WO2017122663A1 - リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両 - Google Patents

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両 Download PDF

Info

Publication number
WO2017122663A1
WO2017122663A1 PCT/JP2017/000590 JP2017000590W WO2017122663A1 WO 2017122663 A1 WO2017122663 A1 WO 2017122663A1 JP 2017000590 W JP2017000590 W JP 2017000590W WO 2017122663 A1 WO2017122663 A1 WO 2017122663A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
secondary battery
positive electrode
active material
Prior art date
Application number
PCT/JP2017/000590
Other languages
English (en)
French (fr)
Inventor
直明 藪内
Original Assignee
学校法人東京電機大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京電機大学 filed Critical 学校法人東京電機大学
Priority to EP17738417.9A priority Critical patent/EP3404752B1/en
Priority to JP2017561128A priority patent/JP6896283B2/ja
Priority to US16/068,697 priority patent/US10720641B2/en
Priority to CN201780006428.9A priority patent/CN108475783B/zh
Publication of WO2017122663A1 publication Critical patent/WO2017122663A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, an electronic device, and a vehicle.
  • Lithium ion secondary batteries are widely used as power sources for driving mobile devices such as mobile phones, smartphones and laptop computers. Lithium ion secondary batteries are characterized by high energy density, but higher energy density is required for new applications such as electric vehicles and household power storage systems.
  • Li 2 TiO 3 based material is one of materials research is being promoted as a high capacity cathode material.
  • Patent Document 1 describes a substance in which a part of Li 2 TiO 3 is replaced with a kind of metal.
  • Patent Document 2 describes a lithium ion secondary battery using a material represented by xLiMO 2 ⁇ (1-x) Li 2 M′O 3 having a layered structure.
  • Patent Document 3 Li 1 + x (Mn 1-y Ti y ) 1-x O 2 (where 1/3 ⁇ x ⁇ 1/3, 0.4 ⁇ y ⁇ 0.6) Lithium manganese based composite oxides are described.
  • the Li 2 TiO 3 -based material is a lithium composite oxide that has the potential to further increase the energy density of a lithium ion secondary battery, but currently, a Li 2 TiO 3 -based positive electrode active material for a lithium ion secondary battery However, no material showing sufficient charge / discharge capacity has been found.
  • Patent Document 1 a substance obtained by replacing part of Ti with Mn has a small discharge capacity of 22 mAh / g (see Paragraph 0038 of Patent Document 1).
  • Example 3 of Patent Document 2 a substance having a layered structure represented by Li (Ti 0.14 Mn 0.79 Li 0.07 ) O 2 is described, but the initial charge capacity is 179 mAh. / G, reversible capacity was 108 mAh / g, and it could not be said to have sufficient charge / discharge capacity.
  • the composite described in Patent Document 3 had an initial charge / discharge capacity of 215 mAh / g (Example 1) at the maximum, and could not be said to have a sufficient charge / discharge capacity.
  • the lithium manganese composite oxide of Patent Document 3 is actually not a rock salt type structure but a layered structure, and it is considered that sufficient charge / discharge characteristics are not obtained. This can be confirmed from the fact that the oxidation number in Example 1 of Patent Document 3 is 3.75, which is close to the oxidation number (4.0) of Mn having a layered structure. Even if the rock salt structure is adopted, the lithium manganese composite oxide has a large particle size and is not suitable in composition, so that a sufficient charge / discharge capacity is not obtained.
  • the present invention has been made in view of the above circumstances, and is a positive electrode active material for a lithium ion secondary battery made of a Li 2 TiO 3 based lithium transition metal composite oxide having a rock salt structure capable of expressing a high charge / discharge capacity. It aims at providing the positive electrode for lithium ion secondary batteries, a lithium ion secondary battery, an electronic device, and a vehicle.
  • the present invention employs the following means in order to solve the above problems.
  • the positive electrode active material for a lithium secondary battery according to the first aspect is represented by the general formula: Li x Ti 2x-1 Mn 2-3x O (0.50 ⁇ x ⁇ 0.67) (1) And a particle size of 0.5 ⁇ m or less.
  • x in the general formula (1) may be 0.55 ⁇ x ⁇ 0.63.
  • the positive electrode active material for a lithium secondary battery according to the above aspect is characterized in that, in charge compensation accompanying the movement of lithium ions during charge and discharge, the redox contribution of oxide ions contributes to the redox of transition metal ions contained in the solid solution. It may be the same as or more than.
  • a positive electrode for a lithium secondary battery includes the positive electrode active material for a lithium ion secondary battery, a conductive material, and a binder.
  • a lithium ion secondary battery includes the positive electrode for a lithium ion secondary battery, a negative electrode, and a nonaqueous electrolyte.
  • the initial charge capacity of the lithium ion secondary battery according to the above aspect is 260 mAh / g.
  • the electronic device includes the lithium ion secondary battery as a driving power source.
  • a vehicle according to a fifth aspect includes the lithium ion secondary battery as a driving power source.
  • a cathode active material for a novel Li 2 TiO 3 based lithium ion secondary battery comprising a lithium transition metal composite oxide.
  • pulverizing the positive electrode active material for lithium ion secondary batteries with a ball mill, when producing the positive electrode for lithium ion secondary batteries. 2 shows X-ray diffraction images before and after ball milling for the composite oxide powder obtained in Example 1-1. Showing charge-discharge characteristics of the electrochemical cell obtained using composite oxide Li 0.6 Ti 0.2 Mn 0.2 O Example 1-1 (x 0.6) in the positive electrode active material.
  • Showing charge-discharge characteristics of the composite oxide Li 0.6 Ti 0.2 Mn 0.2 O ( x 0.6) used in the positive electrode active material, the electrochemical cells measured under the conditions of Example 1-3 .
  • the positive electrode active material for a lithium secondary battery according to one embodiment of the present invention is made of a solid solution of Li 2 TiO 3 and LiMnO 2 and has a rock salt structure.
  • the positive electrode active material for a lithium secondary battery may be made of a solid solution of Li 2 TiO 3 , LiMnO 2 and Li 3 NbO 4 .
  • the positive electrode active material for these lithium secondary batteries are common in that a solid solution with both Li 2 TiO 3 and LiMnO 2.
  • This positive electrode active material for a lithium ion secondary battery may contain other materials as long as the effects of the present invention are exhibited.
  • the positive electrode active material for a lithium secondary battery is made of a solid solution of Li 2 TiO 3 and LiMnO 2
  • the general formula Li x Ti 2x-1 Mn 2-3x O (0.50 ⁇ x ⁇ 0.67). ⁇ ⁇ Indicated by (1).
  • the solid solution of Li 2 TiO 3 and LiMnO 2 can be expressed by the following formula by arranging the coefficients of oxygen. xLi 2/3 Ti 1/3 O. (1-x) Li 1/2 Mn 1/2 O (0.50 ⁇ x ⁇ 0.67) When this is deformed and expressed as MeO (Me: metal) having a rock salt structure, the general formula (1) is obtained.
  • the positive electrode active material for a lithium secondary battery is made of a solid solution of Li 2 TiO 3 , LiMnO 2 and Li 3 NbO 4 , the general formula: Li x Ti y Mn (3-y-4x) / 2 Nb (2x ⁇ y-1) / 2 O (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ (1-x)) (2).
  • the solid solution of Li 2 TiO 3 , LiMnO 2 and Li 3 NbO 4 can be expressed by the following formula by arranging the coefficients of oxygen.
  • the positive electrode active material for a lithium secondary battery according to one embodiment of the present invention includes a redox of a transition metal ion contained in a solid solution in which a redox contribution of an oxide ion is included in charge compensation accompanying movement of lithium ions during charge and discharge. Is greater than or equal to the contribution of That is, the positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention greatly contributes to oxidation / reduction of oxide ions in charge compensation accompanying movement of lithium ions during charge / discharge.
  • “contribution of redox of oxide ion” or “contribution of redox of transition metal ion” refers to the movement of lithium ions during charge / discharge when the redox reaction proceeds reversibly and stably. In charge compensation, it refers to the redox contribution of oxide ions or transition metal ions. By way of example, it refers to the redox contribution of oxide ions or transition metal ions in charge / discharge when a redox reaction occurs reversibly over at least 30 cycles.
  • the positive electrode active material for a lithium ion secondary battery is made of a solid solution of Li 2 TiO 3 and LiMnO 2
  • the valence change of Mn 3+ / Mn 4+ There is a contribution accompanying the change in the valence of the oxide ion O 2 2 ⁇ / 2O 2 ⁇ .
