported that it is possible to improve the exhaust gas purification performance.
  • An object of the present invention is to provide an exhaust gas purification device with improved exhaust gas purification performance.
  • An exhaust gas purification device having one catalyst layer The ceria concentration in the first ceria-zirconia carrier particles is 30 wt% or less, and the amount of ceria in the second ceria-zirconia carrier particles is larger than the amount of ceria in the first ceria-zirconia carrier particles. Large exhaust gas purification device.
  • ⁇ Aspect 2 The exhaust gas purification apparatus according to aspect 1, wherein the ceria concentration in the second ceria-zirconia carrier particles is greater than 30 wt%.
  • ⁇ Aspect 3 The exhaust gas purification apparatus according to aspect 1 or 2, wherein the first catalyst layer further includes barium sulfate.
  • ⁇ Aspect 4 The exhaust gas purifying apparatus according to any one of aspects 1 to 3, further comprising a second catalyst layer below the first catalyst layer.
  • ⁇ Aspect 5 The exhaust gas purification apparatus according to aspect 4, wherein the second catalyst layer contains barium sulfate.
  • ⁇ Aspect 6 6.
  • the exhaust gas purification apparatus according to aspect 4 or 5, wherein the second catalyst layer includes a second Rh-supported catalyst in which Rh is supported on first ceria-zirconia support particles.
  • ⁇ Aspect 7 The exhaust gas purification apparatus according to aspect 6, wherein the ratio of the Rh amount of the first Rh-supported catalyst to the Rh amount of the second Rh-supported catalyst is in the range of 10:90 to 90:10.
  • ⁇ Aspect 8 The exhaust gas purification apparatus according to any one of embodiments 4 to 7, further comprising one or more layers below the second catalyst layer.
  • ⁇ Aspect 9 >> The exhaust gas purification apparatus according to any one of aspects 1 to 3, wherein the first catalyst layer is present on a substrate.
  • ⁇ Aspect 10 The exhaust gas purification apparatus according to any one of aspects 4 to 7, wherein the second catalyst layer is provided between the first catalyst layer and the base material.
  • ⁇ Aspect 11 The exhaust gas purification apparatus according to aspect 8, comprising the one or more layers between the second catalyst layer and the base material.
  • an exhaust gas purification device with improved exhaust gas purification performance can be provided.
  • (A) It is a conceptual diagram of the exhaust gas purification apparatus which shows one embodiment of this invention.
  • (B) It is a conceptual diagram of the exhaust gas purification apparatus which shows another one embodiment of this invention.
  • (C) It is a conceptual diagram of the exhaust gas purification apparatus of a prior art. It is a conceptual diagram which shows one embodiment of the exhaust gas purification apparatus of this invention.
  • the exhaust gas purifying apparatus of the present invention includes a Pd-supported catalyst in which Pd is supported on alumina support particles, a first Rh-supported catalyst in which Rh is supported on first ceria-zirconia support particles, and a second ceria.
  • An exhaust gas purifying apparatus having a first catalyst layer containing zirconia support particles, wherein the amount of ceria in the first ceria-zirconia support particles is 30 wt% or less, and second ceria-zirconia support particles
  • An exhaust gas purifying apparatus in which the amount of ceria therein is larger than the amount of ceria in the first ceria-zirconia support particles.
  • the exhaust gas purification apparatus (100) of the present invention includes a Pd-supported catalyst in which Pd (21) is supported on alumina support particles (22), and a first ceria-zirconia.
  • Exhaust gas purification having a first catalyst layer (2) including a first Rh-supported catalyst in which Rh (24) is supported on support particles (23) and second ceria-zirconia support particles (25) Device (100).
  • the 1st catalyst layer (2) may exist on a base material (1).
  • Patent Document 1 As shown in FIG. 1 (c), a Pd-supported catalyst in which Pd (21) is supported on alumina support particles (22), and Rh (24) on ceria-zirconia support particles (26).
  • An exhaust gas purification device (100) having a catalyst layer (2) containing a Rh-supported catalyst formed by supporting on a substrate (1) is disclosed.
  • the alumina carrier particles (22) having excellent heat resistance, it is possible to suppress the grain growth of Pd (21) and maintain high catalytic activity, and in the ceria-zirconia carrier particles (26).
  • By adjusting the oxygen concentration in the atmosphere with this ceria it is possible to improve the exhaust gas purification performance.
  • the exhaust gas purifying device (100) of the above publication naturally contains a lot of ceria in the ceria-zirconia carrier particles (26) carrying Rh (24).
  • the present inventors decrease the exhaust gas purification performance by Rh.
  • the exhaust gas purification device It has been found that the exhaust gas purification performance of 100) tends to gradually decrease.
  • the present inventors added Rh (1) to the first ceria-zirconia support particles (23) containing ceria at a low concentration. 24) and the second ceria-zirconia carrier particles (25) were added to ensure oxygen storage / release capability (OSC performance). As a result, it is possible to prevent the Rh activity from being reduced by ceria contained in the carrier particles carrying Rh, and to ensure the OSC performance. Therefore, the exhaust gas purification apparatus of the present invention improves the exhaust gas purification performance. Can be made.
  • the exhaust gas purifying apparatus 100 of the present invention further carries a carrier carrying another noble metal, such as Pd (21). You may have an alumina (22).
  • the exhaust gas purifying device (100) of the present invention may have a second catalyst layer (3) below the first catalyst layer (2), and further a third catalyst layer ( 4) or a further catalyst layer.
  • “upper side” or “lower side” is determined on the basis of the relationship when the portion where the exhaust gas flow contacts is considered as the uppermost side.
  • the base material is positioned below the catalyst layer.
  • the exhaust gas purification apparatus (100) of the present invention has a second catalyst layer (3) between the base material (1) and the first catalyst layer (2). 2), and as shown in FIG. 2 (b), it may further have a third catalyst layer (4) or may have a further catalyst layer.
  • the second catalyst layer (3) may contain, for example, ceria-zirconia carrier particles and alumina particles supporting Rh and containing ceria at a low concentration.
  • the third catalyst layer (4) For example, a carrier carrying Pt and / or Pd may be present.
  • the first catalyst layer includes a Pd-supported catalyst in which Pd is supported on alumina support particles, a first Rh-supported catalyst in which Rh is supported on first ceria-zirconia support particles, and a second ceria- Zirconia carrier particles.
  • the first catalyst layer may be a part of a base material including catalyst carrier particles on its wall surface, for example, a base material described in JP-A-2015-85241, and is present on such a base material. You may do it.
  • the first catalyst layer When the first catalyst layer is a part of the base material, the first catalyst layer may constitute the wall surface of the base material.
  • an exhaust gas purification device is obtained by mixing the Pd-supported catalyst, the first Rh-supported catalyst, and the second ceria-zirconia support particles with the inorganic particles used in manufacturing the substrate. May be.
  • the Pd-supported catalyst of the present invention is a catalyst in which Pd is supported on alumina support particles.
  • Pd is excellent in low-temperature activity and mainly plays a role in oxidizing HC and CO. If the exhaust gas purification apparatus of the present invention containing Pd in the first catalyst layer is used, the exhaust gas can be efficiently purified even under a low temperature immediately after the start of the internal combustion engine.
  • alumina is an oxide having excellent heat resistance, Pd is supported on the alumina carrier particles, so that sintering of Pd can be suppressed and a decrease in activity can be prevented.
  • alumina carrier particles ⁇ -alumina, ⁇ -alumina, silica-alumina and the like can be selected and used. Among them, ⁇ -alumina excellent in adsorption characteristics and heat resistance is particularly preferably used.
  • the specific surface area of the alumina support particles carrying properties, heat resistance, from the viewpoint of structural stability for example 30 m 2 / g or more, 50 m 2 / g or more, 100 m 2 / g or more, 150 meters 2 / g or more or 200 meters 2 / g or more can be used, and 2000 m 2 / g or less, 1000 m 2 / g or less, 800 m 2 / g or less, 500 m 2 / g or less, or 400 m 2 / g or less can be used.
  • porous carriers can be used in addition to the alumina carrier particles.
  • porous carriers include heat-resistant inorganic oxides generally used for supporting a catalyst metal, such as silica, zirconia, and titania.
  • the supported amount of Pd may be 0.5 g or more, 1 g or more, 3 g or more, or 5 g or more per liter of the base material or the exhaust gas purification device, and may be 10 g or less, 9 g or less, 8 g or less, or 7 g or less. . If Pd is less than this range, the purification rate of CO and HC may decrease, and even if it is supported in excess of this range, the effect is saturated and the cost is increased.
