WO2017126201A1 - バインダー組成物、バインダー分散液、電極合剤、電極、非水電解質二次電池、およびバインダー組成物の製造方法 - Google Patents

バインダー組成物、バインダー分散液、電極合剤、電極、非水電解質二次電池、およびバインダー組成物の製造方法 Download PDF

Info

Publication number
WO2017126201A1
WO2017126201A1 PCT/JP2016/083631 JP2016083631W WO2017126201A1 WO 2017126201 A1 WO2017126201 A1 WO 2017126201A1 JP 2016083631 W JP2016083631 W JP 2016083631W WO 2017126201 A1 WO2017126201 A1 WO 2017126201A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
binder composition
copolymer
electrode
parts
Prior art date
Application number
PCT/JP2016/083631
Other languages
English (en)
French (fr)
Inventor
善幸 長澤
民人 五十嵐
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to US16/069,197 priority Critical patent/US10938034B2/en
Priority to EP16886440.3A priority patent/EP3407410B1/en
Priority to CN201680077678.7A priority patent/CN108475785B/zh
Priority to KR1020187019017A priority patent/KR102165678B1/ko
Publication of WO2017126201A1 publication Critical patent/WO2017126201A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/222Vinylidene fluoride with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, in particular, a binder composition used for manufacturing a lithium ion secondary battery, a binder dispersion using the same, an electrode mixture, an electrode, and a non-aqueous electrolyte secondary battery using the same And a method for producing a binder composition.
  • Nonaqueous electrolyte secondary batteries are also used in hybrid vehicles combining secondary batteries and engines, and electric vehicles powered by secondary batteries, from the viewpoint of global environmental problems and energy saving. Applications are expanding.
  • the electrode for a non-aqueous electrolyte secondary battery has a structure having a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is generally applied on a current collector in a slurry state in which an electrode mixture containing an electrode active material and a binder composition is dispersed in an appropriate solvent or dispersion medium, and volatilizes the solvent or dispersion medium. Formed.
  • a vinylidene fluoride polymer such as polyvinylidene fluoride (PVDF) is mainly used.
  • the PVDF homopolymer used as a binder has a problem that peeling strength or peeling of the electrode mixture layer of the electrode active material from the current collector is seen because the peel strength is insufficient. .
  • Patent Document 1 discloses an anode composition containing PVDF and describes the use of a crosslinkable comonomer as a binder.
  • Patent Document 2 discloses that a fluororesin having a crosslinkable functional group is used as a binder. It is described that the crosslinkable functional group is particularly a carboxyl group.
  • Patent Document 3 discloses a positive electrode paste using vinylidene fluoride / perfluoromethyl vinyl ether / tetrafluoroethylene terpolymer as a binder.
  • a copolymer used in the binder composition a copolymer having vinylidene fluoride (VDF) and hexafluoropropylene (HFP) as monomer units is known.
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • a copolymer of VDF and HFP (hereinafter, the copolymer is also expressed by dividing it by “slash (/)”, for example, the copolymer of VDF and HFP is also expressed as “VDF / HFP”).
  • the binder composition used has a sufficient peel strength.
  • VDF / HFP has a problem that it has a large swelling ratio in the electrolyte and is not suitable for use as a binder composition used in an electrode mixture.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to provide a binder composition containing a copolymer having VDF and a fluorine-containing alkyl vinyl compound such as HFP as monomer units.
  • An object of the present invention is to provide a binder composition that has excellent peel strength and also suppresses the swelling rate in the electrolyte.
  • the present inventors have found that a copolymer having a specific blending amount of vinylidene fluoride, a fluorine-containing alkylvinyl compound and a crosslinkable monomer has the above-mentioned problems.
  • the inventors have found that the problem can be solved and completed the present invention.
  • the present invention can be described as follows.
  • the binder composition according to the present invention includes a copolymer having a monomer unit derived from vinylidene fluoride, a fluorine-containing alkyl vinyl compound, and a crosslinkable monomer.
  • the content of the monomer unit derived from the fluorine-containing alkyl vinyl compound in the coalescence is 2% by mass or more and less than 10% by mass, and the content of the monomer unit derived from the crosslinkable monomer is less than 5% by mass. is there.
  • a method for producing a binder composition according to the present invention is a method for producing a binder composition for binding an electrode active material to a current collector.
  • the total amount of monomers used for producing the copolymer is 100 parts by mass, including a copolymer having a monomer unit derived from vinylidene chloride, a fluorine-containing alkyl vinyl compound and a crosslinkable monomer And 2 parts by mass or more and less than 10 parts by mass of the fluorinated alkyl vinyl compound, and less than 5 parts by mass of the crosslinkable monomer.
  • a binder composition in which the peel strength is improved and the swelling rate in the electrolyte is suppressed.
  • binder composition a binder dispersion, an electrode mixture, an electrode and a nonaqueous electrolyte secondary battery according to the present invention, and an embodiment of a method for producing the binder composition will be described in detail.
  • the binder composition binds an electrode active material to a current collector in a non-aqueous electrolyte secondary battery electrode in which an electrode mixture layer containing an electrode active material is formed on the current collector. It is used for this purpose.
  • the binder composition contains a copolymer having at least a monomer unit derived from VDF (hereinafter also referred to as a VDF component).
  • the copolymer further comprises a monomer unit derived from a fluorinated alkyl vinyl compound (hereinafter also referred to as a fluorine-containing alkyl vinyl compound component) and a monomer unit derived from a crosslinkable monomer (hereinafter referred to as a crosslinkable monomer). (Also referred to as component).
  • the copolymer which concerns on this embodiment should just have a VDF component, a fluorine-containing alkyl vinyl compound component, and a crosslinkable monomer component, and may have another monomer unit.
  • the copolymer is preferably a ternary copolymer composed of three types of monomer units, a VDF component, a fluorine-containing alkyl vinyl compound component, and a crosslinkable monomer component.
  • the content of the VDF component in the copolymer is preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 85% by mass or more, and most preferably 87% by mass. That's it.
  • the content of the fluorine-containing alkyl vinyl compound component in the copolymer is 2% by mass or more and less than 10% by mass, more preferably 3% by mass or more and 9% by mass or less, and further preferably 4% by mass or more. It is 8 mass% or less.
  • the content of the crosslinkable monomer component in the copolymer is less than 5% by mass, preferably 0.1% by mass or more and less than 5% by mass, more preferably 0.1% by mass or more and 4% by mass. It is not more than mass%, more preferably not less than 0.3 mass% and not more than 3 mass%.
  • the total of all monomers used as raw materials is 100 parts by mass, and vinylidene fluoride is 50 parts by mass or more. It is preferably used, more preferably 80 parts by mass or more, more preferably 85 parts by mass or more, and particularly preferably 87 parts by mass or more.
  • the fluorine-containing alkyl vinyl compound is preferably used in an amount of 2 to 10 parts by mass, more preferably 3 to 9 parts by mass, and still more preferably 4 to 8 parts by mass.
  • the crosslinkable monomer it is preferable to use less than 5 parts by mass of the crosslinkable monomer, more preferably from 0.1 to 5 parts by mass, and more preferably from 0.1 to 4 parts by mass. Is more preferable, and it is particularly preferable to use 0.3 parts by mass or more and less than 3 parts by mass.
  • fluorine-containing alkyl vinyl compound used in the copolymer examples include vinyl fluoride, trifluoroethylene (TrFE), tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), and hexafluoropropylene (HFP). It can be mentioned, but is not limited to these.
  • the fluorine-containing alkyl vinyl compound is preferably hexafluoropropylene, tetrafluoroethylene and chlorotrifluoroethylene, more preferably hexafluoropropylene.
  • crosslinkable monomer used in the copolymer examples include perfluorodivinyl ether (CF 2 ⁇ CF—O—CF ⁇ CF 2 ) and perfluoroalkylene divinyl ether.
  • the perfluoroalkylene divinyl ether is preferably a compound represented by the following formula I.
  • R is a fluoroalkylene group having 1 to 6 carbon atoms.
  • the compound represented by Formula I may be either linear or branched.
  • components other than the copolymer in the binder composition include a dispersant such as a surfactant and a pH adjuster.
  • the surfactant may be any of a nonionic surfactant, a cationic surfactant, an anionic surfactant and an amphoteric surfactant, and may contain a plurality of types.
  • the surfactant may be the surfactant used in the polymerization, and those conventionally used for the polymerization of polyvinylidene fluoride such as perfluorinated, partially fluorinated, and non-fluorinated surfactants are suitable. Of these, it is preferable to use a perfluoroalkylsulfonic acid and a salt thereof, a perfluoroalkylcarboxylic acid and a salt thereof, a fluorosurfactant having a fluorocarbon chain or a fluoropolyether chain. It is more preferable to use a salt.
  • Examples of the pH adjuster include electrolyte substances having a buffer capacity such as Na 2 HPO 4 , NaH 2 PO 4 and KH 2 PO 4 , and sodium hydroxide.
  • the binder composition can be obtained by synthesizing the above-mentioned copolymer by a known polymerization method.
  • the polymerization method include emulsion polymerization and suspension polymerization.
  • Emulsion polymerization is a type of radical polymerization, which involves mixing a medium such as water, a monomer that is hardly soluble in the medium, and an emulsifier (hereinafter also referred to as a surfactant), and dissolving it in the medium. This is a polymerization method performed by adding an initiator.
  • the surfactant may be any surfactant that can form micelles and can stably disperse the VDF component-containing copolymer to be produced during emulsion polymerization.
  • the surfactant that is an emulsifier perfluorinated surfactants, partially fluorinated surfactants, non-fluorinated surfactants, and the like conventionally used for the polymerization of polyvinylidene fluoride are suitable.
  • a perfluoroalkylsulfonic acid and a salt thereof a perfluoroalkylcarboxylic acid and a salt thereof, a fluorosurfactant having a fluorocarbon chain or a fluoropolyether chain. It is more preferable to use a salt.
  • a water-soluble peroxide As the polymerization initiator, a water-soluble peroxide, a water-soluble azo compound or a redox initiator system is used.