  • the positive electrode active material for a lithium ion secondary battery is Li 0.6 Ti 0.2 Mn 0.2 O (formula weight: 81.453)
  • the contribution mainly due to the valence change of Mn 3+ / Mn 4+ In this case, the theoretical capacity is 131.6 mAh / g.
  • the theoretical capacity is obtained from the movement amount of lithium ions during charge and discharge, the theoretical capacity is 394.9 mAh / g. Movement of the lithium ions during charging and discharging is the sum of the contributions due to the contribution and O 2 2- / 2O 2- valence change in due to valence change of Mn 3+ / Mn 4+.
  • the “contribution of redox of oxide ions” or “contribution of redox of transition metal ions” can be examined by measuring the valence change of transition metal ions and oxide ions in the charge / discharge cycle process.
  • Examples of valence changes of transition metal ions and oxide ions include soft X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure analysis (XAFS), and transmission electron energy loss analysis (EELS). ) Etc.
  • the positive electrode active material for a lithium ion secondary battery is made of a solid solution of Li 2 TiO 3 and LiMnO 2
  • the valence of manganese ions Mn 3+ / Mn 4+ , oxide ions O 2 2 ⁇ / 2O 2 ⁇ The change is measured using soft X-ray absorption spectroscopy or the like.
  • the contribution of the redox reaction of manganese ions can be examined by the change of manganese ions from Mn 3+ to Mn 4+ (generation of Mn 4+ ), and the change from 2O 2 ⁇ to O 2 2 ⁇ (O 2 2- and the like), the contribution of the redox reaction of oxide ions can be examined.
  • the “contribution of redox of oxide ions” or “contribution of redox of transition metal ions” can be theoretically predicted from the composition.
  • Li 2 TiO 3 is known to be electrochemically inert. Therefore, for example, when the composition ratio of Mn in the general formula: Li x Ti 2x-1 Mn 2-3x O (0.50 ⁇ x ⁇ 0.67) (1) is larger than the composition ratio of Ti It is predicted that the “contribution of redox of transition metal ions” will increase, and if the composition ratio of Mn is equal to the composition ratio of Ti, it is predicted that “contribution of redox of oxide ions” will increase.
  • X in the general formulas (1) and (2) is 0.50 ⁇ x ⁇ 0.67.
  • x is more preferably 0.52 ⁇ x ⁇ 0.65.
  • x is more preferably 0.55 ⁇ x ⁇ 0.63.
  • the positive electrode active material for a lithium ion secondary battery according to the present embodiment also includes a composite oxide that is slightly shifted due to defects of Li, Ti, Mn, Nb, or O that are inevitably generated.
  • salts or oxides of lithium, titanium, manganese, and niobium are prepared and obtained by a solid phase method according to the composition ratio. be able to. Further, the method is not limited to the solid phase method, and a coprecipitation method, an evaporation to dryness method, a spray drying method, or the like can be used.
  • Each salt or oxide of lithium, titanium, manganese or niobium may be prepared separately or as a composite compound.
  • a lithium titanium composite oxide from a lithium compound and a titanium compound, a lithium manganese composite oxide from a lithium compound and a manganese compound, or a lithium niobium composite oxide from a lithium compound and a niobium compound may be prepared in advance.
  • lithium compound lithium hydroxide, lithium citrate, lithium oxalate, lithium phosphate, lithium carbonate and the like can be used, and these may be used alone or in combination of two or more.
  • titanium compound metal titanium, titanium oxide, titanium hydroxide, titanium nitrate, titanium chloride and the like can be used, and these may be used alone or in combination. From the viewpoint of stability, it is preferable to use titanium oxide (TiO 2 ) or the like.
  • manganese compound metal manganese, manganese oxide, manganese hydroxide, manganese nitrate, manganese carbonate, manganese chloride, manganese iodide, manganese sulfate can be used, and these may be used alone or in combination of two or more. Good. Preferably, it is manganese carbonate.
  • niobium compound metallic niobium, niobium oxide, niobium oxalate, niobium chloride, niobium carbide, lithium niobate can be used, and these may be used alone or in admixture of two or more.
  • Niobium pentoxide Nb 2 O 5 is preferable from the viewpoints of stability and availability.
  • these lithium, titanium, manganese and niobium salts or oxides are adjusted so that the target active material has a desired composition ratio, and the adjusted mixture is fired.
  • a positive electrode active material for a lithium ion secondary battery is obtained.
  • the lithium raw material is contained in an excess of about 1 to 5% because a part of the lithium raw material may disappear during firing.
  • the firing temperature depends on the type of lithium salt used, it is preferably 500 ° C. or higher, and is 800 ° C. or higher in order to increase the crystallinity of the positive electrode active material for a lithium ion secondary battery to be produced. More preferred.
  • the produced positive electrode active material for a lithium ion secondary battery has high crystallinity, charge / discharge characteristics are improved.
  • the positive electrode for lithium ion secondary batteries which concerns on 1 aspect of this invention contains the said positive electrode active material for lithium ion secondary batteries, a electrically conductive material, and a binder.
  • the positive electrode for a lithium ion secondary battery may include the above positive electrode active material for a lithium ion secondary battery alone as a positive electrode active material, or may be a known positive electrode for a lithium ion secondary battery. One or more active materials may be included.
  • the positive electrode active material for a lithium ion secondary battery is preferably pulverized by a ball mill or the like.
  • the average particle size of the positive electrode active material for a lithium ion secondary battery after pulverization is preferably 0.5 ⁇ m or less.
  • FIG. 3 is a microscopic image of a material after a positive electrode active material for a lithium ion secondary battery is pulverized by a ball mill when producing a positive electrode for a lithium ion secondary battery.
  • the average particle diameter is an average value of arbitrary 20 particles in the optical microscope image.
  • the particle size of the positive electrode active material for a lithium ion secondary battery before being pulverized by a ball mill is 2 to 4 ⁇ m, and the particle size of the material after pulverization is about 1 ⁇ m at the maximum.
  • the average particle diameter of a positive electrode active material for a lithium ion secondary battery using a redox reaction of a transition metal such as a general layered oxide is 1 to 5 ⁇ m.
  • the average particle size is a configuration that greatly contributes to charge / discharge characteristics.
  • charge compensation by oxide ions becomes active, and the initial charge / discharge characteristics of the lithium ion secondary battery become 260 mAh / g or more. It was newly discovered by examination.
  • the fact that the actual charge / discharge characteristics measured with respect to the Li-based theoretical capacity can be set to 70% or more has been newly found out by examination.
  • the pulverization step using a ball mill or the like, the conductive material uniformly adheres to the surface of the pulverized positive electrode active material for a lithium ion secondary battery.
  • a complexing agent in which a conductive material such as carbon uniformly adheres to the surface of the positive electrode active material for a lithium ion secondary battery is excellent in charge / discharge characteristics because charge compensation of oxide ions proceeds.
  • the pulverization step is preferably performed in an inert gas atmosphere.
  • a lithium ion secondary battery includes the positive electrode, the negative electrode, and a nonaqueous electrolyte, and includes essential components for a general lithium ion secondary battery.
  • the use of the lithium ion secondary battery is not particularly limited as long as it is a machine, device, instrument, device, or a system combining the same that can be used as a driving power source or a power storage source.
  • lithium ion secondary batteries examples include portable electronic devices such as mobile phones, smartphones, notebook computers, and personal digital assistants (PDAs) equipped with lithium ion secondary batteries as driving power sources. Can be mentioned.
  • portable electronic devices such as mobile phones, smartphones, notebook computers, and personal digital assistants (PDAs) equipped with lithium ion secondary batteries as driving power sources.
  • PDAs personal digital assistants
  • FIG. 1 shows a block diagram of main functions of a mobile phone as an example of an electronic device.
  • the mobile phone 10 includes a battery 1 including at least one lithium ion secondary battery of the present invention, a control unit 2, a display unit 3, an operation unit 4, a communication unit 5, and an antenna 6.
  • the control unit 2 includes a CPU and a memory, and controls various devices to be mounted.
  • the display unit 3 displays various information such as an operation menu.