  • the Pd-supported catalyst of the present invention can be obtained, for example, by the following steps.
  • Alumina carrier particles are dispersed in water to prepare a dispersion.
  • an aqueous solution containing a Pd salt to this dispersion, mixing thoroughly, drying and then calcining, a Pd-supported catalyst having Pd supported on alumina support particles can be obtained.
  • the Pd salt that can be used here include water-soluble salts such as palladium nitrate and palladium chloride.
  • the drying temperature may be, for example, 70 ° C. or higher, 80 ° C. or higher, or 90 ° C. or higher, 150 ° C. or lower, 120 ° C. or lower, 110 ° C. or lower, or 100 ° C. or lower. Good.
  • 300 degreeC or more, 400 degreeC or more, or 500 degreeC or more may be sufficient as baking temperature, for example, 1500 degrees C or less, 1300 degrees C or less, or 1100 degrees C or less may be sufficient.
  • the firing time may be 1 hour or more, 2 hours or more, or 4 hours or more, or 10 hours or less, or 8 hours or less.
  • the first Rh-supported catalyst of the present invention is a catalyst in which Rh is supported on the first ceria-zirconia support particles. Rh mainly plays a role in reducing NOx.
  • the first ceria-zirconia carrier particles are a material exhibiting OSC performance, and are known to exhibit extremely excellent OSC performance, particularly by supporting a noble metal such as Rh. If the exhaust gas purification apparatus of the present invention including the Rh-supported catalyst in the first catalyst layer is used, the exhaust gas can be efficiently purified.
  • the first ceria-zirconia composite oxide is a composite oxide in which ceria and zirconia are in solid solution, and at the same time, it contains an alkaline earth metal element, a rare earth element (except for Ce and Zr), and the like. it can.
  • alkaline earth metal element include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and the like.
  • rare earth elements (excluding Ce and Zr) include scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), and promethium (Pm).
  • the present inventors have found that when the amount of ceria in the first ceria-zirconia composite oxide supporting Rh is high, the exhaust gas purification performance deteriorates. Therefore, from this viewpoint, the ceria concentration in the first ceria-zirconia support particles is low, specifically, 30 wt% or less, 25 wt% or less, 20 wt% or less, 15 wt% or less, 10 wt% or less, or 5 wt% % Or less.
  • the first ceria-zirconia carrier particles can be prepared, for example, by a coprecipitation method.
  • a solution of a salt containing Ce, Zr, and, if necessary, an alkaline earth metal element or rare earth element (excluding Ce and Zr) is prepared so as to have a predetermined stoichiometric ratio
  • a neutralizing agent is added to the solution to co-precipitate a salt containing Ce, Zr, and if necessary, an alkaline earth metal element and a rare earth element (excluding Ce and Zr).
  • the first ceria-zirconia carrier particles can be prepared by heat treatment at ⁇ 1000 ° C.
  • Examples of the salt of each element include inorganic salts such as sulfate, nitrate, chloride, and phosphate, and organic acid salts such as acetate and oxalate.
  • Examples of the neutralizing agent include ammonia and organic bases such as amines such as triethylamine and pyridine, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, and ammonium hydroxide.
  • An inorganic base is mentioned.
  • ammonium hydroxide salt is mentioned, More preferably, ammonium hydroxide aqueous solution is mentioned. The neutralizing agent is added so that the pH of the solution after adding the neutralizing agent is, for example, about 6 to 10.
  • the loading amount of Rh may be 0.01 g or more, 0.02 g or more, 0.05 g or more, 0.1 g or more, or 0.5 g or more per liter of the base material or the exhaust gas purification device, and may be 5 g or less, 4 g or less. It may be 3 g or less, 2 g or less, or 1 g or less. If the Rh is less than this range, the NOx purification rate may decrease, and even if it is supported in excess of this range, the effect is saturated and the cost is increased.
  • the first Rh-supported catalyst of the present invention can be obtained by the same process as the Pd-supported catalyst.
  • the second ceria-zirconia support particles are added to the first catalyst layer.
  • second ceria-zirconia carrier particles that do not carry a noble metal or the like can be used.
  • the second ceria-zirconia carrier particles may have the same configuration as the first ceria-zirconia carrier particles, and can be prepared by the same method (for example, coprecipitation method).
  • the second ceria-zirconia support particles are added to the first catalyst layer in order to ensure insufficient OSC performance, the ceria concentration in the second ceria-zirconia support particles is higher.
  • it may be more than 30 wt%, 40 wt% or more, 50 wt% or more, or 60 wt% or more, and may be 95 wt% or less, 90 wt% or less, 80 wt% or less, or 70 wt% or less.
  • the amount of ceria is greater than the amount of ceria in the first ceria-zirconia support particles.
  • the ratio of the amount of ceria in the first ceria-zirconia support particles to the amount of ceria in the second ceria-zirconia support particles is 45:55 to 40:60, 40:60 to 30:70, 30 : 70-20: 80, 20: 80-10: 90, or 10: 90-5: 95.
  • the first catalyst layer contains at least one promoter component having a composition different from that of the Pd-supported catalyst, the Rh-supported catalyst, and the second ceria-zirconia support particles in order to further improve the exhaust gas purification performance. May be.
  • the first catalyst layer may contain at least one element selected from the group consisting of barium, calcium, cesium, potassium, magnesium, and lanthanum in the form of nitrate, acetate, or nitrate.
  • Barium sulfate (BaSO 4 ) can be included. Thereby, Pd can be prevented from being poisoned by HC or the like contained in the exhaust gas, and the exhaust gas purification performance can be further improved.
  • the base material is not particularly limited, and any material generally used in an exhaust gas purification apparatus can be used.
  • a honeycomb-shaped material having a large number of cells can be used.
  • cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) alumina, zirconia, silicon carbide, etc.
  • a ceramic material having heat resistance or a metal material made of a metal foil such as stainless steel can be used.
  • the first catalyst layer may be a part of a base material including catalyst carrier particles on the wall surface, for example, a base material described in JP-A-2015-85241.
  • the second catalyst layer is an optional catalyst layer that may be present below the first catalyst layer.
  • the second catalyst layer may be a part of a base material containing catalyst carrier particles on the wall surface, for example, a base material described in JP-A-2015-85241, and the second catalyst layer is such a part. You may comprise the wall surface of a base material.
  • the 1st catalyst layer may exist on the base material which is the 2nd catalyst layer.
  • the exhaust gas purification device may be obtained by using the Rh-supported catalyst mixed with inorganic particles used in manufacturing the base material.
  • the second catalyst layer may be one in which Rh is supported on a base material including catalyst carrier particles such as ceria-zirconia on the wall surface by a wash coat method or the like.
  • the second catalyst layer may be the same component as the first catalyst layer, and includes a Pd-supported catalyst in which Pd is supported on alumina support particles and Rh on the first ceria-zirconia support particles. And a second Rh-supported catalyst and second ceria-zirconia support particles.
  • Pd-supported catalyst in which Pd is supported on alumina support particles and Rh on the first ceria-zirconia support particles.
  • Rh-supported catalyst and second ceria-zirconia support particles can be included.
  • the second catalyst layer may not contain the Pd-supported catalyst and the second ceria-zirconia support particles. preferable. This is because HC and CO purification and OSC performance are sufficiently ensured by the first catalyst layer.
  • the second catalyst layer includes a second Rh-supported catalyst.
  • the second Rh-supported catalyst may be substantially the same as the first Rh-supported catalyst, or may be a catalyst in which Rh is supported on the first ceria-zirconia support particles.
  • the ratio of the Rh amount of the first Rh supported catalyst to the Rh amount of the second Rh supported catalyst is 10:90 to 90:10, 10:90 to 20:80, 20:80 to 30:70, 30 : 70-40: 60, 40: 60-50: 50, 50: 50-60: 40, 60: 40-70: 30, 70: 30-80: 20, or 80: 20-90: 10
  • the ratio of the Rh amount of the first Rh supported catalyst to the Rh amount of the second Rh supported catalyst is preferably 50:50 to 60:40, 60:40 to 70:30, 70:30 to 80 : 20, or 80:20 to 90:10.
  • the exhaust gas purifying apparatus of the present invention can have one or a plurality of catalyst layers further below the second catalyst layer.
  • the exhaust gas purifying apparatus having the above-described configuration can be manufactured by a manufacturing process similar to the conventional one.
  • the Pd-supported catalyst, the first Rh-supported catalyst, and the second ceria-zirconia support particles May be used by mixing with inorganic particles used in manufacturing the base material to obtain an exhaust gas purification device.
  • the exhaust gas purification apparatus which has a 1st catalyst layer on a base material can be manufactured by drying and baking at predetermined temperature and time.