  • the water-soluble peroxide include ammonium persulfate and potassium persulfate.
  • the water-soluble azo compound examples include AIBN and AMBN.
  • redox initiator systems include ascorbic acid-hydrogen peroxide.
  • the polymerization initiator is preferably a water-soluble peroxide.
  • the emulsion polymerization according to this embodiment may be soap-free emulsion polymerization or miniemulsion polymerization.
  • Soap-free emulsion polymerization can be performed by changing the emulsifier used for emulsion polymerization to a reactive emulsifier.
  • the reactive emulsifier is a substance having a polymerizable double bond in the molecule and also acting as an emulsifier.
  • micelles are formed at the initial stage of polymerization as in the case where the aforementioned emulsifier is present in the system, but the reactive emulsifier is consumed as a monomer as the reaction proceeds. And finally, in the reaction system, the reactive emulsifier is hardly present in a free state.
  • a binder composition containing a copolymer obtained by soap-free emulsion polymerization is preferable because the emulsifier does not remain in the polymer particles, and thus the emulsifier does not bleed out to the surface.
  • reactive emulsifiers include polyoxyalkylene alkenyl ethers, sodium alkylallylsulfosuccinates, sodium methacryloyloxypolyoxypropylene sulfates and alkoxy polyethylene glycol methacrylates, but the reactive emulsifiers used in this embodiment are those It is not specifically limited to.
  • soap-free polymerization without using a reactive emulsifier can be performed instead of soap-free emulsion polymerization.
  • Mini-emulsion polymerization is a method in which monomer oil droplets are refined to submicron size by applying a strong shearing force using an ultrasonic oscillator or the like. Mini-emulsion polymerization is performed by adding a hardly water-soluble substance called hydrophobe in order to stabilize the refined monomer oil droplets. In the mini-emulsion polymerization, ideally, monomer oil droplets are polymerized, and each oil droplet is converted into fine particles of a VDF component-containing copolymer.
  • the latex containing the binder composition obtained by the method described above may be used as it is as a binder dispersion described later.
  • a dispersion obtained by dispersing aggregated particles obtained by breaking latex in an aqueous medium again with a surfactant may be used as a binder dispersion.
  • suspension polymerization In suspension polymerization, an oil-soluble polymerization initiator in water containing a stabilizer is dissolved in a water-insoluble monomer, which is mechanically stirred, suspended and dispersed, and heated. In this method, polymerization is performed in monomer droplets. In suspension polymerization, polymerization proceeds in monomer droplets, and a dispersion solution of binder composition fine particles is obtained.
  • the emulsifier and dispersant used in the production of the binder composition and the emulsifier and dispersant used when the binder composition is recovered as particles and then dispersed again in water, remain inside the battery.
  • a material having good oxidation-reduction resistance is preferable.
  • the method for producing the binder composition is not particularly limited to the above-described production method, but it is preferable to use emulsion polymerization, soap-free emulsion polymerization, or miniemulsion polymerization.
  • the binder dispersion is a dispersion comprising a binder composition and an aqueous solvent, and further contains a thickener in the present embodiment.
  • a dispersion comprising a binder composition and an aqueous solvent, and further contains a thickener in the present embodiment.
  • the solid content concentration can be adjusted.
  • the binder dispersion according to this embodiment preferably contains 5 to 60% by mass of the above-mentioned copolymer and 40 to 95% by mass of an aqueous solvent, more preferably the above-mentioned copolymer, based on the entire binder dispersion.
  • an aqueous solvent in an amount of 45 to 85% by mass, and more preferably 20 to 50% by mass of the above-mentioned copolymer and an aqueous solvent in an amount of 50 to 80% by mass.
  • the thickener is preferably contained in an amount of 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and further preferably 0.8 to 5% by mass.
  • the binder dispersion according to this embodiment may contain components other than the binder composition, the aqueous solvent, and the thickener.
  • examples of such components include pH adjusters, anti-settling agents, surfactants and wetting agents.
  • the binder dispersion is a dispersion in which the copolymer contained in the binder composition is dispersed in an aqueous solvent.
  • the copolymer is preferably dispersed uniformly in an aqueous solvent. Further, a part of the copolymer may be dispersed in an aqueous solvent and a part may be precipitated.
  • the binder dispersion may be prepared by adding an aqueous solvent and a thickener to the binder composition or latex containing the binder composition and mixing them.
  • aqueous solvent As the aqueous solvent used in the binder dispersion according to this embodiment, water or water containing a water-soluble solvent can be used.
  • the water-soluble solvent include alcohol, acetone and tetrahydrofuran (THF).
  • water used as the aqueous solvent include purified water such as ion exchange water and distilled water, or tap water.
  • the thickener provides a thickening effect to the mixture of the binder composition and the aqueous solvent.
  • the thickener include carboxymethyl cellulose (CMC) and its salt, polyacrylic acid (PAA) and its salt, polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and polyethylene oxide (PEO). It is not specifically limited to these.
  • CMC and a salt thereof, PVA and the like are preferable from the viewpoint of long-term battery chemical stability, and CMC and a salt thereof are more preferable.
  • the binder dispersion of the present invention usually has a binder composition of 0.1 to 10% by mass, an aqueous solvent of 80 to 99.8% by mass, and a thickener of 0.1 to 10% per 100% by mass of the binder dispersion.
  • the binder composition is preferably contained in an amount of 0.5 to 8% by mass
  • the aqueous solvent is contained in an amount of 84 to 99% by mass
  • the thickener is contained in an amount of 0.5 to 8% by mass
  • the copolymer contains 0.8 to 5% by mass, water 90 to 98.4% by mass, and thickener 0.8 to 5% by mass.
  • the binder dispersion is a fluid component obtained by removing a solid material such as an electrode active material other than the binder composition and a conductive additive from the nonaqueous electrolyte secondary battery mixture described below. It can be said that it shows.
  • the mixture for nonaqueous electrolyte secondary batteries (electrode mixture) in this embodiment is a structure containing the above-mentioned binder dispersion and an electrode active material.
  • the electrode active material can be either an active material for a negative electrode (hereinafter referred to as a negative electrode active material) or an active material for a positive electrode (hereinafter referred to as a positive electrode active material).
  • the mixture for nonaqueous electrolyte secondary batteries in this embodiment may contain a conductive additive.
  • the mixture for nonaqueous electrolyte secondary batteries in the present embodiment may contain a dispersion medium or a solvent other than the aqueous solvent.
  • the dispersion medium and the solvent other than the aqueous solvent are referred to as a non-aqueous solvent.
  • Electrode active material examples of the negative electrode active material among the electrode active materials include, but are not limited to, a carbon material, a metal material, an alloy material, and a metal oxide.
  • the negative electrode active material is preferably a carbon material.
  • artificial graphite natural graphite, non-graphitizable carbon, graphitizable carbon and the like are used.
  • the artificial graphite can be obtained, for example, by carbonizing an organic material, further heat-treating it at a high temperature, pulverizing and classifying it.
  • MAG series manufactured by Hitachi Chemical Co., Ltd.
  • MCMB manufactured by Osaka Gas
  • the non-graphitizable carbon can be obtained, for example, by firing a material derived from petroleum pitch at 1000 to 1500 ° C.
  • Carbotron P manufactured by Kureha
  • a carbon material may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the specific surface area of the negative electrode active material is preferably 0.3 to 10 m 2 / g, and more preferably 0.6 to 6 m 2 / g. When the specific surface area is 10 m 2 / g or less, an increase in the decomposition amount of the electrolytic solution can be suppressed, and an increase in the initial irreversible capacity can be suppressed.
  • the positive electrode active material is preferably a lithium-based positive electrode active material containing at least lithium. Examples of the lithium-based positive electrode active material include a general formula LiMY 2 (M is Co, Ni, Fe, Mn, Cr, V, etc.) such as LiCoO 2 and LiNi x Co 1-x O 2 (0 ⁇ x ⁇ 1).
  • Y is a chalcogen element such as O and S), a composite metal oxide having a spinel structure such as LiMn 2 O 4 , and an olivine-type lithium compound such as LiFePO 4 Etc.
  • a commercial product may be used as the positive electrode active material.
  • the specific surface area of the positive electrode active material is preferably 0.05 to 50 m 2 / g, and more preferably 0.1 to 30 m 2 / g.
  • the specific surface area of the electrode active material can be determined by a nitrogen adsorption method.
  • a conductive aid For the purpose of imparting high conductivity between the electrode active materials or between the electrode active material and the current collector, a conductive aid is added as necessary when preparing the mixture for the non-aqueous electrolyte secondary battery. be able to.
  • the conductive assistant acetylene black, ketjen black, carbon nanofiber, carbon nanotube, carbon fiber, or the like can be used.
  • the amount to be added 0.1% by weight or more, the expected conductivity can be obtained, and by making it 15% by weight or less, the conductive auxiliary agent is dispersed in the mixture for non-aqueous electrolyte secondary batteries. Can be good.
  • Nonaqueous solvent is not particularly limited, but acetone, dimethyl sulfoxide, ethyl methyl ketone, diisopropyl ketone, cyclohexanone, methyl cyclohexane, ethyl acetate, ⁇ -butyrolactone, tetrahydrofuran, acetamide, N-methylpyrrolidone, N, N-dimethylformamide , Propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
  • the non-aqueous solvent one kind may be used alone, or two or more kinds may be mixed and used.
  • the aqueous solvent is preferably contained in an amount of 50% by mass or more, more preferably 70% by mass or more, and more preferably 90% by mass with respect to the total of the aqueous solvent and the nonaqueous solvent. %, More preferably 95% by mass or more. It is also preferable to use only an aqueous solvent as a dispersion medium, that is, use 100% by mass of an aqueous solvent.