  • the operation unit 4 is an input interface for operating a mobile phone. Input from the operation unit 4 is processed by the control unit 2 and is used as a mobile phone. Is performed.
  • the communication unit 5 performs wireless communication with the mobile phone base station via the antenna 6.
  • FIG. 2 shows a schematic plan view of a drive system as another example of a lithium ion secondary battery using an electric vehicle as a vehicle.
  • the electric vehicle 20 includes a battery module 11 including at least one lithium ion secondary battery of the present invention, an inverter 12, a motor 13, and a control unit 14.
  • the electric vehicle 20 is driven by supplying electric power from the battery module 11 to the motor 13 via the inverter 12.
  • the electric power regenerated by the motor 13 during deceleration is stored in the battery module 11.
  • the control unit 14 controls the inverter 12 to output torque in the same direction as the rotation direction of the wheel 15 when the accelerator pedal is operated, and torque in the direction opposite to the rotation direction of the wheel when the brake pedal is operated.
  • the inverter 12 is controlled so as to output.
  • the present invention is also applied to a storage battery that stores electric power for driving in a hybrid vehicle including a driving motor and an engine, or a storage battery that stores electric power for driving auxiliary equipment. be able to.
  • the present invention can also be applied to a storage battery that stores auxiliary drive power in an engine vehicle. In this case, the storage battery that stores the power for driving the auxiliary machine is charged by the power generated by the alternator connected to the engine.
  • Li 0.6 Ti 0.2 Mn 0.2 O is composed of Li 2 CO 3 (manufactured by Wako Pure Chemical Industries, Ltd.), TiO 2 (manufactured by Kanto Chemical Co., Ltd.), Mn 2 O 3 (manufactured by Kishida Chemical Co., Ltd.) It was weighed so that the molar ratio (obtained by firing at 700 ° C.) was 1.5: 1: 0.5. Then, the weighed powder was mixed so as to be sufficiently uniform, pelletized, and fired at 900 ° C. for 12 hours to obtain Li 0.6 Ti 0.2 Mn 0.2 O. At this time, the firing atmosphere was an inert gas atmosphere.
  • the obtained powder was put into a zirconia pot to which zirconia balls were added, and set in a planetary ball mill (manufactured by FRITSCH, model number plumbrisete 7), and mixed at 300 rpm for 12 hours.
  • FIG. 3 shows X-ray diffraction images before and after the ball milling for the composite oxide powder obtained in Example 1-1.
  • the horizontal axis is the diffraction angle (2 ⁇ ), and the vertical axis is the intensity.
  • the crystal structure of the composite oxide obtained in Example 1 was a rock salt type structure.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the slurry was applied on an aluminum foil as a current collector and dried, and then pressed to produce a positive electrode.
  • a bipolar electrochemical cell for evaluation using a lithium foil as a counter electrode was produced.
  • a charge / discharge test was performed using 1M-LiPF 6 dissolved in EC / DMC (volume ratio 1: 1) as an electrolytic solution.
  • the charge / discharge test was carried out at 50 ° C. in a current range of 5 mA / g and a voltage range of 1.5 to 4.8 V.
  • a curve that rises to the right corresponds to the charge curve, and a curve that falls to the right corresponds to the discharge curve.
  • a high charge / discharge capacity of 350 mAh / g and a discharge capacity of 315 mAh / g were obtained in the first cycle.
  • the initial charge capacity of 350 mAh / g is a very high value corresponding to about 89% of the theoretical capacity of 394.9 mAh / g based on Li. This high charge / discharge capacity is due to the oxidation-reduction reaction of oxide ions (O 2 ⁇ / O 2 2 ⁇ ).
  • the charge / discharge capacity in each cycle when the charge / discharge of 4 cycles is repeated in the voltage range of 1.5 mA to 4.8 V with a current density of 5 mA / g is shown.
  • the discharge capacity in the fourth cycle was 300 mAh / g, showing 95% of the discharge capacity in the first cycle, and a high discharge capacity retention rate.
  • Example 1-1 Also under the conditions of Example 1-2, a high charge / discharge capacity and a high discharge capacity retention rate were exhibited as in Example 1-1.
  • the charge capacity in the first cycle was 350 mAh / g, and the discharge capacity was 300 mAh / g.
  • Example 1-3 was different from Example 1-1 only in that charge / discharge characteristics were measured at a measurement temperature of room temperature (25 ° C.), and other conditions were the same as Example 1-1.
  • Example 1-3 Under the conditions of Example 1-3, the charge capacity in the first cycle was 275 mAh / g, and the discharge capacity was 215 mAh / g. Although the charge / discharge characteristics are also lowered due to the decrease in measurement temperature, the charge / discharge characteristics are sufficiently high. Moreover, even if it repeated 5 cycles charging / discharging, discharge capacity did not fall large, but the discharge capacity maintenance factor as high as 93% was shown.
  • Li 2 CO 3 , TiO 2 , and Mn 2 O 3 were weighed so that the molar ratio was 1.1: 0.4: 0.7.
  • the weighed powder was mixed so as to be sufficiently uniform, pelletized, and fired at 900 ° C. for 12 hours to obtain Li 0.55 Ti 0.1 Mn 0.35 O.
  • the firing atmosphere was an inert gas atmosphere.
  • the weighed sample was calcined at 900 ° C. for 12 hours, and the calcined sample was finely pulverized using a ball mill under the same conditions as in Example 1-1.
  • FIG. 9 shows X-ray diffraction images before and after ball milling for the composite oxide powder obtained in Example 2.
  • ICP emission spectroscopic analysis
  • a curve that rises to the right corresponds to the charge curve, and a curve that falls to the right corresponds to the discharge curve.
  • the charge / discharge capacity measured under conditions of a current density of 10 mA / g, a voltage range of 1.5 to 4.8 V, and a measurement temperature of 50 ° C. is shown.
  • a high charge / discharge capacity of 260 mAh / g and a discharge capacity of 230 mAh / g in the first cycle were obtained.
  • the initial charge capacity 260 mAh / g was equivalent to about 71% of the Li-based theoretical capacity 394.9 mAh / g, and showed a high value.
  • This high charge / discharge capacity is due to the oxidation-reduction reaction of oxide ions (O 2 ⁇ / O 2 2 ⁇ ).
  • Li 2 CO 3 , TiO 2 , and Mn 2 O 3 were weighed so as to have a molar ratio of 1.24: 0.96: 0.27.
  • the weighed powder was mixed so as to be sufficiently uniform, pelletized, and fired at 900 ° C. for 12 hours to obtain Li 0.62 Ti 0.245 Mn 0.135 O.
  • the firing atmosphere was an inert gas atmosphere.
  • the weighed sample was calcined at 900 ° C. for 12 hours, and the calcined sample was finely pulverized using a ball mill under the same conditions as in Example 1-1.
  • FIG. 11 shows X-ray diffraction images before and after ball milling for the composite oxide powder obtained in Example 3.
  • a curve that rises to the right corresponds to the charge curve, and a curve that falls to the right corresponds to the discharge curve.
  • the charge / discharge capacity measured under the conditions of a current density of 10 mA / g, a voltage range of 1.5 to 4.8 V, and a measurement temperature of 50 ° C. is shown.
  • a high charge / discharge capacity of 350 mAh / g and a discharge capacity of 280 mAh / g in the first cycle were obtained.
  • the initial charge capacity of 350 mAh / g was equivalent to about 89% of the theoretical capacity of 394.9 mAh / g based on Li, showing a very high value.
  • This high charge / discharge capacity is due to the oxidation-reduction reaction of oxide ions (O 2 ⁇ / O 2 2 ⁇ ).
  • Example 1-1 Example 2, and Example 3 even when a composite oxide in which the range of x in the general formula: Li x Ti 2x-1 Mn 2-3x O was changed was used as the positive electrode material. It was possible to maintain the rock salt structure and to show high charge / discharge characteristics. Also, comparing Example 2 and Example 3, the larger the Ti composition ratio, the higher the contribution of oxidation / reduction of oxide ions in charge compensation accompanying the movement of lithium ions during charge / discharge, and the higher charge / discharge characteristics. Obtainable.
  • FIG. 13 shows X-ray diffraction images before and after ball milling for the composite oxide powder obtained in Reference Example 4.
  • ICP emission spectroscopic analysis
  • the charge / discharge characteristics of an electrochemical cell are shown. A curve that rises to the right corresponds to the charge curve, and a curve that falls to the right corresponds to the discharge curve.
  • the charge / discharge capacity measured under conditions of a current density of 10 mA / g, a voltage range of 1.5 to 4.8 V, and a measurement temperature of 50 ° C. is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本発明は、高い充放電容量を発現可能な、岩塩構造のLi2TiO3系のリチウム遷移金属複合酸化物からなるリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両を提供することを目的とする。 本発明のリチウムイオン二次電池用正極活物質は、一般式:LiTi2x-1Mn2-3xO(0.50<x<0.67)・・・(1)で表記される岩塩型構造を有し、平均粒径が0.5μm以下である。