  • a second catalyst layer is formed on a substrate, or as a second catalyst layer
  • a base material containing catalyst carrier particles on the wall surface for example, a base material described in JP-A-2015-85241 may be used, and then the first catalyst layer may be formed.
  • the desired component for the second catalyst layer is used by mixing with other inorganic particles used in manufacturing the substrate, A base material in which the second catalyst layer is a part is obtained.
  • the substrate is coated with the first slurry for the catalyst layer by a known wash coat method or the like, dried and fired.
  • the surface of the base material is coated with a second catalyst layer slurry containing a desired component by a known wash coating method.
  • the first catalyst layer slurry containing the Pd supported catalyst, the Rh supported catalyst, and the second ceria-zirconia support powder is laminated and coated on the surface of the second catalyst layer by a known wash coat method or the like. Then, it is dried and fired at a predetermined temperature and time.
  • the laminated structure is not limited to two layers, and may be three or more layers.
  • the second catalyst layer slurry is coated on the surface of the substrate, followed by drying and calcination to form a second catalyst layer first, and then the first catalyst
  • the process may be a two-stage firing in which a layer slurry is coated on the surface of the second catalyst layer and dried and fired to form the first catalyst layer.
  • the firing conditions of the wash-coated slurry are not particularly limited, but the target catalyst layer can be formed by firing at typically about 400 to 1000 ° C. for about 1 to 4 hours. .
  • the drying conditions before firing are not particularly limited, but drying at a temperature of 80 to 300 ° C. for about 1 to 12 hours is preferable.
  • the slurry when the catalyst layer is formed by such a wash coat method, in order to make the slurry suitably adhere to the surface of the base material and, in the case of a plurality of laminated structure catalyst layers, to the surface of the lower layer, the slurry contains a binder. It is preferable. As such a binder, for example, use of alumina sol, silica sol or the like is preferable. Note that the viscosity of the slurry may be appropriately adjusted so that the slurry can easily flow into the cells of the substrate (for example, honeycomb substrate).
  • alumina (50 g) and a palladium nitrate solution (5 wt% as Pd element) (20 g) were added to 200 ml of ion-exchanged water and stirred for 60 minutes. After drying at 110 ° C., it was calcined at 500 ° C. for 1 hour in the atmosphere to obtain Pd-supported alumina I.
  • Example 2 Exhaust gas of Example 2 in the same manner as in Example 1 except that the type of the first CZ-based composite oxide was changed, the amount of alumina was changed, and the second CZ-based composite oxide was not used. A purification device was obtained.
  • Rh-supported powder II was obtained in the same manner as Rh-supported powder I except that the amount of Rh-supported was 0.18 g.
  • a slurry was prepared by mixing Rh-supported powder II (25.18 g) (of which the amount of Rh element was 0.18 g) and alumina (75 g). The slurry was coated on a monolith honeycomb substrate (overall length 100 mm, volume 1.0 L, number of cells 900 cells / in 2 ) 100.1 g (of which the amount of Rh element was 0.1 g), dried at 250 ° C. for 1 hour, An exhaust gas purification apparatus having a first catalyst layer was prepared by firing at 500 ° C. for 1 hour.
  • Rh-supported powder III was obtained in the same manner as Rh-supported powder I except that the Rh-supported amount was 0.02 g.
  • Example 3 Pd-supported alumina I (51 g) used in Example 1 (of which the amount of Pd element is 1 g), Rh-supported powder III (25.02 g) (of which the amount of Rh element is 0.02 g), and ceria-zirconia-based composite oxidation
  • the product CZL1 (25 g) was mixed to prepare a slurry. This slurry was coated on 101.12 g (of which the amount of Pd element was 1 g and the amount of Rh element was 0.0.02 g) on the exhaust gas purification apparatus having the first catalyst layer, and dried at 250 ° C. for 1 hour. Then, it baked at 500 degreeC for 1 hour, and prepared the exhaust gas purification apparatus of Example 3 which has a 1st catalyst layer and a 2nd catalyst layer.
  • Examples 4 to 8 The total amount of Rh supported was not changed, but the Rh supported ratio in the first catalyst layer and the second catalyst layer was changed, and the same method as in Example 3 was used. The exhaust gas purification apparatuses of Examples 4 to 7 were obtained. Further, an exhaust gas purifying apparatus of Example 8 was obtained in the same manner as in Example 3 except that the amount of Rh supported on the second catalyst layer was changed without supporting Rh on the first catalyst layer.
  • Example 15 to 18 Exhaust gas purification apparatuses of Examples 15 to 17 having the configurations shown in Table 3 below were obtained in the same manner as Example 5 except that the type of the second CZ-based composite oxide of the first catalyst layer was changed. . In Example 18, the second CZ-based composite oxide of the first catalyst layer was not used.
  • Example 19 ⁇ Preparation of exhaust gas purification device with two-layer structure-Examination of barium sulfate ⁇ [Example 19] In the same manner as in Example 5, the exhaust gas purifying apparatus of Example 19 was obtained as described in Table 4 below.
  • a slurry was prepared by mixing Rh-supported powder I (25.1 g) used in Example 1 (of which the amount of Rh element was 0.1 g) and alumina (75 g).
  • the exhaust gas purification apparatus obtained in (3) was coated with 100.1 g (of which the amount of Rh element was 0.1 g), dried at 250 ° C. for 1 hour, and then fired at 500 ° C. for 1 hour.
  • An exhaust gas purification apparatus having a first catalyst layer and a second catalyst layer was obtained.
  • alumina (50 g) and palladium nitrate solution (5 wt% as Pd element) (20 g) were added to 200 ml of ion-exchanged water and stirred for 60 minutes. After drying at 110 ° C., firing was performed at 500 ° C. for 1 hour in the air to obtain Pd-supported alumina III.
  • Example 21 The configurations of the second catalyst layer and the third catalyst layer were changed, and the exhaust gas purification apparatus of Example 21 having the configuration shown in Table 4 below was obtained in the same manner as Example 20.
  • Pd—Rh alloying rate evaluation method The durable exhaust gas purification apparatuses of Examples 2 and 5 were scraped, and the characteristic X-ray intensities of Pd and Rh contained in this apparatus were measured with a scanning electron microscope (SEM-EDX). In this measurement, observation was performed at a magnification of 150,000 times.
  • SEM-EDX scanning electron microscope
  • the Pd—Rh alloying rate was calculated by the following formula.
  • Pd—Rh alloying rate (%) Rh / (Pd + Rh) ⁇ 100
  • the ceria concentration in the first ceria-zirconia carrier particles is lower than that in Example 2 where the ceria concentration in the first ceria-zirconia carrier particles is high and the amount of ceria contained is large.
  • Example 1 in which the amount of ceria contained was reduced and the second ceria-zirconia support particles were added, the exhaust gas purification performance was improved.
  • Examples 3 to 7 having a two-layer structure in which the first catalyst layer and the second catalyst layer have Rh-supported catalysts have further exhaust gas purification performance. Improved.
  • Example 8 that has a two-layer structure but does not have an Rh-supported catalyst in the first catalyst layer
  • Examples 3 to 7 that have an Rh-supported catalyst in the first catalyst layer and the second catalyst layer Then, the exhaust gas purification performance was improved.
  • Example 5 the exhaust gas purification performance was improved in Example 5 in which Rh was supported on the first ceria-zirconia support particles, compared to Example 13 in which Rh was supported on alumina.
  • Example 5 and Examples 9 to 12 in which the ceria concentration in the first ceria-zirconia carrier particles is low have an exhaust gas purification performance.
  • the amount of ceria in the first ceria-zirconia support particles is the same as that of Example 17 in which the amount of ceria in the second ceria-zirconia support particles is the same.
  • the ceria content in the second ceria-zirconia support particles is larger than the ceria content in the first ceria-zirconia support particles, and the exhaust gas purification performance is improved.
  • Example 5 containing the second ceria-zirconia support particles improved the exhaust gas purification performance.
  • Example 19 the exhaust gas purification performance was further improved in Example 19 containing barium sulfate compared to Example 5 containing no barium sulfate.
  • Example 20 having a three-layer structure further improved the exhaust gas purification performance.
  • Example 5 and 22 in which Rh is supported on the first ceria-zirconia support particles in the second catalyst layer the exhaust gas purification performance is compared with Example 23 in which Rh is supported on the alumina support particles. Improved further.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本発明は、排ガス浄化性能を向上した排ガス浄化装置を提供することを課題とするものである。 アルミナ担体粒子(22)にPd(21)を担持してなるPd担持触媒と、第1のセリア-ジルコニア担体粒子(23)にRh(24)を担持してなる第1のRh担持触媒と、第2のセリア-ジルコニア担体粒子(25)とを含む第1の触媒層(2)を有する、排ガス浄化装置(100)であって、第1のセリア-ジルコニア担体粒子(23)中のセリア濃度が30wt%以下であり、かつ第2のセリア-ジルコニア担体粒子(25)中のセリア量が第1のセリア-ジルコニア担体粒子(23)中のセリア量よりも大きい、排ガス浄化装置(100)。