  • the mixture for a non-aqueous electrolyte secondary battery according to this embodiment may contain a component other than a binder composition, a thickener, an electrode active material, a conductive additive, an aqueous solvent, and a non-aqueous solvent.
  • a component other than a binder composition e.g., a thickener, an electrode active material, a conductive additive, an aqueous solvent, and a non-aqueous solvent.
  • other components include pigment dispersants such as polyvinylpyrrolidone, and adhesion aids such as polyacrylic acid and polymethacrylic acid.
  • non-aqueous electrolyte secondary battery mixture includes other polymers, it is preferably included in an amount of 25 parts by mass or less with respect to 100 parts by mass of the binder composition.
  • the content of the binder composition is preferably 0.2 to 15 parts by mass per 100 parts by mass in total of the binder composition and the electrode active material, More preferably, it is 0.5 to 10 parts by mass.
  • the content of the electrode active material is preferably 85 to 99.8 parts by mass, and more preferably 90 to 99.5 parts by mass.
  • the conductive assistant is included, when the total of the binder composition, the electrode active material, and the conductive assistant is 100 parts by mass, the content of the conductive assistant is preferably 0.5 to 15 parts by mass, The amount is preferably 0.5 to 7 parts by mass, particularly preferably 0.5 to 5 parts by mass.
  • the water content is preferably 20 to 300 parts by mass, and more preferably 50 to 200 parts by mass.
  • the content of the thickener is preferably 0.1 to 10 parts by mass, and preferably 0.1 to 5 parts by mass. More preferably, it is a part.
  • the method for obtaining the nonaqueous electrolyte secondary battery mixture in the present embodiment is not particularly limited, but may be obtained by adding a thickener and an electrode active material to the binder composition described above, and mixing them. Or you may obtain by adding an electrode active material to the above-mentioned binder dispersion liquid, and mixing.
  • the electrode (electrode) for a nonaqueous electrolyte secondary battery in the present embodiment has a configuration in which an electrode mixture layer formed from the above-described mixture for a nonaqueous electrolyte secondary battery is provided on a current collector.
  • the electrode mixture layer may be formed on at least one surface of the current collector, and is preferably formed on both surfaces of the current collector.
  • An example of the current collector is copper in order to obtain a negative electrode for a non-aqueous electrolyte secondary battery.
  • metal foil, a metal net, etc. are mentioned, for example.
  • a copper foil is mentioned, for example.
  • aluminum is mentioned, for example.
  • the shape include a metal foil and a metal net.
  • an aluminum foil is mentioned, for example.
  • the thickness of the current collector is preferably 5 to 100 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the thickness of the electrode mixture layer is preferably 40 to 500 ⁇ m and more preferably 100 to 400 ⁇ m for the positive electrode. In the negative electrode, the thickness is preferably 20 to 400 ⁇ m, more preferably 40 to 300 ⁇ m.
  • the basis weight of the electrode mixture layer is preferably 20 to 700 g / m 2 , more preferably 30 to 500 g / m 2 .
  • the electrode mixture layer can be formed by applying a mixture for a non-aqueous electrolyte secondary battery on a current collector and drying it.
  • the coating method is not particularly limited, and examples thereof include a method using a bar coater, a die coater, or a comma coater. Drying after coating is usually performed at a temperature of 50 to 150 ° C. for 1 to 300 minutes. Further, the pressure during drying is not particularly limited, but it is usually carried out under atmospheric pressure or reduced pressure. Further, heat treatment may be performed after drying. When the heat treatment is performed, it is usually performed at a temperature of 100 to 300 ° C. for 10 seconds to 300 minutes. In addition, although the temperature of heat processing overlaps with the temperature of the above-mentioned drying, these processes may be a separate process and the process performed continuously.
  • press treatment may be performed after application and drying.
  • it is usually performed at 1 to 200 MPa.
  • the electrode density can be improved.
  • the electrode for nonaqueous electrolyte secondary batteries can be manufactured.
  • the layer configuration of the electrode for the nonaqueous electrolyte secondary battery is as follows. When the mixture for the nonaqueous electrolyte secondary battery is applied to one surface of the current collector, the electrode mixture layer / current collector When the non-aqueous electrolyte secondary battery mixture is applied on both sides of the current collector, it has a three-layer structure in which a current collector sandwiched between electrode mixture layers is present.
  • the use of the electrode for a non-aqueous electrolyte secondary battery according to the present embodiment produces an effect that a safe non-aqueous electrolyte secondary battery can be provided.
  • the nonaqueous electrolyte secondary battery of the present embodiment is not particularly limited except that the nonaqueous electrolyte secondary battery has the above-described electrode for nonaqueous electrolyte secondary battery.
  • the electrode for a nonaqueous electrolyte secondary battery has at least one of a positive electrode for a nonaqueous electrolyte secondary battery and a negative electrode for a nonaqueous electrolyte secondary battery.
  • Conventionally known members can be used as members other than the electrode for the nonaqueous electrolyte secondary battery, such as a separator and a nonaqueous electrolyte.
  • the binder composition according to the present invention includes a copolymer having monomer units derived from vinylidene fluoride, a fluorine-containing alkyl vinyl compound and a crosslinkable monomer, and the fluorine-containing alkyl vinyl compound in the copolymer
  • the content of the monomer unit derived from 2% by mass or more and less than 10% by mass, and the content of the monomer unit derived from the crosslinkable monomer is less than 5% by mass.
  • the crosslinkable monomer is preferably perfluorodivinyl ether or perfluoroalkylene divinyl ether.
  • the fluorine-containing alkyl vinyl compound is preferably hexafluoropropylene, tetrafluoroethylene, or chlorotrifluoroethylene.
  • the copolymer is a ternary copolymer comprising monomer units derived from vinylidene fluoride, a fluorine-containing alkyl vinyl compound and a crosslinkable monomer. It is preferable.
  • binder dispersion containing the binder composition according to the present invention and an aqueous solvent
  • electrode mixture containing the binder dispersion and an electrode active material
  • the present invention also includes an electrode including a layer formed from the electrode mixture according to the present invention on a current collector and a nonaqueous electrolyte secondary battery including the electrode.
  • a method for producing a binder composition according to the present invention is a method for producing a binder composition for binding an electrode active material to a current collector, wherein the binder composition comprises vinylidene fluoride, a fluorine-containing alkyl vinyl compound. And a copolymer having a monomer unit derived from a crosslinkable monomer, and 2 parts by mass or more and 10 parts by mass when the total amount of monomers used for the production of the copolymer is 100 parts by mass Using less than parts of the fluorine-containing alkyl vinyl compound and less than 5 parts by weight of the crosslinkable monomer.
  • CMC aqueous solution Carboxymethylcellulose (CMC) (Serogen 4H, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was dissolved by heating to obtain a CMC aqueous solution.
  • the CMC aqueous solution was dried at 150 ° C. for 2 hours, and the CMC concentration of the CMC aqueous solution was determined from the weight of the CMC after drying and the weight of the CMC aqueous solution.
  • the CMC concentration was 1.5 wt%.
  • Tensilon (Orientec Co., Ltd. STA-1150) was used to apply a gum tape to the coated electrode surface, and the Cu foil was used as a “flexible adherend”. Peel test was conducted to evaluate the peel strength.
  • VDF / HFP / PEVE copolymer latex was obtained with VDF: 90 parts by mass, HFP: 8 parts by mass, and PEVE: 2 parts by mass.
  • VDF 90 parts by mass
  • HFP 8 parts by mass
  • PEVE 2 parts by mass.
  • an electrode for a non-aqueous electrolyte secondary battery was produced, and a peel strength and a swelling test were performed.
  • VDF / HFP / PEVE copolymer latex was obtained with VDF: 91 parts by mass, HFP: 8 parts by mass, and PEVE: 1 part by mass. Other than that, it evaluated similarly to Example 1.
  • FIG. 1 VDF / HFP / PEVE copolymer latex was obtained with VDF: 91 parts by mass, HFP: 8 parts by mass, and PEVE: 1 part by mass. Other than that, it evaluated similarly to Example 1.
  • VDF / HFP / PEVE copolymer latex was obtained with VDF: 91.7 parts by mass, HFP: 8 parts by mass, and PEVE: 0.3 parts by mass. Other than that, it evaluated similarly to Example 1.
  • FIG. 1 VDF / HFP / PEVE copolymer latex was obtained with VDF: 91.7 parts by mass, HFP: 8 parts by mass, and PEVE: 0.3 parts by mass. Other than that, it evaluated similarly to Example 1.
  • VDF / HFP / PEVE copolymer latex was obtained with 94 parts by mass of VDF, 5 parts by mass of HFP, and 1 part by mass of PEVE. Other than that, it evaluated similarly to Example 1.
  • FIG. 4 VDF / HFP / PEVE copolymer latex was obtained with 94 parts by mass of VDF, 5 parts by mass of HFP, and 1 part by mass of PEVE. Other than that, it evaluated similarly to Example 1.
  • VDF / HFP / PEVE copolymer latex was obtained with VDF: 89 parts by mass, HFP: 8 parts by mass, and PEVE: 3 parts by mass. Other than that, it evaluated similarly to Example 1.
  • FIG. 5 VDF / HFP / PEVE copolymer latex was obtained with VDF: 89 parts by mass, HFP: 8 parts by mass, and PEVE: 3 parts by mass. Other than that, it evaluated similarly to Example 1.
  • VDF / HFP / PEVE copolymer latex was obtained with 89 parts by mass of VDF, 10 parts by mass of HFP, and 1 part by mass of PEVE. Other than that, it evaluated similarly to Example 1.
  • FIG. 1 VDF / HFP / PEVE copolymer latex was obtained with 89 parts by mass of VDF, 10 parts by mass of HFP, and 1 part by mass of PEVE. Other than that, it evaluated similarly to Example 1.
  • VDF / HFP / PEVE copolymer latex was obtained with VDF: 87 parts by mass, HFP: 8 parts by mass, and PEVE: 5 parts by mass. Other than that, it evaluated similarly to Example 1.
  • FIG. 1 VDF / HFP / PEVE copolymer latex was obtained with VDF: 87 parts by mass, HFP: 8 parts by mass, and PEVE: 5 parts by mass. Other than that, it evaluated similarly to Example 1.
  • VDF A VDF single monopolymer (PVDF) latex was obtained at 100 parts by mass. Other than that, it evaluated similarly to Example 1.
  • PVDF VDF single monopolymer
  • Table 1 shows the results of each example and each comparative example.
  • the peel strength is shown as a relative value when the value in Comparative Example 3 is 100.
  • the present invention can be suitably used as a binder for a safe non-aqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