Description

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両
 本発明は、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両に関するものである。
 リチウムイオン二次電池は、携帯電話、スマートフォンやノートパソコンなどのモバイル機器の駆動用電源として広く普及している。リチウムイオン二次電池はエネルギー密度が大きいという特徴を有するが、電気自動車や家庭用蓄電システムなどの新しい用途に向けてはさらなる高エネルギー密度化が求められている。
 リチウムイオン二次電池のさらなる高エネルギー密度化には正極材料の性能向上が不可欠である。かかる要求に応える可能性を秘めた正極材料として固溶体系材料が注目されている。固溶体系材料としては種々の材料が検討されている。LiTiO系材料は、高容量正極材料として研究が進められている材料の一つである。
 例えば、特許文献1には、LiTiOの一部を一種の金属で置換した物質が記載されている。また例えば、特許文献2には、層状構造のxLiMO・(1-x)LiM’Oで表記される物質を用いたリチウムイオン二次電池が記載されている。
 また例えば、特許文献3には、Li1+x(Mn1-yTi1-x(但し、-1/3<x<1/3、0.4≦y≦0.6)で表されるリチウムマンガン系複合酸化物が記載されている。
特許第4307927号公報 米国特許第6680143号明細書 特開2012-96974号公報
 LiTiO系材料は、リチウムイオン二次電池のさらなる高エネルギー密度化の可能性を秘めたリチウム複合酸化物ではあるが、現在、LiTiO系のリチウムイオン二次電池用正極活物質において、充分な充放電容量を示すものは見つかっていない。
 例えば、特許文献1に記載の物質の内、Tiの一部をMnに置き換えたものは、放電容量が22mAh/gと小さい(特許文献1段落0038参照)。
 また例えば、特許文献2の実施例3には、Li(Ti0.14Mn0.79Li0.07)Oで表記される層状構造の物質が記載されているが、初期充電容量が179mAh/g、可逆容量が108mAh/gであり、充分な充放電容量を有しているとは言えなかった。
 また特許文献3に記載の複合体は、初期充放電容量が最大でも215mAh/g(実施例1)であり、十分な充放電容量を有しているとは言えなかった。特許文献3のリチウムマンガン系複合酸化物は、MnとTiの比率から、実際には岩塩型構造ではなく、層状構造となっており、十分な充放電特性が得られていないと考えられる。このことは、特許文献3の実施例1における酸化数が3.75であり、層状構造のMnの酸化数(4.0)に近い値を示していることからも確認できる。またもし岩塩型構造をとっていたとしても、リチウムマンガン系複合酸化物の粒径が大きく、組成が適切ではないため、十分な充放電容量がえられていない。
 本発明は、上記事情に鑑みてなされたものであり、高い充放電容量を発現可能な、岩塩構造のLiTiO系のリチウム遷移金属複合酸化物からなるリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両を提供することを目的とする。
 本発明は、上記課題を解決するために、以下の手段を採用した。
 第1の態様に係るリチウム二次電池用正極活物質は、一般式:LiTi2x-1Mn2-3xO(0.50<x<0.67)・・・(1)で表記される岩塩型構造を有し、粒径が0.5μm以下である。
 上記態様にかかるリチウムイオン二次電池用正極活物質において、前記一般式(1)におけるxが0.55≦x<0.63であってもよい。
 上記態様にかかるリチウム二次電池用正極活物質は、充放電中のリチウムイオンの移動に伴う電荷補償において、酸化物イオンの酸化還元の寄与が前記固溶体に含有する遷移金属イオンの酸化還元の寄与と同じか又はそれ以上であってもよい。
 第2の態様に係るリチウム二次電池用正極は、上記リチウムイオン二次電池用正極活物質と導電材とバインダーとを含む。
 第3の態様に係るリチウムイオン二次電池は、上記リチウムイオン二次電池用正極と負極と非水電解質とを備える。
 上記態様にかかるリチウムイオン二次電池は、初期充電容量が260mAh/gである。
 第4の態様に係る電子機器は、上記リチウムイオン二次電池を駆動用電源として備える。
 第5の態様に係る車両は、上記リチウムイオン二次電池を駆動用電源として備える。
 本発明によれば、高い充放電容量を発現可能な、新規なLiTiO系のリチウム遷移金属複合酸化物からなるリチウムイオン二次電池用正極活物質を提供することができる。
本実施形態にかかるリチウムイオン二次電池を駆動用電源として備える携帯電話機の主な機能のブロック図である。 本実施形態にかかるリチウムイオン二次電池を駆動用電源として備える電気自動車の駆動システムのブロック図である。 リチウムイオン二次電池用正極を作製する際に、リチウムイオン二次電池用正極活物質をボールミルにより粉砕した後の物質の顕微鏡画像である。 実施例1-1で得られた複合酸化物の粉末についてのボールミル前後のX線回折像を示す。 実施例1-1の複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。 実施例1-1の複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用いた電気化学セルの放電容量の容量維持特性を評価した結果を示す。 複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用い、実施例1-2の条件で測定された電気化学セルの充放電特性を示す。 複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用い、実施例1-3の条件で測定された電気化学セルの充放電特性を示す。 複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用い、実施例1-3の条件で電気化学セルの放電容量の容量維持特性を評価した結果を示す。 実施例2で得られた複合酸化物の粉末についてのボールミル前後のX線回折像を示す。 実施例2の複合酸化物Li0.55Ti0.1Mn0.35O(x=0.55)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。 実施例3で得られた複合酸化物の粉末についてのボールミル前後のX線回折像を示す。 実施例3の複合酸化物Li0.62Ti0.245Mn0.135O(x=0.62)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。 参考例1で得られた複合酸化物の粉末についてのボールミル前後のX線回折像を示す。 参考例1の複合酸化物Li0.625Ti0.1Nb0.075Mn0.2O(x=0.625、y=0.1)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。
 以下に、本実施形態にかかるリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両を実施するための形態を説明する。
<リチウムイオン二次電池用正極活物質>
 本発明の一態様に係るリチウム二次電池用正極活物質は、LiTiOとLiMnOの固溶体からなり、岩塩型構造である。また別の態様として、リチウム二次電池用正極活物質は、LiTiO、LiMnO及びLiNbOの固溶体からなってもよい。これらのリチウム二次電池用正極活物質は、LiTiOとLiMnOを共に有する固溶体である点において共通している。
 このリチウムイオン二次電池用正極活物質は、本発明の効果を奏する範囲で他の材料を含んでも構わない。
 リチウム二次電池用正極活物質は、LiTiOとLiMnOとの固溶体からなる場合、一般式:LiTi2x-1Mn2-3xO(0.50<x<0.67)・・・(1)で表記される。
 LiTiOと、LiMnOとの固溶体は、酸素の係数を整理して、次式で表すこともできる。
  xLi2/3Ti1/3O・(1-x)Li1/2Mn1/2O (0.50<x<0.67)