Description

排ガス浄化装置
 本発明は、排ガス浄化装置に関する。
 ガソリンの燃焼工程で生じる排ガス中にはCO、HC及びNOが含まれている。これら三種類の排ガス浄化成分を浄化する排ガス浄化装置として三元触媒が知られている。三元触媒は、基材と、当該基材上にRh、Pt、Pd等の貴金属を担体粒子に担持した触媒コート層とを具備する構成を有しており、これらの貴金属のうち、例えば、Rhは主にNOを還元し、PtとPdは主にHCとCOを酸化する役割を果たしている。
 これに関して、特許文献1では、Pdを担持したアルミナ担体粒子と、Pt及び/又はRhを担持したセリア-ジルコニア担体粒子とを含有する触媒層を基材上に有する排ガス浄化装置が開示されている。
 特許文献1では、耐熱性に優れるアルミナ担体粒子にPdを担持させることにより、Pdの粒成長を抑制して、高い触媒活性を維持できるとともに、セリア-ジルコニア担体粒子中のセリアによって雰囲気中の酸素濃度を調整することができる。これによりNOの還元反応、並びにCO及びHCの酸化反応を向上させ、排ガス浄化性能を向上させることができることを報告している。
特開2001-104786号公報
 本発明は、排ガス浄化性能を向上した排ガス浄化装置を提供することを課題とするものである。
 本発明者らは、以下の手段により、上記課題を解決することができることを見出した。
《態様1》
 アルミナ担体粒子にPdを担持してなるPd担持触媒と、第1のセリア-ジルコニア担体粒子にRhを担持してなる第1のRh担持触媒と、第2のセリア-ジルコニア担体粒子とを含む第1の触媒層を有する、排ガス浄化装置であって、
 前記第1のセリア-ジルコニア担体粒子中のセリア濃度が30wt%以下であり、かつ前記第2のセリア-ジルコニア担体粒子中のセリア量が前記第1のセリア-ジルコニア担体粒子中のセリア量よりも大きい、排ガス浄化装置。
《態様2》
 前記第2のセリア-ジルコニア担体粒子中のセリア濃度が、30wt%より大きい、態様1に記載の排ガス浄化装置。
《態様3》
 前記第1の触媒層が、硫酸バリウムをさらに含む、態様1又は2に記載の排ガス浄化装置。
《態様4》
 前記第1の触媒層の下側に第2の触媒層を有する、態様1~3のいずれか一項に記載の排ガス浄化装置。
《態様5》
 前記第2の触媒層が、硫酸バリウムを含む、態様4に記載の排ガス浄化装置。
《態様6》
 前記第2の触媒層が、第1のセリア-ジルコニア担体粒子にRhを担持してなる第2のRh担持触媒を含む、態様4又は5に記載の排ガス浄化装置。
《態様7》
 前記第1のRh担持触媒のRh量と、前記第2のRh担持触媒のRh量との比が、10:90~90:10の範囲である、態様6に記載の排ガス浄化装置。
《態様8》
 前記第2の触媒層の下側にさらに1又は複数の層を有する、態様4~7のいずれか一項に記載の排ガス浄化装置。
《態様9》
 前記第1の触媒層が基材上に存在している、態様1~3のいずれか一項に記載の排ガス浄化装置。
《態様10》
 前記第1の触媒層と前記基材との間に前記第2の触媒層を有する、態様4~7のいずれか一項に記載の排ガス浄化装置。
《態様11》
 前記第2の触媒層と前記基材との間に前記1又は複数の層を有する、態様8に記載の排ガス浄化装置。
 本発明によれば、排ガス浄化性能を向上した排ガス浄化装置を提供することができる。
(a)本発明の一つの実施態様を示す排ガス浄化装置の概念図である。(b)本発明の他の1つの実施態様を示す排ガス浄化装置の概念図である。(c)従来技術の排ガス浄化装置の概念図である。 本発明の排ガス浄化装置の一つの実施態様を示す概念図である。
 《排ガス浄化装置》
 本発明の排ガス浄化装置は、アルミナ担体粒子にPdを担持してなるPd担持触媒と、第1のセリア-ジルコニア担体粒子にRhを担持してなる第1のRh担持触媒と、第2のセリア-ジルコニア担体粒子とを含む第1の触媒層を有する、排ガス浄化装置であって、第1のセリア-ジルコニア担体粒子中のセリア量が30wt%以下であり、かつ第2のセリア-ジルコニア担体粒子中のセリア量が第1のセリア-ジルコニア担体粒子中のセリア量よりも大きい、排ガス浄化装置である。
 例えば図1(a)に示されるように、本発明の排ガス浄化装置(100)は、アルミナ担体粒子(22)にPd(21)を担持してなるPd担持触媒と、第1のセリア-ジルコニア担体粒子(23)にRh(24)を担持してなる第1のRh担持触媒と、第2のセリア-ジルコニア担体粒子(25)とを含む第1の触媒層(2)を有する、排ガス浄化装置(100)である。また、図1(b)に示されるように、第1の触媒層(2)は、基材(1)上に存在していてもよい。
 特許文献1では、図1(c)に示されるように、アルミナ担体粒子(22)にPd(21)を担持してなるPd担持触媒と、セリア-ジルコニア担体粒子(26)にRh(24)を担持してなるRh担持触媒とを含有する触媒層(2)を基材上(1)に有する排ガス浄化装置(100)が開示されている。特許文献1によれば、耐熱性に優れるアルミナ担体粒子(22)の効果により、Pd(21)の粒成長を抑制して、高い触媒活性を維持できるとともに、セリア-ジルコニア担体粒子(26)中のセリアによって雰囲気中の酸素濃度を調整して、排ガス浄化性能を向上させることが可能とされている。
 上記公報の排ガス浄化用装置(100)は、Rh(24)を担持したセリア-ジルコニア担体粒子(26)中に、当然ながらセリアが多く含まれている。しかしながら、本発明者らは、Rh(24)を担持したセリア-ジルコニア担体粒子(26)中に含有するセリアの量が多いほど、Rhによる排ガス浄化性能が低下し、結果として当該排ガス浄化装置(100)の排ガス浄化性能が次第に低下する傾向があることを見出した。
 そこで、このような見地から、本発明者らは、図1(a)及び(b)に示されるように、低濃度でセリアを含有する第1のセリア-ジルコニア担体粒子(23)にRh(24)を担持させるとともに、酸素吸蔵放出能(OSC性能)を確保するため、第2のセリア-ジルコニア担体粒子(25)を添加した。これにより、Rhを担持している担体粒子に含まれるセリアによるRhの活性低下を防ぐことができ、かつOSC性能を確保することができるため、本発明の排ガス浄化装置は、排ガス浄化性能を向上させることができる。
 なお、本発明の排ガス浄化用装置(100)は、図1(a)及び(b)に示されるように、さらに他の貴金属を担持している担体、例えばPd(21)を担持しているアルミナ(22)を有していてもよい。
 また、本発明の排ガス浄化用装置(100)は、第1の触媒層(2)の下側に、第2の触媒層(3)を有していてもよく、さらに第3の触媒層(4)を有していてもよく、さらなる触媒層を有していてもよい。ここで、「上側」又は「下側」とは、排ガス流が接触する部分を最も上側として考えた場合の関係に基づいて決定される。例えば、基材を有する排ガス浄化装置では、基材が触媒層よりも下側に位置する。さらに、本発明の排ガス浄化装置(100)は、図2(a)に示されるように、基材(1)と第1の触媒層(2)との間に、第2の触媒層(3)を有していてもよく、図2(b)に示されるように、さらに第3の触媒層(4)を有していてもよく、さらなる触媒層を有していてもよい。第2の触媒層(3)には、例えば、Rhを担持し、かつ低濃度でセリアを含有するセリア-ジルコニア担体粒子及びアルミナ粒子が存在していてもよく、第3の触媒層(4)には、例えばPt及び/又はPdを担持した担体が存在していてもよい。
 <第1の触媒層>
 第1の触媒層は、アルミナ担体粒子にPdを担持してなるPd担持触媒と、第1のセリア-ジルコニア担体粒子にRhを担持してなる第1のRh担持触媒と、第2のセリア-ジルコニア担体粒子とを含む。
 第1の触媒層は、触媒担体粒子を壁面に含む基材、例えば特開2015-85241号公報に記載のような基材の一部であってもよく、そのような基材の上に存在していてもよい。第1の触媒層が基材の一部である場合には、第1の触媒層が基材の壁面を構成していてもよい。この場合には、Pd担持触媒、第1のRh担持触媒、及び第2のセリア-ジルコニア担体粒子を、基材を製造する際に使用する無機粒子と混合して用いて、排ガス浄化装置を得てもよい。
 (Pd担持触媒)
 本発明のPd担持触媒は、アルミナ担体粒子にPdが担持された触媒である。Pdは低温活性に優れ、主にHCとCOを酸化する役割を果たす。第1の触媒層にPdを含んだ本発明の排ガス浄化装置を使用すれば、内燃機関の始動開始直後のような低温度下においても、排ガスを効率良く浄化することができる。また、アルミナは、耐熱性に優れる酸化物であるから、アルミナ担体粒子にPdを担持することで、Pdのシンタリングを抑制して、活性低下を防ぐことができる。
 アルミナ担体粒子として、γ-アルミナ、β-アルミナ、及びシリカ-アルミナ等から選択して用いることができる。中でも吸着特性及び耐熱性に優れたγ-アルミナが特に好ましく使用される。
 アルミナ担体粒子の比表面積は、担持性、耐熱性、構造安定性等の観点から、例えば30m/g以上、50m/g以上、100m/g以上、150m/g以上又は200m/g以上のものを使用することができ、2000m/g以下、1000m/g以下、800m/g以下、500m/g以下、又は400m/g以下のものを使用することができる。
 アルミナ担体粒子に加えて他の多孔質担体を使用することもできる。他の多孔質担体としては、触媒金属を担持するために一般的に使用されている耐熱性の無機酸化物を挙げることができ、例えばシリカ、ジルコニア、チタニア等を挙げることができる。
 Pdの担持量は、基材又は排ガス浄化装置1リットル当たり0.5g以上、1g以上、3g以上、又は5g以上であってよく、10g以下、9g以下、8g以下、又は7g以下であってよい。Pdがこの範囲より少ないとCO及びHCの浄化率が低下する場合があり、この範囲より多く担持しても効果が飽和するとともにコストの増大をきたす。
 本発明のPd担持触媒は、例えば以下の工程によって得ることができる。水にアルミナ担体粒子を分散させ分散液を調製する。この分散液にPd塩を含む水溶液をさらに添加し、十分に混合、乾燥、その後焼成することによって、アルミナ担体粒子にPdが担持されたPd担持触媒を得ることができる。ここで用いることができるPd塩としては、硝酸パラジウム、塩化パラジウムなどの水に可溶な塩が挙げられる。
 上記Pd担持触媒の調製方法において、乾燥温度は、例えば70℃以上、80℃以上、又は90℃以上であってよく、150℃以下、120℃以下、110℃以下、又は100℃以下であってよい。また、焼成温度は、例えば300℃以上、400℃以上、又は500℃以上であってもよく、1500℃以下、1300℃以下、又は1100℃以下であってもよい。焼成時間は、1時間以上、2時間以上、又は4時間以上であってもよく、10時間以下、又は8時間以下であってもよい。
 (第1のRh担持触媒)