十分な剥離強度を有しつつ、電解液中での膨潤率を抑制するバインダー組成物を提供する。本発明に係るバインダー組成物は、フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位を有する共重合体を含み、共重合体における含フッ素アルキルビニル化合物由来の単量体単位の含有量は2質量%以上10質量%未満であり、架橋性単量体由来の単量体単位の含有量は5質量%未満である。

Description

バインダー組成物、バインダー分散液、電極合剤、電極、非水電解質二次電池、およびバインダー組成物の製造方法
 本発明は、非水電解質二次電池、特にリチウムイオン二次電池の製造に用いられるバインダー組成物、それを用いたバインダー分散液、電極合剤、電極およびそれを用いた非水電解質二次電池、ならびにバインダー組成物の製造方法に関する。
 近年、電子技術の発展はめざましく、小型携帯機器の高機能化が進んでいる。そのため、これらに使用される電源には小型化および軽量化、すなわち高エネルギー密度化が求められている。高いエネルギー密度を有する電池として、リチウムイオン二次電池などに代表される非水電解質二次電池が、広く使用されている。
 また、非水電解質二次電池は、地球環境問題および省エネルギーの観点から、二次電池とエンジンとを組み合わせたハイブリッド自動車、および二次電池を電源にした電気自動車などにも利用されており、その用途が拡大している。
 非水電解質二次電池用の電極は、集電体と集電体上に形成される電極合剤層とを有する構造となっている。電極合剤層は、一般に電極活物質とバインダー組成物とを含む電極合剤が適当な溶剤または分散媒中に分散されたスラリー状態で集電体上に塗布され、溶剤または分散媒を揮散して形成される。バインダー(結着剤)としては、ポリフッ化ビニリデン(PVDF)等のフッ化ビニリデン重合体が主に使用されている。
 しかしながら、バインダーとして用いられるPVDFホモポリマーでは、剥離強度が不十分であるため、電極活物質の電極合剤層の集電体からの脱落または剥離等の現象が見られるという問題を有している。
 そこで、バインダーの剥離強度を向上させるために、バインダー組成物として、フッ化ビニリデン(VDF)に加えて、VDF以外の単量体成分を含む共重合体が開発されている(例えば、特許文献1~3)。特許文献1には、PVDFを含むアノード組成物が開示されており、結合剤に架橋性のコモノマーを用いることが記載されている。特許文献2には、架橋性官能基を有するフッ素樹脂を結着剤として用いることが開示されている。架橋性官能基は特にカルボキシル基が良いことが記載されている。特許文献3には、フッ化ビニリデン/パーフルオロメチルビニルエーテル/テトラフルオロエチレン三元共重合体を結着剤として用いた正極ペーストが開示されている。
日本国公開特許公報「特表2006‐500738(2006年1月5日公開)」 国際公開WO11/001666 (2011年12月10日公開) 日本国公開特許公報「特開2013‐254721(2013年12月19日公開)」
 バインダー組成物に用いられる共重合体として、フッ化ビニリデン(VDF)およびヘキサフルオロプロピレン(HFP)を単量体単位として有している共重合体が知られている。VDFとHFPとの共重合体(以下、共重合体は、「スラッシュ(/)」で区切ることでも表記する、例えば、VDFとHFPとの共重合体は「VDF/HFP」とも表記する)を用いたバインダー組成物では、十分な剥離強度が得られている。
 しかしながら、VDF/HFPは電解液中での膨潤率が大きく、電極合剤において用いられるバインダー組成物として使用するのには適していないという問題を有している。
 本発明は、上述の問題に鑑みてなされたものであり、その目的は、VDFとHFPなどの含フッ素アルキルビニル化合物とを単量体単位として有する共重合体を含んだバインダー組成物において、十分な剥離強度を有しつつ、電解液中での膨潤率をも抑制するバインダー組成物を提供することにある。
 本発明者らは上記課題を達成するために、鋭意研究を重ねた結果、フッ化ビニリデンと含フッ素アルキルビニル化合物と架橋性単量体を特定の配合量で有する共重合体が、上記課題を解決することができることを見出し、本発明を完成させた。本発明は以下のように記載することができる。
 本発明に係るバインダー組成物は、上記課題を解決するために、フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位を有する共重合体を含み、上記共重合体における上記含フッ素アルキルビニル化合物由来の単量体単位の含有量は2質量%以上10質量%未満であり、上記架橋性単量体由来の単量体単位の含有量は5質量%未満である。
 本発明に係るバインダー組成物の製造方法は、上記課題を解決するために、電極活物質を集電体に結着させるためのバインダー組成物の製造方法であって、上記バインダー組成物は、フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位を有する共重合体を含み、上記共重合体の作製に用いられる単量体の全量を100質量部としたときに、2質量部以上10質量部未満の上記含フッ素アルキルビニル化合物、および5質量部未満の上記架橋性単量体を用いて上記共重合体を作製することを含んでいる。
 本発明によれば、剥離強度を向上させつつ、電解液中での膨潤率が抑制されたバインダー組成物が提供される。
 以下、本発明に係るバインダー組成物、バインダー分散液、電極合剤、電極および非水電解質二次電池、ならびにバインダー組成物の製造方法の一実施形態について詳細に説明する。
 (バインダー組成物)
 本実施形態に係るバインダー組成物は、集電体上に電極活物質を含む電極合剤層が形成されてなる非水電解質二次電池用電極において、電極活物質を集電体に結着させるために用いられるものである。バインダー組成物には、少なくともVDF由来の単量体単位(以下、VDF成分ともいう)を有する共重合体が含まれている。当該共重合体は、さらに含フッ素アルキルビニル化合物由来の単量体単位(以下、含フッ素アルキルビニル化合物成分ともいう)および架橋性単量体由来の単量体単位(以下、架橋性単量体成分ともいう)を有している。
 [共重合体]
 本実施形態に係る共重合体は、VDF成分、含フッ素アルキルビニル化合物成分および架橋性単量体成分を有していればよく、他の単量体単位を有していてもよい。中でも、共重合体は、VDF成分、含フッ素アルキルビニル化合物成分および架橋性単量体成分の3種類の単量体単位からなる三元系の共重合体であることが好ましい。
 ここで、共重合体における、VDF成分の含有量は、好ましくは50質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは85質量%以上であり、最も好ましくは87質量%以上である。また、共重合体における、含フッ素アルキルビニル化合物成分の含有量は、2質量%以上10質量%未満であり、より好ましくは3質量%以上9質量%以下であり、さらに好ましくは4質量%以上8質量%以下である。また、当該共重合体における架橋性単量体成分の含有量は、5質量%未満であり、好ましくは0.1質量%以上5質量%未満であり、より好ましくは0.1質量%以上4質量%以下であり、さらにこのましくは0.3質量%以上3質量%以下である。
 各単量体単位の割合が上述の通りである共重合体を得るために、重合に際しては、原料として使用する全単量体の合計を100質量部として、フッ化ビニリデンを、50質量部以上用いることが好ましく、80質量部以上用いることがより好ましく、85質量部以上用いることがさらに好ましく、87質量部以上用いることが特に好ましい。同様に、含フッ素アルキルビニル化合物を2質量部以上10質量部未満用いることが好ましく、3質量部以上9質量部以下用いることがより好ましく、4質量部以上8質量部以下用いることがさらに好ましい。同様に、架橋性単量体を5質量部より少ない量用いることが好ましく、0.1質量部以上5質量部より少ない量用いることがより好ましく、0.1質量部以上4質量部未満用いることがさらに好ましく、0.3質量部以上3質量部未満用いることが特に好ましい。
 共重合体に用いられる含フッ素アルキルビニル化合物としては、例えば、フッ化ビニル、トリフルオロエチレン(TrFE)、テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)およびヘキサフルオロプロピレン(HFP)等を挙げることができるがこれらに限定されるものではない。含フッ素アルキルビニル化合物は、好ましくはヘキサフルオロプロピレン、テトラフルオロエチレンおよびクロロトリフルオロエチレンであり、より好ましくはヘキサフルオロプロピレンである。