 これを変形して、岩塩型構造のMeO(Me:金属)で表記すると、上記一般式(1)が得られる。
 またリチウム二次電池用正極活物質は、LiTiO、LiMnO及びLiNbOの固溶体からなる場合、一般式:LiTiMn(3-y-4x)/2Nb(2x-y-1)/2O(0<x<1、0<y<(1-x))・・・(2)で表記される。
 LiTiO、LiMnO及びLiNbOの固溶体は、酸素の係数を整理して、次式で表すこともできる。
  aLi2/3Ti1/3O・bLi1/2Mn1/2O・(1-a-b)Li3/4Nb1/4O (0<a<1、0<b<1)
 これを変形して、岩塩型構造のMeO(Me:金属)で表記すると、上記一般式:Li(9-a-3b)/12Tia/3Mnb/2Nb(1-a-b)/4Oが得られる。
 さらに得られた一般式を一般式(1)の表記と合せるために、x=(9-a-3b)/12、y=a/3とすると、一般式(2)が得られる。
 本発明の一態様に係るリチウム二次電池用正極活物質は、充放電中のリチウムイオンの移動に伴う電荷補償において、酸化物イオンの酸化還元の寄与が固溶体に含有する遷移金属イオンの酸化還元の寄与と同じか又はそれ以上であるである。
 すなわち、本発明の一態様に係るリチウムイオン二次電池用正極活物質は、充放電中のリチウムイオンの移動に伴う電荷補償において、酸化物イオンの酸化還元の寄与が大きいものである。
 ここで、「酸化物イオンの酸化還元の寄与」または「遷移金属イオンの酸化還元の寄与」とは、可逆的に安定に酸化還元反応が進行する場合の充放電中のリチウムイオンの移動に伴う電荷補償において、酸化物イオンまたは遷移金属イオンの酸化還元の寄与をいう。
 目安を例示すれば、少なくとも30サイクル以上にわたって可逆的に酸化還元反応が生ずる場合の充放電における、酸化物イオンまたは遷移金属イオンの酸化還元の寄与をいう。
 例えば、リチウムイオン二次電池用正極活物質がLiTiOとLiMnOとの固溶体からなる場合、充放電中のリチウムイオンの移動に伴う電荷補償において、Mn3+/Mn4+の価数変化に伴う寄与と、酸化物イオンのO 2-/2O2-の価数変化に伴う寄与が存在する。
 例えば、リチウムイオン二次電池用正極活物質がLi0.6Ti0.2Mn0.2O(式量:81.453)において、Mn3+/Mn4+の価数変化に伴う寄与が主の場合、理論容量は131.6mAh/gとなる。これに対し、充放電中のリチウムイオンの移動量から理論容量を求めると、理論容量は394.9mAh/gとなる。
 充放電中のリチウムイオンの移動量は、Mn3+/Mn4+の価数変化に伴う寄与とO 2-/2O2-の価数変化に伴う寄与の総和である。つまり、Mn3+/Mn4+の価数変化に伴う寄与のみならず、酸化物イオンのO 2-/2O2-の価数変化に伴う寄与を利用することで、充放電容量を大きくすることができる。
 「酸化物イオンの酸化還元の寄与」または「遷移金属イオンの酸化還元の寄与」は、充放電サイクル過程において、遷移金属イオン及び酸化物イオンの価数変化を測定することによって調べることができる。遷移金属イオン及び酸化物イオンの価数変化は例えば、軟X線吸収分光法(XAS)、X線光電子分光法(XPS)、X線吸収微細構造解析(XAFS)、透過電子エネルギー損失分析(EELS)などによって調べることができる。
 例えば、リチウムイオン二次電池用正極活物質がLiTiOとLiMnOとの固溶体からなる場合、マンガンイオンのMn3+/Mn4+、酸化物イオンのO 2-/2O2-の価数変化を軟X線吸収分光法等を用いて測定する。充電時において、マンガンイオンがMn3+からMn4+への変化(Mn4+の生成)によってマンガンイオンの酸化還元反応の寄与を調べることができ、2O2-からO 2-への変化(O 2-とその類似物生成)によって酸化物イオンの酸化還元反応の寄与を調べることができる。一方、放電時においても、マンガンイオンがMn4+からMn3+への変化(Mn3+の生成)によってマンガンイオンの酸化還元反応の寄与を確認でき、O 2-から2O2-への変化(O2-の生成)によって酸化物イオンの酸化還元反応の寄与を確認できる。
 また、「酸化物イオンの酸化還元の寄与」または「遷移金属イオンの酸化還元の寄与」については、組成から理論的に予測することができる。
 例えば、LiTiOは電気化学的に不活性であることが知られている。そのため、例えば一般式:LiTi2x-1Mn2-3xO(0.50<x<0.67)・・・(1)におけるMnの組成比がTiの組成比に対して多い場合は「遷移金属イオンの酸化還元の寄与」が大きくなることが予測され、Mnの組成比とTiの組成比が同等となる場合は「酸化物イオンの酸化還元の寄与」が大きくなることが予測される。
 一般式(1)及び(2)におけるxは、0.50<x<0.67である。xがこの範囲にある組成の場合、岩塩型構造を維持することが容易になる。またxは、0.52≦x<0.65であることがより好ましい。xがこの範囲にある組成の場合、岩塩型構造を維持することがより容易になる。またxは、0.55≦x<0.63であることがさらに好ましい。xがこの範囲にある組成の場合、高い充放電容量が顕著に得られる。
 本実施形態にかかるリチウムイオン二次電池用正極活物質は、不可避的に生じるLi、Ti、Mn、NbまたはOの欠損により、わずかにずれた複合酸化物をも含む。
<リチウムイオン二次電池用正極活物質の製造方法>
 本発明の一態様に係るリチウムイオン二次電池用正極活物質の製造方法においては、リチウム、チタン、マンガン、ニオブのそれぞれの塩又は酸化物を用意し、組成比に合せて固相法により得ることができる。
 また固相法に限られず、共沈法、蒸発乾固法、スプレードライ法等を用いることができる。
 リチウム、チタン、マンガン、ニオブのそれぞれの塩又は酸化物は、それぞれ別々に用意してもよいし、複合化合物として用意してもよい。例えば、リチウム化合物とチタン化合物からリチウムチタン複合酸化物、リチウム化合物とマンガン化合物からリチウムマンガン複合酸化物、リチウム化合物とニオブ化合物からリチウムニオブ複合酸化物等を事前に作製してもよい。
 リチウム化合物としては、水酸化リチウム、クエン酸リチウム、シュウ酸リチウム、リン酸リチウム、および炭酸リチウム等を用いることができ、これらを単独であるいは2種以上混合して用いてもよい。
 チタン化合物としては、金属チタン、酸化チタン、水酸化チタン、硝酸チタン、塩化チタン等を用いることができ、これらを単独であるいは2種以上混合して用いてもよい。安定性の観点から酸化チタン(TiO)等を用いることが好ましい。
 マンガン化合物としては、金属マンガン、酸化マンガン、水酸化マンガン、硝酸マンガン、炭酸マンガン、塩化マンガン、ヨウ化マンガン、硫酸マンガンを用いることができ、これらを単独であるいは2種以上混合して用いてもよい。好ましくは、炭酸マンガンである。
 ニオブ化合物としては、金属ニオブ、酸化ニオブ、シュウ酸ニオブ、塩化ニオブ、炭化ニオブ、ニオブ酸リチウムを用いることができ、これらを単独であるいは2種以上混合して用いてもよい。安定性、入手の容易さの観点から、五酸化ニオブ(Nb)が好ましい。
 固相法により合成する場合、これらのリチウム、チタン、マンガン、ニオブのそれぞれの塩又は酸化物を目的とする活物質が所望の組成比になるように調整し、調整した混合物を焼成することで、リチウムイオン二次電池用正極活物質を得る。
 リチウム原料の量については、焼成中にリチウム原料の一部が消失することがあるため、1~5%程度過剰に含有させることが好ましい。また焼成温度は、用いるリチウム塩の種類にもよるが、500℃以上とすることが好ましく、生成するリチウムイオン二次電池用正極活物質の結晶性を高めるために、800℃以上とすることがより好ましい。生成されるリチウムイオン二次電池用正極活物質の結晶性が高いと、充放電特性が向上する。
<リチウムイオン二次電池用正極>
 本発明の一態様に係るリチウムイオン二次電池用正極は、上記リチウムイオン二次電池用正極活物質と導電材とバインダーとを含む。
 本発明の一態様に係るリチウムイオン二次電池用正極は、正極活物質として上記リチウムイオン二次電池用正極活物質を単独で備えるものでもよいし、他に公知のリチウムイオン二次電池用正極活物質を一種以上含んでいてもよい。