 本発明の第1のRh担持触媒は、第1のセリア-ジルコニア担体粒子にRhが担持された触媒である。Rhは主にNOxを還元する役割を果たす。第1のセリア-ジルコニア担体粒子は、OSC性能を示す材料であり、特にRh等の貴金属を担持することにより、極めて優れたOSC性能を示すことが知られている。第1の触媒層にRh担持触媒を含んだ本発明の排ガス浄化装置を使用すれば、排ガスを効率よく浄化することができる。
 第1のセリア-ジルコニア複合酸化物とはセリアとジルコニアとが固溶した状態の複合酸化物のことであり、同時にアルカリ土類金属元素や希土類元素(Ce及びZrを除く)などを含むことができる。アルカリ土類金属元素としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等が挙げられる。また、希土類元素(Ce及びZrを除く)としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)等が挙げられる。
 本発明者らは、Rhを担持している第1のセリア-ジルコニア複合酸化物のセリア量が高い場合には、かえって排ガス浄化性能が低下することを見出した。そのため、このような見地から、第1のセリア-ジルコニア担体粒子中のセリア濃度は低く、具体的には、30wt%以下、25wt%以下、20wt%以下、15wt%以下、10wt%以下、又は5wt%以下である。
 第1のセリア-ジルコニア担体粒子は、例えば共沈法によって調製することができる。共沈法は、所定の化学量論比となるように、Ce、Zr、並びに必要に応じてアルカリ土類金属元素や希土類元素(Ce及びZrを除く)を含む塩の溶液を調製して、この溶液に中和剤を加え、Ce、Zr、必要に応じてアルカリ土類金属元素及び希土類元素(Ce及びZrを除く)を含む塩を共沈させた後、この共沈物を、例えば400~1000℃で熱処理することによって第1のセリア-ジルコニア担体粒子を調製することができる。
 各元素の塩としては、例えば、硫酸塩、硝酸塩、塩化物、リン酸塩などの無機塩、例えば、酢酸塩、シュウ酸塩などの有機酸塩などが挙げられる。また、中和剤としては、例えば、アンモニア、例えば、トリエチルアミン、ピリジンなどのアミン類などの有機塩基、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、水酸化アンモニウムなどの無機塩基が挙げられる。中和剤として、好ましくは、水酸化アンモニウム塩が挙げられ、さらに好ましくは、水酸化アンモニウム水溶液が挙げられる。なお、中和剤は、その中和剤を加えた後の溶液のpHが例えば6~10程度となるように加える。
 Rhの担持量は、基材又は排ガス浄化装置1リットル当たり0.01g以上、0.02g以上、0.05g以上、0.1g以上、又は0.5g以上であってよく、5g以下、4g以下、3g以下、2g以下、又は1g以下であってよい。Rhがこの範囲より少ないとNOxの浄化率が低下する場合があり、この範囲より多く担持しても効果が飽和するとともにコストの増大をきたす。
 本発明の第1のRh担持触媒は、上記Pd担持触媒と同様の工程によって得ることができる。
 (第2のセリア-ジルコニア担体粒子)
 第1のセリア-ジルコニア担体粒子中のセリア濃度が低いため、Pd担持触媒及びRh担持触媒のみの構成では、OSC性能が不足して、排ガス浄化性能が悪化する問題が生じる。そのため、OSC性能を確保するため、第2のセリア-ジルコニア担体粒子を第1の触媒層に添加する。例えば貴金属等を担持していない第2のセリア-ジルコニア担体粒子を使用することができる。
 第2のセリア-ジルコニア担体粒子は、第1のセリア-ジルコニア担体粒子と同様の構成であってよく、同様の方法(例えば共沈法)で調製することができる。しかし、第2のセリア-ジルコニア担体粒子は、不足したOSC性能を確保するために第1の触媒層に添加されるものであるため、第2のセリア-ジルコニア担体粒子中のセリア濃度は高い方が好ましく、例えば、30wt%超、40wt%以上、50wt%以上、又は60wt%以上であってよく、95wt%以下、90wt%以下、80wt%以下、又は70wt%以下であってよい。
 また、Rhを担持している第1のセリア-ジルコニア担体粒子中に含まれるセリア量を抑えつつ、第1の触媒層全体のセリア量を確保する観点から、第2のセリア-ジルコニア担体粒子中のセリア量は、第1のセリア-ジルコニア担体粒子中のセリア量よりも大きい。例えば、第1のセリア-ジルコニア担体粒子中のセリア量と、第2のセリア-ジルコニア担体粒子中のセリア量との比は、45:55~40:60、40:60~30:70、30:70~20:80、20:80~10:90、又は10:90~5:95であってよい。
 (助触媒)
 第1の触媒層は、更なる排ガス浄化性能の向上を図るため、Pd担持触媒、Rh担持触媒、及び第2のセリア-ジルコニア担体粒子とは異なる組成を有する助触媒成分を1種以上含んでいてもよい。例えば、第1の触媒層に、バリウム、カルシウム、セシウム、カリウム、マグネシウム、及びランタンからなる群より選ばれる少なくとも一つの元素を、硝酸塩、酢酸塩、又は硝酸塩の形態で含ませることができ、特に硫酸バリウム(BaSO)を含ませることができる。これによって、排ガス中に含まれるHC等によって、Pdが被毒されるのを防ぐことができ、排ガス浄化性能をより向上させることができる。
 <基材>
 基材としては、特に限定されずに一般に排ガス浄化装置において用いられる任意の材料を使用することができる。具体的には、基材としては、多数のセルを有するハニカム形状の材料を使用することができ、例えば、コージェライト(2MgO・2Al・5SiO)、アルミナ、ジルコニア、炭化ケイ素等の耐熱性を有するセラミックス材料や、ステンレス鋼等の金属箔からなるメタル材料を使用することができる。また、上述したように、第1の触媒層が、触媒担体粒子を壁面に含む基材、例えば特開2015-85241号公報に記載のような基材の一部であってもよい。
 <第2の触媒層>
 第2の触媒層は、上記第1の触媒層の下側に存在していてもよい随意の触媒層である。第2の触媒層が、触媒担体粒子を壁面に含む基材、例えば特開2015-85241号公報に記載のような基材の一部であってもよく、第2の触媒層がそのような基材の壁面を構成していてもよい。この場合には、第2の触媒層である基材上に第1の触媒層が存在していてもよい。また、第2の触媒層が基材の一部である場合には、Rh担持触媒を、基材を製造する際に使用する無機粒子と混合して用いて、排ガス浄化装置を得てもよく、また第2の触媒層は、セリア-ジルコニア等の触媒担体粒子を壁面に含む基材に、ウォッシュコート法等によってRhを担持させたものでもよい。
 第2の触媒層は、第1の触媒層と同様の構成成分であってよく、アルミナ担体粒子にPdを担持してなるPd担持触媒と、第1のセリア-ジルコニア担体粒子にRhを担持してなる第2のRh担持触媒と、第2のセリア-ジルコニア担体粒子とを含むことができる。その他第1の触媒層と同様に上記の助触媒成分を1種以上含むことができる。
 本発明の排ガス浄化装置に含まれる貴金属の総量を低減して、原料コストの低減を図るため、第2の触媒層は、Pd担持触媒、及び第2のセリア-ジルコニア担体粒子を含まないことが好ましい。HCとCOの浄化、及びOSC性能は、第1の触媒層によって十分に確保されているためである。
 一方で、NOxの還元は、多段階反応によってなされるため、触媒層に多くの吸着反応場を必要とする。そのため、第2の触媒層は、第2のRh担持触媒を含むことが好ましい。第2のRh担持触媒は、実質的に第1のRh担持触媒と同一であってよく、第1のセリア-ジルコニア担体粒子にRhを担持してなる触媒であってもよい。
 第1のRh担持触媒のRh量と、第2のRh担持触媒のRh量との比は、10:90~90:10、10:90~20:80、20:80~30:70、30:70~40:60、40:60~50:50、50:50~60:40、60:40~70:30、70:30~80:20、又は80:20~90:10であってよく、好ましくは第1のRh担持触媒のRh量と、第2のRh担持触媒のRh量との比は、50:50~60:40、60:40~70:30、70:30~80:20、又は80:20~90:10である。
 その他、本発明の排ガス浄化装置は、第2の触媒層のさらに下側に1又は複数の触媒層を有することができる。
 <排ガス浄化装置の製造方法>
 上述したような構成の排ガス浄化装置は、従来と同様の製造プロセスによって製造することができる。例えば図1(a)に示すような第1の触媒層が基材の壁の一部を構成する場合には、Pd担持触媒、第1のRh担持触媒、及び第2のセリア-ジルコニア担体粒子を、基材を製造する際に使用する無機粒子と混合して用いて、排ガス浄化装置を得てもよい。例えば図1(b)に示すような基材上に第1の触媒層のみを有する1層構造タイプの排ガス浄化装置を製造するには、まずPd担持触媒、Rh担持触媒、及び第2のセリア-ジルコニア担体粉末を含むスラリーを公知のウォッシュコート法等によって基材にコートする。その後、所定の温度及び時間で乾燥し、焼成することによって、第1の触媒層を基材上に有する排ガス浄化装置を製造することができる。
 また第1の触媒層及び第2の触媒層を有する、2層構造タイプの排ガス浄化装置を製造するには、まず基材上に第2の触媒層を形成し、又は第2の触媒層として触媒担体粒子を壁面に含む基材、例えば特開2015-85241号公報に記載のような基材を使用し、次いで第1の触媒層を形成するとよい。具体的には、図1(b)の態様の場合には、第2の触媒層のための所望の成分を、基材を製造する際に使用する他の無機粒子と混合して用いて、第2の触媒層がその一部となっている基材を得る。その後、第1の触媒層用スラリーを公知のウォッシュコート法等によってその基材にコートし、乾燥し、焼成する。また、図1(b)の態様の場合には、所望の成分を含む第2の触媒層用スラリーを公知のウォッシュコート法によって基材の表面にコートする。次いで、Pd担持触媒、Rh担持触媒、及び第2のセリア-ジルコニア担体粉末を含む第1の触媒層用スラリーを公知のウォッシュコート法等によって第2の触媒層の表面に積層コートする。そして、所定の温度及び時間で乾燥し、焼成する。積層構造は二層に限られず三層以上であってもよい。又はこのような一度の焼成プロセスに代えて、第2の触媒層用スラリーを基材の表面にコートした後に乾燥及び焼成を行って先ず第2の触媒層を形成し、次いで、第1の触媒層用スラリーを第2の触媒層の表面にコートして乾燥及び焼成を行って第1の触媒層を形成する二段階の焼成を行うプロセスでもよい。
 ウォッシュコートされたスラリーの焼成条件は、特に限定はされないが、典型的には400~1000℃程度で、約1~4時間程度の焼成を行うことによって、目的の触媒層を形成することができる。なお、焼成前の乾燥条件については特に限定されないが、80~300℃の温度で1~12時間程度の乾燥が好ましい。