 共重合体に用いられる架橋性単量体としては、例えば、パーフルオロジビニルエーテル(CF=CF-O-CF=CF)およびパーフルオロアルキレンジビニルエーテルが挙げられる。
 パーフルオロアルキレンジビニルエーテルとしては、好ましくは下記式Iで表される化合物である。
R(O-CF=CF ・・・式I
式I中、Rは炭素数1~6のフルオロアルキレン基である。また、式Iで表される化合物は、直鎖状および分枝鎖状の何れであってもよい。
 [他の成分]
 バインダー組成物における共重合体以外の成分としては、界面活性剤等の分散剤およびpH調整剤等を挙げることができる。界面活性剤は、非イオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤および両性界面活性剤のいずれでもよく、複数種類を含んでいてもよい。
 界面活性剤は重合において使用された界面活性剤であり得、過フッ素化、部分フッ素化、および非フッ素化界面活性剤等、ポリフッ化ビニリデンの重合に従来から使用されるものが好適である。それらのうち、パーフルオロアルキルスルホン酸およびその塩、パーフルオロアルキルカルボン酸およびその塩、フルオロカーボン鎖またはフルオロポリエーテル鎖を有するフッ素系界面活性剤を使用することが好ましく、パーフルオロアルキルカルボン酸およびその塩を用いることがより好ましい。
 pH調整剤としては、NaHPO、NaHPOおよびKHPO等の緩衝能を有する電解質物質、ならびに水酸化ナトリウムが挙げられる。
 (バインダー組成物の調製方法)
 バインダー組成物は、公知の重合方法により上述の共重合体を合成することで得ることができる。重合方法としては、例えば、乳化重合および懸濁重合が挙げられる。
 [乳化重合]
 乳化重合とは、ラジカル重合の一種であり、水等の媒体と、媒体に難溶な単量体と乳化剤(以下、界面活性剤とも記す)とを混合し、そこに媒体に溶解可能な重合開始剤を加えて行う重合方法である。
 界面活性剤は、乳化重合を行う際に、ミセルを形成するとともに、生成するVDF成分含有共重合体を安定に分散することができるものであればよい。乳化剤である界面活性剤としては、ポリフッ化ビニリデンの重合に従来から使用されている過フッ素化界面活性剤、部分フッ素化界面活性剤および非フッ素化界面活性剤等が好適である。それらのうち、パーフルオロアルキルスルホン酸およびその塩、パーフルオロアルキルカルボン酸およびその塩、フルオロカーボン鎖またはフルオロポリエーテル鎖を有するフッ素系界面活性剤を使用することが好ましく、パーフルオロアルキルカルボン酸およびその塩を用いることがより好ましい。
 重合開始剤としては水溶性過酸化物、水溶性アゾ系化合物またはレドックス開始剤系が用いられる。水溶性過酸化物としては、例えば、過硫酸アンモニウムおよび過硫酸カリウム等が挙げられる。水溶性アゾ系化合物としては、例えば、AIBNおよびAMBN等が挙げられる。レドックス開始剤系としては、例えば、アスコルビン酸-過酸化水素が挙げられる。重合開始剤は好ましくは水溶性過酸化物である。
 また、本実施形態に係る乳化重合は、ソープフリー乳化重合またはミニエマルション重合であってもよい。
 ソープフリー乳化重合は、乳化重合に用いられる乳化剤を、反応性乳化剤に変えることにより行うことができる。反応性乳化剤とは、分子中に重合性の二重結合をもち、かつ乳化剤としても作用する物質である。反応性乳化剤を用いると、重合の初期には系中に前述の乳化剤が存在する場合と同様にミセルを形成するが、反応が進行するに従い、反応性乳化剤が単量体として消費される。そして、最終的に反応系中には、反応性乳化剤は、ほとんど遊離した状態では存在しないことになる。ソープフリー乳化重合により得られた共重合体を含むバインダー組成物は、乳化剤が重合体粒子中に残存しないため、乳化剤が表面にブリードアウトすることがないといった利点があるため好ましい。
 反応性乳化剤としては、例えば、ポリオキシアルキレンアルケニルエーテル、アルキルアリルスルホコハク酸ナトリウム、メタクリロイルオキシポリオキシプロピレン硫酸エステルナトリウムおよびアルコキシポリエチレングリコールメタクリレート等が挙げられるが、本実施形態に用いられる反応性乳化剤はそれらに特に限定されない。
 なお、単量体が分散する場合には、ソープフリー乳化重合ではなく、反応性乳化剤を用いないソープフリー重合を行うことができる。
 ミニエマルション重合は、超音波発振器などを用いて強いせん断力をかけることで単量体油滴をサブミクロンサイズまで微細化して、重合を行なう方法である。ミニエマルション重合では、微細化された単量体油滴を安定化するために、ハイドロホーブという難水溶性物質を添加して行われる。ミニエマルション重合では、理想的には単量体油滴が重合し、各油滴が、それぞれVDF成分含有共重合体の微粒子に変わる。
 上述した方法により得られたバインダー組成物を含むラテックスをそのまま、後述するバインダー分散液としてもよい。あるいは、ラテックスを破壊して得られる凝集粒子を界面活性剤によって再度水系媒体に分散させて得られる分散液をバインダー分散液としてもよい。
 [懸濁重合]
 懸濁重合は、安定剤などを含む水中で油溶性の重合開始剤を非水溶性の単量体に溶かし、これを機械的に攪拌し、懸濁および分散させて加温することにより、その単量体液滴中で重合を行う方法である。懸濁重合では、単量体液滴中で重合が進行し、バインダー組成物微粒子の分散溶液が得られる。
 懸濁重合において、バインダー組成物の製造時に用いる乳化剤および分散剤、ならびにバインダー組成物を粒子として回収した後に再度水に分散させる際に用いる乳化剤および分散剤としては、電池の内部に残留することを鑑み、耐酸化還元性のよいものが好ましい。
 バインダー組成物の製造方法としては、上述の製造方法に特に限定はされないが、乳化重合、ソープフリー乳化重合またはミニエマルション重合を用いることが好ましい。
 (バインダー分散液)
 バインダー分散液は、バインダー組成物と水系溶媒とを含んで構成される分散液であり、本実施形態においてはさらに増粘剤を含んでいる。水系溶媒をさらに含ませることにより、固形分濃度の調整を行うことが可能となる。
 本実施形態に係るバインダー分散液は、バインダー分散液全体に対し、好ましくは上述の共重合体を5~60質量%、水系溶媒を40~95質量%含有し、より好ましくは上述の共重合体を15~55質量%、水系溶媒を45~85質量%含有し、さらに好ましくは上述の共重合体を20~50質量%、水系溶媒を50~80質量%含有する。また、増粘剤を、好ましくは0.1~10質量%含有し、より好ましくは0.5~8質量%含有し、さらに好ましくは0.8~5質量%含有する。
 また、本実施形態に係るバインダー分散液には、バインダー組成物、水系溶媒および増粘剤以外の成分を含有していてもよい。このような成分としてはpH調整剤、沈降防止剤、界面活性剤および湿潤剤等を挙げることができる。
 バインダー分散液は、バインダー組成物に含まれる共重合体が水系溶媒に分散している分散液である。共重合体は、水系溶媒に均一に分散していることが好ましい。また、共重合体の一部が水系溶媒に分散し、一部が沈降していてもよい。バインダー分散液は、バインダー組成物、またはバインダー組成物を含むラテックスに、水系溶媒および増粘剤を加えて混合することにより調製してもよい。
 [水系溶媒]
 本実施形態に係るバインダー分散液に用いられる水系溶媒は水、または、水溶性溶媒を含む水を用いることができる。水溶性溶媒としては、例えばアルコール、アセトンおよびテトラヒドロフラン(THF)等が挙げられる。また、水系溶媒として用いられる水としてはイオン交換水および蒸留水等の精製された水、または水道水等が挙げられる。
 水系溶媒として水を用いると、特別な乾燥装置または有機溶媒を回収する装置が不要となるため、コスト的に優れ、排出する溶剤量が少なくなるため環境負荷が軽くなる。
 [増粘剤]
 増粘剤は、バインダー組成物と水系溶媒との混合物に増粘効果をもたらすものである。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその塩、ポリアクリル酸(PAA)およびその塩、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)ならびにポリエチレンオキシド(PEO)等が挙げられるが、これらに特に限定されない。増粘剤としては、長期の電池化学安定性の観点から、CMCおよびその塩ならびにPVA等が好ましく、CMCおよびその塩がより好ましい。