 また本発明の一態様に係るリチウムイオン二次電池用正極を作製する際に、リチウムイオン二次電池用正極活物質をボールミル等により粉砕することが好ましい。
 粉砕後のリチウムイオン二次電池用正極活物質の平均粒径は、0.5μm以下であることが好ましい。図3は、リチウムイオン二次電池用正極を作製する際に、リチウムイオン二次電池用正極活物質をボールミルにより粉砕した後の物質の顕微鏡画像である。ここで平均粒径とは、光学顕微鏡像中の任意の20個の粒子の平均値とする。ボールミルにより粉砕する前のリチウムイオン二次電池用正極活物質の粒径は2~4μmであり、粉砕後の物質の粒径は最大でも1μm程度である。
一般的な層状酸化物など遷移金属の酸化還元反応を利用するリチウムイオン二次電池用正極活物質の平均粒径は1~5μmである。平均粒径は、充放電特性に大きな寄与を与える構成である。平均粒径を0.5μm以下とし、炭素材料と均一に複合化することで、酸化物イオンによる電荷補償が活性となり、リチウムイオン二次電池の初期充放電特性が260mAh/g以上になることは、検討により新たに見出されたものである。また、Li基準の理論容量に対する初期充放電特性の実測値を70%以上とできることも、検討により新たに見出されたものである。
またボールミル等を行う際には、例えばカーボン等の導電材をリチウムイオン二次電池用正極活物質と共に混入することが好ましい。ボールミル等による粉砕工程時に、導電材は粉砕されたリチウムイオン二次電池用正極活物質の表面に均一に付着する。炭素等の導電材がリチウムイオン二次電池用正極活物質の表面に均一に付着した複合化剤は、酸化物イオンの電荷補償が進行するため充放電特性に優れる。また不要な反応を避けるために、粉砕工程は不活性ガス雰囲気中で行うことが好ましい。
<リチウムイオン二次電池>
 本発明の一態様に係るリチウムイオン二次電池は、上記正極と負極と非水電解質とを含み、一般のリチウムイオン二次電池に必須の構成要素を備える。
<リチウムイオン二次電池の用途>
 リチウムイオン二次電池の用途としては、それを駆動用電源や電力貯蔵源などとして用いることが可能な機械、機器、器具、装置あるいはそれを組み合わせたシステムなどであれば、特に限定されない。
 リチウムイオン二次電池の用途の例としては、リチウムイオン二次電池を駆動用電源として備える携帯電話機、スマートフォン、ノートパソコン、携帯用情報端末(PDA:Personal Digital Assistant)などの携帯用の電子機器が挙げられる。
 図1に、携帯電話機を電子機器の例として主な機能のブロック図を示す。
 携帯電話機10は、本発明のリチウムイオン二次電池を少なくとも1個備えたバッテリ1と、制御部2と、表示部3と、操作部4と、通信部5と、アンテナ6とを備える。
 制御部2はCPU及びメモリとで構成され、実装される各種デバイスの制御を行う。
表示部3は、操作メニュー等の各種情報を表示するものである 操作部4は、携帯電話の操作を行う入力インターフェースであり、操作部4からの入力は制御部2で処理され、携帯電話機としての動作が行われる。通信部5は、アンテナ6を介して無線通信を携帯電話基地局との間で行うものである。
 図2に、リチウムイオン二次電池の他の用途として、電気自動車を車両の例として駆動システムの概略平面図を示す。
 電気自動車20は、本発明のリチウムイオン二次電池を少なくとも1個備えた電池モジュール11と、インバータ12と、モーター13と、制御部14とを備える。
 電気自動車20は、電池モジュール11から、インバータ12を介して、モーター13に電力が供給されて駆動される。減速時にモーター13により回生された電力は電池モジュール11に貯蔵される。制御部14は、アクセルペダルが操作されたときに車輪15の回転方向と同じ方向にトルクを出力するようインバータ12を制御し、ブレーキペダルが操作されたときに車輪の回転方向と反対方向にトルクを出力するようにインバータ12を制御する。
 図2では電気自動車に適用される例を挙げたが、走行用のモーターとエンジンを備えるハイブリッド車両における走行用の電力を蓄電する蓄電池、あるいは補機駆動用の電力を蓄電する蓄電池にも適用することができる。エンジン車両において補機駆動用の電力を蓄電する蓄電池にも適用することができる。この場合、補機駆動用の電力を蓄電する蓄電池は、エンジンに連結されたオルタネータの発電する電力によって充電される。
 以下、実施例によりこの発明を具体的に説明するが、この発明はこれらの実施例のみに限定されるものではない。
(実施例1-1)
 一般式:LiTi2x-1Mn2-3xO(x=0.6)に相当するLi0.6Ti0.2Mn0.2
 Li0.6Ti0.2Mn0.2Oは、LiCO(和光純薬工業株式会社製)とTiO (関東化学株式会社製)、Mn(キシダ化学製炭酸マンガンを700℃で焼成することで得られた)モル比で、1.5:1:0.5となるように秤量した。そして、秤量した粉末を十分に均一になるように混合後、ペレット化し、900℃で12時間焼成して、Li0.6Ti0.2Mn0.2Oを得た。この際、焼成雰囲気を不活性ガス雰囲気とした。
 ついで、得られた粉末をジルコニア製ボールを加えたジルコニア製ポットに入れ、遊星型ボールミル(FRITSCH社製、型番pluverisette 7)にセットし、300rpmで12時間混合した。
 図3は、実施例1-1で得られた複合酸化物の粉末についてのボールミル前後のX線回折像を示す。横軸は回折角度(2θ)であり、縦軸は強度である。X線回折像から実施例1で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li0.6Ti0.2Mn0.2O(x=0.6)であることを確認した。
(電池特性評価)
 得られた複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)をリチウムイオン二次電池用正極活物質として用い、以下のように評価用の二極式電気化学セルを作製して、その電池特性を評価した。
 まず、得られた正極活物質Li0.6Ti0.2Mn0.2O(x=0.6)と、導電材としてアセチレンブラック(AB)とを80:20(重量比)で混合した。この混合物に、N-メチルピロリドン(NMP)に溶解したポリフッ化ビニリデン(PVDF)パインダーを添加してスラリーを作製した。このスラリーにおいて、正極活物質:AB:PVDF=76.5:13.5:10(重量比)とした。このスラリーを、集電体としてのアルミニウム箔上に塗布して乾燥した後、プレスして正極を作製した。 
 この正極を用い、対極をリチウム箔とした評価用の二極式電気化学セルを作製した。
 この電気化学セルにおいて、電解液として1M-LiPFをEC/DMC(体積比1:1)に溶解したものを用いて、充放電試験を行った。充放電試験は50℃で、電流密度5mA/g、1.5-4.8Vの電圧範囲で行った。
 図4に、実施例1-1の複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。右上がりの曲線は充電曲線に対応し、右下がりの曲線は放電曲線に対応する。
 1サイクル目の充電容量は350mAh/g、放電容量は315mAh/gと高い充放電容量が得られた。初回充電容量350mAh/gは、Li基準の理論容量394.9mAh/gの約89%に相当する非常に高い値である。この高い充放電容量は酸化物イオン(O2-/O 2-)の酸化還元反応によるものである。
 図5に、実施例1-1の複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用いた電気化学セルの放電容量の容量維持特性を評価した結果を示す。電流密度5mA/g、1.5-4.8Vの電圧範囲で、4サイクル充放電を繰り返した際の各サイクルにおける充放電容量を示す。4サイクル目における放電容量は300mAh/g、1サイクル目の放電容量の95%の放電容量を示し、高い放電容量維持率を示した。
 (実施例1-2)
 実施例1-2は、電流密度を10mA/gに上げて充放電特性を測定した点のみが実施例1-1と異なり、その他の条件は実施例1-1と同様とした。図6は、複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用い、実施例1-2の条件で測定された電気化学セルの充放電特性を示す。右上がりの曲線は充電曲線に対応し、右下がりの曲線は放電曲線に対応する。