 また触媒層をこのようなウォッシュコート法により形成する場合、基材の表面、さらに複数の積層構造触媒層の場合には下層の表面にスラリーを好適に密着させるため、スラリーにはバインダーを含有させることが好ましい。かかる目的のバインダーとしては、例えばアルミナゾル、シリカゾル等の使用が好ましい。なお、スラリーの粘度は該スラリーが基材(例えばハニカム基材)のセル内へ容易に流入し得るように適宜調整するとよい。
 以下、例により本発明を具体的に説明するが、本発明の技術的範囲は限定されるものではない。
 《1層構成の排ガス浄化装置の調製》
 [例1]
 イオン交換水100mlに第1のセリア-ジルコニア(CZ)系複合酸化物(CeO/ZrO/La/Nd=20/70/5/5(wt%))(CZLN1と表記)(25g)、及び硝酸ロジウム溶液(Rh元素として5wt%)(4g)を投入し、60分攪拌した。110℃で乾燥した後、大気中500℃で1時間焼成して、Rh担持粉末Iを得た。
 次いで、イオン交換水200mlにアルミナ(50g)、及び硝酸パラジウム溶液(Pd元素として5wt%)(20g)を投入し、60分攪拌した。110℃で乾燥した後、大気中500℃で1時間焼成して、Pd担持アルミナIを得た。
 Pd担持アルミナI(51g)(うちPd元素の量は1g)、Rh担持粉末I(25.2g)(うちRh元素の量は0.2g)、及び第2のセリア-ジルコニア(CZ)系複合酸化物(CeO/ZrO/La=40/55/5(wt%))(CZL1と表記)(25g)とを混合しスラリーを調製した。このスラリーをモノリスハニカム基材(全長100mm 容積1.0L セル数 900セル/in2)に100.2g(うちPd元素の量は1g、Rh元素の量は0.2g)コートし、250℃で1時間乾燥させた後、500℃で1時間焼成して、例1の排ガス浄化装置を調製した。
 [例2]
 第1のCZ系複合酸化物の種類を変更し、アルミナ量を変更し、かつ第2のCZ系複合酸化物を使用しなかったこと以外は、例1と同様の方法で、例2の排ガス浄化装置を得た。
 《2層構成の排ガス浄化装置の調製-Rh担体量の検討》
 [例3]
 Rh担持量を0.18gにしたことを除いてRh担持粉末Iと同様にして、Rh担持粉末IIを得た。
 Rh担持粉末II(25.18g)(うちRh元素の量は0.18g)、及びアルミナ(75g)を混合しスラリーを調製した。このスラリーをモノリスハニカム基材(全長100mm 容積1.0L セル数 900セル/in)に100.1g(うちRh元素の量は0.1g)コートし、250℃で1時間乾燥させた後、500℃で1時間焼成して、第1の触媒層を有する排ガス浄化装置を調製した。
 Rh担持量を0.02gにしたことを除いてRh担持粉末Iと同様にして、Rh担持粉末IIIを得た。
 例1で用いたPd担持アルミナI(51g)(うちPd元素の量は1g)、Rh担持粉末III(25.02g)(うちRh元素の量は0.02g)、及びセリア-ジルコニア系複合酸化物CZL1(25g)を混合しスラリーを調製した。このスラリーを上記の第1の触媒層を有する排ガス浄化装置に101.12g(うちPd元素の量は1g、Rh元素の量は0.0.02g)コートし、250℃で1時間乾燥させた後、500℃で1時間焼成して、第1の触媒層及び第2の触媒層を有する例3の排ガス浄化装置を調製した。
 [例4~8]
 Rh担持量の合計は変更せずに、第1の触媒層と第2の触媒層でのRh担持割合を変更したこと以外は例3と同様の方法で、下記の表1に記載の構成の例4~7の排ガス浄化装置を得た。また、第1の触媒層にRhを担持させずに、第2の触媒層のRh担持量を変更したこと以外は例3と同様の方法で、例8の排ガス浄化装置を得た。
《2層構成の排ガス浄化装置の調製-第1のCZ系複合酸化物の種類の検討》
 [例9~14]
 第1のCZ系複合酸化物の種類を変更したこと以外は例5と同様の方法で、下記の表2に記載の構成の例9~14の排ガス浄化装置を得た。
《2層構成の排ガス浄化装置の調製-第2のCZ系複合酸化物の種類の検討》
 [例15~18]
 第1の触媒層の第2のCZ系複合酸化物の種類を変更したこと以外は例5と同様の方法で、下記の表3に記載の構成の例15~17の排ガス浄化装置を得た。例18では、第1の触媒層の第2のCZ系複合酸化物を使用しなかった。
《2層構成の排ガス浄化装置の調製-硫酸バリウムの検討》
 [例19]
 例5と同様の方法で、下記の表4に記載のように例19の排ガス浄化装置を得た。
《3層構成の排ガス浄化装置の調製》
 [例20]
 (1)イオン交換水100mlにアルミナ(25g)、及び硝酸パラジウム溶液(Pd元素として5wt%)(1g)を投入し、60分攪拌した。110℃で乾燥した後、大気中500℃で1時間焼成して、Pd担持アルミナIIを得た。
 (2)イオン交換水100mlにセリア-ジルコニア系複合酸化物(ZrO/CeO/La/Y=75/15/5/5(wt%))(CZLYと表記)(25g)、及びジニトロジアミンPt硝酸溶液(Ptとして5wt%)(1g)を投入し、60分攪拌した。110℃で乾燥した後、大気中500℃で1時間焼成して、Pt担持CZ担体を得た。
 (3)Pd担持アルミナII(25.05g)(うちPd元素の量は0.05g)、及びPt担持CZ担体(25.05g)(うちPt元素の量は0.05g)を混合しスラリーを調製した。このスラリーをモノリスハニカム基材(全長100mm 容積1.0L セル数 900セル/in)に50.1g(うちPd元素の量は0.05g、Pt元素の量は0.05g)コートし、250℃で1時間乾燥させた後、500℃で1時間焼成して、第1の触媒層を有する排ガス浄化装置を調製した。
 (4)例1で用いたRh担持粉末I(25.1g)(うちRh元素の量は0.1g)、及びアルミナ(75g)を混合しスラリーを調製した。このスラリーを(3)で得た排ガス浄化装置に100.1g(うちRh元素の量は0.1g)コートし、250℃で1時間乾燥させた後、500℃で1時間焼成して、第1の触媒層及び第2の触媒層を有する排ガス浄化装置を得た。
 (5)次いで、イオン交換水200mlにアルミナ(50g)、及び硝酸パラジウム溶液(Pd元素として5wt%)(20g)を投入し、60分攪拌した。110℃で乾燥した後、大気中500℃で1時間焼成して、Pd担持アルミナIIIを得た。
 (6)Pd担持アルミナIII(51g)(うちPd元素の量は1g)、Rh担持粉末I(25.1g)(うちRh元素の量は0.1g)、及びセリア-ジルコニア系複合酸化物CZL1(25g)を混合してスラリーを調製した。このスラリーを(4)で得た排ガス浄化装置に101.1g(うちPd元素の量は1g、Rh元素の量は0.1g)コートし、250℃で1時間乾燥させた後、500℃で1時間焼成して、例20の排ガス浄化装置を得た。
 [例21]
 第2の触媒層及び第3の触媒層の構成を変更し、例20と同様の方法で、下記の表4に記載の構成の例21の排ガス浄化装置を得た。
《2層構成の排ガス浄化装置の調製-第2の触媒層のCZ担体の変更》
 [例22~23]
 第2の触媒層のCZ担体を変更したこと以外は例5と同様の方法で、下記の表4に記載の構成の例22~23の排ガス浄化装置を得た。
 《評価方法》
 [耐久性能試験]
 排ガス浄化装置について、8万km走行相当の耐久試験を行った。その後、これらの排ガス浄化装置を排気量1.0Lのエンジンを有する実機車両に搭載し、JC08モードで走行して、NMHC、NOxの排出量を測定した。結果を表1に示す。なお、表1の値は、JC08モードのCold評価とHot評価とのコンバイン値である。
 [Pd-Rh合金化率評価法]
 例2及び例5の耐久排ガス浄化装置をかきとり、この装置に含まれるPd及びRhの特性X線強度を走査型電子顕微鏡(SEM-EDX)によって測定した。この測定では、150,000倍の倍率で観察した。Pd元素の測定値を「Pd」、Rh元素の測定値を「Rh」とした場合に、以下の計算式によってPd-Rh合金化率を算出した。
   Pd-Rh合金化率(%)=Rh/(Pd+Rh)×100
 Pd及びRhのSEM-EDX測定を繰り返し、100点分析を行い、各Pd-Rh合金化率の平均値を代表値として求めた。
《結果》
 結果を表1~表4に示す。
 表1からわかるように、第1のセリア-ジルコニア担体粒子中のセリア濃度が高く、かつ含有するセリア量が多い例2と比較して、第1のセリア-ジルコニア担体粒子中のセリア濃度を低くして、かつ含有するセリア量を少なくして、第2のセリア-ジルコニア担体粒子を加えた例1では、排ガス浄化性能が向上した。
 また、第1の触媒層のみを有する例1と比較して、第1の触媒層及び第2の触媒層にRh担持触媒を有する、2層構造の例3~7では、排ガス浄化性能がさらに向上した。
 また、2層構造ではあるが、第1の触媒層にRh担持触媒を有さない例8と比較して、第1の触媒層及び第2の触媒層にRh担持触媒を有する例3~7では、排ガス浄化性能が向上した。
 また、表2からわかるように、Rhをアルミナに担持させた例13と比較して、Rhを第1のセリア-ジルコニア担体粒子に担持させた例5では、排ガス浄化性能が向上した。
 また、第1のセリア-ジルコニア担体粒子中のセリア濃度が高い例14と比較して、第1のセリア-ジルコニア担体粒子中のセリア濃度が低い例5及び例9~12では、排ガス浄化性能が向上しており、そして第1のセリア-ジルコニア担体粒子中のセリア濃度が低ければ低いほど排ガス浄化性能が向上した。
 また、表3からわかるように、第1の触媒層において、第1のセリア-ジルコニア担体粒子中のセリア量と第2のセリア-ジルコニア担体粒子中のセリア量が同じである例17と比較して、第2のセリア-ジルコニア担体粒子中のセリア量が第1のセリア-ジルコニア担体粒子中のセリア量よりも大きい、例5及び例15~16では、排ガス浄化性能が向上している。また、第1の触媒層に第2のセリア-ジルコニア担体粒子を含まない例18と比較して、第2のセリア-ジルコニア担体粒子を含む例5では、排ガス浄化性能が向上した。
 表4から分かるように、硫酸バリウムを含まない例5と比較して、硫酸バリウムを含む例19では、排ガス浄化性能がさらに向上した。
 また、2層構造を有する例5と比較して、3層構造を有する例20では、排ガス浄化性能がさらに向上した。
 さらに、第2の触媒層において、Rhをアルミナ担体粒子に担持している例23と比較して、Rhを第1のセリア-ジルコニア担体粒子に担持している例5及び22では、排ガス浄化性能がさらに向上した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 100  排ガス浄化装置
 1  基材
 2  第1の触媒層
 21  Pd
 22  アルミナ
 23  第1のセリア-ジルコニア担体粒子
 24  Rh
 25  第2のセリア-ジルコニア担体粒子
 26  従来のセリア-ジルコニア担体粒子
 3  第2の触媒層
 4  第3の触媒層