 本発明のバインダー分散液は、バインダー分散液100質量%あたり、通常はバインダー組成物を0.1~10質量%、水系溶媒を80~99.8質量%、増粘剤を0.1~10質量%含有し、好ましくはバインダー組成物を0.5~8質量%、水系溶媒を84~99質量%、増粘剤を0.5~8質量%含有し、より好ましくはフッ化ビニリデンを有する共重合体を0.8~5質量%、水を90~98.4質量%、増粘剤を0.8~5質量%含有する。
 また、換言すれば、バインダー分散液とは、次に説明する非水電解質二次電池用合剤からバインダー組成物以外の電極活物質および導電助剤等の固形物質を除いた流動成分のことを示していると言える。
 (非水電解質二次電池用合剤)
 本実施形態における非水電解質二次電池用合剤(電極合剤)は、上述のバインダー分散液と電極活物質とを含んでいる構成である。電極活物質は、負極用の活物質(以下、負極活物質という)および正極用の活物質(以下、正極活物質という)のいずれでもあり得る。さらに、本実施形態における非水電解質二次電池用合剤は導電助剤を含んでいてもよい。また本実施形態における非水電解質二次電池用合剤は、水系溶媒以外の分散媒または溶媒を含んでいてもよい。水系溶媒以外の分散媒および溶媒を、以下、非水溶媒という。
 [電極活物質]
 電極活物質のうち負極活物質としては、例えば、炭素材料、金属材料、合金材料および金属酸化物などが挙げられるが、これらに限定されるものではない。負極活物質は、中でも炭素材料が好ましい。
 炭素材料としては、人造黒鉛、天然黒鉛、難黒鉛化炭素および易黒鉛化炭素などが用いられる。人造黒鉛としては、例えば、有機材料を炭素化し、さらに高温で熱処理を行い、粉砕および分級することにより得られる。人造黒鉛としては、MAGシリーズ(日立化成工業製)、およびMCMB(大阪ガス製)等が用いられる。難黒鉛化炭素としては、例えば、石油ピッチ由来の材料を1000~1500℃で焼成することにより得られる。難黒鉛化炭素としては、カーボトロンP(クレハ製)等が用いられる。このような炭素材料を使用することにより、電池のエネルギー密度を高くすることができる。炭素材料は、1種単独で用いてもよく、2種以上を混合して用いてもよい。
 負極活物質の比表面積は、0.3~10m/gであることが好ましく、0.6~6m/gであることがより好ましい。比表面積が10m/g以下であることにより、電解液の分解量の増加が抑えられ、初期の不可逆容量の増加を抑えることができる。電極活物質のうち正極活物質としては、少なくともリチウムを含むリチウム系正極活物質が好ましい。リチウム系正極活物質としては例えば、LiCoO、LiNiCo1-x(0<x≦1)等の一般式LiMY(Mは、Co、Ni、Fe、Mn、Cr、およびV等の遷移金属の少なくとも一種:YはO、およびS等のカルコゲン元素)で表わされる複合金属カルコゲン化合物、LiMnなどのスピネル構造をとる複合金属酸化物、およびLiFePOなどのオリビン型リチウム化合物等が挙げられる。なお、正極活物質としては市販品を用いてもよい。
 正極活物質の比表面積は、0.05~50m/gであることが好ましく、0.1~30m/gであることがより好ましい。
 電極活物質の比表面積は、窒素吸着法により求めることができる。
 [導電助剤]
 電極活物質同士、または電極活物質と集電体との間に高い導電性を賦与することを目的として、必要に応じて、非水電解質二次電池用合剤調製時に導電助剤を添加することができる。
 導電助剤としては、アセチレンブラック、ケッチェンブラック、カーボンナノファイバー、カーボンナノチューブ、またはカーボンファイバーなどを用いることができる。導電助剤の添加量は使用する導電助剤の種類によって異なり得るが、添加する導電助剤の好ましい割合は0.1~15重量%(ここで、電極活物質量+バインダー組成物量+導電助剤量=100重量%とする)であり、さらに好ましくは0.1~7重量%、特に好ましくは0.1~5重量%である。添加する量を0.1重量%以上とすることにより、期待する導電性を得ることができ、15重量%以下とすることにより非水電解質二次電池用合剤中の導電助剤の分散を良好にすることができる。
 [非水溶媒]
 非水溶媒としては特に限定はないが、アセトン、ジメチルスルホキシド、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、酢酸エチル、γ-ブチロラクトン、テトラヒドロフラン、アセトアミド、N-メチルピロリドン、N,N-ジメチルホルムアミド、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジエチルカーボネートなどが挙げられる。非水溶媒としては1種単独で用いてもよく、2種以上を混合して用いてもよい。
 非水電解質二次電池用合剤の分散媒としては、水系溶媒および非水溶媒の合計に対し、水系溶媒を50質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましく、95質量%以上含むことが特に好ましい。また水系溶媒のみを分散媒として用いること、すなわち水系溶媒を100質量%用いることも好ましい。
 [その他の成分]
 本実施形態に係る非水電解質二次電池用合剤は、バインダー組成物、増粘剤、電極活物質、導電助剤、水系溶媒および非水溶媒以外の他の成分を含有していてもよい。他の成分としては、ポリビニルピロリドン等の顔料分散剤、ならびにポリアクリル酸およびポリメタクリル酸等の接着補助剤等が挙げられる。
 また他の成分として、上述の共重合体以外の他の重合体を含んでいてもよい。他の重合体としては、ポリテトラフルオロエチレン(PTFE)、スチレン/ブタジエンゴム(SBR)、およびポリアクリロニトリル(PAN)等が挙げられる。本実施形態に係る非水電解質二次電池用合剤に、他の重合体が含まれる場合には、バインダー組成物100質量部に対して25質量部以下の量で含まれることが好ましい。
 [組成]
 本実施形態における非水電解質二次電池用合剤においては、バインダー組成物と電極活物質との合計100質量部あたり、バインダー組成物の含量は0.2~15質量部であることが好ましく、0.5~10質量部であることがより好ましい。一方、電極活物質の含量は85~99.8質量部であることが好ましく、90~99.5質量部であることがより好ましい。導電助剤を含む場合には、バインダー組成物と電極活物質と導電助剤との合計を100質量部とすると、導電助剤の含量は0.5~15質量部であることが好ましく、さらに好ましくは0.5~7質量部、特に好ましくは0.5~5質量部である。また、バインダー組成物と電極活物質と導電助剤との合計を100質量部とすると、水の含量は20~300質量部であることが好ましく、50~200質量部であることがより好ましい。同様に、バインダー組成物と電極活物質と導電助剤との合計を100質量部とした場合、増粘剤の含量は0.1~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。このような範囲内で各成分を含有することにより、本実施形態における非水電解質二次電池用合剤を用いて非水電解質二次電池用電極を製造した際に、電極合剤層と、集電体との接着強度が優れたものとなる。
 本実施形態における非水電解質二次電池用合剤を得る方法としては特に限定はないが、上述のバインダー組成物に、増粘剤および電極活物質を加えて混合することにより得てもよく、あるいは上述のバインダー分散液に電極活物質を加えて混合することにより得てもよい。
 (非水電解質二次電池用電極)
 本実施形態における非水電解質二次電池用電極(電極)は、上述の非水電解質二次電池用合剤から形成された電極合剤層を集電体上に備えている構成である。電極合剤層は、集電体の少なくとも一方の面に形成されていればよく、集電体の両方の面に形成されていることが好ましい。
 [集電体]
 集電体としては、非水電解質二次電池用負極を得るためには、例えば銅が挙げられる。また、その形状としては、例えば金属箔および金属網等が挙げられる。非水電解質二次電池用負極を得るためには、集電体としては、銅箔を用いることが好ましい。また、非水電解質二次電池用正極を得るためには、集電体としては、例えばアルミニウムが挙げられる。その形状としては、例えば金属箔および金属網等が挙げられる。非水電解質二次電池用正極を得るためには、集電体としては、アルミニウム箔を用いることが好ましい。
 集電体の厚さは、好ましくは5~100μmであり、より好ましくは5~20μmである。
 [電極合剤層]
 電極合剤層の厚さは、正極では好ましくは40~500μmであり、より好ましくは100~400μmである。また、負極では好ましくは20~400μmであり、より好ましくは40~300μmである。電極合剤層の目付け量は、好ましくは20~700g/mであり、より好ましくは30~500g/mである。