 実施例1-2の条件でも、実施例1-1と同様に、高い充放電容量及び高い放電容量維持率を示した。1サイクル目の充電容量は350mAh/g、放電容量は300mAh/gであった。また5サイクル充放電を繰り返しても、92%と高い放電容量維持率を示した。すなわち、電流密度を高くしても、複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用いた電気化学セルは正常に機能した。
(実施例1-3)
 実施例1-3は、測定温度を室温(25℃)として充放電特性を測定した点のみが実施例1-1と異なり、その他の条件は実施例1-1と同様とした。図7は、複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用い、実施例1-3の条件で測定された電気化学セルの充放電特性を示す。右上がりの曲線は充電曲線に対応し、右下がりの曲線は放電曲線に対応する。
 実施例1-3の条件では、1サイクル目の充電容量は275mAh/g、放電容量は215mAh/gであった。測定温度が低下することで、充放電特性も低下しているが、充分に高い充放電特性を示している。また5サイクル充放電を繰り返しても、放電容量が大きく低下せず、93%と高い放電容量維持率を示した。
 図8に、複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)を正極活物質に用い、実施例1-3の条件で電気化学セルの放電容量の容量維持特性を評価した結果を示す。
(実施例2)
 一般式:LiTi2x-1Mn2-3xO(x=0.55)に相当するLi0.55Ti0.1Mn0.35
 実施例1-1で作製した複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)と同様の方法で作製した。LiCO、TiO、Mnをモル比で、1.1:0.4:0.7となるように秤量した。そして、秤量した粉末を十分に均一になるように混合後、ペレット化し、900℃で12時間焼成して、Li0.55Ti0.1Mn0.35Oを得た。この際、焼成雰囲気を不活性ガス雰囲気とした。
 秤量した試料を900℃12時間焼成し、焼成した試料を実施例1-1と同様の条件でボールミルを用いて試料を細かく粉砕した。
 図9は、実施例2で得られた複合酸化物の粉末についてのボールミル前後のX線回折像を示す。横軸は回折角度(2θ)であり、縦軸は強度である。X線回折像から実施例2で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li0.55Ti0.1Mn0.35O(x=0.55)であることを確認した。
 図10に、実施例2の複合酸化物Li0.55Ti0.1Mn0.35O(x=0.55)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。右上がりの曲線は充電曲線に対応し、右下がりの曲線は放電曲線に対応する。電流密度10mA/g、1.5-4.8Vの電圧範囲、測定温度50℃の条件で測定した充放電容量を示す。
 図10に示すように、1サイクル目の充電容量は260mAh/g、放電容量は230mAh/gと高い充放電容量が得られた。初回充電容量260mAh/gは、Li基準の理論容量394.9mAh/gの約71%に相当し、高い値を示した。この高い充放電容量は酸化物イオン(O2-/O 2-)の酸化還元反応によるものである。
(実施例3)
 一般式:LiTi2x-1Mn2-3xO(x=0.62)に相当するLi0.62Ti0.245Mn0.135
 実施例1-1で作製した複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)と同様の方法で作製した。LiCO、TiO、Mnをモル比で、1.24:0.96:0.27となるように秤量した。そして、秤量した粉末を十分に均一になるように混合後、ペレット化し、900℃で12時間焼成して、Li0.62Ti0.245Mn0.135Oを得た。この際、焼成雰囲気を不活性ガス雰囲気とした。
 秤量した試料を900℃12時間焼成し、焼成した試料を実施例1-1と同様の条件でボールミルを用いて試料を細かく粉砕した。
 図11は、実施例3で得られた複合酸化物の粉末についてのボールミル前後のX線回折像を示す。横軸は回折角度(2θ)であり、縦軸は強度である。X線回折像から実施例2で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li0.62Ti0.245Mn0.135O(x=0.62)であることを確認した。
 図12に、実施例3の複合酸化物Li0.62Ti0.245Mn0.135O(x=0.62)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。右上がりの曲線は充電曲線に対応し、右下がりの曲線は放電曲線に対応する。電流密度10mA/g、1.5-4.8Vの電圧範囲、測定温度50℃の条件で測定した充放電容量を示す。
 図12に示すように、1サイクル目の充電容量は350mAh/g、放電容量は280mAh/gと高い充放電容量が得られた。初回充電容量350mAh/gは、Li基準の理論容量394.9mAh/gの約89%に相当し、非常に高い値を示した。この高い充放電容量は酸化物イオン(O2-/O 2-)の酸化還元反応によるものである。
 実施例1-1、実施例2及び実施例3の結果から、一般式:LiTi2x-1Mn2-3xOのxの範囲を変化させた複合酸化物を正極材料として用いた場合でも、岩塩型構造を維持することができ、高い充放電特性を示すことができた。また実施例2と実施例3を比較すると、Tiの組成比が大きい方が、充放電中のリチウムイオンの移動に伴う電荷補償における酸化物イオンの酸化還元の寄与が高まり、高い充放電特性を得ることができる。
(参考例1)
 一般式:LiTiMn(3-y-4x)/2Nb(2x-y-1)/2O(x=0.625、y=0.1)に相当するLi0.625Ti0.1Nb0.075Mn0.2
 実施例1-1で作製した複合酸化物Li0.6Ti0.2Mn0.2O(x=0.6)と同様の方法の手法をもとに、さらにNb(和光純薬株式会社)を加えて作製した。LiCO、TiO、Mn3、Nbをモル比で、1.25:0.4:0.4:0.15となるように秤量した。そして、秤量した粉末を十分に均一になるように混合後、ペレット化し、900℃で12時間焼成して、Li0.625Ti0.1Nb0.075Mn0.2Oを得た。この際、焼成雰囲気を不活性ガス雰囲気とした。
 図13は、参考例4で得られた複合酸化物の粉末についてのボールミル前後のX線回折像を示す。横軸は回折角度(2θ)であり、縦軸は強度である。X線回折像から参考例4で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li0.625Ti0.1Nb0.075Mn0.2O(x=0.625、y=0.1)であることを確認した。
 図14に、参考例4の複合酸化物Li0.625Ti0.1Nb0.075Mn0.2O(x=0.625、y=0.1)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。右上がりの曲線は充電曲線に対応し、右下がりの曲線は放電曲線に対応する。電流密度10mA/g、1.5-4.8Vの電圧範囲、測定温度50℃の条件で測定した充放電容量を示す。
 図12に示すように、1サイクル目の充電容量は340mAh/g、放電容量は310mAh/gと高い充放電容量が得られた。この高い充放電容量は酸化物イオン(O2-/O 2-)の酸化還元反応によるものである。
 参考例1に示すように、実施例1-1~実施例3に示す一般式(1)の組成物の一部をNbに置換した一般式(2)の組成物でも高い充放電特性を示すことができた。
1…バッテリ、2…制御部、3…表示部、4…操作部、5…通信部、6…アンテナ、10…携帯電話機、11…電池モジュール、12…インバータ、13…モニター、14…制御部、15…車輪、20…電気自動車