Claims (11)

  1.  アルミナ担体粒子にPdを担持してなるPd担持触媒と、第1のセリア-ジルコニア担体粒子にRhを担持してなる第1のRh担持触媒と、第2のセリア-ジルコニア担体粒子とを含む第1の触媒層を有する、排ガス浄化装置であって、
     前記第1のセリア-ジルコニア担体粒子中のセリア濃度が30wt%以下であり、かつ前記第2のセリア-ジルコニア担体粒子中のセリア量が前記第1のセリア-ジルコニア担体粒子中のセリア量よりも大きい、排ガス浄化装置。
  2.  前記第2のセリア-ジルコニア担体粒子中のセリア濃度が、30wt%より大きい、請求項1に記載の排ガス浄化装置。
  3.  前記第1の触媒層が、硫酸バリウムをさらに含む、請求項1又は2に記載の排ガス浄化装置。
  4.  前記第1の触媒層の下側に第2の触媒層を有する、請求項1~3のいずれか一項に記載の排ガス浄化装置。
  5.  前記第2の触媒層が、硫酸バリウムを含む、請求項4に記載の排ガス浄化装置。
  6.  前記第2の触媒層が、第1のセリア-ジルコニア担体粒子にRhを担持してなる第2のRh担持触媒を含む、請求項4又は5に記載の排ガス浄化装置。
  7.  前記第1のRh担持触媒のRh量と、前記第2のRh担持触媒のRh量との比が、10:90~90:10の範囲である、請求項6に記載の排ガス浄化装置。
  8.  前記第2の触媒層の下側にさらに1又は複数の層を有する、請求項4~7のいずれか一項に記載の排ガス浄化装置。
  9.  前記第1の触媒層が基材上に存在している、請求項1~3のいずれか一項に記載の排ガス浄化装置。
  10.  前記第1の触媒層と前記基材との間に前記第2の触媒層を有する、請求項4~7のいずれか一項に記載の排ガス浄化装置。
  11.  前記第2の触媒層と前記基材との間に前記1又は複数の層を有する、請求項8に記載の排ガス浄化装置。
PCT/JP2017/001812 2016-01-21 2017-01-19 排ガス浄化装置 WO2017126631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/071,444 US10618034B2 (en) 2016-01-21 2017-01-19 Exhaust gas purification device
EP17741508.0A EP3406322B1 (en) 2016-01-21 2017-01-19 Exhaust gas purification device
JP2017528239A JP6180697B1 (ja) 2016-01-21 2017-01-19 排ガス浄化装置
CN201780007090.9A CN108472590B (zh) 2016-01-21 2017-01-19 排气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-009954 2016-01-21
JP2016009954 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017126631A1 true WO2017126631A1 (ja) 2017-07-27

Family

ID=59362401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001812 WO2017126631A1 (ja) 2016-01-21 2017-01-19 排ガス浄化装置

Country Status (5)

Country Link
US (1) US10618034B2 (ja)
EP (1) EP3406322B1 (ja)
JP (1) JP6180697B1 (ja)
CN (1) CN108472590B (ja)
WO (1) WO2017126631A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181339A (ja) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 排ガス浄化用触媒
WO2020067000A1 (ja) * 2018-09-28 2020-04-02 ユミコア日本触媒株式会社 排ガス浄化触媒、排ガスの浄化方法、及び排ガス浄化触媒の製造方法
CN111491714A (zh) * 2017-12-19 2020-08-04 优美科股份公司及两合公司 单层3元催化转化器
WO2022209155A1 (ja) 2021-03-31 2022-10-06 三井金属鉱業株式会社 排ガス浄化用触媒
US11623179B2 (en) 2017-12-19 2023-04-11 Umicore Ag & Co. Kg Catalytically active particulate filter
US11702971B2 (en) 2017-12-19 2023-07-18 Umicore Ag & Co. Kg Catalytically active particulate filter

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733287B1 (en) * 2017-12-28 2024-02-28 Umicore Shokubai Japan Co., Ltd. Hydrogen production catalyst and exhaust gas purification catalyst using same
JP7195995B2 (ja) * 2019-03-27 2022-12-26 株式会社キャタラー 排ガス浄化用触媒
JP7288331B2 (ja) * 2019-03-29 2023-06-07 株式会社キャタラー 排ガス浄化触媒装置
JP2020163342A (ja) * 2019-03-29 2020-10-08 株式会社キャタラー 排ガス浄化触媒装置
JP7386651B2 (ja) * 2019-09-02 2023-11-27 株式会社キャタラー 排ガス浄化用触媒
JP7450359B2 (ja) * 2019-10-01 2024-03-15 株式会社キャタラー 排ガス浄化用触媒
US11642655B2 (en) * 2020-01-07 2023-05-09 Johnson Matthey Public Limited Company Multi-region TWC catalysts for gasoline engine exhaust gas treatments
US11788450B2 (en) * 2020-10-30 2023-10-17 Johnson Matthey Public Limited Company TWC catalysts for gasoline engine exhaust gas treatments
JPWO2022131244A1 (ja) * 2020-12-15 2022-06-23
JP7355775B2 (ja) * 2021-03-05 2023-10-03 トヨタ自動車株式会社 排ガス浄化用触媒
JP2023008520A (ja) * 2021-07-06 2023-01-19 トヨタ自動車株式会社 排ガス浄化用触媒
WO2023017258A1 (en) * 2021-08-13 2023-02-16 Johnson Matthey Public Limited Company Sulfur-containing organic compound assisted metal nanoparticle synthesis for three-way catalysis application