 電極合剤層は、集電体上に非水電解質二次電池用合剤を塗布し、乾燥することにより形成することができる。塗布方法としては特に限定はなく、バーコーター、ダイコーター、またはコンマコーターで塗布する等の方法が挙げられる。塗布後の乾燥は、通常50~150℃の温度で1~300分間行われる。また、乾燥の際の圧力に特に限定はないが、通常は、大気圧下または減圧下で行われる。さらに、乾燥を行ったのちに、熱処理が行われてもよい。熱処理を行う場合には、通常100~300℃の温度で10秒~300分間行われる。なお、熱処理の温度は上述の乾燥の温度と重複するが、これらの工程は、別個の工程であってもよく、連続的に行われる工程であってもよい。
 電極合剤層の形成においては、塗布および乾燥後、さらにプレス処理を行ってもよい。プレス処理を行う場合には、通常1~200MPaで行われる。プレス処理を行うことにより、電極密度を向上させることができる。
 以上の方法で、非水電解質二次電池用電極を製造することができる。なお、非水電解質二次電池用電極の層構成としては、非水電解質二次電池用合剤を集電体の一つの面に塗布した場合には、電極合剤層/集電体の二層構成であり、非水電解質二次電池用合剤を集電体の両面に塗布した場合には、電極合剤層の間に挟まれた集電体が存在する三層構成である。
 本実施形態に係る非水電解質二次電池用電極を用いることで、安全な非水電解質二次電池を提供することができるという効果を奏する。
 (非水電解質二次電池)
 本実施形態の非水電解質二次電池としては、上述の非水電解質二次電池用電極を有していること以外は、特に限定はない。非水電解質二次電池用電極としては、具体的には非水電解質二次電池用正極、および非水電解質二次電池用負極少なくともいずれか一方を有している。非水電解質二次電池用電極以外の部材、例えば、セパレータおよび非水電解質等は従来公知のものを用いることができる。
 (まとめ)
 本発明に係るバインダー組成物は、フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位を有する共重合体を含み、上記共重合体における上記含フッ素アルキルビニル化合物由来の単量体単位の含有量は2質量%以上10質量%未満であり、上記架橋性単量体由来の単量体単位の含有量は5質量%未満である。
 また、本発明に係るバインダー組成物では、上記架橋性単量体が、パーフルオロジビニルエーテル、またはパーフルオロアルキレンジビニルエーテルであることが好ましい。
 また、本発明に係るバインダー組成物では、上記含フッ素アルキルビニル化合物は、ヘキサフルオロプロピレン、テトラフルオロエチレン、またはクロロトリフルオロエチレンであることが好ましい。
 また、本発明に係るバインダー組成物では、上記共重合体は、フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位からなる三元系の共重合体であることが好ましい。
 また、本発明に係るバインダー組成物と水系溶媒とを含むバインダー分散液、当該バインダー分散液と電極活物質とを含む電極合剤も本発明に含まれる。
 さらに、本発明に係る電極合剤から形成された層を集電体上に備えている電極、および当該電極を備えた非水電解質二次電池についても本発明に含まれる。
 本発明に係るバインダー組成物の製造方法は、電極活物質を集電体に結着させるためのバインダー組成物の製造方法であって、上記バインダー組成物は、フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位を有する共重合体を含み、上記共重合体の作製に用いられる単量体の全量を100質量部としたときに、2質量部以上10質量部未満の上記含フッ素アルキルビニル化合物、および5質量部未満の上記架橋性単量体を用いて上記共重合体を作製することを含んでいる。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 〔バインダー組成物の調製〕
 オートクレーブに、0.2質量部のリン酸水素ナトリウム(NaHPO)、および330質量部の水を入れ、脱気後、1質量部のパーフルオロオクタン酸(PFOA)アンモニウム塩、および0.25質量部の酢酸エチルを入れ、次いで26.7質量部のフッ化ビニリデン(VDF)、および8質量部のヘキサフルオロプロピレン(HFP)を入れた。
 攪拌下で80℃に昇温後、0.06質量部の過硫酸アンモニウム(APS)を入れて重合を開始した。このときの初期圧は3.5MPaであった。圧力が2.5MPaまで低下した時点でパーフルオロジビニルエーテル(PEVE)を2質量部投入し、その後、圧力が維持されるように連続的に63.3質量部のVDFを添加した。圧力が1.5MPaまで下がったところで重合反応の終了とし、バインダー組成物が水に分散したVDF/HFP/PEVE共重合体ラテックスを得た。
 〔CMC水溶液の調製〕
 カルボキシメチルセルロース(CMC)(セロゲン4H、第一工業製薬社製)を加熱溶解し、CMC水溶液を得た。CMC水溶液を、150℃で2時間乾燥し、乾燥後のCMCの重量およびCMC水溶液の重量からCMC水溶液のCMC濃度を求めたところ、CMC濃度は1.5wt%であった。
 〔剥離試験〕
 BTR518(天然黒鉛、BTR社製)、VDF/HFP/PEVE共重合体ラテックス、CMC1.5%水溶液、および水を練太郎((株)シンキー)を用いて混練し、スラリー状の非水電解質二次電池用合剤を作製した。作製したスラリーを銅箔に塗布し、高温恒温器(HISPEC HT310S、楠本化成(株)製)を用いて窒素雰囲気80℃の条件下で30分間乾燥を行った。さらに、150℃で2時間乾燥を行い、乾燥電極を得た。乾燥電極を1.2MPaでプレスし、圧密化電極を得た。
 テンシロン((株)オリエンテック STA-1150)を用いて、塗工電極面にガムテープを貼り、Cu箔を「たわみ性被着材」とし、JIS K-6854に準じてヘッド速度200mm/minで180度剥離試験を行い、剥離強度を評価した。
 〔膨潤試験〕
 バインダー組成物から、圧縮成型機((株)新藤金属工業所)を用いて200℃で厚み150μmのプレスシートを作製した。作製したプレスシートから4cm×2cmのサンプル片を2個切り出し、サンプルを準備した。準備したサンプルを電解液(1.2mol/L/min LiPF EC:EMC=3:7(vol%)、キシダ化学(株))を入れたサンプル瓶に入れ、各サンプルについてn=2でオーブン(60℃)に静置した。回収したサンプルの重量をもとに重量変化率を計算し、膨潤率を決定した。
 [実施例1]
 上述の〔バインダー組成物の調製〕の通り、VDF:90質量部、HFP:8質量部、PEVE:2質量部でVDF/HFP/PEVE共重合体ラテックスを得た。得られた共重合体ラテックスを用いて非水電解質二次電池用電極を作製し、剥離強度および膨潤試験を行った。
 [実施例2]
 VDF:91質量部、HFP:8質量部、PEVE:1質量部でVDF/HFP/PEVE共重合体ラテックスを得た。それ以外は実施例1と同様に評価した。
 [実施例3]
 VDF:91.7質量部、HFP:8質量部、PEVE:0.3質量部でVDF/HFP/PEVE共重合体ラテックスを得た。それ以外は実施例1と同様に評価した。
 [実施例4]
 VDF:94質量部、HFP:5質量部、PEVE:1質量部でVDF/HFP/PEVE共重合体ラテックスを得た。それ以外は実施例1と同様に評価した。
 [実施例5]
 VDF:89質量部、HFP:8質量部、PEVE:3質量部でVDF/HFP/PEVE共重合体ラテックスを得た。それ以外は実施例1と同様に評価した。
 [比較例1]
 VDF:89質量部、HFP:10質量部、PEVE:1質量部でVDF/HFP/PEVE共重合体ラテックスを得た。それ以外は実施例1と同様に評価した。
 [比較例2]
 VDF:87質量部、HFP:8質量部、PEVE:5質量部でVDF/HFP/PEVE共重合体ラテックスを得た。それ以外は実施例1と同様に評価した。
 [比較例3]
 VDF:86質量部、HFP:14質量部でVDF/HFP共重合体ラテックスを得た。それ以外は実施例1と同様に評価した。
 [比較例4]
 VDF:100質量部でVDF単一単重合体(PVDF)ラテックスを得た。それ以外は実施例1と同様に評価した。
 表1に各実施例および各比較例の結果を示す。なお、剥離強度は、比較例3での値を100としたときの相対値として示している。
Figure JPOXMLDOC01-appb-T000001
 本発明は、安全な非水電解質二次電池のバインダーとして、好適に利用することができる。