Claims (8)

  1.  一般式:LiTi2x-1Mn2-3xO(0.50<x<0.67)・・・(1)で表記される岩塩型構造を有し、平均粒径が0.5μm以下であるリチウムイオン二次電池用正極活物質。
  2.  前記一般式(1)におけるxが0.55≦x<0.63である、請求項1に記載のリチウムイオン二次電池用正極活物質。
  3.  充放電中のリチウムイオンの移動に伴う電荷補償において、酸化物イオンの酸化還元の寄与が前記固溶体に含有する遷移金属イオンの酸化還元の寄与と同じか又はそれ以上である請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  4.  請求項1~3のいずれか一項に記載のリチウムイオン二次電池用正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。
  5.  請求項4に記載のリチウムイオン二次電池用正極と負極と非水電解質とを備えるリチウムイオン二次電池。
  6.  初期充電容量が260mAh/gである、請求項5に記載のリチウムイオン二次電池。
     
  7.  請求項6に記載したリチウムイオン二次電池を駆動用電源として備える電子機器。
  8.  請求項6に記載したリチウムイオン二次電池を駆動用電源として備える車両。
PCT/JP2017/000590 2016-01-13 2017-01-11 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両 WO2017122663A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17738417.9A EP3404752B1 (en) 2016-01-13 2017-01-11 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery, electronic device, and vehicle
JP2017561128A JP6896283B2 (ja) 2016-01-13 2017-01-11 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両
US16/068,697 US10720641B2 (en) 2016-01-13 2017-01-11 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery, electronic device, and vehicle
CN201780006428.9A CN108475783B (zh) 2016-01-13 2017-01-11 锂离子二次电池用正极活性物质、锂离子二次电池用正极、锂离子二次电池、电子装置和车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004256 2016-01-13
JP2016-004256 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122663A1 true WO2017122663A1 (ja) 2017-07-20

Family

ID=59311285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000590 WO2017122663A1 (ja) 2016-01-13 2017-01-11 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両

Country Status (5)

Country Link
US (1) US10720641B2 (ja)
EP (1) EP3404752B1 (ja)
JP (1) JP6896283B2 (ja)
CN (1) CN108475783B (ja)
WO (1) WO2017122663A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725488A (zh) * 2019-03-21 2020-09-29 湘潭大学 一种纳米阳离子无序结构正极材料及其制备方法
CN109860584B (zh) * 2019-04-01 2021-11-30 安普瑞斯(无锡)有限公司 一种高能量密度锂离子二次电池
CN112786857B (zh) * 2021-01-19 2021-12-17 华南师范大学 一种快离子导体钠二次电池正极材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP2007207626A (ja) * 2006-02-02 2007-08-16 Nissan Motor Co Ltd リチウムイオン二次電池および組電池、並びにこれらを搭載した車両
JP4307927B2 (ja) 2003-08-08 2009-08-05 三洋電機株式会社 非水電解質二次電池
JP2012091982A (ja) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology 立方晶岩塩型構造を有するリチウムマンガン系複合酸化物およびその製造方法
JP2012096974A (ja) 2010-11-05 2012-05-24 National Institute Of Advanced Industrial Science & Technology リチウムマンガン系複合酸化物−炭素複合体およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724269B2 (ja) 2010-09-21 2015-05-27 株式会社豊田自動織機 複合酸化物の製造方法
JP5397528B2 (ja) 2012-04-13 2014-01-22 株式会社豊田自動織機 蓄電装置及び二次電池
JP6269158B2 (ja) * 2014-02-24 2018-01-31 日産自動車株式会社 非水電解質二次電池用正極活物質およびその製造方法
JP5908650B2 (ja) * 2014-03-18 2016-04-26 株式会社東芝 電池用活物質、非水電解質電池及び電池パック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP4307927B2 (ja) 2003-08-08 2009-08-05 三洋電機株式会社 非水電解質二次電池
JP2007207626A (ja) * 2006-02-02 2007-08-16 Nissan Motor Co Ltd リチウムイオン二次電池および組電池、並びにこれらを搭載した車両
JP2012091982A (ja) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology 立方晶岩塩型構造を有するリチウムマンガン系複合酸化物およびその製造方法
JP2012096974A (ja) 2010-11-05 2012-05-24 National Institute Of Advanced Industrial Science & Technology リチウムマンガン系複合酸化物−炭素複合体およびその製造方法

Also Published As

Publication number Publication date
EP3404752B1 (en) 2020-05-13
CN108475783B (zh) 2021-01-22
JPWO2017122663A1 (ja) 2018-11-22
EP3404752A1 (en) 2018-11-21
EP3404752A4 (en) 2019-06-26
US20190020021A1 (en) 2019-01-17
CN108475783A (zh) 2018-08-31
JP6896283B2 (ja) 2021-06-30
US10720641B2 (en) 2020-07-21

Similar Documents

Publication Publication Date Title
Chen et al. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery
US8231810B2 (en) Composite materials of nano-dispersed silicon and tin and methods of making the same
JP6560917B2 (ja) 正極材料、および正極材料を用いた非水電解質二次電池
Manjunatha et al. Electrode materials for aqueous rechargeable lithium batteries
JP6486901B2 (ja) 電気化学デバイスのための共溶媒電解質
EP2203948B1 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
Ming et al. Redox species-based electrolytes for advanced rechargeable lithium ion batteries
JP5817657B2 (ja) 電池システム、電池システムの製造方法、電池の制御装置
WO2012035648A1 (ja) 非水電解液二次電池用活物質および非水電解液二次電池
JP2007184145A (ja) リチウム二次電池
JP7094570B2 (ja) リチウムイオン二次電池、電子機器及び車両
WO2017122663A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両
Lee et al. Lithia/(Ir, Li2IrO3) nanocomposites for new cathode materials based on pure anionic redox reaction
Firdous et al. Effect of Mg+ 2 and Bi+ 3 co-doping on structural and electrochemical properties of lithium titanium oxide for use as anode material in lithium-ion battery
Liu et al. The electrochemical properties of Fe-and Ni-cosubstituted Li 2 MnO 3 via combustion method
JP2013120700A (ja) 電池
CN109694099A (zh) 正极活性物质和氟化物离子电池
JP2011216201A (ja) 電極活物質及びリチウムイオン電池
Aravindan et al. A novel approach to employ Li 2 MnSiO 4 as anode active material for lithium batteries
JP2012114027A (ja) 金属二次電池用負極材料、金属二次電池用負極、及び金属二次電池
Zhang et al. Synthesis and electrochemical properties of P2-Na 0.7 Zn 0.15 Mn 0.75 O 2
Csík et al. Dual-Phase High Entropy Oxide Based on AlFeCoNiCu as an Advanced Anode Material for Lithium-Ion Batteries with Self-Healing Properties
JP2017041382A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器、及び、車両
EP3876316A1 (en) Cathode active material and fluoride ion battery
Zhang et al. Revealing the Impact of Dual Site Modification on the Phase Transformation and Ion Transport Mechanism of Ni-Rich Cathode Materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738417

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2017561128

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738417

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738417

Country of ref document: EP

Effective date: 20180813