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104786A (ja) 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd 排気ガス浄化用触媒
JP2002028488A (ja) * 2000-07-18 2002-01-29 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP2006263581A (ja) * 2005-03-24 2006-10-05 Mazda Motor Corp 排気ガス浄化用触媒
JP2006297372A (ja) * 2005-03-24 2006-11-02 Tokyo Roki Co Ltd 排気ガス浄化用触媒
JP2010005565A (ja) * 2008-06-27 2010-01-14 Tokyo Roki Co Ltd 排ガス浄化用触媒、及び排ガス浄化用触媒の製造方法
JP2010274162A (ja) * 2009-05-26 2010-12-09 Tokyo Roki Co Ltd 内燃機関用の排ガス浄化触媒、及び内燃機関用の排ガス浄化装置
JP2011200817A (ja) * 2010-03-26 2011-10-13 Mazda Motor Corp 排気ガス浄化用触媒
JP2014117700A (ja) * 2012-12-17 2014-06-30 Hyundai Motor Company Co Ltd 内燃機関用ガス浄化触媒
JP2014136175A (ja) * 2013-01-15 2014-07-28 Mazda Motor Corp 触媒付パティキュレートフィルタ及びその製造方法
JP2014168751A (ja) * 2013-03-04 2014-09-18 Mazda Motor Corp 排気ガス浄化用触媒及びその製造方法
JP2015085241A (ja) 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864214B2 (en) * 2000-09-26 2005-03-08 Daihatsu Motor Co., Ltd. Exhaust gas purifying catalyst
EP1424121A4 (en) * 2001-07-30 2006-08-02 Valtion Teknillinen METHOD FOR CATALYTIC REDUCTION OF STAIN OXIDES AND CATALYST FOR USE THEREOF
JP4977467B2 (ja) * 2004-09-16 2012-07-18 第一稀元素化学工業株式会社 セリウム−ジルコニウム系複合酸化物、その製造方法、それを用いた酸素吸蔵放出材料、排気ガス浄化触媒、及び排気ガス浄化方法
EP1704910B1 (en) 2005-03-24 2018-09-19 Tokyo Roki Co., Ltd. Exhaust gas purification catalyst
JP5100085B2 (ja) * 2006-10-31 2012-12-19 株式会社キャタラー 排ガス浄化用触媒
US20100124523A1 (en) * 2008-11-19 2010-05-20 Basf Catalysts Llc Emissions Treatment Catalysts
US9134239B2 (en) * 2011-03-21 2015-09-15 The Regents Of The University Of California Thin layer high explosive fluorescent polymer sensing methods, sensors and kits
CN105745015A (zh) * 2013-11-22 2016-07-06 株式会社科特拉 排气净化用催化剂

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104786A (ja) 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd 排気ガス浄化用触媒
JP2002028488A (ja) * 2000-07-18 2002-01-29 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP2006263581A (ja) * 2005-03-24 2006-10-05 Mazda Motor Corp 排気ガス浄化用触媒
JP2006297372A (ja) * 2005-03-24 2006-11-02 Tokyo Roki Co Ltd 排気ガス浄化用触媒
JP2010005565A (ja) * 2008-06-27 2010-01-14 Tokyo Roki Co Ltd 排ガス浄化用触媒、及び排ガス浄化用触媒の製造方法
JP2010274162A (ja) * 2009-05-26 2010-12-09 Tokyo Roki Co Ltd 内燃機関用の排ガス浄化触媒、及び内燃機関用の排ガス浄化装置
JP2011200817A (ja) * 2010-03-26 2011-10-13 Mazda Motor Corp 排気ガス浄化用触媒
JP2014117700A (ja) * 2012-12-17 2014-06-30 Hyundai Motor Company Co Ltd 内燃機関用ガス浄化触媒
JP2014136175A (ja) * 2013-01-15 2014-07-28 Mazda Motor Corp 触媒付パティキュレートフィルタ及びその製造方法
JP2014168751A (ja) * 2013-03-04 2014-09-18 Mazda Motor Corp 排気ガス浄化用触媒及びその製造方法
JP2015085241A (ja) 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3406322A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11623179B2 (en) 2017-12-19 2023-04-11 Umicore Ag & Co. Kg Catalytically active particulate filter
CN111491715B (zh) * 2017-12-19 2022-12-27 优美科股份公司及两合公司 催化活性微粒过滤器
CN111491714A (zh) * 2017-12-19 2020-08-04 优美科股份公司及两合公司 单层3元催化转化器
CN111491715A (zh) * 2017-12-19 2020-08-04 优美科股份公司及两合公司 催化活性微粒过滤器
US12128357B2 (en) 2017-12-19 2024-10-29 Umicore Ag & Co. Kg Catalytically active particulate filter
US11702971B2 (en) 2017-12-19 2023-07-18 Umicore Ag & Co. Kg Catalytically active particulate filter
US11628400B2 (en) 2017-12-19 2023-04-18 Umicore Ag & Co. Kg Catalytically active particulate filter
CN111491714B (zh) * 2017-12-19 2023-02-10 优美科股份公司及两合公司 单层3元催化转化器
CN111511457A (zh) * 2017-12-19 2020-08-07 优美科股份公司及两合公司 多层三元催化转化器
JP7084190B2 (ja) 2018-04-05 2022-06-14 トヨタ自動車株式会社 排ガス浄化用触媒
JP2019181339A (ja) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 排ガス浄化用触媒
JP7171751B2 (ja) 2018-09-28 2022-11-15 ユミコア日本触媒株式会社 排ガス浄化触媒、排ガスの浄化方法、及び排ガス浄化触媒の製造方法
US11446639B2 (en) 2018-09-28 2022-09-20 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification method, and production method for exhaust gas purification catalyst
WO2020067000A1 (ja) * 2018-09-28 2020-04-02 ユミコア日本触媒株式会社 排ガス浄化触媒、排ガスの浄化方法、及び排ガス浄化触媒の製造方法
JPWO2020067000A1 (ja) * 2018-09-28 2021-08-30 ユミコア日本触媒株式会社 排ガス浄化触媒、排ガスの浄化方法、及び排ガス浄化触媒の製造方法
WO2022209155A1 (ja) 2021-03-31 2022-10-06 三井金属鉱業株式会社 排ガス浄化用触媒

Also Published As

Publication number Publication date
EP3406322A1 (en) 2018-11-28
CN108472590A (zh) 2018-08-31
EP3406322A4 (en) 2019-09-18
JP6180697B1 (ja) 2017-08-16
CN108472590B (zh) 2021-06-01
EP3406322B1 (en) 2022-01-05
US10618034B2 (en) 2020-04-14
JPWO2017126631A1 (ja) 2018-01-25
US20190015820A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6180697B1 (ja) 排ガス浄化装置
JP3498453B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP3145175B2 (ja) 排ガス浄化用触媒及びその製造方法
JP5323093B2 (ja) 排ガス浄化用触媒
KR20180085813A (ko) 희박 가솔린 직접 분사 엔진을 위한 촉매 시스템
US20140301906A1 (en) Three Way Catalyst Double Impregnation Composition and Method Thereof
JP2020536723A (ja) 熱耐久性が改善されたガソリン排気ガス用途のためのtwc触媒
JPWO2007040248A1 (ja) 排ガス浄化用触媒
JP6567168B2 (ja) 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置
JP3988202B2 (ja) 排気ガス浄化用触媒
KR20140079233A (ko) 저온에서의 NOx 흡장성능이 개선된 LNT촉매
US10710023B2 (en) Exhaust gas purification catalyst
US11400436B2 (en) Exhaust gas purification catalyst
WO2008091004A1 (ja) 排ガス浄化用触媒及び排ガス浄化用ハニカム触媒構造体
JP7173707B2 (ja) 排ガス浄化用触媒
JP4831753B2 (ja) 排ガス浄化用触媒
JP2011016124A (ja) 排ガス浄化用触媒
JP6339013B2 (ja) 排気ガス浄化触媒用担体、排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
US20210199037A1 (en) Exhaust gas purification catalyst
WO2010110298A1 (ja) 排ガス浄化用触媒
JP2000301000A (ja) 排ガス浄化用触媒及びその製造方法
JPH09248462A (ja) 排気ガス浄化用触媒
US11577226B2 (en) Exhaust gas purification catalyst
JP2007301471A (ja) 排ガス浄化用触媒
JP4807620B2 (ja) 排ガス浄化用触媒及びそれを用いた排ガス浄化方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017528239

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017741508

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741508

Country of ref document: EP

Effective date: 20180821