Claims (9)

  1.  電極活物質を集電体に結着させるためのバインダー組成物であって、
     フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位を有する共重合体を含み、
     上記共重合体における上記含フッ素アルキルビニル化合物由来の単量体単位の含有量は2質量%以上10質量%未満であり、上記架橋性単量体由来の単量体単位の含有量は5質量%未満であることを特徴とするバインダー組成物。
  2.  上記架橋性単量体は、パーフルオロジビニルエーテル、またはパーフルオロアルキレンジビニルエーテルであることを特徴とする請求項1に記載のバインダー組成物。
  3.  上記含フッ素アルキルビニル化合物は、ヘキサフルオロプロピレン、テトラフルオロエチレン、またはクロロトリフルオロエチレンであることを特徴とする請求項1または2に記載のバインダー組成物。
  4.  上記共重合体は、フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位からなる三元系の共重合体であることを特徴とする請求項1~3のいずれか1項に記載のバインダー組成物。
  5.  請求項1~4のいずれか1項に記載のバインダー組成物と水系溶媒とを含むことを特徴とするバインダー分散液。
  6.  請求項5に記載のバインダー分散液と電極活物質とを含むことを特徴とする電極合剤。
  7.  請求項6に記載の電極合剤から形成された層を集電体上に備えていることを特徴とする電極。
  8.  請求項7に記載の電極を備えていることを特徴とする非水電解質二次電池。
  9.  電極活物質を集電体に結着させるためのバインダー組成物の製造方法であって、
     上記バインダー組成物は、フッ化ビニリデン、含フッ素アルキルビニル化合物および架橋性単量体に由来する単量体単位を有する共重合体を含み、
     上記共重合体の作製に用いられる単量体の全量を100質量部としたときに、2質量部以上10質量部未満の上記含フッ素アルキルビニル化合物、および5質量部未満の上記架橋性単量体を用いて上記共重合体を作製することを特徴とするバインダー組成物の製造方法。
PCT/JP2016/083631 2016-01-19 2016-11-14 バインダー組成物、バインダー分散液、電極合剤、電極、非水電解質二次電池、およびバインダー組成物の製造方法 WO2017126201A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/069,197 US10938034B2 (en) 2016-01-19 2016-11-14 Binder composition, binder dispersion liquid, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and method for producing binder composition
EP16886440.3A EP3407410B1 (en) 2016-01-19 2016-11-14 Binder composition, binder dispersion liquid, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition
CN201680077678.7A CN108475785B (zh) 2016-01-19 2016-11-14 粘合剂组合物、粘合剂分散液、电极合剂、电极、非水电解质二次电池、以及粘合剂组合物的制造方法
KR1020187019017A KR102165678B1 (ko) 2016-01-19 2016-11-14 바인더 조성물, 바인더 분산액, 전극 합제, 전극, 비수 전해질 이차전지, 및 바인더 조성물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016008310A JP6791634B2 (ja) 2016-01-19 2016-01-19 電極、非水電解質二次電池
JP2016-008310 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126201A1 true WO2017126201A1 (ja) 2017-07-27

Family

ID=59361581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083631 WO2017126201A1 (ja) 2016-01-19 2016-11-14 バインダー組成物、バインダー分散液、電極合剤、電極、非水電解質二次電池、およびバインダー組成物の製造方法

Country Status (6)

Country Link
US (1) US10938034B2 (ja)
EP (1) EP3407410B1 (ja)
JP (1) JP6791634B2 (ja)
KR (1) KR102165678B1 (ja)
CN (1) CN108475785B (ja)
WO (1) WO2017126201A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230140A1 (ja) * 2018-05-31 2019-12-05 株式会社クレハ ポリマー溶液、これを用いたフィルムの製造方法、および非水電解質二次電池用樹脂組成物
US20210043934A1 (en) * 2018-04-27 2021-02-11 Lg Chem, Ltd. Lithium secondary battery and manufacturing method thereof
WO2022114044A1 (ja) * 2020-11-30 2022-06-02 株式会社クレハ フッ化ビニリデン共重合体組成物およびその製造方法、ポリマー分散液、非水電解質二次電池用電極、非水電解質二次電池用電解質層、ならびに非水電解質二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102287767B1 (ko) * 2018-01-18 2021-08-10 주식회사 엘지에너지솔루션 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
JP6804708B2 (ja) * 2018-09-14 2020-12-23 株式会社クレハ 樹脂分散電解液、ポリマーゲル電解質およびその製造方法、ならびに、二次電池およびその製造方法
EP3767710A1 (en) * 2019-07-15 2021-01-20 Arkema France Waterbased pvdf slurry formulation for silicon graphite anodes
CN114685705B (zh) * 2020-12-30 2023-09-26 中化蓝天氟材料有限公司 一种低溶胀偏氟乙烯共聚物作为锂电粘结剂的应用
KR102675712B1 (ko) 2021-08-24 2024-06-17 부산대학교 산학협력단 이차전지 음극용 바인더, 이의 제조방법 및 이를 이용한 이차전지용 음극

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231264A (ja) * 2006-02-02 2007-09-13 Jsr Corp 複合化重合体組成物の製造方法、複合化重合体組成物、二次電池電極用ペースト、及び二次電池電極
JP2013211247A (ja) * 2012-02-29 2013-10-10 Jsr Corp 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP2014160651A (ja) * 2013-01-28 2014-09-04 Nippon Zeon Co Ltd リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851018A (en) * 1973-07-31 1974-11-26 Du Pont Crosslinked fluoroelastomer and composition containing same
JP2003331823A (ja) * 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd 非水電解質二次電池、およびその製造方法
US7341804B2 (en) * 2002-09-20 2008-03-11 3M Innovative Properties Company Anode compositions having an elastomeric binder and an adhesion promoter
WO2006080259A1 (ja) * 2005-01-27 2006-08-03 Kureha Corporation フッ化ビニリデン系コア/シェル型重合体およびその非水系電気化学素子における利用
JPWO2011001666A1 (ja) 2009-06-30 2012-12-10 パナソニック株式会社 非水電解質二次電池用正極及びその製造方法並びに非水電解質二次電池
JP2011258351A (ja) * 2010-06-07 2011-12-22 Panasonic Corp リチウムイオン二次電池
EP2698390A4 (en) * 2011-04-11 2014-10-22 Unimatec Co Ltd PROCESS FOR PREPARING A FLUOROUS ELASTOMER
JP6069632B2 (ja) 2012-06-08 2017-02-01 株式会社Gsユアサ 正極ペースト、並びに、これを用いた非水電解質電池用正極及び非水電解質電池の製造方法
JP2015162384A (ja) * 2014-02-27 2015-09-07 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、およびリチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231264A (ja) * 2006-02-02 2007-09-13 Jsr Corp 複合化重合体組成物の製造方法、複合化重合体組成物、二次電池電極用ペースト、及び二次電池電極
JP2013211247A (ja) * 2012-02-29 2013-10-10 Jsr Corp 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP2014160651A (ja) * 2013-01-28 2014-09-04 Nippon Zeon Co Ltd リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043934A1 (en) * 2018-04-27 2021-02-11 Lg Chem, Ltd. Lithium secondary battery and manufacturing method thereof
WO2019230140A1 (ja) * 2018-05-31 2019-12-05 株式会社クレハ ポリマー溶液、これを用いたフィルムの製造方法、および非水電解質二次電池用樹脂組成物
JPWO2019230140A1 (ja) * 2018-05-31 2021-03-11 株式会社クレハ ポリマー溶液、これを用いたフィルムの製造方法、および非水電解質二次電池用樹脂組成物
WO2022114044A1 (ja) * 2020-11-30 2022-06-02 株式会社クレハ フッ化ビニリデン共重合体組成物およびその製造方法、ポリマー分散液、非水電解質二次電池用電極、非水電解質二次電池用電解質層、ならびに非水電解質二次電池

Also Published As

Publication number Publication date
CN108475785B (zh) 2022-03-22
JP6791634B2 (ja) 2020-11-25
EP3407410B1 (en) 2020-05-27
EP3407410A4 (en) 2019-01-23
US20180358626A1 (en) 2018-12-13
CN108475785A (zh) 2018-08-31
EP3407410A1 (en) 2018-11-28
KR102165678B1 (ko) 2020-10-14
KR20180089492A (ko) 2018-08-08
US10938034B2 (en) 2021-03-02
JP2017130323A (ja) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6791634B2 (ja) 電極、非水電解質二次電池
EP3076462B1 (en) Aqueous vinylidene fluoride-based polymer composition and use thereof
KR102219159B1 (ko) 불화 비닐리덴 공중합체 입자 및 이의 이용
KR102231591B1 (ko) 코어 쉘형 입자 및 이의 용도 및 제조 방법
JP6864523B2 (ja) コアシェル型粒子ならびにその用途および製造方法
WO2010138647A1 (en) Aqueous polyvinylidene fluoride composition
KR101822250B1 (ko) 비수전해질 이차 전지용 구조체, 비수전해질 이차 전지 및 당해 구조체의 제조 방법
JP6222098B2 (ja) 蓄電デバイス用バインダー組成物の製造方法
KR20200142097A (ko) 비수 전해질 이차전지용 수지 조성물 및 이를 이용한 비수 전해질 이차전지용 세퍼레이터, 전극 합제층용 수지 조성물, 비수 전해질 이차전지용 전극, 및 비수 전해질 이차전지
WO2016076369A1 (ja) 蓄電デバイス用バインダー組成物及びその製造方法
JP7209813B2 (ja) 非フッ素化界面活性剤を用いたフッ化ビニリデン系重合体組成物及びその製造方法
JP7209420B2 (ja) 非水電解質二次電池用電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187019017

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019017

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016886440

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016886440

Country of ref document: EP

Effective date: 20180820